(19) 中华人民共和国国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 103588695 B

(45) 授权公告日 2015.08.05

(21) 申请号 201310606104.2

(22) 申请日 2013.11.25

(73) 专利权人 石药集团欧意药业有限公司
地址 050051 河北省石家庄市桥西区中山西路 276 号

(72) 发明人 郑雪清 王金成 高志峰 张育
杨英梅 孙成勇 王晨光 张文静

(74) 专利代理机构 河北东尚律师事务所 13124
代理人 李国聪

(51) Int. Cl.
C07D 207/273(2006.01)

(56) 对比文件
CN 102050774 A, 2011.05.11, 全文。
CN 102690222 A, 2012.09.26, 说明书第
[0057]-[0058] 段。
CN 101898993 A, 2010.12.01, 全文。
CN 101914052 A, 2010.12.15, 全文。
CN 102134212 A, 2011.07.27, 全文。

(54) 发明名称
一种结晶形式的奥拉西坦化合物及其制备方法

(57) 摘要
本发明涉及一种结晶形式的奥拉西坦化合物及其制备方法，属医药技术领域。所述结晶形式的奥拉西坦化合物的 X- 射线粉末衍射在 2θ 为 5.2±0.2°，11.5±0.2°，13.6±0.2°，15.8±0.2°，17.5±0.2°，19.1±0.2°，20.8±0.2° 处有特征峰。该结晶形式的奥拉西坦化合物具有生物利用度高，稳定性好，长期放置有关物质不增加，澄清度不下降的优良特性，更适合作为原料药用于药物制剂的生产与储存。
1. 一种结晶形式的奥拉西坦化合物，其特征在于，其使用 Cu-Kα 辐射得到的 X 射线粉末衍射图谱在反射角 2θ 为 5.2±0.2°，6.9±0.2°，7.5±0.2°，8.3±0.2°，
10.8±0.2°，11.5±0.2°，13.6±0.2°，15.8±0.2°，16.5±0.2°，17.5±0.2°，
19.1±0.2°，19.8±0.2°，20.8±0.2°，21.5±0.2°，23.9±0.2°，24.4±0.2°，
25.4±0.2°，29.0±0.2°，29.7±0.2°，31.5±0.2°，31.8±0.2°，32.4±0.2° 处有特征峰。其热重分析图谱显示，在 60-100°C 左右失去吸附水，在 120-150°C 左右失去结晶水，
结晶水失重为 2.74%。

2. 一种制备如权利要求 1 所述的结晶形式的奥拉西坦化合物的方法，其特征在于，包括如下步骤：

a) 取奥拉西坦粗品，加入水中，升温至 80°C 搅拌溶解至清亮，所述奥拉西坦粗品与水
的重量比为 1:1 ～ 5；

b) 缓慢降温至 25 ～ 30°C，保温养晶 8 小时，同时进行搅拌，搅拌转速调至 20 ～ 30 转
/ 分，所述缓慢降温为，控制 3 小时降温至 25 ～ 30°C；

c) 继续缓慢降温至 0 ～ 5°C，保温养晶 8 小时，同时进行搅拌，搅拌转速调至 20 ～ 30
转 / 分，所述缓慢降温为，控制 3 小时降温至 0 ～ 5°C；

d) 过滤，将滤饼于 30 ～ 45°C 干燥，干燥时间为 7 ～ 10 小时，干燥温度为 40°C，得到结
晶形式的奥拉西坦化合物。
一种结晶形式的奥拉西坦化合物及其制备方法

技术领域

[0001] 本发明涉及一种化合物及其制备方法，尤其涉及一种结晶形式的奥拉西坦化合物及其制备方法，属于医药技术领域。

背景技术

[0002] 奥拉西坦，英文名 Oxiracetam，化学名称为 4-羟基-2-氧代-1-吡咯烷乙酰胺，结构式如式 I 所示：

![结构式 I](image)

[0003]

[0004] 奥拉西坦是一种促智药物，可改善老年性痴呆和记忆障碍症患者的记忆和学习功能。研究结果显示，奥拉西坦可促进脑酰胺和脑酰乙酰胺合成，提高大脑中 ATP/ADP 的比值，使大脑中蛋白质和核酸的合成增加。目前在临床上广泛用于轻中度血管性痴呆、老年性痴呆以及脑外伤等症引起的记忆与智能障碍的治疗，疗效确切，安全性好。

[0005] 多晶型现象是化合物的重要性质，对于多数化学药物，一般都存在多晶型现象，而同种药物的不同的晶型对于药物的稳定性，均一性，生物利用度和制剂生产等具有重要的影响。因此，当一种药物存在同质多晶现象时，有必要对其晶型进行深入研究。关于奥拉西坦晶型及其制备方法，现有技术已有如下公开：

[0006] 中国专利 CN102558014 公开了含有一个半结晶水奥拉西坦化合物的晶型及制备方法，结晶溶剂为 70-99.9% 甲醇，其晶型的 X-射线粉末衍射在 2θ 为 6.96°、11.48°、15.36°、16.02°、16.92°、17.96°、19.84°、20.90°、22.16°、22.78°、23.58°、24.92°、25.30°、25.74°、28.36° 处显示有特征峰。

[0007] 中国专利 CN102351770 公开了含有两个结晶水的奥拉西坦，其 X-射线粉末衍射图谱在 2θ 为 17.3°、19.1°、21.6°、23.2°、27.0°、28.4°、30.0°、31.0°、31.7°、33.2°、36.9°、39.3°、40.2°、45.7°、51.2° 处显示有特征峰。该化合物结晶体系为 N,N-二甲基甲酰胺/乙二醇混合溶剂和异丙醚。

[0008] 中国专利 CN103432673 公开了一种不含结晶水的奥拉西坦晶型，其 X-射线粉末衍射图谱在 2θ 为 15.6±0.2°、17.7±0.2°、19.9±0.2°、21.5±0.2°、24.9±0.2° 处有特征峰，在反射角 2θ 为 21.5±0.2° 处的相对峰强为 100%，该晶型稳定、流动性优良，以水为溶剂制备。

[0009] 由此可见，对药物晶型的研究是目前药物创新研究的热点，研究开发已有药物的
新的晶型形式，以提高其可制剂性、发挥其临床优势，是目前制药行业走自主创新的道路之一。

发明内容

[0010] 本申请人长期致力于奥拉西坦原料药的深度和广度研究，以期开发出多种形式的奥拉西坦原料药用于药物制剂，并于 2011 年申请了发明专利 CN201110200730.2，该专利公开了一种含有 0.25 个结晶水的奥拉西坦化合物，但没有公开该化合物的存在形式。而实际上，上述含有 0.25 个结晶水的奥拉西坦化合物是一种晶体形式，使用 Cu-Kα 辐射，其 X-射线粉末衍射图在反射角 2θ 为 4.79°, 6.71°, 11.66°, 13.48°, 15.67°, 17.54°, 25.22° 处有特征峰，见附图 3。

[0011] 在后续研究过程中，本申请人意外发现采用其他的制备方法，可以得到另外一种结晶形式的含有 0.25 个结晶水的奥拉西坦化合物，即奥拉西坦四分之一水合物的新晶型，并且该晶型具有优良的特性：稳定性好，长期放置有关物质不增加，澄清度不下降，尤其是生物利用度显著提高，更适合作为原料药用于药物制剂的生产和储存。

[0012] 鉴于此，本发明的第一个目的是提供一种结晶形式的奥拉西坦化合物。

[0013] 本发明的第二个目的是提供制备上述结晶形式的奥拉西坦化合物的方法。

[0014] 本发明所述的目的的是通过以下技术方案实现的。

[0015] 一种结晶形式的奥拉西坦化合物，使用 Cu-Kα 辐射，其 X-射线粉末衍射图谱在反射角 2θ 为 5.2±0.2°, 11.5±0.2°, 13.6±0.2°, 15.8±0.2°, 17.5±0.2°, 19.1±0.2°, 20.8±0.2° 处有特征峰。

[0016] 进一步的，本发明所述的结晶形式的奥拉西坦化合物，使用 Cu-Kα 辐射，其 X-射线粉末衍射图谱还在反射角 2θ 为 6.9±0.2°, 21.5±0.2°, 23.9±0.2°, 24.4±0.2°, 25.4±0.2°, 31.8±0.2° 处有特征峰。

[0017] 更进一步的，本发明所述的结晶形式的奥拉西坦化合物，使用 Cu-Kα 辐射，其 X-射线粉末衍射图谱还在反射角 2θ 为 7.5±0.2°, 8.3±0.2°, 10.8±0.2°, 16.5±0.2°, 19.8±0.2°, 29.0±0.2°, 29.7±0.2°, 31.5±0.2°, 32.4±0.2° 处有特征峰。

[0018] 卡尔费休法是世界公认的测定物质中水分含量的经典方法，也是对水最专一、最准确的化学测定方法，尤其适用于有机化合物中含量的测定。

[0019] 用卡尔-费休氏法测定本发明所述的结晶形式的奥拉西坦化合物中的水分含量为 2.75%–2.90%，奥拉西坦 1/4 水合物中水的理论含量是 2.76%，表明本发明所述的结晶形式的奥拉西坦化合物含有 0.25 个结晶水。

[0020] 热重分析结果显示，本发明所述的结晶形式的奥拉西坦化合物在 60–100℃左右失去吸附水，在 120–150℃左右失去结晶水，结晶水失重为 2.74%，与 0.25 个结晶水在奥拉西坦分子中占的质量百分比 2.76% 相一致，表明本发明所述的结晶形式的奥拉西坦化合物中占有 0.25 个结晶水。

[0021] 对奥拉西坦深入而不舍的研究，是本申请人一贯的、长期的目标，为获得经长期放置仍能保持质量稳定的奥拉西坦原料，申请人对本发明所述结晶形式的奥拉西坦化合物进行了加速稳定性试验研究。结果表明，本发明所述结晶形式的奥拉西坦化合物在温度
40℃±2℃、相对湿度为75%±5%条件下放置6个月后，其溶液澄清度没有下降；有关物质也没有明显变化，与0月相比几乎没有增加，说明本发明所述结晶形式的奥拉西坦化合物具有非常好的稳定性，非常适合作为原料药用于药物制剂的生产及长期储存。

【0022】为考察本发明所述结晶形式的奥拉西坦化合物在体内的吸收情况，本申请人对本发明所述结晶形式的奥拉西坦化合物进行了药代动力学研究，令人惊喜的是，研究结果显示本发明所述结晶形式的奥拉西坦化合物的各项药代动力学参数AUC0-t、Cmax、Tmax明显优于本申请人之前申请的CN20110200730.2中公开的奥拉西坦化合物，表明本发明所述结晶形式的奥拉西坦化合物在体内的吸收程度和吸收速率方面具有显著优势，生物利用度得到了大大提高。

【0023】本发明提供的制备本发明所述结晶形式的奥拉西坦化合物的方法，包括如下步骤：

【0024】a) 取奥拉西坦粗品，加入水中，升温至80℃搅拌溶解至清亮；

【0025】b) 缓慢降温至25℃-30℃，保温养晶8小时；

【0026】c) 继续缓慢降温至0℃-5℃，保温养晶8小时；

【0027】d) 过滤，将滤饼于30℃-45℃干燥，得到结晶形式奥拉西坦成品。

【0028】其中，

【0029】所述步骤a) 中奥拉西坦粗品与水的重量比为1:1-1:5，优选1:2；

【0030】所述步骤b) 中缓慢降温为，控制3小时降温至25℃-30℃；

【0031】所述步骤c) 中缓慢降温为，控制3小时降温至0℃-5℃；

【0032】所述步骤b) 和c) 中降温、保温养晶的同时进行搅拌，搅拌转速调至20-30转/分，优选25转/分；

【0033】所述步骤d) 中干燥时间为7-10小时，优选8小时，干燥温度优选40℃。

【0034】本发明所述奥拉西坦粗品，可以按照现有技术中任一制备方法制得。

【0035】在本发明所述结晶形式的奥拉西坦化合物制备过程中，仅使用了水作为溶剂，未引入其他任何有机溶剂，绿色环保，操作简单，有利于降低成本，产品无有机溶剂残留，安全性好，特别适合工业化生产。

【0036】本发明所述结晶形式的奥拉西坦化合物可以和一种或多种药学上可以接受的载体或赋形剂制备成临床可用的剂型形式，包括口服用的胶囊、片剂、软胶囊、口服液、颗粒剂、糖浆、滴丸及缓控释制剂等，还包括供注射用的水针注射液、冻干粉针、无菌粉针及大输液等，最优选剂型为胶囊剂和冻干粉针剂，可用于临床上所有适用奥拉西坦的疾病场合。

附图说明

【0037】图1为本发明所述的结晶形式的奥拉西坦化合物的XRPD图。

【0038】图2为本发明所述的结晶形式的奥拉西坦化合物的TGA图。

【0039】图3为CN20110200730.2中公开的奥拉西坦化合物的XRPD图。

具体实施方式

【0040】下面通过具体实施方式对本发明作进一步详细说明，但这些具体实施方式不对本发明构成任何限制。
说明书

实施例1 本发明所述的结晶形式的奥拉西坦化合物的制备

取奥拉西坦粗品50g,加入100ml水中,升温至80℃搅拌溶解至清亮,将搅拌转速调至25转/分,缓慢降温,控制3小时降温至25～30℃,保温养晶8小时,继续缓慢降温,控制3小时降温至0～5℃,保温养晶8小时;过滤,将滤饼于45℃干燥8小时,得到结晶形式的奥拉西坦化合物46.2g,收率92.4%。经卡尔费休法测定3次,计算均值,该结晶形式的奥拉西坦化合物中水分含量为2.75%(理论值2.76%)。

元素分析结果:实测值(计算值)

C:44.38(44.30),H:6.42(6.46),N:17.20(17.21),O:31.91(32.00)。

热重分析TGA图谱如附图2所示,该结晶形式的奥拉西坦化合物在60～100℃左右失去吸附水,在120～150℃左右失去结晶水,结晶水失重为2.74%,与0.25个结晶水在奥拉西坦分子中占的质量百分比2.76%相一致,表明本发明所述的结晶形式的奥拉西坦化合物中含0.25个结晶水。

实施例2 本发明所述的结晶形式的奥拉西坦化合物的制备

取奥拉西坦粗品50g,加入250ml水中,升温至80℃搅拌溶解至清亮,将搅拌转速调至30转/分,缓慢降温,控制3小时降温至25～30℃,保温养晶8小时,继续缓慢降温,控制3小时降温至0～5℃,保温养晶8小时;过滤,将滤饼于45℃干燥10小时,得到结晶形式的奥拉西坦化合物45.0g,收率90.0%。经卡尔费休法测定3次,计算均值,该结晶形式的奥拉西坦化合物中水分含量为2.83%(理论值2.76%)。

元素分析结果:实测值(计算值)

C:44.35(44.30),H:6.52(6.46),N:17.30(17.21),O:31.96(32.00)。

该结晶形式的奥拉西坦化合物的TGA图谱与实施例1基本相同。

实施例3 本发明所述的结晶形式的奥拉西坦化合物的制备

取奥拉西坦粗品50g,加入50ml水中,升温至80℃搅拌溶解至清亮,将搅拌转速调至20转/分,缓慢降温,控制3小时降温至25～30℃,保温养晶8小时,继续缓慢降温,控制3小时降温至0～5℃,保温养晶8小时;过滤,将滤饼于30℃干燥8小时,得到结晶形式奥拉西坦化合物44.7g,收率89.4%。经卡尔费休法测定3次,计算均值,该结晶形式的奥拉西坦化合物中水分含量为2.90%(理论值2.76%)。

元素分析结果:实测值(计算值)

C:44.31(44.30),H:6.50(6.46),N:17.17(17.21),O:32.05(32.00)。

经X射线粉末衍射测定,该结晶形式的奥拉西坦化合物的X射线粉末衍射图中,
说明 书

[0058] 该结晶形式的奥拉西坦化合物的 TGA 图谱与实施例 1 基本相同。

[0059] 本发明所述的结晶形式的奥拉西坦化合物的稳定性试验

[0060] 根据 (中国药典 2010 年版二部附录 XIX C) 相关规定本发明所述结晶形式的奥拉西坦化合物进行了加速试验。在温度 40℃ ±2℃、相对湿度为 75%±5% 条件下放置 6 个月，分别于第 0、1、2、3、6 个月末分别取样，考察溶液澄清度、有关物质的变化情况，结果见下表 1：

[0061] 表 1 实施例 1-3 稳定性试验结果

| 样品名称 | 放置时间 | 溶液澄清度 | 有关物质
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>单个最大杂质(%)</td>
</tr>
<tr>
<td>实施例 1</td>
<td>0 个月</td>
<td>澄清</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>1 个月</td>
<td>澄清</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>3 个月</td>
<td>澄清</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td>6 个月</td>
<td>澄清</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>0 个月</td>
<td>澄清</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>1 个月</td>
<td>澄清</td>
<td>0.023</td>
</tr>
<tr>
<td>实施例 2</td>
<td>2 个月</td>
<td>澄清</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>3 个月</td>
<td>澄清</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>6 个月</td>
<td>澄清</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>0 个月</td>
<td>澄清</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>1 个月</td>
<td>澄清</td>
<td>0.028</td>
</tr>
<tr>
<td>实施例 3</td>
<td>2 个月</td>
<td>澄清</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>3 个月</td>
<td>澄清</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td>6 个月</td>
<td>澄清</td>
<td>0.028</td>
</tr>
</tbody>
</table>

[0063] 以上结果表明，本发明所述的结晶形式的奥拉西坦化合物在温度 40℃ ±2℃、相对湿度为 75%±5% 条件下放置 6 个月后，澄清度没有下降，有关物质没有明显变化，基本没有增加，说明本发明所述的结晶形式的奥拉西坦化合物具有非常好的稳定性。

[0064] 试验例 2 本发明所述的结晶形式的奥拉西坦化合物的体内生物利用度试验

[0065] 试验目的：通过药代动力学研究考察本发明所述的结晶形式的奥拉西坦化合物的生物利用度。

[0066] 试验药物:

[0067] 试验组 —— 本发明所述的结晶形式的奥拉西坦化合物制备的胶囊制剂。

[0068] 对照组——发明专利 CN201110200730.2 中公开的奥拉西坦化合物制备的胶囊制剂。

[0069] 上述两组药物均采用 CN201110200730.2 中实施例 4 的处方和制备方法制备。

[0070] 试验动物：Wistar 大鼠，体重 150~200g，雌雄并用。

[0071] 给药剂量和方法：大鼠禁食过夜，口服灌胃给药 100mg/kg。
采血时间：给药前和给药后 0.25、0.50、1.00、1.50、2.00、3.00、4.00、6.00、12.00 小时。

试验方法：血样采集后，收集于试管内，经离心分离出血清，-12 度冰箱保存备用。分别取血清样品 0.5ml 以 HPLC 方法测定血清药物浓度，计算得出主要药代动力学参数。

试验结果：见表 3

表 3 药代动力学试验结果

<table>
<thead>
<tr>
<th>参数</th>
<th>单位</th>
<th>试验组</th>
<th>对照组</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tmax</td>
<td>h</td>
<td>0.76</td>
<td>0.95</td>
</tr>
<tr>
<td>Cmax</td>
<td>ug/ml</td>
<td>86.478</td>
<td>77.992</td>
</tr>
<tr>
<td>AUC0-t</td>
<td>(ug/ml) × h</td>
<td>468.215</td>
<td>414.446</td>
</tr>
</tbody>
</table>

结论：本发明所述的结晶形式的奥拉西坦化合物的 AUC0-t、Cmax 明显高于对照组，而 Tmax 也明显比对照组快，表明本发明所述的结晶形式的奥拉西坦化合物在体内的吸收程度和吸收速率优于对照组，生物利用度得到了显著提高。

以上实施例的说明只是用于帮助理解本发明，并不用以限制本发明，凡在本发明的精神和原则之内，所作的任何修改、等同替换、改进等，均应包含在本发明的保护范围之内。
图 1
图 2
图 3