I*I Innovation, Sciences et Innovation, Science and CA 2965896 C 2020/01/07

Développement économique Canada Economic Development Canada
Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office (1 1)(21) 2 965 896
12y BREVET CANADIEN
CANADIAN PATENT
13 C
(22) Date de dépét/Filing Date: 2008/07/25 (51) CL.Int./Int.Cl. GO6F 9/44(2018.01),
(41) Mise a la disp. pub./Open to Public Insp.: 2009/01/29 GO6F 11/07(2006.01)
" . (72) Inventeurs/Inventors:
(45) Date de délivrance/lssue Date: 2020/01/07 STANFILL. CRAIG W., US:
(62) Demande originale/Original Application: 2 697 306 WHOLEY, JOSEPH SKEFFINGTON, Ill, US
(30) Priorité/Priority: 2007/07/26 (US60/952,075) (73) Propriétaire/Owner:

AB INITIO TECHNOLOGY LLC, US
(74) Agent: SMART & BIGGAR LLP

(54) Titre : CALCUL A BASE DE GRAPHE TRANSACTIONNEL AVEC MANIPULATION D'ERREUR
(54) Title: TRANSACTIONAL GRAPH-BASED COMPUTATION WITH ERROR HANDLING

10 100
/
101 2
2 T 3 130
q;gg;.\gg 420 1267 J,m/
,t‘,i 0"' 3 4 .t Q

E ~110)

(57) Abrégé/Abstract:

Processing transactions using graph-based computations includes determining (305) that at least one of a plurality of graph
elements of a computation graph of a set of one or more computation graphs includes a computation to be performed for a given
transaction, associating the given transaction with an instance (310) of the computation graph that includes reusable computation
elements associated with respective graph elements, and executing (320) the graph to perform the computation.

50 rue Victoria ¢ Place du Portage 1 ® Gatineau, (Québec) KI1AOC9 e www.opic.ic.gc.ca i+l

50 Victoria Street e Place du Portage 1 e Gatineau, Quebec KIAO0C9 e www.cipo.ic.gc.ca (Eal lada

CA 2965896 2017-05-01

83998618

Abstract

Processing transactions using graph-based computations includes determining (305) that at
least one of a plurality of graph elements of a computation graph of a set of one or more
computation graphs includes a computation to be performed for a given transaction,
associating the given transaction with an instance (310) of the computation graph that includes
reusable computation elements associated with respective graph elements, and executing

(320) the graph to perform the computation.

10

15

20

25

83998618

Transactional Graph-Based Computation with Error Handling

[01] Thisis a divisional of Canadian Patent Application Serial No. 2,697,306 filed on
July 25, 2008.

CROSS-REFERENCE TO RELATED APPLICATIONS

[01a] This application claims priority to U.S. Application Serial No. 60/952,075, filed on
July 26, 2007.

Background

[02] This invention relates to execution of graph-based computations.

[03] Complex computations can often be expressed as a data flow through a directed graph,
with components of the computation being associated with the vertices of the graph and data
flows between the components corresponding to links (arcs, edges) of the graph. A system
that implements such graph-based computations is described in U.S. Patent 5,966,072,
EXECUTING COMPUTATIONS EXPRESSED AS GRAPHS. One approach to executing a
graph-based computation is to execute a number of processes, each associated with a different
vertex of the graph, and to establish communication paths between the processes according to
the links of the graph. For example, the communication paths can use TCP/IP or UNIX

domain sockets, or use shared memory to pass data between the processes.

Summary

[04] According to one aspect, there is provided a method for processing graph-
based computations including: within a graph including vertices representing work element-
handling graph components that process work elements according to links joining the vertices,
providing at least one error-handling graph component within the computation

graph, the at least one error-handling graph component being distinct from the work element-
handling graph components and configured to provide error information to a process external
to the graph, and processing data, including, in response to a work element-handling graph

component encountering an error while processing, redirecting processing to the error-

1

CA 2965896 2019-02-07

10

15

20

25

83998618

handling graph component, including directing at least some of the work elements to the
error-handling graph component according to at least one link to a vertex representing the

error-handling graph component.

[04a] According to another aspect, there is provided a system for processing graph-
based computations, the system including: within a graph including vertices representing
work element-handling graph components that process work elements according to links
joining the vertices, means for providing at least one error-handling graph component within
the computation graph, the at least one error-handling graph component being distinct from
the work element-handling graph components and configured to provide error information to
a process external to the graph, and means for processing data, including, in response to a
work element-handling graph component encountering an error while processing, redirecting
processing to the error-handling graph component, including directing at least some of the
work elements to the error-handling graph component according to at least one link to a vertex

representing the error-handling graph component.

[04b] According to still another aspect, there is provided a computer-readable
medium storing a computer program for processing graph-based computations, the computer
program including instructions for causing a computer system to: within a graph including
vertices representing work element-handling graph components that process work elements
according to links joining the vertices, provide at least one error-handling graph component
within the computation graph, the at least one error-handling graph component being distinct
from the work element-handling graph components and configured to provide error
information to a process external to the graph, and process data, including, in response to a
work element-handling graph component encountering an error while processing, redirecting
processing to the error-handling graph component, including directing at least some of the
work elements to the error-handling graph component according to at least one link to a vertex

representing the error-handling graph component.

[04c] According to yet another aspect, there is provided a computing system for
processing graph-based computations including: at least one processor configured to: within a
computation graph including vertices representing work element-handling graph components

la

CA 2965896 2019-02-07

10

83998618

that process work elements according to links joining the vertices, provide at least one error-
handling graph component within the computation graph, the at least one error-handling graph
component distinct from the work element-handling graph components and configured to
provide error information to a process external to the computation graph, process data,
including, in response to a work element-handling graph component encountering an error
while processing, redirecting processing to the error-handling graph component, and direct at
least some of the work elements to the error-handling graph component according to at least

one link to a vertex representing the error-handling graph component.
[05] Aspects can include one or more of the following features.

[06] At least some instances of the graphs in the set of computation graphs share one or

more of the computation elements.

b

CA 2965896 2019-02-07

CA 2965896 2017-05-01

83998618

5

10

15

20

25

30

[07] The computation elements include computations executed by at least one of an

operating system process and a process thread.
[08] The graph clements include vertices of the computation graphs.

[09] Associating the transaction with an instance of the computation graph includes
assigning a computation element corresponding to each graph element in the
computation graph to the instance of the computation graph before beginning

executing the graph elements.

[10] Associating the transaction with an instance of the computation graph includes
assigning a computation element corresponding to a graph element in the computation
graph to the instance of the computation graph after executing another graph element

using a computation element already assigned to the instance.

[11] Atleast two of the graph elements use a common resource, and executing, the
graph to perform the computation includes assigning each of the graph elements using

the common resource to & single computation element.

[12] The single computation element is already initiated when the graph elements

are assigned to the computation element.

[13] The common resource includes a database.

[14] The common tesource includes a specific port.

[15] Processing the transaction includes receiving a request for the transaction.

(16] The method also includes determining that the same computation graph is
associated with a computation to be performed for a second transaction, associating
the second transaction with a second instance of the computation graph, and executing
the second instance of the graph to perform the computation for the second

transaction.

[(17) The computations for transactions performed using different instances of

computation graphs are performed in a time-interleaved manner.

[18] Multiple transactions are processed concurrently.

CA 2965896 2017-05-01

83998618

10

15

20

25

30

[19] Each transaction is associated with one or more work elements that are

processed according to the corresponding computation graph,

[20] At least some transactions are each associated with one work element that is

processed according to the corresponding computation graph.,

[21] The method further includes forming multiple instances of at least some of the

computation graphs.

[22] The method further includes identifying that an error has occurred in the
performing of a computation for one of the transactions, and continuing the

performing of a computation for another one of the transactions.

[23] The processing of a first transaction of the plurality of transactions starts at a
first time, and the processing of a second transaction of the plurality of transactions
starts at a second time later than the first time, the method furtherincludes completing
the performing of the computation for the second transaction before completing the

performing of the computation for the first transaction.

[24] In another aspect, in general, a system for processing transactions using graph-
based computations includes means for determining that at least one of a plurality of
graph clements of a computation graph of a set of one or morc computation graphs
includes a computation to be performed for a transaction, means for associating the
given transaction with an instance of the computation graph that includes reusable
computation elements associated with respective graph elements, and means for

executing the graph to perform the computation.

[25] In another aspect, in general, a computer-readable medium stores a computer
program for processing transactions using graph-based computations. The computer
program includes instructions for causing a computer system to: determine that at
least one of a plurality of graph elements of a computation graph of a set of one or
more computation graphs includes a computation to be performed for a given
transaction, associate the given transaction with an instance of the computation graph
that includes reusable computation elements associated with respective graph

elements, and execute the graph to perform the computation.

(V8]

CA 2965896 2017-05-01

83998618

10

15

20

25

30

[26] In another aspect, in general, a method for processing graph-based
computations includes: within a graph including vertices representing graph
components that process work elements according to links joining the vertices,
providing at least one error-handling graph component configured to provide error
information to a process external to the graph, and processing data, including, in
response to a graph component encountering an error while processing, redirecting
processing to the error-handling graph compenent including directing at least some of
the work elements to the error-handling component aceording to at least one link 1o a

vertex representing the error-handling component.

[27] Aspects can include one or more of the following features.

[28] Redirecting processing to the error-handling graph component includes

removing work elements from at least one input queue.

[29] Redirecting processing to the error-handling graph component includes

pracessing the work elements directed to the error-handling graph component.

[30] Processing the work elements directed to the error-handling graph component

includes rolling back changes to a database made prior to the error.

[31] Processing the data mcludes, for graph components not included in handling

the error, discarding work elements directed to those graph components.

{32] A sub-graph is provided, the sub-graph including an error-handling sub-graph

component configured to provide an error code as an output of the sub-graph.

[33] If output provided by the sub-graph indicates that an error occurred in the sub

graph, processing is redirected to the error-handling graph component.

[34] Redirecting processing to the error-handling graph component includes
communicating, from the graph component that encountered the error, to the error-
handling graph component, work elements that the graph component was processing

when the error occurred.

[35]) The work elements are communicated according to the link to the vertex

representing the error-handling component.

CA 2965896 2017-05-01

83998618

10

15

20

25

30

[36] Redirecting processing to the error-handling graph component includes
communicating, from the graph component that encountered the error, to the error-

handling graph component, reporting information about the error.

[37] The reporting information is communicated according to an implicit
connection between the graph component that encountered the error and the error-

handling component.

[38] The implicit connection is revealed as an explicit link between a vertex
representing the graph component that encountered the error and a vertex representing

the error-handling component in response to a user request.

[39] Providing the error-handling graph component includes providing a plurality
of error-handling graph components, and redirecting processing to the error-handling
graph component includes selecting an error-handling graph component based on

output provided from the graph component that encountered the error.

{40] Processing the data also includes, if a graph component encounters an error

while processing, outputting an identification of a work element that caused the error.

[41] Processing includes: enabling a first component of the graph; disabling the
error-handling component; and for each component downstream of the first
component other than the error-handling component, enabling the component if a

component immediately upstream of the component is enabled.

[42] Redirecting processing to the error-handling graph component includes:
stopping execution of each enabled graph component, disabling the component that
encountered the error; enabling the error-handling component; disabling components
downstream of the component that encountered the error that arc not downstream of
the error-handling component; and enabling componcnts upstream of the crror- |

handling component.

[43] Redirecting processing to the crror-handling graph component includes, where
the error occurred in a first component, if the error occurs under a first condition,
directing process flow from the first component to a first error-handling component

upstream of the first component, and if the error occurs under a second condition,

CA 2965896 2017-05-01

83998618

10

15

20

30

directing process flow from the first component to a second error-handling component

downstream of the first component.
[44] The first condition is that a counter is below a limit.
[4S] The second condition is that 4 counter is above a limit.

[46]) Redirecting processing to the error-handling graph component also includes

enabling a set of graph components, the set having been determined prior to the error.

[47] In another aspect, in general, a system for processing graph-based
computations includes, within a graph including vertices representing graph
components that process work elements according to links joining the vertices, means
for providing at lcast one crror-handling graph component configured to provide error
information to a process external to the graph, and means for processing data,
including, in response to a graph component encountering an crror while processing,
redirecting processing to the error-handling graph component including directing at
least some of the work elements to the error-handling component according to at least

one link to a vertex representing the error-handling component.

[48] In another aspect, in general, a computer-readable medium stores a computer
program for processing graph-based computations. The computer program includes
instructions for causing a computer system to: within a graph including vertices
representing graph components that process work elements according to links joining
the vertices, provide at least one error-handling graph component configured to
provide error information to a process external to the graph, and process data,
including, in response to a graph component encountering an error while processing,
redirecting processing to the error-handling graph component including directing at
least some of the work elements to the error-handling component according to at least

one link to a vertex representing the error-handling component.

{49] Other features and advantages of the invention are apparent from the

following description, and from the claims.

Description of Drawings

[50] FIG. 11s a diagram that illustrates an instance of graph-bascd computation.

6

CA 2965896 2017-05-01

83998618

5

10

15

20

25

30

[51] FIG.. 2 is a logical block diagr&m of a system for processing work flows.
{82] FIG. 3A is a flowchart for processing each work flow.

[53] FIG.3Bis a flowchart for handling errors.

[54] FIGs. 4A, 4B, 5, and 6 are examples of error-handling graphs.

Description

1. Qverview

[55] This application is related to United States patent application 10/268,509,
Startup and Control of Graph-Based Computation, filed October 10, 2002, and
11/733,579, Transactional Graph-Based Computaﬁon, filed April 10, 2007, whichisa
continuation of application 10/268,509.

[S6] The system described below implements a method for executing computations
that are defined in terms of computation graphs. Referring to FIG. 1, an example of a
computation graph 100 includes a number of vertices 110 that are joined by
unidirectional links 120. In the example shown in FIG. 1, vertices 110 are numbered
from 1 to 6, and links 120 are also numbered from 1 to 6. Compritation graph 100
processes & work flow that is made up of a series of work elements 130, such as
individual transactions that are processed according to a computation graph associated
with a transaction processing system. A transaction may be composed of multiple
work elements. Each vertex is associated with a portion of the computation defined by
the overall computation graph. In this example, vertex 1 provides access to storage for
an initial series of work elements 130 associated with one or more transactions, and
passes that series on its output link 1. Processes that implement the computation -
associated with each of the vertices process the work eleménts 130 in turn, and

typically produce a work element on one or more of the oufput links of that vertex.

[57} A process for a vertex is ready to run when at least one work element is
queued at each of the vertex’s inputs. As illustrated in FIG. 1, a erk element 130 18
in transit on link 1, a work element is queued ready for pracessing at vertex 3, and
two work elements are queued for processing at vertex 4. Thercfore, the processes folr

vertex 3 and vertex 4 are ready to tun to process a queued work element. As

1

CA 2965896 2017-05-01

83998618

5

10

16

20

25

30

35

illustrated, vertex 5 has a work element queued on one.of its inputs, link 4, but not on
the other input, link 5. Therefore the process associated with vertex 5 is not ready to

mun.

[58] In some examples, a work flow may include work elements from multiple
transactions (t.c., a first set of one or more work elements correspond to a first
transaction, a second set of one or more elements correspond to a second transaction,
etc.). A transaction can include a set of work elements representing actions that are all
to be processed as a set, such that if one action fails, none should be carried out.
Multiple instances of a graph may be used to process multiple transactions, and
multiple instances of individual graph components (represented by vertices of a
computation graph) may be created as needed by implementing computations of a
graph component with a reusable computation element (e.g., an operating systern
process). By associating different transactions with diffcrent respective instances of
graphs, multiple transactions can be processed concurrently. By enabling multiple
computation elements to be assigned as needed to graph instances, efficient resource
sharing can be realized by having a computation element be used by one graph

instance and reused by another graph instance, as described in more detail below.

[59] Referring to FIG. 2, a system 200 for executing computation graphs to process
work flows comprising transactions includes stored graph data structures 210. These
data structures include specifications of computation graphs that include
characteristics of the vertices and links of the graphs. Portions of these data structures
may be accessed without loading an entire graph, for example, the specification of an
individual graph component may be loaded in order to assign a work element to a

newly-created instance of that graph component.

[60] A transaction subscription module 220 of the system receives control inputs
222 from a transaction subscribing graph component (c.g., a component providing
commands without necessarily processing work elements, such as the component
represented by vertex 10 FIG. 1) including commands to process particular work
flows 232 using corresponding computation graphs, which arc specified in the stored
graph data structures 210. The transaction subscription module 220 keeps track of
graph computation processing resources 230 available for instantiating graph
instances that are to be assigned to particular transactions. The transaction

g

CA 2965896 2017-05-01

83998618

10

15

20

25

30

35

subscription module 220 includes a scheduler that uses the specifications of the
computation graphs to determine how to instantiate graph instances using the graph
computation processing resources 230, which is generally made up of multiple
processes (or pools of processes), where each process functions as.a reusable
computation element that instantiates a given graph component in a graph instance.
The processes that are executed to perform the computations of the components of a
graph can make use of external data and processes 240, which include database
engines, data storage, or other modules that are accessed during processing associated
with vertices of the computation graphs. In some examples, a single process or set of
processes capable of performing multiple different operations is bound to a given

ingtance of a graph to handle all the operations of that instance.

[61] Insome examples, the scheduler of the transaction subscription module 220
uses a remote procedure call (RPC) process. When the scheduler receives a work
element for a given transaction, it assigns the work element to the appropriate
component of a graph instance associated with (i.¢., assigned to) the transaction. The
process assigned to that graph instance executes the computation of that component.
The data associated with the work element is written to a temporary space available
for the graph instance and accessible by the process. The scheduler is notified that the
transaction subscription module 220 is done with that component, and the scheduler
then schedules any downstream graph components for execution, Eventually the
traxisaotion will progress through the whole graph (as the graph is executed using the
graph computation processing resources 230), and be output by way of an RPC
publish process. This takes the data accumulated in the temporary space and commits
it to the appropriatc output channel, e.g., the databasc output 6 in FIG. 1. The RPC
publish process can be multiplexed with the RPC subscribe process so that it can

access the socket on which the transaction was mitially received.

[62] In general, different transactions may be processed concurrently, each being
processed by a different instance of a graph. System 200, through the transaction
subscription module 220, allocates resources for an instance of a computation graph
for each transaction and, through the graph computation processing resources 230,

controls their execution to process the work flows.

CA 2965896 2017-05-01

83998618

10

16

20

25

30

35

2. Graph data structures

[63] System 200 includes a number of features that provide rapid startup of graph

computations as well as efficient sharing of limited resources.

[64] Before processing a transaction with an mnstance of a computation graph, the
transaction subscription module 220 creates a runtime data structure for that graph
instance in a functionally shared memory. In one embodiment, a single shared
memory segment is created in which all the runtime data structures for graph

instances are created.

[65] The process or processes bound to a transaction are associated with the
vertices of the graph and each of these processes maps the shared memory segment
into its address space. The processes may be associated with vertices when graph
instances are created for individual transactions or they may not be associated with
vertices until instances of individual graph components are created or executed. The
processes read and write work elements from and to the runtime data structures for the
graph instances during processing of the transaction. That is, data for the transactions
that flow through the graph are passcd from component to component, and from
process to process if more than one process is bound to the transaction, through these
runtime data structures in the shared memory segment. By containing the data for a
given transaction in a memory space accessible to each component of the graph and
executing each component with a consistent process or set of processes, state can be
shared between the components. Among other advantages, this allows all the database
operations associated with executing the computations for a transaction to be

committed at once, after it is confirmed that the transaction exccuted successfully.

3. Process pools

[66] As introduced above, graph computation processing resources 230 for
executing the components of a graph instance can be implemented using process
pools managed and allocated by the scheduler. For each of a number of different types
of computation, a pool of processes is created prior to beginning processing of work
flows of transactions using graph components requiring that type of computation.
When a transaction is assigned to a graph instance, if computation of a particular type

will be needed to perform the computation for a given component of the graph
10

CA 2965896 2017-05-01

83998618

10

15

20

25

30

35

instance, the scheduler allocates a member of the process pool for use by the graph
mstance and with the given component, The member of the process pool remains
associated with that graph instance for the duration of processing of the transaction,
and may be re-used for other components within that graph instance that require the
same type of computation. The process may be released back to the pool once no
work elements remain upstream of the last component in the graph instance for that
transaction that needs that type of computation. There may be many different pools of
processes, each associated with a corresponding type of computation. Processes in a
pool may be used for components in the same or different graph instances, including
for a given type of component in different graph instances, and for multiple different

components in one graph instance, for example.

[67] Insome implementations, each process in a process pool is a separate process
(e.g., a UNIX process) that is invoked by the transaction subscription module 220,
which manages the process pools. The module 220 maintains a separate work queue
for each process pool. Each entry in a work queue identifies a specific vertex of a

graph instance for which the process is to perform computation.

[68] Some processes reserve or consume fixed resources. An example of such a
process is one that makes a connection to a database, such as an Oracle® database.
Since resources are consumed with forming and maintaining each database
connccetion, it is desirable to limit the number of such processcs that are active. If a
graph includes multiple components that access a database, it may be desirable for all
the database operations {or a given transaction to take place in a single database
process. To accommodate this, a set of processes may be established that each
maintain a connection to the database and are each capable of performing the database
functions that a given graph instance may requirc. When a graph instance 1s assigned
to a given transaction, one process from the set is assigned to that graph instance for
the entire transaction, as described above, and all of the database components are
multiplexed to that process. When a vertex requires a process for accessing the
database to process a work element of the transaction, the assigned process (which has
already established its connection with the database) is associated with that vertex. In
this way, the overhead of the initialization steps of that process that would have been

required to connect to that database is avoided, and all database actions for a given

11

CA 2965896 2017-05-01

83998618

5

10

15

20

25

30

35

transaction are handled by the same process. Other types of processes can be handled

in the same way.

[68] System 200 supports different approaches to configuring processes for
vertices, which differ in when the vertices are associated With processes and when the
computation for the vertices is initiated. In one type of configuration, a process is not
associated with a vertex until all the data at all its input work elements are completely
available. If a work element is large, it may take some time for the entire work
element to be computed by the upstream vertex and to be available. This type of
configuration avoids blocking the process waiting for input to become available, so

that it can be used by other vertices in that graph instance.

[70] Another type of configuration uses a streaming mode. A process is associated
with a vertex and initiated when at least the start of each input 15 available. The
remainder of each of its inputs becomes available while the process executes. If that
input becomes available sufficiently quickly, the process does not block waiting for

input. However, if the inputs do not become available, the process may block.

4, Computation control

[71] FIG. 3A is a flowchart for a process 300 for processing cach transaction using
respective graph instances. When the transaction subscription module 220 (FIG. 2)
receives a request to process a transaction, it first determines which comnputation
graph (and corresponding type) is appropn'até to process the transaction {step 305).
For example, the scheduler determines that a certain computation graph is appropriate
{e.g., includes appropriate components) to perform a computation for the transaction.
The transaction itself may specify this, or the transaction subscription module 220
mail include or have access to data that associates particular transaction types with
particular computation graphs. The transaction subscription module 220 then creates a
graph instance (if necessary) of a computation graph of the type needed to pracess
that transaction (step 310) and associates the transaction with it. As part of this
process, the transaction subscription module 220 allocates a portion of the shared
memory segment for the runtime data structure for the graph instance, and copices a
graph template for that type of computation graph into runtime data structure, thereby

initializing the runtime data structure. Exammples of the use of graph templates are

12

CA 2965896 2017-05-01

83998618

10

16

20

25

30

35

described in more detail iﬁ U.S. Patent No. 7,167,850.

In some examples, graph instances have already been created and at this

stage one is merely assigm':d to the present transaction. The transaction subscription
module 220 then executes the graph instance (step 320), under control of the
scheduler, as described in more detail below. The graph instance includes
computation elements (e.g., processes) associated with (assigned to) respective
components that are reusable. When the transaction’s entire work flow has been
processed, the transaction subscription module 220 commits results of the execution
of the graph (e.g., commits changes'to an output database) and optionally releases the
assigned resources and computation elements and deletes the runtime data structure
for the graph inst'a.nce, thus permitting that portion of the shared memory segment to
be reused for other graph instances (step 330).

5. Alternatives

[72] Asnoted above, it is possible to pre-create graph pools of already instantiated
instances of computation graphs in anticipation of there being transactions that will
require them. When a transaction is received and needs a graph instance, if one is
available from a graph pool, it is assigned from the pool rather than having to bé
created. In this way, the startup cost for a transaction is further reduced. When the
computation for the transaction is completed, the graph is reset by restoring variables
to their initial values prior to having been assigned to the transaction and freeing any
dynamically-assigned memory. After the graph instance is reset it is returned to the
pool.

[73] * Insome examples, the number of graph instances in a graph pool can be
allowed to grow as needed. For instance, there might be a minimum number of

instances of each graph, and more may be created as needed.

[74] Inthe description above, processes may be assigned to vertices in the graph in
an on-demand manner where they are not associated with a vertex unti! after all the
inputs to that vertex are available, though they are bound to the particular graph
instance and transaction. Another approach is to associate the processes to the vertices
when the transaction is associated with the graph instance and to maintain the

association until the transaction’s entire work flow has been processed.

13

CA 2965896 2017-05-01

83998618

10

15

20

25

30

6. Applications

[75] One application of computation graphs of the type described above is for
processing financial transactions in a banking application, In general, different types
of transactions require different types of computation graphs. A typical computation
graph 1s associated with some combination of a type of customer transaction and
“backend” services that are needed to process the transaction. For example,
tranéactions can be ATM requests, bank teller inputs, and business-to-business
transactions between computers or web servers. Different customers might have
different backend systems, particularly when banks consolidate and customers are
combined from different original banks. Their accounts may be maintained on very
different backend systems even though they are all customers of the acquiring bank.
Therefore, different vertices in a graph may be used to process different transactions.
Different services may be associated with vertices in the graph. For example, some of
the vertices may be associated with functions such as updating a balance, depositing
money in an account, or performing an account hold so funds are held in an account.
In some implementations, on-the-fly assignment of processes to vertices avoids the

overhead of having processes for unused vertices remain idle.

[76] An advantage of allocating graph instances on a per-transaction basis is that it
allows parallelization of data streams that otherwise would have to be processed
serially. Graph instances assigned to different transactions may finish in a different
order than they started, for example, if the first transaction was more complicated than
the second. This may allow the second graph instance to be released and available to
process a third transaction when a serialized system would still be processing the first

transaction.

7. . Error Handling

{77} An advantage of allocating graph instances on a per-transaction basis is that
failures due to errors in executing a graph instance can be contained to that
transaction, and do not compromise the concurrent processing of other graph
instances. By delaying committing the results of the computation graph until the

entire transaction is completed, the data can be “rolled-back”, in the event of an error,

CA 2965896 2017-05-01

83998618

5

10

15

20

25

30

35

to the state that it was in before the system began to process the transaction. Errors

can be handled in several ways.

78] Insome examples, an “error handling” component is included in a graph. The
error handling component is a special case in that it does not have to execute for the
graph to complete. In the event that the component at any vertex generates an error,
instead of causing the whole computation to abert, execution of the graph is redirected
to the error handling component. An explicit relationship between a given component
and an error handling component (including a work flow from an output port of a
component to an input port of the error handling component) is referred to as an
exception flow. The scheduler removes work elements that were part of the failed
computation from the graph instance and the error handling component provides an
output which the graph can use to provide an error message as output to the process
that called it. The error handling component may receive data input other than through

an exception flow, depending on the implementation.

[79] FIG. 3B shows a flowchart for an exemplary procedure 350 for executing a
graph and handling an error that occurs in the graph. The scheduler processes a work
flow of work elements (step 360) in the graph components according to the links.
When the scheduler recognizes (step 370) that an error has occurred in a graph
component, the scheduler redirects processing to the error-handling component. One
aspect of this redirection is dirccting (step 380) work clements to the error-handling
corﬁponent according to any exception flows to that error-handling component. As
described in more detail below, processing of the exception flow enables the error-
handling component to provide (step 390) error information to a process external to
the graph that represents the state of the graph processing before the graph began

processing the transaction in which the error occurred.

[8¢] Forany component in a graph, there is a designated error handling component.
This may be a component that directly recetves an exception flow output or other
error data output from another graph component, or it may be defined as the
designated error handling component for a set of components regardless of whether it
receives an exception flow. In some examples, exception flow is handled as shown in
FIGs. 4A-B. In this example, the graph is designed for carrying out a transactional
computation and subscribe 902 and publish 904 components are shown, but the same

15

CA 2965896 2017-05-01

83998618

10

18

20

25

30

35

technique can be used in graphs for non-transactional work flows. In FIG. 4A, the
scheduler has activated a graph 900. Beginning with the first component, subscribe
902, each component in any non-exception path downstream is marked as “enabled.”
An éxception path is a path that only receives a flow of work elements or other error
data in the case of an exception (e.g., an exception flow leading to an error handling
component as described above). This is referred to as enablement propagation. A
given component that is downstream of others is enabled if any of its inputs is
connected to an upstream component that is enabled. That is, replicate 306, reformat
908, call web service 910, rollup 912, fuse 914, and publish 904 are all enabied, but
the error handler 916 and the two components rollback 918 and error log 920
downstream of it, which do not receive non-cxception input flows from any enabled

components, remain “disabled.”

[81] Ifan error occurs, the scheduler halts execution of the erring component,
allows any other components that are already exccuting to finish, and propagates any
relevant data (e.g., exception flow output of the completed components, or “error
reporting output” of the erring component) to the error handling component. For
exarnple, if the call web service component 910 triggers an error, the exception flow
from replicate component 906 and error reporting output from a reject port 921 of the
call web service component 910 are input to the error handling component 916 at
inputs 922, 924, respectively. Error reporting output ports (shown as ports on the
bottom of some of the components in the graph 900) can be used to provide
information about any errors that have occurred including, for example, information
characterizing what error(s) occurred, where the error(s) occurred, and any rejected

work clements associated with the error(s),

[82] In this example, there are three crror reporting output ports for the replicate
component 906. The reject port 921 provides work elements that may have caused the
error or are in some way related to the error. The error port 923 provides an error
messapes describing relevant information about the error. The log port 925 can
optionally provide information logging that the error occurred. The log port 925 can
also provide log information about events during the normal course of execution even
if no errors occur. In this example, the reject port 921 is explicitly shown as connected

for those components (e.g., the call web service component 910) that may need to use

16

CA 2965896 2017-05-01

83998618

5

10

15

20

25

30

35

the port. However, the error port 923 and log port 925 are not explicitly shown as
connected, but have implicit connections to the error handling component 916. For
example, the ports can be connected by a developer and then hidden using an
interface control. In some implementations, the system can automatically determine
implicit connections to a default error handling component, which may then be
overridden by the developer. For large and/or complicated graphs, this “implicit
wiring” for one or more types of error reporting ports improves visual comprehension
of a graph by a developer, which is one of the benefits of graph-based programming.
In some implementations, visual cues can be provided to indicate that a port is
implicitly connected to a port of another component (e.g., an icon or a shaded or
colored port). Some or all of the hidden implicit work flow connections can also be
revealed as explicit links in response to a user request (e.g., clicking a button or

hovering over a port).

[83] The exception flow output from the replicate component 906 may have
already been queued at the input 922, if the replicate had finished operation before the
error occurred. The scheduler then enables the error handling component (916 in this
example), disables the erring component (910 in this example), and performs
enablement propagation from the error handling component (enabling 918, 904, 920
in this example). Any component downstream of the disabled erring component is
also disabled as long as that component does not receive a flow from an enabled
component downstream of the error handling component (disabling 912 and 914 in
this example). Finally, any remaining component that provides a flow to an enabled

component is enabled (enabling 906 and 902 in this example).

[84] Thus, the result of this procedure is shown by the indication of “<enabled>"
and “<disabled>" componcnts in FIG. 4B. Connecting the publish component 904
back into the flow after the error handler 916 allows the transaction to be completed,
albeit with an error message for its output. Data that had already propagated to the
now-disabled components, e.g., output from the reformat component 908, is

discarded.

[85] Asnoted above, data may flow to the error handling component as part of an
exception flow or as part of an error reporting output of another component. Data that
1s available before the crror occurs, for example, output data from the replicate

17

CA 2965896 2017-05-01

83998618

10

16

20

25

30

35

module 906 in FIG. 4B, is held in escrow in an input queue for the error handler 916
until it is needed, if it ever is. [f the graph‘ completes without error, the error handler
016 is never activated and the data is discarded. If an error do.es occur, the error
handler 916 uses whatever input data it has received to formulate a response. In some
examples, as in FI1G. 4B, a rollback component 918 is used. The input data from the
replicate component 906 tells the error hander 916 what the state of things was before
the graph began processing the transaction. The error hander 916 outputs this to the
rollback component 918 which uses it to restore any data that was modified by the
other components to its state prior to the cxecution of the transaction. Execution flow
then goes to both the error log 920 which logs the error, and to the publish component
904 so that the error can be reported and appropriately handled by whatever higher-
level process delivered it to the praph 900. An exception flow from any component to
the error handler 916 may also include data. If there is input to the error hander 916
other than the original data from the replicate component 906, such as error output
from the call web service component 910 or an exception flow from any other
component (not shown), this may be used to formulate a more-detailed error message

at either the error log or the publish component.

[86] Insome examples, as-shown in FI1G. $, a graph includes vertices that are
implemented as sub-graphs, e.g. sub-graph 950, cach of which may have its own error
handling component 952. Thus, there can be a hierarchy of sub-graphs with a top
level graph, having vertices that are sub-graphs at a lower “graph level,” and so on. If
an error occurs in any component 954, 956, 958, 960, 962 of the sub-graph 950, the
processing flow is routed to the error handling component 952 which provides error
reporting output on a sub-graph crror reporting port 974. The scope of the crror
handling component 952 is the sub-graph 950. The error handling component may
have inputs 966, 968 that receive output from cither an exception flow from another
graph element (e.g., element 954) or error output 959 of another graph element (e.g.,
element 958) which may themselves be nested sub-graphs. In some examples, if an
error handling component has multiple inputs, only the input that most recently
received data is used. If all the components of the sub-graph 950 complete their
operations successfully, output (a work flow) is delivered to the normal sub-graph
output port 970 and processing flow beyond the sub-graph 950 continucs normally. If

an error occurs, it can be handled and reported on an error flow output 972, or an error

18

CA 2965896 2017-05-01

83998618

5

10

15

20

25

30

35

reporting output 974. In other examples, errors can also be reported on the standard

output 970.

{87] 1f a sub-graph does not have error handling, its errors flow upwards in the
hierarchy of sub-graphs of which it is a part until they reach a graph level that does

have crror handling, at which point that level’s error-handling component is activated.

[88] The data escrowed at the input of the error handling component may be a
subset of a work flow, it may be all the data associated with a transaction, or it could
be an entire data flow. If the error-handling component has an error output port, it will
output the record that caused the error or other error information based on the
escrowed data or the input received from the component that had the error. If it does
not have such a port, it may simply output the offending record as normal output on

its output port.

(89] Ifasub-graph does not have error handling, errors in its components flow
upwards in the hierarchy of sub-graphs of which it is a part until they reach a graph
level that does have error handling, at which point that level’s error-handling

component reccives appropriate input and generates an appropriate error output.

[90] Error handling can allow cyclic graph arrangements that would ordinarily be
avoided in graph-based computation processing. For example, as shown in FIG. 6, in
a graph 1100 an error output 1116 ffom a computation component 1112 downstream
from an error hander 1104 returns flow back to that same error handler 1104. The
error handler 1104 also receives input from a subscribe component 1102 and provides
output to a roll-back component 1106 as in FIG. 4A. The roll-back 1106 returns the
data to the state it was in before the failed computation was attempted, based on the
data input to the error hander 1104 by the subscribe component 1102. A counter
component 1108 may receive the flow from the roll-back component 1106 and
increment its value before returning flow to the gather component 1110, The
computation component 1112 can use the value input from the counter component
1108 in several different ways. 1t can consult the value before carrying out its
computation, for example, to sce if it should change something about its operation. It
can also consult the counter after an error, to see if some threshold number of attempts

has been made. If the threshold has been exceeded, instead of returning the error

19

CA 2965896 2017-05-01

83998618

10

15

20

25

30

35

output to the error handler 1104 through the output 1116 again, it directs its output to
a second error output 1118 that leads to a second error handler 1120. If a counter
component is not used, some other technique can be used to break the cycle and

assure that the graph eventually completes.

[91] To assure that a cyclic graph is well-defined, the set of elements that will be
enabled on error is determined in advance based on the topology of the graph, rather

than being done as-needed as described above.

[92} In some examples, other rules are used to assure that error handling works
correctly. For example, in some implementations, error handling can only be triggered
on one exception port of one component within a graph (any simultaneous errors may
be ignored). If a graph component or sub-graph is linked to an error handling
component, it must use that component on any error. If a graph component or sub-
graph is not linked to an error handling component, errors must be handled by the
generic error handler for the present scope. Each graph component is typically
assoclated with exactly one error handler. These rules may be modified or combined
depending on the requirements of the system. They can be useful where tight control

of the process for each transaction is needed.

[93] Insome examples, when an error occurs, the operating system determines
which error-handling component is associated with the component that experienced
the error, and then determines which input flow, if any, to that error-handting
corﬁponcnt should be used. If there are multiple inputs, the onc that most recently had

data written to it is used.

[94] Error handling may be active, as just described, where components or sub-
graphs handle their own errors and produce error codes that can be used by other
components to diagnose or work around the error, or it can be passive. In a passive
system, a graph that encounters an error Simply fatls, and allows the operating system
to provide ervor handling, for example by providing a stack dump to a debugging

process.

[95] Each component of a graph is implicitly connected to a scheduler, which
doesn’t need a specific invitation from a graph to intervene and handle errors. The

scheduler can remove data related to an crror from a graph instance and, in some
20

CA 2965896 2017-05-01

83998618

10

15

20

25

30

35

examples, does not need to know the nature of the error. In some cases, the scheduler
may return resources assigned to a graph to their respective pools in stages, allowing

the graph to complete processing work elements that were not affected by the error.

8. Implementation

[96] The invention may be implemented in hardware or software, or a combination
of both (e.g., programmable logic arrays). Unless otherwise spéciﬁed, the algorithms
described are not inherently related to any particular computer or other apparatus. In
particular, various general purpose machines may be used with programs written in
accordance with the teachings herein, or it may be more convenient to construct more
specialized apparatus (e.g., integrated circuits) to perform particular functions. Thus,
the invention may be implemented in one or more computer programs exccuting on
one or more programmed or programmable computer systems (which may be of
various architectures such as distributed, client/server, or grid) each comprising at
least one processor, at least one data storage system (including volatile and non-
volatile memory and/or storage elements), at least one input device or port, and at
least one output device or port. Program code is applied to input data to perform the
functions described herein and generate output information. The output information is

applied to one or more output devices, in known fashion.

(97]) Each such program may be implemented in any desired computer language
(including machine, assembly, or high level procedural, logical, or object oriented
programming languages) to communicate with a computer system. In any casc, the

language may be a compiled or interpreted language.

[98] Each such computer program is preferably stored on or downloaded to a
storage media or device (e.g., solid state memory or media, or magnetic or optical
media) readable by a general or special purpose programmable computer, for
configuring and operating the computer when the storage media or device s read by
the computer system to perform the procedures described herein. The inventive
systcm may also be considered to be implemented as a computer-readable storage
medium, configured with a computer program, where the storage medium s0
configured causes a computer system to operate in a specific and predefined manner

to perform the functions described herein.

2]

CA 2965896 2017-05-01

83998618

5 [99] Itisto be understood that the foregoing description is intended to illustrate and
not to limit the scope of the invention, which is defined by the scope of the appended

claims. Other embodiments are within the scope of the following claims.

22

10

15

20

25

83998618

CLAIMS:

1. A method for processing graph-based computations including:

within a graph including vertices representing work element-handling graph
components that process work elements according to links joining the vertices,

providing at least one error-handling graph component within the computation
graph, the at least one error-handling graph component being distinct from the work element-
handling graph components and configured to provide crror information to a process external
to the graph, and

processing data, including, in response to a work element-handling graph
component encountering an error while processing, redirecting processing to the error-
handling graph component, including directing at least some of the work elements to the
error-handling graph component according to at least one link to a vertex representing the

error-handling graph component.

2. The method of claim 1 in which redirecting processing to the error-handling

graph component includes removing work elements from at least one input queue.

3. The method of claim 1 in which redirecting processing to the error-handling
graph component includes processing the work elements directed to the error-handling graph

component.

4. The method of claim 3 in which processing the work elements directed to the
error-handling graph component includes rolling back changes to a database made prior to the

€rror.

5. The method of claim 3 in which processing the data includes, for graph
components not included in handling the error, discarding work elements directed to those

graph components.

6. The method of claim 1 also including providing a sub-graph, the sub-graph
including an error-handling sub-graph component configured to provide an error code as an

output of the sub-graph.

23

CA 2965896 2019-02-07

10

15

20

25

83998618

7. The method of claim 6 in which if output provided by the sub-graph indicates
that an error occurred in the sub graph, redirecting processing to the error-handling graph

component.

8. The method of claim 1 in which redirecting processing to the error-handling
graph component includes communicating, from the graph component that encountered the
error, to the error-handling graph component, work elements that the graph component was

processing when the error occurred.

9. The method of claim 8 in which the work elements are communicated

according to the link to the vertex representing the error-handling component.

10. The method of claim 8 in which redirecting processing to the error-handling
graph component includes communicating, from the graph component that encountered the

error, to the error-handling graph component, reporting information about the error.

11. The method of claim 10 in which the reporting information is communicated
according to an implicit connection between the graph component that encountered the error

and the error-handling component.

12. The method of claim 11 also including revealing the implicit connection as an
explicit link between a vertex representing the graph component that encountered the error

and a vertex representing the error-handling component in response to a user request.

13. The method of claim 1 in which providing the error-handling graph component
includes providing a plurality of error-handling graph components, and redirecting processing
to the error-handling graph component includes selecting an error-handling graph component

based on output provided from the graph component that encountered the error.

14. The method of claim 1 in which processing the data also includes, if a graph
component encounters an etror while processing, outputting an identification of a work

element that caused the error.

15. The method of claim 1 in which processing includes:

24

CA 2965896 2019-02-07

10

15

20

25

83998618

enabling a first component of the graph;

disabling the error-handling component; and

for each component downstream of the first component other than the error-
handling component, enabling the component if a component immediately upstream of the

component is enabled.

16. The method of claim 15 in which redirecting processing to the error-handling
graph component includes:

stopping execution of each enabled graph component,

disabling the component that encountered the error;

enabling the error-handling component;

disabling components downstream of the component that encountered the error
that are not downstream of the error-handling component; and

enabling components upstream of the error-handling component.

17. The method of claim 1 in which redirecting processing to the error-handling
graph component includes, where the error occurred in a first component,

if the error occurs under a first condition, directing process flow from the first
component to a first error-handling component upstream of the first component,

and if the error occurs under a second condition, directing process flow from

the first component to a second error-handling component downstream of the first component.

18. The method of claim 17 in which the first condition is that a counter is below a
limit.
19. The method of claim 17 in which the second condition is that a counter is

above a limit.

20. The method of claim 17 in which redirecting processing to the error-handling
graph component also includes enabling a set of graph components, the set having been

determined prior to the error.

21. A system for processing graph-based computations, the system including:

25

CA 2965896 2019-02-07

10

15

20

25

83998618

within a graph including vertices representing work element-handling graph
components that process work elements according to links joining the vertices,

means for providing at least one error-handling graph component within the
computation graph, the at least one error-handling graph component being distinct from the
work element-handling graph components and configured to provide error information to a
process external to the graph, and

means for processing data, including, in response to a work element-handling
graph component encountering an error while processing, redirecting processing to the error-
handling graph component, including directing at least some of the work elements to the
error-handling graph component according to at least one link to a vertex representing the

error-handling graph component.

22. A computer-readable medium storing a computer program for processing
graph-based computations, the computer program including instructions for causing a
computer system to:

within a graph including vertices representing work element-handling graph
components that process work elements according to links joining the vertices,

provide at least one error-handling graph component within the computation
graph, the at least one error-handling graph component being distinct from the work element-
handling graph components and configured to provide error information to a process external
to the graph, and

process data, including, in response to a work element-handling graph
component encountering an error while processing, redirecting processing to the error-
handling graph component, including directing at least some of the work elements to the
error-handling graph component according to at least one link to a vertex representing the

error-handling graph component.

23. A computing system for processing graph-based computations including:
at least one processor configured to:
within a computation graph including vertices representing work element-

handling graph components that process work elements according to links joining the vertices,

26

CA 2965896 2019-02-07

10

15

20

25

83998618

provide at least one error-handling graph component within the computation
graph, the at least one error-handling graph component distinct from the work element-
handling graph components and configured to provide error information to a process external
to the computation graph,

process data, including, in response to a work element-handling graph
component encountering an error while processing, redirecting processing to the error-
handling graph component, and

direct at least some of the work elements to the error-handling graph
component according to at least one link to a vertex representing the error-handling graph

component.

24, The computing system of claim 23 in which redirecting processing to the error-

handling graph component includes removing work elements from at least one input queue.

25. The computing system of claim 23 in which redirecting processing to the error-
handling graph component includes processing the work elements directed to the error-

handling graph component.

26. The computing system of claim 25 in which processing the work elements
directed to the error-handling graph component includes rolling back changes to a database

made prior to the error.

27. The computing system of claim 25 in which processing the data includes, for
graph components not included in handling the error, discarding work elements directed to

those graph components.

28. The computing system of claim 23 wherein the processor is configured to
provide a sub-graph, the sub-graph including an error-handling sub-graph component

configured to provide an error code as an output of the sub-graph.

29. The computing system of claim 28 in which if output provided by the sub-
graph indicates that an error occurred in the sub graph, redirecting processing to the error-

handling graph component.

27

CA 2965896 2019-02-07

10

15

20

25

83998618

30. The computing system of claim 23 in which redirecting processing to the error-
handling graph component includes communicating, from the graph component that
encountered the error, to the error-handling graph component, work elements that the graph

component was processing when the error occurred.

31. The computing system of claim 30 in which the work elements are

communicated according to the link to the vertex representing the error-handling component.

32. The computing system of claim 30 in which redirecting processing to the error-
handling graph component includes communicating, from the graph component that
encountered the error, to the error-handling graph component, reporting information about the

CITOor.

33. The computing system of claim 32 in which the reporting information is
communicated according to an implicit connection between the graph component that

encountered the error and the error-handling component.

34, The computing system of claim 33 wherein the processor is configured to
reveal the implicit connection as an explicit link between a vertex representing the graph
component that encountered the error and a vertex representing the error-handling component

in response to a user request.

35. The computing system of claim 23 in which providing the error-handling graph
component includes providing a plurality of error-handling graph components, and redirecting
processing to the error-handling graph component includes selecting an error-handling graph

component based on output provided from the graph component that encountered the error.

36. The computing system of claim 23 in which processing the data also includes,
if a graph component encounters an error while processing, outputting an identification of a

work element that caused the error.

37. The computing system of claim 23 in which processing includes:
enabling a first component of the computation graph;

disabling the error-handling component; and
28

CA 2965896 2019-02-07

10

15

20

25

83998618

for each component downstream of the first component other than the error-
handling component, enabling the component if a component immediately upstream of the

component is enabled.

38. The computing system of claim 37 in which redirecting processing to the error-
handling graph component includes:

stopping execution of each enabled graph component,

disabling the component that encountered the error;

enabling the error-handling component;

disabling components downstream of the component that encountered the error
that are not downstream of the error-handling component; and

enabling components upstream of the error-handling component.

39. The computing system of claim 23 in which redirecting processing to the error-
handling graph component includes, where the error occurred in a first component,

if the error occurs under a first condition, directing process flow from the first
component to a first error-handling component upstream of the first component,

and if the error occurs under a second condition, directing process flow from

the first component to a second error-handling component downstream of the first component.

40. The computing system of claim 39 in which the first condition is that a counter

1s below a limit.

41. The computing system of claim 39 in which the second condition is that a

counter is above a limit.

42. The computing system of claim 39 in which redirecting processing to the error-
handling graph component also includes enabling a set of graph components, the set having

been determined prior to the error.

43, The computer-readable storage medium of claim 22 in which redirecting
processing to the error-handling graph component includes removing work elements from at

least one input queue.

29

CA 2965896 2019-02-07

10

15

20

25

83998618

44, The computer-readable storage medium of claim 22 in which redirecting
processing to the error-handling graph component includes processing the work elements

directed to the error-handling graph component.

45. The computer-readable storage medium of claim 44 in which processing the
work elements directed to the error-handling graph component includes rolling back changes

to a database made prior to the error.

46. The computer-readable storage medium of claim 44 in which processing the
data includes, for graph components not included in handling the error, discarding work

elements directed to those graph components.

47. The computer-readable storage medium of claim 22 wherein the computer
program includes instructions for causing the computer system to provide a sub-graph, the
sub-graph including an error-handling sub-graph component configured to provide an error

code as an output of the sub-graph.

48. The computer-readable storage medium of claim 47 in which if output
provided by the sub-graph indicates that an error occurred in the sub graph, redirecting

processing to the error-handling graph component.

49, The computer-readable storage medium of claim 22 in which redirecting
processing to the error-handling graph component includes communicating, from the graph
component that encountered the error, to the error-handling graph component, work elements

that the graph component was processing when the error occurred.

50. The computer-readable storage medium of claim 49 in which the work
elements are communicated according to the link to the vertex representing the error-handling

component.

51. The computer-readable storage medium of claim 49 in which redirecting
processing to the error-handling graph component includes communicating, from the graph
component that encountered the error, to the error-handling graph component, reporting

information about the error.
30

CA 2965896 2019-02-07

10

15

20

25

83998618

52. The computer-readable storage medium of claim 51 in which the reporting
information is communicated according to an implicit connection between the graph

component that encountered the error and the error-handling component.

53. The computer-readable storage medium of claim 52 wherein the computer
program includes instructions for causing the computer system to reveal the implicit
connection as an explicit link between a vertex representing the graph component that
encountered the error and a vertex representing the error-handling component in response to a

user request.

54. The computer-readable storage medium of claim 22 in which providing the
error-handling graph component includes providing a plurality of error-handling graph
components, and redirecting processing to the error-handling graph component includes
selecting an error-handling graph component based on output provided from the graph

component that encountered the error.

55. The computer-readable storage medium of claim 22 in which processing the
data also includes, if a graph component encounters an error while processing, outputting an

identification of a work element that caused the error.

56. The computer-readable storage medium of claim 22 in which processing
includes:

enabling a first component of the computation graph;

disabling the error-handling component; and

for each component downstream of the first component other than the error-
handling component, enabling the component if a component immediately upstream of the

component is enabled.

57. The computer-readable storage medium of claim 56 in which redirecting
processing to the error-handling graph component includes:

stopping execution of each enabled graph component,

disabling the component that encountered the error;

enabling the error-handling component;
31

CA 2965896 2019-02-07

10

15

83998618

disabling components downstream of the component that encountered the error
that are not downstream of the error-handling component; and

enabling components upstream of the error-handling component.

58. The computer-readable storage medium of claim 22 in which redirecting
processing to the error-handling graph component includes, where the error occurred in a first
component,

if the error occurs under a first condition, directing process flow from the first
component to a first error-handling component upstream of the first component,

and if the error occurs under a second condition, directing process flow from

the first component to a second error-handling component downstream of the first component.

59. The computer-readable storage medium of claim 58 in which the first condition

is that a counter is below a limit.

60. The computer-readable storage medium of claim 58 in which the second

condition is that a counter is above a limit.

61. The computer-readable storage medium of claim 58 in which redirecting
processing to the error-handling graph component also includes enabling a set of graph

components, the set having been determined prior to the error.

62. The method of claim 1 including committing the performed computation to a

database after multiple computations for a given transaction are performed.

32

CA 2965896 2019-02-07

CA 2965896 2017-05-01

10 100
110~ 2
2 ™1 3 136
. - E}.:—'—.“x
\) 1 s/ o
33%.{]‘3 120 120 o
,t,i G—,,,'zf 3 é -):*3 C‘
- 120 130 120]
4 E i 5
Y
S P10
16
~~120
¥

1/8

CA 2965896 2017-05-01

222
!' P 200
CONTROL
INPUTS
210 i 220
v {
GRAPH TRANSACTION

DATA SUBSCRIPTION
STRUCTURES |

¥ 230
232 ~
3 - GRAPH
WORK FLOWS-—sl COMPUTATION
‘ PROCESSING
%
¥ f/?;‘i{?
EXTERNAL DATAS
PROCESSES

Fig. 2

2/8

CA 2965896 2017-05-01

.3 i .y
40 5
FOR FACH TRANSACTION
305
IDENTIFY GRAPH TYPE
FOR TRANSACTION
}? 340
2
CREATE |
CRAPH INSTANCE
¥ 390
A
EXEGUTE
GRAPH
i
é’ 330
REMOVE '
| GRAPH INSTANCE
|

!

Fig. 3A

3/8

CA 2965896 2017-05-01

350
Y

380

PROCESS WORK
EL EMENTS

k 4

378

RECOGNIZE ERROR IN
A GRAPH COMPONENT

’i’ 380
DIRECT WORK' L

ELEMENTS TO ERROR.
HANDLER

X

3586
PROVIDE EXTERNAL
ERROR INFORMATION

Fig. 3B

4/8

CA 2965896 2017-05-01

<pBigesips

<POIGESID

vy Bl

Bo.4013 soranod

o

_=pojgesips
| Jejpuep

??zmmm

2 | me Ly G

AN he
Avmm

USHANA

ZPONEUD

A
@
L34

bW
fat &

O
AV

B f
2

u «pBjgeuss
P16

M\\w oo ses’

Twawernd

1003

B ” W
UBHA P
O m

<BBIqEUD

b

e BRUIADESY

K

N T |

006
\\

e 406

BQLSONS

H
N S .
| <psjqeue:s

806

P

{_on6

<PRIBLD

518

CA 2965896 2017-05-01

gy Bid

<pajqeues <PBIGBUB> <Pofgrias
S0 ons LT [mw_w_vcmz Vg 246 s 006
07 40447 :
Joedioy 1013 R W
026) { S
g6 f.@..w_@ 448
YA%s)
Awom R
ysand | T T _W«:;
<poigeus> A <PBIESIP>
I 016 | -
m \\me@
BY1 MM& - Gt BYUNSHNS ?
. wﬁ”v%\ B poerntosen ; : i v
ey . : DOBURS / <DBIaBL S
N <poigesips Lt ad VOIS g PRGBS
718 ey
<paigesip> _ goe

CA 2965896 2017-05-01

048 ‘NH

J—

DA

USHON

7/8

CA 2965896 2017-05-01

ozir

u@ﬁguvw$hobww~a

ghll

§

i

2L

uonendwoe

LTt

aiesy

!

g0l L
T senoy M

%

| g0

| b
i

SO o VOZ\ ﬂx %
™ taipueH _otmwmw

T spegroy

A o |

71 8guosgng
{

10 100
1 /
120
+
10~ 2
2 ! i 3 » /ﬂBG
’;13{)».‘55 420 1207 ‘;5/
g1

140

155
™

; 120 130 130 [

I

	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - CLAIMS
	Page 28 - CLAIMS
	Page 29 - CLAIMS
	Page 30 - CLAIMS
	Page 31 - CLAIMS
	Page 32 - CLAIMS
	Page 33 - CLAIMS
	Page 34 - CLAIMS
	Page 35 - CLAIMS
	Page 36 - CLAIMS
	Page 37 - DRAWINGS
	Page 38 - DRAWINGS
	Page 39 - DRAWINGS
	Page 40 - DRAWINGS
	Page 41 - DRAWINGS
	Page 42 - DRAWINGS
	Page 43 - DRAWINGS
	Page 44 - DRAWINGS
	Page 45 - REPRESENTATIVE_DRAWING

