TEASE-PROOF ELECTRIC SWITCH

Inventors: Wolfgang F. Bienwald, Huntington Station; William J. Bowie, Flushing, both of N.Y.

Assignee: Leviton Manufacturing Co., Inc., Brooklyn, N.Y.

Filed: Aug. 5, 1970

Appl. No.: 61,376

U.S. Cl. 200/70, 200/67 G, 200/157

Int. Cl. H01H 13/36, H01H 13/08

Field of Search 200/70, 68, 154, 157, 67 G, 200/153 LA

ABSTRACT

The invention relates to a tease-proof electric switch in which the switch contacts cannot be partially opened or closed by manipulation of the mechanism. The switch employs a contact-carrying rocker which moves positively between open and closed positions of the switch under the influence of forces exerted thereon by an operating member.

Movement of the rocker between open and closed positions of the switch is restrained by a releasable latch. Opening and closing of the switch contacts takes place upon release of the latch from engagement with the rocker as the result of forces exerted on the rocker by the operating member. Opening and closing of the switch contacts also takes place positively and quickly with arcing being held to a minimum.

9 Claims, 10 Drawing Figures
TEASE-PROOF ELECTRIC SWITCH

The present invention relates to a tease-proof electric switch. It relates, more particularly, to an electric switch in which the switch contacts cannot be manipulated into partially open or closed positions.

An object of the present invention is to provide an electric switch in which the switch contacts cannot be brought into close proximity to each other by manipulation of the switch.

Another object of the invention is to provide an electric switch in which movement of the switch contacts between their open and closed positions takes place positively and quickly.

A further object of the invention is to provide an electric switch having a rocker action with movement of the rocker between open and closed positions of the switch contacts being restrained by a releasable latch which prevents partial opening or closing of the switch contacts. Other objects and advantages of the invention will better be understood from the following description and the accompanying drawings in which:

FIG. 1 is a side elevational view in partial vertical section of a trigger-operated electric switch embodying the invention;

FIG. 2 is a fragmentary view in section of a portion of the switch shown in FIG. 1 with the section being taken along the line 2-2 of FIG. 1;

FIG. 3 is a fragmentary view in section of a portion of the switch shown in FIG. 1 with the section being taken along the line 3-3 of FIG. 1;

FIG. 4 is a side view of a latch member employed in the switch shown in FIG. 1;

FIG. 5 is a plan view of the latch member shown in FIG. 4;

FIGS. 6-10 are fragmentary views in vertical section of portions of the switch shown in FIG. 1 and illustrating the parts thereof in different operating positions;

Referring now to the drawings in detail, there is a trigger-operated switch 10 which embodies the invention.

The switch 10 comprises a hollow body or housing 11 having a cover 12 and a base 13 which may be molded from an insulating material. The cover 12 has an opening at the bottom thereof and also has openings in the front and rear end walls thereof. The base 13 fits inside the cover 12 and has upstanding walls at the end thereof which extend into the openings in the end walls of the cover. A partition 13a extends upwardly from the base and thus divides the lower part of the housing into two chambers 11a and 11b, each of which contains a switch mechanism.

A trigger or operating member 14 is slidable supported on top of the partition 13a with the rear end 15 of the trigger extending through an opening 16 at the rear of the cover 12. A coil spring 17 interposed between the forward end of the trigger 14 and the front wall of the cover 12 urges the trigger to a rearward or open position of the switch as shown in FIG. 1. In this position, a stop 18 carried by the cover 12 extends into a recess 19 formed in the upper surface of the trigger 14 and thus, limits the rearward or outward movement of the trigger 14. One end of the coil spring 17 is seated in a recess 20 formed in the front or forward end of the trigger 14.

The switch mechanisms located in the two chambers 11a and 11b are similar and hence, only one of the switch mechanisms need be described here. At a point between its ends, the trigger 14 carries rocker-engaging plunger 21 which projects downwardly from the trigger 14 and has a rounded lower end 21a. The plunger 21 extends into a cavity 22 in the trigger and has a rounded lower end which is urged into engagement with a contact-carrying rocker 23 by a coil spring 24. A rocker-engaging finger 25 is also carried by and extends downwardly from the trigger 14 ahead of the plunger 21. The finger 25 engages with and acts on the upwardly curved forward end of the rocker as the trigger is advanced.

When the switch is in open position, as shown in FIG. 1, the plunger 21 engages with and holds the rear end of the rocker 23 against an upwardly facing surface of a housing projection or projection 26 formed on and extending outwardly from one side of the partition 13a adjacent the rear thereof. A second shoulder
carried by the trigger 14. However, such movement of the rocker does not take place until after the plunger 21 and the finger 25 carried by the trigger 14 have moved to a position in advance of the support or cradle 29 on which the rocker is pivoted and thus, the contacts cannot be teased into close proximity to each other and when the rear end of the rocker 23 is released from the latch, the rocker moves to a closed position, as shown in FIG. 9, and the contacts are closed with a quick and positive action.

When the trigger 14 is released and is retracted or moved rearwardly, as shown in FIG. 10, the upper leg 44b of the latch detent 44 is located beneath the rear end of the rocker and prevents the contact buttons 28 and 33 from separating. During initial rearward movement of the trigger, the spring arm 34 of the contact 35 maintains the contact button 33 in engagement with the opposing contact button 28 on the rocker 23. This continues until the end wall at the front of the recess 46 in the trigger 14 engages the tail 45 of the latch 43 and then further rearward movement of the trigger releases the latch detent 44 from engagement with the rear end of the rocker 23. The plunger 21 will then force the rear end of the rocker downward separating the contact buttons 28 and 33 with a quick and positive action.

When the trigger 14 returns to its fully retracted position, as shown in FIG. 1, the front wall of the recess 46 in the trigger engages with the tail of the latch and holds the latch out of rocker-engaging position with the contacts being open.

In the case of a double-pole switch, corresponding switch mechanisms may be installed in the two chambers 11a and 11b and may be operated simultaneously. This will provide for the opening and closing of two connections to the switch in both sides of the line if required by the electrical code.

As will be noted, movement of the rocker between open and closed positions of the switch is restricted by means of the latch 43 and such movement cannot take place until the rocker-engaging plunger 21 carried by the trigger 14 has moved past the support or pivot member 29 in an appropriate direction. This insures positive action of the switch and prevents manipulation to position the opposing contact buttons in close proximity relative to each other.

In assembly of the switch, the various parts carried by the base 13 may be inserted thereon and the base may then be inserted in the opening in the bottom of the cover 12. When the base 13 and the cover 12 are assembled, a rivet 42 or other suitable fastening means may be employed to secure the base in the cover.

It will be understood that various modifications and changes may be made by those skilled in the art in the embodiment of the switch illustrated and described herein without departing from the principles of operation thereof.

What is claimed is:

1. In a tease-proof electric switch of the rocker type, the combination which comprises:
 a. a contact-carrying rocker formed of a conductive material and having a curved configuration;
 b. a pivot member of conductive material electrically engaging with the curved rocker at a point intermediate its ends;
 c. said pivot member supporting the rocker for rocking movement between an open and a closed position of the switch;
 d. an electric contact located at one end of said rocker and engaging therewith in the closed position of the switch;
 e. a resilient arm of electrically conductive material yieldably supporting said contact and urging said contact toward engagement with said one end of the rocker; and
 f. said latch means releasably engaging with a second end of the rocker and holding the rocker against movement toward the closed position;
 g. said latch means comprising a resilient member having a movable end and a latching detent formed thereon;
 h. said latching detent being biased into engagement with the second end of the rocker and being movable rearwardly relative to and out of engagement with said second end of the rocker by a downward force exerted on the curved rocker at a point beyond the pivot member.

2. In a tease-proof electric switch of the rocker type, the combination as defined in claim 1 which includes:
 a. a second latching detent formed on the resilient latching member;
 b. said second detent releasably engaging with the second end of the rocker and maintaining the contact carrying end of the rocker in engagement with yieldably supported contact until the second end of the curved rocker is forced downwardly and out of engagement with said second detent.

3. In a tease-proof electric switch of the rocker type, the combination as defined in claim 2 which includes:
 a. an operating member slidably engaging with the rocker member and being movable lengthwise relative thereto;
 b. said operating member engaging with and exerting a downward force on the curved rocker at opposite ends thereof in said sliding movement relative to said rocker;
 c. means on said operating member for engaging with and moving the latch out of rocker-engaging position in one position of said operating member.

4. In a tease-proof electric switch of the rocker type, the combination as defined in claim 2 which includes:
 a. an operating member slidably engaging with the rocker member and being movable lengthwise relative thereto;
 b. said operating member engaging with and exerting a downward force on the curved rocker at opposite ends thereof in said sliding movement relative to said rocker;
 c. means on said operating member for engaging with and moving the latch out of rocker-engaging position in one position of said operating member.

5. In an electric switch, the combination which comprises:
 a. a hollow housing;
 b. said housing comprising a cover and a base;
 c. a curved rocker member of electrically conductive material rockably supported on said base for movement between an open and a closed position of the switch;
 d. a pivot member of conductive material extending upwardly from said base and electrically engaging with the rocker member at a point intermediate its ends;
 e. an operating member slidably mounted in said housing and engaging with the rocker member;
 f. said operating member being slidable lengthwise relative to the rocker member and exerting a downward force on opposite ends of the curved rocker member in said movement;
 g. a resilient contact arm of conductive material supported at one end of the base in opposing relation to a first end of the rocker member;
 h. an end of said resilient arm being yieldably urged toward engagement with said first end of the rocker member; and
 i. a resilient latch member releasably engaging with a second end of the rocker member;
 j. said latch member releasably engaging with the second end of the rocker member and restraining movement of the rocker member into and out of engagement with the resilient contact arm until a downward force is exerted by the operating member on a raised portion of the rocker on one side of the pivot member.

6. In a tease-proof electric switch of the rocker type, the combination as defined in claim 5 which includes:
 a. a latch release formed on said operating member;
 b. said latch release engaging with and moving said resilient latch away from rocker-engaging position in one position of the operating member.

7. In a tease-proof electric switch of the rocker type, the combination as defined in claim 5 wherein:
 a. the resilient latch includes a pair of rocker-engaging detents;
 b. one detent having a rocker-engaging surface sloping upwardly and outwardly; and
 c. a second detent having a rocker-engaging surface sloping upwardly and inwardly from said first detent;
3,646,291

8. In a tease-proof electric switch of the rocker type, the combination as defined in claim 5 wherein:
da. said base includes a partition extending lengthwise of the base and sidably supporting the operating member;
b. said partition forming two chambers in the cover.

9. In a tease-proof electric switch of the rocker type, the combination comprising:
a. a housing of insulating material;
b. said housing comprising a cover and a base;
c. said cover and base being fitted together and defining at least one chamber;
d. a partition formed on the base and extending lengthwise of said cover;
e. a pivot member of electrically conductive material carried by and extending upwardly from said base at one side of the partition;
f. a curved rocker formed from a conductive material rockably supported intermediate its ends on said pivot member and being in electrical engagement therewith;
g. said rocker being rockable about said pivot member between open and closed positions of the switch;
h. a contact carried by the rocker at one end thereof;
i. a second contact yieldably supported at one end of the base in opposing relation to the contact carried by the rocker;
j. an operating member slidably mounted on the partition;
k. said operating member being movable lengthwise relative to said curved rocker and engaging with the rocker on opposite sides of the pivot member in said movement;
l. a releasable latch formed of a strip of resilient material located at an opposite end of the base;
m. said latch being biased into engagement with a second end of the rocker and restraining rocking movement of said rocker between said open and closed positions of the switch until a downward force is exerted on a raised position of the rocker at a point beyond the pivot member;
and
n. latch release means formed on the operating member for engaging with and releasing said latch from engagement with the rocker end in a retracted position of the operating member.

* * * * *