Office de la Propriete Canadian CA 2416066 A1 2002/01/24

Intellectuell Intellectual P
du Canada Office o opery 2y 2 416 066
Fhdtiie Canads Indushy Ganada 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(86) Date de depot PCT/PCT Filing Date: 2001/06/14 (51) Cl.Int.//Int.Cl.” GOBF 1/00

(87) Date publication PCT/PCT Publication Date: 2002/01/24 | (71) Demandeur/Applicant:

(85) Entree phase nationale/National Entry: 2003/01/13 VCIS, INC., USs

86) N° demande PCT/PCT Application No.: US 2001/019142| (72) Inventeur/inventor:

(86) N demande ppricatiolt NO VAN DER MADE, PETER A. J.. AU
(87) N° publication PCT/PCT Publication No.: 2002/006928

o o (74) Agent: FINLAYSON & SINGLEHURST
(30) Prioritées/Priorities: 2000/0/7/14 (60/218,489) US;
2000/08/18 (09/642,625) US

(54) Titre : SYSTEME INFORMATIQUE IMMUNISE DETECTANT LES CODES INDESIRABLES DANS UN SYSTEME

INFORMATIQUE
54) Title: COMPUTER IMMUNE SYSTEM AND METHOD FOR DETECTING UNWANTED CODE IN A COMPUTER

SYSTEM

Behavior Potterns Before and After infection with a File—infector virus

Pre Infection Operating System Functions Called

Creote New Window
Load resources

Wait for user input - —

Load Document
Wait for User input
Check file size r

Write to Document
Close File

St —

v { i v A

0000 1000 1000 0110 1001 0001 0101 00—]1 o1te 1101 0101 Q100 Q101 110t 0101 IHIJ

Operating System Funchions Celled

Modify INT21 oddress
INT21 points aof CS

Post Infection

Search for first EXE
Move to End-of-file
Check size of file
if: Larger than 10K
Wnie to File

Search for next EXE User tnput
1 1 1 lv 1] !

0010 1100 1010 1110 1001 0101 0101 0011 0010 1101 0101 0101 0101 1101 0100 1011 j

(57) Abrége/Abstract:

An automated analysis system detects malicious code within a computer system by generating and subsequently analyzing a
behavior pattern for each computer program introduced to the computer system. Generation of the behavior pattern Is
accomplished by a virtual machine invoked within the computer system. An Initial analysis may be performed on the behaviour
pattern to identify infected programs on initial presentation of the program to the computer system. The analysis system also
stores behavior patterns and sequences with their corresponding analysis results in a database. Newly infected programs can
be detected by analyzing a newly generated behaviour pattern for the program within reference to a stored behavior pattern to
Identify presence of an Infection or payload pattern.

SRR VNEEEN
R 5. sas ALy
O
A

W .
‘ l an a dH http.:vvopic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC
OPIC - CIPO 191

02/06928 A2

CA 02416066 2003-01-13

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
24 January 2002 (24.01.2002)

(51) International Patent Classification”: GO6F 1/00

(21) International Application Number: PCT/US01/19142

(22) International Filing Date: 14 June 2001 (14.06.2001)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
60/218,489 14 July 2000 (14.07.2000) US
09/642,625 18 August 2000 (18.08.2000) US

(71) Applicant: VCIS, INC. [US/US]; 522 Erskine Drive, Pa-
cific Palisades, CA 90272 (US).

(72) Inventor: VAN DER MADE, Peter, A., J.; 17 Nooal
Street, Newport Beach, NSW 2106 (AU).

(74) Agents: WRIGHT, William, H. et al.; Hogan & Hartson
L.L.P., Biltmore Tower, Suite 1900, 500 South Grand Av-
enue, Los Angeles, CA 90071 (US).

PCT

(10) International Publication Number

WO 02/06928 A2

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
A7, BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL., IN, IS, JP, KE, KG, KP, KR, KZ, 1.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PL., PT, RO, RU, SD, SE, SG, SI, SK,
SL., TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CFL,

CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: COMPUTER IMMUNE SYSTEM AND METHOD FOR DETECTING UNWANTED CODE IN A COMPUTER SYS-

TEM

Behavior Patterns Before and After infection with g File-infector virus

Pre infection

Operating System Functions Called

Close Fie

Creote New Window
Load resources

Wait for user input

- Lood Document
Wait for User input
Check file size
Write to Document

v t {

1

000C 1600 1000 0110 1001 00Q1 Ot101 001t 001G 110t Q0101 Q100 0101 1101 0101 Q11 |

Past Infection

Operating System Functions Called

Modify INT21 address
INT21 points at CS

Search for first EXE
Move to End—of-file
Check size of file
if: Larger than 10K
Write to File
Search for next EXE

User 1an{_!

r r_r tr v 1

!

G010 1100 1010 1110 1601 010t G101 OO11 0010 1101 0101 011 @101 tid1 Q160 1011]

(57) Abstract: An automated analysis system detects malicious code within a computer system by generating and subsequently
analyzing a behavior pattern for each computer program introduced to the computer system. Generation of the behavior pattern is
accomplished by a virtual machine invoked within the computer system. An initial analysis may be performed on the behaviour
pattern to identify infected programs on initial presentation of the program to the computer system. The analysis system also stores
o behavior patterns and sequences with their corresponding analysis results in a database. Newly infected programs can be detected
by analyzing a newly generated behaviour pattern for the program within reference to a stored behavior pattern to identify presence

of an infection or payload pattern.

d

10

15

20

25

30

CA 02416066 2003-01-13
WO 02/06928 PCT/US01/19142

Computer Immune System and Method for

Detecting Unwanted Code in a Computer System

PRIORITY APPLICATION NOTICE

This application claims priority from United States provisional patent
application Serial No. 60/218,489, filed July 17, 2000, which application 1s

hereby incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates to the field of computer security and
specifically to the detection of computer programs that exhibit malicious or
self-propagating behavior including, for example, computer viruses and

trojans.

2. Discussion of the Related Art

Detection of viruses has been a concern throughout the era of the
personal computer. With the growth of communication networks such as the
Internet and increasing interchange of data, including the rapid growth in the
use of e-mail for communications, the infection of computers through
communications or file exchange is an increasingly significant consideration.
Infections take various forms, but are typically related to computer viruses,
trojan programs, or other forms of malicious code. Recent incidents of e-mail
mediated virus attacks have been dramatic both for the speed of propagation
and for the extent of damage, with Internet service providers (ISPs) and
companies suffering service problems and a loss of e-mail capability. In many

instances, attempts to adequately prevent file exchange or e-mail mediated

10

15

20

235

30

CA 02416066 2003-01-13
WO 02/06928 PCT/US01/19142

infections significantly inconvenience computer users. Improved strategies for
detecting and dealing with virus attacks are desired.

One conventional technique for detecting viruses is signature scanning.
Signature scanning systems use sample code patterns extracted from known
malicious code and scan for the occurrence of these patterns in other program
code. In some cases program code that is scanned is first decrypted through
emulation, and the resulting code is scanned for signatures or function
signatures. A primary limitation of this signature scanning method is that
only known malicious code is detected, that is, only code that matches the
stored sample signatures of known malicious code 1s identified as being
infected. All viruses or malicious code not previously identified and all viruses
or malicious code created after the last update to the signature database will
not be detected. Thus, newly created viruses are not detected by this method;
neither are viruses with code in which the signature, previously extracted and
contained 1n the signature database, has been overwritten.

In addition, the signature analysis technique fails to 1dentify the
presence of a virus if the signature is not aligned in the code in the expected
fashion. Alternately, the authors of a virus may obscure the identity of the
virus by opcode substitution or by inserting dummy or random code into virus
functions. Nonsense code can be inserted that alters the signature of the virus
to a sufficient extent as to be undetectable by a signature scanning program,
without diminishing the ability of the virus to propagate and deliver its
payload.

Another virus detection strategy is integrity checking. Integrity
checking systems extract a code sample from known, benign application
program code. The code sample is stored, together with information from the
program file such as the executable program header and the file length, as
well as the date and time of the sample. The program file 1s checked at
regular intervals against this database to ensure that the program file has not
been modified. Integrity checking programs generate long lists of modified

files when a user upgrades the operating system of the computer or installs or

10

15

20

25

30

CA 02416066 2003-01-13
WO 02/06928 PCT/US01/19142

upgrades application software. A main disadvantage of an integrity check
based virus detection system is that a great many warnings of virus activity
issue when any modification of an application program is performed. It is
difficult for a user to determine when a warning represents a legitimate attack
on the computer system.

Checksum monitoring systems detect viruses by generating a cyclic
redundancy check (CRC) value for each program file. Modification of the
program file 1s detected by a variation in the CRC value. Checksum monitors
improve on integrity check systems in that it is more difficult for malicious
code to defeat the monitoring. On the other hand, checksum monitors exhibit
the same limitations as integrity checking systems in that many false
warnings issue and it is difficult to identify which warnings represent actual
viruses or infection.

Behavior interception systems detect virus activity by interacting with
the operating system of the target computer and monitoring for potentially
malicious behavior. When such malicious behavior is detected, the action 1s
blocked and the user is informed that a potentially dangerous action is about
to take place. The potentially malicious code can be allowed to perform this
action by the user. This makes the behavior interception system somewhat
unreliable, because the effectiveness of the system depends on user input. In
addition, resident behavior interception systems are sometimes detected and
disabled by malicious code.

Another conventional strategy for detecting infections is the use of bait
files. This strategy is typically used in combination with other virus detection
strategies to detect an existing and active infection. This means that the
malicious code is presently running on the target computer and is modifying
files. The virus is detected when the bait file 1s modified. Many viruses are
aware of bait files and do not modify files that are either too small, obviously a
bait file because of their structure or have a predetermined content in the file

name.

10

15

20

25

CA 02416066 2003-01-13
WO 02/06928 PCT/US01/19142

It is apparent that improved techniques for detecting viruses and other

malicious types of code are desirable.

SUMMARY OF THE PREFERRED EMBODIMENTS

One aspect of the present invention provides a method for identifying
presence of malicious code in program code within a computer system,
including initializing a virtual machine within the computer system. The
initialized virtual machine comprises software simulating functionality of a
central processing unit and memory. The virtual machine virtually executes a
target program so that the target program interacts with the computer system
only through the virtual machine. The method includes analyzing behavior of
the target program following virtual execution to identify occurrence of
malicious code behavior and indicating in a behavior pattern the occurrence of
malicious code behavior. The virtual machine is terminated at the end of the
analysis process, thereby removing from the computer system a copy of the
target program that was contained within the virtual machine.

Another aspect of the present invention provides a method for
identifying the presence of malicious code in program code within a computer
system. The method includes initializing a virtual machine within the
computer system, the virtual machine comprising software simulating
functionality of a central processing unit, memory and an operating system
including interrupt calls to the virtual operating system. A target program 1s
virtually executed within the virtual machine so that the target program
interacts with the virtual operating system and the virtual central processing
unit through the virtual machine. Behavior of the target program is
monitored during virtual execution to identify presence of malicious code and
the occurrence of malicious code behavior is indicated in a behavior pattern.
The virtual machine is terminated, leaving behind a record of the behavior

pattern characteristic of the analyzed target program.

10

15

20

25

30

CA 02416066 2003-01-13
WO 02/06928 PCT/US01/19142

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a behavior pattern generated according to the
analytical behavior method, showing the behavior pattern for code that 1s not
infected and is infected with a computer virus. Each bit may be a flag
indicating an action. The total stream of bits is a value indicative of the
behavior of the program.

FIG. 2 shows a block diagram of components used in a preferred
implementation of the analytical detection method.

FIG. 3 schematically illustrates the COM file format, used as an
example of the function of the program structure extractor and program
loader.

FIG. 4 illustrates an interface of the virtual PC to various program file
formats. Before virtualization can take place, the program loader preferably
extracts the correct entry point, code and initialized data from the program
file. The file offset to the entry point code is given in the program header and
varies depending on the type of file that contains the program.

FIG. 5 schematically illustrates the virtual PC memory map after
loading a binary image ((COM) program and after loading a MZ-executable
program. To virtualize the code in the desired manner, the structure of the
virtual PC and its memory map contains the same information as it would 1f
the code was executed on the physical PC which runs the virtual machine
containing the Virtual PC.

FIG. 6 provides a detailed diagram showing components of a preferred
implementation of the Virtual PC. The virtual PC contains the same
components that are used in a physical computer, except that all Virtual PC
components are simulated in software running as a virtual machine on a

physical computer.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

A particularly preferred embodiment of the present invention provides

an automated analysis system that detects viruses and other types of

10

15

20

25

30

CA 02416066 2003-01-13
WO 02/06928 PCT/US01/19142

malicious code within a computer system by generating and subsequently
analyzing a behavior pattern for each computer program introduced to the
computer system. New or modified computer programs are analyzed before
being executed by the computer system. Most preferably the computer system
initiates a virtual machine representing a simulation of the computer system
and the virtual machine executes the new or modified computer program to
generate a behavior pattern prior to the new computer program being
executed by the physical computer system. An initial analysis i1s performed on
the behavior pattern to identify infected programs upon initial presentation of
the program to the computer system. The analysis system also stores
behavior patterns and corresponding analysis results in a database. Newly
infected programs can be detected by subtracting the stored behavior pattern
for that program from a newly generated behavior pattern, and analyzing the
resulting pattern to identify an infection or payload pattern associated with
malicious code.

A variety of different terms are used in programming to describe
different functional programming subunits. At different times and for
different programming languages subunits of various sorts have been called
functions, routines, subprograms, subroutines and other names. Such
designations and the context or differences they represent are not significant
to the present discussion and so this discussion is made simply in terms of
programs, intending the term program to refer to functional programming
units of any size that are sufficient to perform a defined task within a
computer system or computing environment. Such specialized functions as
those performed by macros within certain word processing programs,
including for example, in Visual Basic macros for Microsoft Word documents,
are included within this general discussion. In this sense, individual
documents may be considered to be programs within the context of this
discussion.

For convenience and brevity, this discussion references viruses in the

known sense of that term as being a self-propagating program generally

10

15

20

235

30

CA 02416066 2003-01-13
WO 02/06928 PCT/US01/19142

undesired in the infected computer system. As used here, the term Windows
1s intended to reference any of the personal desktop operating systems sold by
the Microsoft Corporation under the Windows brand name. The term PC or
personal computer is used, unless specifically modified to indicate otherwise,
to indicate a computer system based on the well-known x86 architecture,
including those machines that presently are based on the microprocessor sold
by Intel Corporation under 1ts Pentium brand name and successors to that
microprocessor and architecture. This discussion i1s provided to i1llustrate
implementation of aspects of the invention. Aspects of the present invention
find application in a range of different computer systems in addition to the
1llustrated personal computer systems.

The present inventor has analyzed the behavior of a variety of different
viruses and other malignant source code. Certain éeneral characteristics of
viruses have been identified. A virus needs to infect other programs and
eventually other computers to propagate. Viruses consequently include
infection loops that copy the virus into another executable program or
sometimes into documents, in the exemplary case of Visual Basic macro
viruses. Viruses and trojans generally contain payloads. The payload allows
the virus to affect the infected system or communicate its presence. A payload
might be, for example, a message that pops up to announce the virus or a
malicious function that damages the infected computer, for example by
corrupting or erasing the data on the hard disk or by altering or disabling the
BIOS within the BIOS flash or EEPROM.

Another common characteristic of viruses is that the virus becomes
resident in the memory. DOS viruses need to copy themselves into memory
and stay resident. Most viruses do not use the obvious terminate and stay
resident (T'SR) call but instead use a procedure that copies the virus into high
memory. The virus then can directly modify the data in the high memory
blocks. In an additional aspect of this infection scheme, the interrupt vector is
modified to point at memory blocks that have been modified by the memory

resident virus or other malignant procedure. These modified memory blocks

10

15

20

25

30

CA 02416066 2003-01-13

WO 02/06928 PCT/US01/19142

store the infection procedure. Windows specific viruses bump themselves into
ring0, for example using a callgate or DPMI call, and go resident in a system
utility such as the system tray.

These behaviors are characteristic of a virus and are not, in the
ageregate, characteristic of other, non-malignant programs. Consequently, a
program can be identified as a virus or infected with a virus if it possesses
cgrtain ones of these behaviors, certain collections of these behaviors or all of
these behaviors. In preferred embodiments of the present invention, the
occurrence of these behaviors or combinations of the behaviors is indicated by
collections of bits in a behavior pattern data set representing behavior
characteristic of the infected program. An example of behavior patterns for a
normal and an infected file are illustrated in FIG. 1.

In preferred embodiments of the present invention, the behavior of a
newly loaded or called program is analyzed in a virtual machine that
simulates a complete PC, or a sufficiently complete PC, in software and it 1s
that virtual PC that generates the behavior pattern. The virtual PC simulates
execution of the new or modified program, simulating a range of system
functions, and the virtual PC monitors the behavior of the suspect program
and makes a record of this behavior that can be analyzed to determine that
the target program exhibits virus or malignant behaviors. The result of the
virtual execution by the virtual machine 1s a behavior pattern representative
of the new program. As discussed in greater detail below, the behavior
pattern generated by the virtual PC identifies that a program is infected with
a virus or is itself a virus. An advantage for the use of virtual execution and
analysis of new programs for viruses is that the virtual machine 1s virtual and
so, if the virtualized new program contains a virus, only the virtual machine 1s
infected. The infected instance of the virtual machine is deleted after the
simulation, so the infection is incomplete and the virus does not propagate.
The behavior pattern survives the deletion of the virtual machine, allowing an
analysis program to identify the existence of the virus and of the infection

within the new program.

10

15

20

25

30

CA 02416066 2003-01-13
WO 02/06928 PCT/US01/19142

Most preferably, each time a new program is analyzed a new instance of
the virtual machine is generated, free of modification by any previously
virtualized programs including any earlier analyzed viruses. The new
program then is run on the new instance of the virtual machine preferably
followed by initiation of a modified interrupt caller procedure, described in
oreater detail below. While the virtual machine 1s executing the new program
in cooperation with the modified interrupt caller procedure, the virtual
machine monitors all system calls, DPMI/DOS interrupts and I/O port
read/write (r/w) operations, setting bits in the behavior pattern register
according to the observed behaviors. It is these bits in the behavior pattern
that are retained after the simulation is complete and the virtual PC has been
terminated. The bits stored in the behavior pattern register are the behavior
pattern and indicate whether the virtually-executed program includes
behaviors indicative of the presence of a virus or other malignant code.

The modified interrupt caller procedure calls the interrupts that the
program being analyzed has modified within the virtual PC and generates a
behavior pattern for each of those interrupt service routines as well. This
allows particularly preferred embodiments of the present invention to identify
certain types of viruses that initially modify only the interrupt service
routines and do not begin propagating until the modified interrupt or
interrupts are called by another program. By allowing the various interrupt
service routines in the virtual machine to be modified and then analyzing the
modified interrupts, these embodiments of the invention can detect this
delayed propagation mechanism.

In some presently preferred embodiments, only the static, final version
of the behavior pattern is analyzed. It is possible, and in some circumstances
desirable, to monitor the sequence in which the bits in the behavior pattern
register are set. The order in which the behavior pattern bits are set provides
additional information allowing identification of additional virus behaviors.
Tracking of the order in which the behavior pattern bits are set 1s

accomplished within the virtual machine.

10

15

20

235

30

CA 02416066 2003-01-13
WO 02/06928 PCT/US01/19142

Preferred implementations of the analytical behavior method (ABM)
proceed by extracting a behavior pattern and sequence from a modified, new,
unknown or suspect program. The behavior pattern is preferably used to
analyze the behavior of the unknown program to determine if the behavior of
the unknown program is malicious. Identification of malicious behavior in
this manner allows identification of virus carrying files prior to infection of the
host computer system. The behavior pattern can also be stored in a database
and the virtual machine can subsequently analyze the behavior of the
program following modification to determine if its functionality has been
modified in a suspect (malicious) manner. This provides post-infection
analysis.

The described analytical behavior method differs from conventional
virus detection methods in that it does not match program code to a set of
stored patterns as do signature scanners and integrity checkers. Rather, a
virtual machine is used to generate a behavior pattern and a sequence. The
generated behavior pattern does not change significantly between version
updates, but does change dramatically when a virus infects a program. For
example, a word processor will still behave like a word processor when the
program is replaced or updated with a new version of the program but the
word processor changes significantly when the word processor is infected with
a virus. The differences reflected in the behavior patterns are illustrated in
FIG. 1. When a word processor 1s infected with a file infector computer virus,
the word processor now opens executable files and inserts the viral code into
them, thereby infecting additional files. This is clearly reflected in the
1llustrated behavior patterns.

In particularly preferred embodiments of the invention, the analysis
procedure specifically targets infection methods such as, but not limited to,
the insertion of code to other executables or documents, submitting code to
other applications to be transmitted or stored, insertion of code into high
memory blocks and the modification of memory control blocks. Preferred

implementations of the analysis method further look for destructive content,

10

10

15

20

23

CA 02416066 2003-01-13
WO 02/06928 PCT/US01/19142

such as, but not limited to, functions that overwrite disk areas or the BIOS
ROM, or delete files or directories. Most preferably, the analysis makes an
exception and does not identify as infected a program whose other behavior
characteristics indicate that the program is a development tool or software
debugging tool and where the modifying behavior 1s an integral part of the
tool's normal function. A viral infection of a development tool can be detected
where an expressed function 1s not part of the tool's normal function, that is,
within the development process. Both active (1) and inactive (0) flags present
in the behavior pattern are significant in this analysis, as well as the sequence
in which actions take place.

In accordance with preferred embodiments of the present invention, the
virtual machine or virtual PC represents a simulation of a complete computer
system. A complete computer system preferably includes an emulated central
processing unit (CPU), emulated memory, input/output (I/0) ports, BIOS
firmware, operating system and the operating system data areas. This stands
in contrast to simple emulation of a processor, in which only the processor
processes are emulated. In emulation, program instructions are converted
from their native form to a stream of instructions that perform the same
function on a different hardware platform. Some signature scanning software
employs emulation to decrypt the body of a suspect program before the suspect
program is scanned for signatures. In virtualization, the entire computer is
simulated including operating system calls, which are not actually executed
but seem to the calling program to perform the desired functions and return
the correct values as if they were executed.

As discussed above, the virtual PC includes a CPU, memory, I/O ports,
a program loader, and the operating system application program interface
(API's) entry points and interface. Using such a complete virtual PC is
particularly preferred because 1t gives the analytical behavior method a high

level of control over the virtualized program, including over the sophisticated

30 direct calls to the operating system API. The virtualized program is not given

access to any of the facilities of the physical machine, thereby avoiding the

11

10

15

20

25

30

CA 02416066 2003-01-13
WO 02/06928 PCT/US01/19142

risk that the potential virus or other malicious code escapes from the
controlled environment to infect the host computer system.

FIG. 2 provides an overview of the preferred analytic behavior method
architecture including the relationship between the virtual machine and
components of the host computer system. Program code is delivered to the
ABM engine and analysis system by direct access to the hard disk through I/0
port bit manipulation, hooking into the operating system file system or by
sequentially scanning the hard disk. The program code is checked against the
database for ‘known’ files. If the file 1s new or modified, it is processed. The
resulting behavior signature is analyzed or compared and stored. A virus
warning is returned when analysis shows that the file contains malicious code.
The analytical behavior method preferably includes: (1) file structure
extraction; (2) change detection; (3) virtualization; (4) analysis; and (5)
decision.

Before the program can be virtualized, the file format containing the
target program has to be evaluated. The entry point code 1s extracted and
loaded into the virtual computer's memory at the correct simulated offset. In
a physical computer this function would be performed by the program loader
function, which is part of the operating system. The operating system can

execute programs that are held in a collection of different file formats, such as:

DOS 1.0 and/or CP/M COM Binary image file, loaded at 100h in memory,

~ maximum size: 64K.

DOS 2.0-DOS 7.1 EXE MZ-type executable, header determines CS:IP
of load address.

Windows 3.0 executables NE-type executable which contains both the
DOS MZ-header pointing at a DOS code area
and a New Executable (NE) header
containing the entry point of the Windows
(protected mode) code. NE files are

segmented.

12

WO 02/06928

0S/2 executables

5
10
32-bit executables
15
OLE Compound Files
20
25
Binary Image
30

CA 02416066 2003-01-13

PCT/US01/19142

LE /LX type executable which contains both
the DOS MZ-header and DOS code area and a
protected mode section which 1s determined
by the LE-header following the DOS code
segment. Linear Executable (LE) files are
used 1n Windows 3 for system utilities and
device drivers. LE files are segmented. LX
files incorporate some differences in the way
the page table 1s stored and are intended for
the OS/2 operating system. LE files are
segmented and the segments are paged.
PE-type executable which contains both the
DOS MZ-header and DOS code area and the
Portable Executable header containing the
entry point and file offset of the protected
mode code. PE files are segmented.

OLE compound files (COM) are document
files that can contain executable format
streams, usually referred to as Macros. All
office components incorporate Visual Basic for
Applications, as does Internet Explorer
versions 4 and 5. Windows98 systems can
execute Visual Basic code directly from a
script file. The Visual Basic code 1s compiled
and stored in a stream, which is paged
according to its file offset references stored in
a linked list in the file header.

A binary image 1s used for the boot sector and
Master Boot and Partition table. Both the

boot-sector and the MBR contain executable

13

10

15

20

25

30

CA 02416066 2003-01-13
WO 02/06928 PCT/US01/19142

code which is loaded 1nto memory at 0:7C00
during the start-up process.

Driver files System Drivers are stored as a binary image
with a header. The header contains
information about the drivers stored within
the file. Multiple drivers can be stored within

the same file.

The virtual computer loader function is capable of dealing with the file
formats and binary image files shown above. The loader function is performed
by virtualizing the operating system program loader and so varies depending
on the operating system used in the host computer. The file structure analysis
procedure looks in the file header and file structure to determine the file
format, rather than using the file extension because file extensions are
unreliable in general use. The .EXE formats described above therefore include
DLL, AX, OCX and other executable file format extensions.

Compound document files can contain executable streams such as
Visual Basic code or macros. The structure of a compound document file 1s
1llustrated in the diagram shown in FIG. 3. The header of a compound
document file contains a hinked list (or File Allocation Table) which 1s
referenced in a directory structure that points to the entry point of the linked
list. Each entry in the linked list refers to the next entry and a file offset. A
value of —1 in the linked list indicates the end of a chain. Streams exist out of
blocks, which may be scattered anywhere in the file 1n any order. In
particularly preferred embodiments of the invention, code extracted from a
compound document file is passed through a Visual Basic decompiler before it
1s presented to a Visual Basic emulator. Not all compound document files
contain compiled Visual Basic code. Hypertext markup language (HTML) and
Visual Basic Script (VBS) files can contain Visual Basic Script code as text.'
This code 1s preferably extracted and treated as a Visual Basic stream within

the virtual machine.

14

10

15

20

25

30

CA 02416066 2003-01-13
WO 02/06928 PCT/US01/19142

The NE /PE /LE executable file formats are similar in complexity,
except that no linked list 1s used; rather these file formats use a segment or
page table. The PE file format is based on the COFF file specification. FI1G. 4
1llustrates how these file formats interface with the preferred virtual PC in
accordance with certain embodiments of the present invention. In evaluating
how aspects of the preferred virtual PC interfaces to a particular file, the file
loader preferably decides if the file presented is a document file or a binary
file.

After the file format has been evaluated and the entry point-file offset
has been calculated, the file is opened and the virtual machine reads the
relevant code into memory as a data stream. The length of the code is
calculated from fields in the header of the file. This information is passed to
the virtual program loader. The virtual program loader uses information 1n
the file header to load the extracted code at the correct simulated offset in a
virtual memory array.

A memory mapping utility maps the virtual memory map to the ofiset

for the file type that is virtualized:

DOS (CP/m) binary image files ((COM) offset CS:100h
DOS (2.0 up) Executable format files (MZ-EXE) offset CS:IP from header
Windows NE, PE, LE offset CO000000+CS:IP
from header
Binary Image MBR, Boot sector code offset 0:7C00h
Document COM files, HTML and VBS files no specific offset,
VBA code

The Loader utility dynamically assigns physical memory to the virtual
computer memory array each time a program is virtualized, and proceeds to
build a new virtual machine. Each virtual machine contains a BIOS data
area, a filled environment string area, DOS data area, memory control blocks,

program segment prefix area, the interrupt vector table and descriptor tables.

15

10

15

20

25

30

CA 02416066 2003-01-13
WO 02/06928 PCT/US01/19142

The final structure of the virtual machine depends on the type of program that
is virtualized. Each virtualized program therefore runs in a fresh memory
area, created when that program is loaded into the virtual PC. Previous
instances, where infected programs may have been virtualized, therefore
cannot affect the performance of subsequent programs. The virtual machine
is shut down and its memory resources are released when the virtualized
program terminates and the virtual machine completes assembly of the
behavior pattern for the target, virtualized.

FIG. 5 illustrates how the virtual memory is configured for (COM)
binary image files and DOS program (MZ-EXE) files. The memory map and
mapper utility are adjusted depending on the file type.

The program loader simulates the loader functions of the operating
system and creates system areas that represent similar system areas in the
physical computer. This is particularly advantageous functionality because
the code under evaluation most preferably runs in the same manner as if
executed on a physical computer system. The virtualized program is executed
by fetching instructions from the virtual memory array into a pre-fetch
instruction queue. The instructions in the queue are decoded and their length
1s determined by their operational parameters.

The instruction pointer is incremented accordingly so that the
instruction loader is ready to fetch the next instruction. The virtual machine
determines from the r/m field of the instruction parameters where data on
which the instruction operates is to be fetched. The data fetch mechanism
fetches this data and presents the data to the logic unit, which then performs
the operation indicated by the code. The destination of the processed data is
determined from the parameters of the instruction code. The data write
mechanism is used to write the processed data to emulated memory or the
emulated processor register set. This process accurately reflects what takes
place in a physical CPU (central processing unit).

All areas of this process are simulated, as generally illustrated in FIG.

6. The memory exists as an array of 400 Kbyte elements into which all

16

10

15

20

25

30

CA 02416066 2003-01-13
WO 02/06928 PCT/US01/19142

memory accesses are mapped by a memory mapping mechanism. The size of
the memory array may be adjusted in future implementations to accommodate
larger programs. The video display is simulated from a system viewpoint as
128 Kbyte of memory mapped between A000:0 and BFFFE:F (inclusive) in the
virtual computer’s memory map. The standard IBM PC input/output area is
simulated as an array of 1024 bytes representing I/O ports 0-3FFh. The CPU
is simulated by performing the same low-level functions as the physical CPU,
but in high-level software.

The operating system is implemented as an area in the memory array of
700h bytes containing the BIOS data fields, the DOS data area, Memory
Control Blocks and DOS devices. The interrupt vector table takes up the first
1024 (400h) positions in the memory array as it would in a physical PC. The
DOS interrupt structure is implemented as simulated functions that return
the correct values and by filling the memory array with the correct values
expected by simulating DOS functions.

’The operating system is implemented as a virtual API (VAPI) that
simulates the results returned by all operating system API’s.

During the virtualization process, flags are set in the behavior pattern
(Tstruct) field as the functions represented by those fields are virtualized. The
sequence in which these functions are called is recorded in the sequencer. The
behavior pattern therefore matches closely the behavior of the program under
evaluation to the behavior of that program in a physical PC environment.
Simulated interrupt vectors modified during the process of executing the
virtualized program are called after program virtualization terminates, thus
acting as applications that would call such interrupt vectors in a physical
computer following modification of these vectors.

To illustrate this functionality, consider the following set of operations

might be performed in operation of the analytical behavior method:

Search for the first EXE file 1n this directory ‘set FindFirst Flag
(T'struct Structure)

17

10

15

20

25

30

CA 02416066 2003-01-13

WO 02/06928 PCT/US01/19142
Is this a PE executable (examine header)? 'set KXREcheck Flag
If not, jump far
Else: Open the executable file 'set EXEaccess Flag
Write to the section table 'set EXEwrite Flag
Search for the end-of-file 'set EXEeof Flag
Write to file -set EXEwrite Flag
Close file
Search next EXEH file 'set EXEFindNext Flag
23 L - O 1

Returned: 0010 0100 1010 1010 1001 0101 0010 1111 0010 1010 0010 0100 0100 1001 0000

0101
Value: 2 4 A A 9 5 2 F 2 A 2 4 4 9 0 5

Sequencer: 21,22, 23,24,26,29,3E,1,36,38,3B,3, 9,C,F,13,16,1A,1C,1E, 2B,2D,30,32,34,

The resulting behavior pattern is: 24AA952F2A 244905

The behavior pattern contains flags that indicate that the user has not
had the opportunity to interact with this process through user input (the
userInput flag is not set). The sequencer contains the order in which the bits
were set, identifying the infection sequence shown above. Therefore this
observed behavior is most likely viral.

Many viruses are encrypted, polymorphic or use ‘tricks’ to avoid
detection by signature scanners. Wherever such ‘tricks’ are used, the behavior
pattern points more obviously towards a virus since such tricks are not
normally used in normal applications. In any case, preferred implementations
of the present invention require that an infection procedure be present to
trigger a virus warning to avoid false positive warnings. Encrypted viruses
are no problem, because the execution of the code within the virtual machine,
which generates the behavior pattern, effectively decrypts any encrypted or
polymorphic virus, as it would in a physical PC environment. Because all

parts of the virtual computer are virtualized in preferred embodiments, and at

18

10

15

20

25

30

CA 02416066 2003-01-13
WO 02/06928 PCT/US01/19142

no time is the virtualized program allowed to interact with the physical

computer, there is no chance that viral code could escape from the virtual

machine and infect the physical computer.

The change detection module compares existing files at 6 levels to

determine if the file was analyzed previously:

e The file is the same (entry point code, sample, file-name and file-size are
the same).

e The file is not 1n the database (new file).

¢ The behavior pattern matches a stored pattern.

¢ The file’s entry code is modified. The behavior pattern is binary subtracted
from the previous stored pattern. The resulting bit pattern is analyzed.

e The file’s entry code, CRC and header fields are the same, but the file 1s
renamed. No other fields are modified.

e The file’s behavior pattern is found in the database and matches a known
viral behavior pattern.

e The file’s behavior pattern is found in the database and matches a known

benign behavior pattern.

The program is virtualized if the executable part of the file 1s modiiied.
A file that does not contain modified executable code cannot contain a virus,
unless the original file was infected. If this is the case, a previous analysis
would have detected the virus. When an existing program is updated, 1ts
function remains the same, and therefore its behavior pattern closely matches
its stored behavior pattern. If the altered bits indicate that an infection
procedure has been added then the file is considered as infected.

Two detection mechanisms operate side-by-side, both using the
behavior pattern:

Pre-infection detection

This is the most desirable case. In pre-infection detection, the behavior
pattern is analyzed and is found to represent viral behavior for those new or

modified programs introduced to the system. The program file under

19

10

15

20

25

30

CA 02416066 2003-01-13
WO 02/06928 PCT/US01/19142

evaluation can be repaired by removing the virus or erased if the virus
infection proves too difficult to remove or ifparts of the original code were
overwritten. The infected program has not yet been executed on the physical
PC at this time and so nothing need be done to repair the physical PC after
discovery of the virus.

Post-infection detection

Post-infection detection takes place in cases when initial infection is
missed by pre-infection detection. A virus could be missed by pre-infection
detection when it does not perform any viral function on first execution and
does not modify interrupt vectors that point to an infection routine. This is
the case with so-called slow infectors and similarly behaving malignant code.
In post-infection detection the virus is caught the moment 1t attempts to infect
the first executable on the PC. The file hook mechanism detects this
attempted change to an executable (including documents). The ABM engine
then analyzes the first executable program and finds that i1ts behavior pattern

1s altered 1n a manner indicating that a virus i1s active.

Database Structure:

File ID area: Behavior pattern, program name, file size and path.
Repair Structures - Header fields, section table and relocation tables.
Segment tables Size and Offset of each section in the section table

(Windows programs only).

Macro viruses in documents are treated as if they were executables.
The original Visual Basic code is recovered by decryption (where applicable)
and reverse compiling the Visual Basic document (COM) stream. The
resulting source code is neither saved nor shown to protect the rights of the
original publishers of legitimate Visual Basic software. After virtualization
the source code 1s discarded.

One drawback to the described virus detection system is that the initial

analysis is slower than pattern scanning. This drawback 1s more than offset

20

10

15

20

25

30

CA 02416066 2003-01-13
WO 02/06928 PCT/US01/19142

by the advantages of the system. Using file system hooking means all new
files are reported and analyzed ‘on the fly’ in background. This means that
once a computer is virus-free, a complete scan is typically not required again,
unless the protection system has been deactivated during a period in which
new programs have been installed. In signature scanning based protection
systems, the computer needs to be completely rescanned every time the virus
signature database 1s updated. Unaltered files are not again virtualized when
the user initiates subsequent disk scans, so that the process is at least as fast
as pattern scanning, but with a higher degree of security. The stored
information also helps to repair viral damage to files or system areas, securing
complete or effectively complete recovery in most cases.

In tests of a prototype implementation ABM system, the combination of
pre-infection (96%) and post-infection detection (4%) resulted 1in 100%
detection of all known viral techniques, using a combination of new, modified
and well-known viruses. Other methods detected only 100% of known viruses
and scored as low as 0% for the detection of new, modified and unknown
viruses. No exact figure can be quoted for tests involving signature scanner
based products. The results for such products are a direct representation of
the mix of known, modified and new, unknown viruses; e.g. if 30% of the virus
test set is new, modified or unknown then the final score reflected close to 30%
missed viruses. No such relationship exists for the implementations of
preferred aspects of the present system, where the detection efficiency does
not appreciably vary for alterations of the presented virus mix.

The present invention has been set forth with reference to certain
particularly preferred embodiments thereof. Those of ordinary skill in the art
will appreciate that the present invention need not be limited to these
presently preferred embodiments and will understand that various
modifications and extensions of these embodiments might be made within the
general teachings of the present invention. Consequently, the present
invention is not to be limited to any of the described embodiments but 1s

instead to be defined by the claims, which follow.

21

10

15

20

235

30

CA 02416066 2003-01-13

WO 02/06928 PCT/US01/19142
I claim:
1. A method for identifying presence of malicious code in program

code within a computer system, the method comprising:

initializing a virtual machine within the computer system, the virtual
machine comprising software simulating functionality of a central processing
unit and memory;

virtually executing a target program within the virtual machine so that
the target program interacts with the computer system only through the
virtual machine;

analyzing behavior of the target program following virtual execution to
identify occurrence of malicious code behavior and indicating in a behavior
pattern the occurrence of malicious code behavior; and

terminating the virtual machine after the analyzing process, thereby
removing from the computer system a copy of the target program that was

contained within the virtual machine.

2. The method of claim 1, wherein the virtual machine simulates
functionality of input/output ports, operating system data areas, and an

operating system application program interface.

3. The method of claim 2, wherein the virtual machine further

includes a virtual Visual Basic engine.

4. The method of claim 2, wherein virtual execution of the target
program causes the target program to interact with the simulated operating

system application program interface.

D. The method of claim 1, wherein the target program is newly
introduced to the computer system and not executed prior to virtually

executing the target program.

22

10

15

20

CA 02416066 2003-01-13
WO 02/06928 PCT/US01/19142

6. The method of claim 1, wherein after a first instance of a first
program is analyzed by the virtual machine and a first behavior pattern is
generated and stored in a database within the computer system, the method
further comprising:

determining that the first program is modified;

analyzing the modified first program by executing the modified first
program in the virtual machine to provide a second behavior pattern; and

comparing the first behavior pattern to the second behavior pattern.

7. The method of claim 6, wherein a new behavior pattern is

generated each time the first program is modified.

8. The method of claim 6, wherein introduction of malignant code
during modification of the first program is detected by comparing the first

behavior pattern to the second behavior pattern.

9. The method of claim 6, wherein the first behavior pattern is
substantially similar to the second behavior pattern when the modified first

program 1s a new version of the first program.

10. The method of claim 1, wherein the behavior pattern identifies
functions executed in the virtual execution of the target program, the method
further comprising tracking an order in which the functions are virtually

executed by the target program within the virtual machine.

23

20

CA 02416066 2003-01-13
WO 02/06928 PCT/US01/19142

11. A method for identifying presence of malicious code in program
code within a computer system, the method comprising:

imitializing a virtual machine within the computer system, the virtual
machine comprising software simulating functionality of a central processing
unit, memory and an operating system including interrupt calls to the virtual
operating system;

virtually executing a target program within the virtual machine so that
the target program interacts with the virtual operating system and the virtual
central processing unit through the virtual machine;

monitoring behavior of the target program during virtual execution to
1dentify presence of malicious code and indicating in a behavior pattern the
occurrence of malicious code behavior; and

terminating the virtual machine, leaving behind a record of the

behavior pattern characteristic of the analyzed target program.

12. The method of claim 11, wherein the record is in a behavior

register 1in the computer system.

13. The method of claim 11, wherein after a first instance of a first
program is analyzed by the virtual machine and a first behavior pattern is
generated and stored in a database within the computer system, the method
further comprising:

determining that the first program is modified;

analyzing the modified first program by executing the modified first
program in the virtual machine to provide a second behavior pattern; and

comparing the first behavior pattern to the second behavior pattern.

14. The method of claim 13, wherein a new behavior pattern is

generated each time the first program is modified.

24

10

CA 02416066 2003-01-13
WO 02/06928 PCT/US01/19142

15. The method of claim 13, wherein introduction of malignant code
during modification of the first program is detected by comparing the first

behavior pattern to the second behavior pattern.

16. The method of claim 13, wherein the first behavior pattern 1s
substantially similar to the second behavior pattern when the modified first

program 1s a new version of the first program.

17. The method of claim 13, wherein the behavior pattern identifies
functions executed in the virtual execution of the target program, the method
further comprising tracking an order in which the functions are virtually

executed by the target program within the virtual machine.

25

CA 02416066 2003-01-13

PCT/US01/19142

WO 02/06928

1/6

ANk

1101 -00L0 LOFL 10L0 10IO LOLO 1OLL 00O (10O LOLO . 1OLO LOOF OLLL OLOL 001} 0100

E J¥J JX8U 40} Yoipag -.—
o4 0} UM -
0| uoyy Jabioy iy |
3|l J0 3zIS o8y
3[j—J0—pu3 0} SAON
3X3 1511 Jo} Y2IDag
SO 10 sjuiod |ZINI

ss2.ppD | ZINI Alpop

pa|(p) suoijouny wasAS bunosadg -

UoIodU| 1804

LbLd 1010 10LL 1010 0010 1010 1OLL 0100 1100 1040 1000 1OOL OL10 000i 0001 0000

9|14 850[)
Juswinooq 0} UM
9ZIS 8]} AR
Indui J3s() 10} JIOM
Juawndo(q pooy

1ndut Jasn 1o} JIOpm

$30N0S34 P00
MOPUIM MAN 9)D3I)

pajjog suonoun4 wajsks bunpsadg © uoNAaJY| g

SMUIA 10)09ju|-9ji{ D Ylim UOd=jul Jo)ly tcc 910Jog SulallDd JOIADYE

CA 02416066 2003-01-13

PCT/US01/19142

WO 02/06928

2/6

AGTE

sisA|puy -

aN00¥
AD.ay

AlOWa
JILDUAQ

MOPUIM

13UUDOS

dwor ayopdn 21018
aJnypubig
INoIADYag

Jd [PUIA

13pDOT]
9|qpINo8x3

VaA

39D 491U
jpuog 3ji

2J0dwWo’)

$9|GDINO8X7
2sDgD1D(]

a)opd

suonjpaI|ddy

SMOpUIM/SOQ

UXA
AO0H?]!

9bD.0]G

CA 02416066 2003-01-13
WO 02/06928 PCT/US01/19142

3/6

AT 3 4 8 9 10 11 12
Header _

and FAT n-n-
Directory -'HI N

Stream #1

Directory

Stream #3
Stream #2
Stream #3

—1 indicates end
of stream

F1G.3

WO 02/06928

AV engine to File Format
Interface

CA 02416066 2003-01-13

S

¢ 'Ei"_
O £ S =
— o I O
O s = =
= 8 O 45
£ || © 7
- L2

> < 2

>D

TS S ST
0200 %0 % %%
903650 %% %%
P20 %e 0% %%

BOTOAR 020 %
02008 2 IR 20
Sdagss
ROK KR AKX

0205 % %% 2%

1.0, 9.9.0.9.9,
KL K8
0.0, 29,9, 9,.3 A‘A‘A /

- Binary
| MZ (dos) I |
o l LE (VxD) I
“ I NE (Win) I '\
B I PE (Win) l
| ~ NEPELE.DLL

- 9.9.9.9.9.9.

PCT/US01/19142

Binary

8_.
?3 &;
O =
L
Q

SRKK.

FSSI0.DLL

LA ANRAAARAANAANANAANAAAANAAAAANSNAAANSANAAANAAAAAAAAARAAAAN
SRR (e RRRRRHK I IIIRRRKIKIA
02020000020 20 202026 00 20 20 202 0707020002000 20 20 20 20 k02020 0 20 202
RIERIRIHIRRK LIRS S EERRRSRRRLH K S
SILEERKKERKKS 0000020202620 20 20 20 202020 %0 % 2% %
/ e { ‘ . A ,/ ” § g , A Y 4 ", d ¢ / ‘
00000200 020 0 20 20 20 %02 0200000000 2020002020 20 20 2020 2020 2%
00500 0 020 20 et 00 e 0200020202020 20 20 2020302020 20 20 %%
4 & o // Va \ . y. 4 \ 4 4 (A ¢ \ /." \ \ y ‘
0305000000 20 %0 20 202200 0% 0200007020020 20202020 ¢ 20 20 020202
0O 020202020 0203020202054 SRt ese e e e tete 0202020 2020002
0000000202020 202020 202022, %= SRR
2929000000 00000090, 0. 0.0.9.9.9:0.0.0.0.9.9:9: 992909999999

WO 02/06928

CA 02416066 2003-01-13

PCT/US01/19142

5/6
VBOX86

MEMORY MAPS FOR BINARY COM AND EXE FILES

Vectors

BIOS data

Environment
~ String table

DOS Data

M CB

PSP

Executable
Program
Image
COM

296kB

DISPLAY

ADAPTER

128kB

Int. Services

FS—1 10 bytes

BIOS data

Environment

String table
~ DOS Data

+
I CS offset 0 DS DS 0
CS=DS+10h

IP:100

Offset O
After Loading CS:IP Executable
is moved: At entry Program
point Image
| EXE

DISPLAY
ADAPTER

128kB

Int. Services

F1G.o

CA 02416066 2003-01-13

PCT/US01/19142

WO 02/06928

6/6

AB8C|
VOA

'bag %9D}S
‘bag panx3
‘bag DIDQ
wo1b0.4
aN9Ge

ISOINETT
wo.boid

S10)08A
1dnus)y|

9014

UIs)}pd JOIADYSY

13|02
10)09A 1dnuiay|

- PoLIPON

Ndd 9 Z¢
IDRMIA

UONDINWIG
S92IAISS
1dnuis)y|

Jaddoway
SSa.IppY

18p023(
UoRONSU|

19pD0oT7
woiboid

sSuoIlouN
W)SAS
bunoiadp

RS dIiS) ‘JulodAiug

Behavior Patterns Before and After infection with a File—Infector virus

Pre Infection Operating System Functions Called

Create New Window

Load resources

Wait for User input —
Check file size
Write to Document
Close File .

0000 1000 1000 0110 1001 0001 0101 0011 0010 {101 Q101 Q100 Q101 1101 Ot01 11t

Wait for user input

Load Document

Operating System Functions Called

Modify INT21 address
INT21 points ot CS

Post Infection

Search for first EXE
Move to End-of-file

Check size of file

if: Larger than 10K
r. Write to File
|.. Search for next EXE

0010 1100 1010 1110 1001 0101 @101 0011 0010 1101 0101 0101 0101 1101 0100 1011

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - abstract drawing

