(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
30. August 2001 (30.08.2001)

PCT

(10) Internationale Veröffentlichungsnummer
WO 01/63257 A1

(51) Internationale Patentklassifikation: G01N 21/55

(21) Internationales Aktenzeichen: PCT/EP01/01793

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
100 08 006.5 22. Februar 2000 (22.02.2000) DE

(72) Erfinder; und

(54) Title: SPR SENSOR AND SPR SENSOR ARRANGEMENT

(54) Bezeichnung: SPR-SENSOR UND SPR-SENSORANORDNUNG

(57) Abstract: The invention relates to an SPR surface plasmon resonance spectroscopy sensor for parallel measurement of a plurality of samples, comprising a body (1a) having several SPR sensor areas (2) for guiding radiation in order to carry out SPR measurements and which are coated with a material which is suitable for SPR in such a way that each SPR sensor area (2) can be exclusively associated with a single sample. The radiation conducting body (1a) forms a unit with the SPR sensor areas (2), whereby the path of the rays guided by the SPR sensor areas (2) can also extend through the radiation conducting body (1a).

(57) Zusammenfassung: Beschrieben wird ein SPR-Sensor für die Oberflächenplasmon-Resonanz-Spektroskopie, zur parallelen Messung einer Vielzahl von Proben, umfassend einen Körper (1a), welcher mehrere SPR-Sensorbereiche (2) zur Führung von Strahlung für SPR-Messungen aufweist, die mit einem SPR-geeigneten Material beschichtet sind, und Trennmittel (7), welche die SPR-Sensorbereiche (2) so trennen, dass jeder SPR-Sensorbereich (2) nur einer Probe zuordnungsfähig ist, wobei der Körper (1a) strahlungsleitend ist und mit den SPR-Sensorbereichen (2) eine Einheit bildet, so dass der Strahlengang der durch die SPR-Sensorbereiche (2) geführten Strahlung auch durch den strahlungsleitenden Körper (1a) verläuft.
SPR-Sensor und SPR-Sensoranordnung

Gebiet der Erfindung

Die vorliegende Erfindung betrifft die Bereitstellung von SPR-Sensoren, die zur gleichzeitigen Erfassung einer Vielzahl von Proben befähigt sind, Verfahren zu deren Herstellung, Messanordnungen zum parallelen Auslesen der erfindungsgemäßen Sensoren sowie deren Verwendung bei der Wirkstoffsuche und dem Hochdurchsatzscreening.

Hintergrund der Erfindung

Weiterhin besteht die Notwendigkeit auch die für die Messung verwendeten Sensoren in einem parallelen und miniaturisierten Format vorzusehen, so dass die Messungen einer Vielzahl von Proben in kürzester Zeit und mit minimalem Probenvolumen und -verbrauch, realisiert werden können, um damit den Durchsatz an zu charakterisierenden Substanzen zu erhöhen.

Es ist eine sehr empfindliche Meßmethode zur Charakterisierung von Grenzflächen bekannt, die als Oberflächenplasmonen-Resonanz-Spektroskopie, üblicherweise als SPR, (Surface Plasmon Resonance) in der Literatur

Die SPR-Spektroskopie findet zunehmend z.B. in der biochemischen Analytik Anwendung, da mit ihr die direkte und markierungsfreie Untersuchung der Wechselwirkung zwischen
Interaktionspartnern möglich ist (zum Beispiel bei Biomolekülen Antikörper/Antigen-Reaktionen). Dazu wird ein Interaktionsspartner (z.B. Ligand) auf der Metalloberfläche immobilisiert, der andere Interaktionsspartner (z.B. Analyt) wird in Lösung über die Oberfläche geleitet. Die Wechselwirkung ist als Schichtdickenzuwachs über die Brechzahländerung direkt nachweisbar.

Eine mit der Miniaturisierung und parallelen Messung vieler Proben einhergehende zu lösende Aufgabe ist das Inkontaktbringen der Sensorfelder mit Flüssigkeit, ohne dass beispielsweise Kreuzkontamination auftritt.

WO-99/41594 beschreibt ein SPR-System, bei dem zur besseren Zeitauflosung die Materialeigenschaften von Bereichen, die an eine durchgehende SPR-fähigen Schicht angrenzen, modifiziert werden, um eine räumlich oder zeitlich aufgelöste Bestimmung der Intensität der von der Oberfläche reflektierten Strahlung zu ermöglichen.

zwischen Träger und lichtführender Schicht können sich Probleme mit der Haftung der aufgebrachten Schicht ergeben.

Aufgabe der Erfindung

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, SPR-Sensoren, welche vorzugsweise planar sind, und Messanordnungen bereitzustellen, die einen einfacheren Aufbau haben, sowie Verfahren zu deren Herstellung, die kostengünstiger als die nach bekanntem Stand der Technik sein sollen, die befähigt sind, eine Vielzahl von Proben gleichzeitig zu erfassen. Insbesondere sollen SPR-Sensoren geschaffen werden, welche eine lichtführende Schicht enthalten, die mindestens zwei Sensorflächen enthält, sowie eine Arrayanordnung aus mindestens zwei SPR-Sensoren bereitgestellt werden, wobei die Nachteile der WO 99/60382 A1 vermieden werden sollen.

Zusammenfassung der Erfindung

Gelöst wird diese Aufgabe durch die kennzeichnenden Merkmale des Anspruchs 1 und durch die Gegenstände der nebengeordneten Ansprüche. Bevorzugte Ausführungen werden in den Unteransprüchen beschrieben.

Erfindungsgemäß wird für einen SPR-Sensor, der zur parallelen Messung einer Vielzahl von Proben geeignet ist, eine selbsttragende Struktur geschaffen, bei welcher ein SPR-Sensorbereiche tragender Körper selbst strahlungsleitend ist und selbst an der Strahlführung für die SPR-Messung teilnimmt.

Unter Strahlung soll hierbei jede zur Anregung von Plasmonen geeignete Strahlung gemeint sein, insbesondere elektromagnetische Strahlung, welche aus dem IR-Bereich oder dem sichtbaren Bereich stammt. Diese bevorzugte Strahlung wird manchmal auch einfach als Licht bezeichnet, wobei
hiermit jedoch keine Beschränkung auf sichtbares Licht gemeint ist.

Unter Verwendung der erfindungsgemäßen Sensoren bzw. Sensoranordnungen sind winkelabhängige Messungen möglich, die aufgrund der geringen Abmessungen mit einem Lichtwellenleiter prinzipiell nicht durchgeführt werden können.

Obwohl die erfindungsgemäßen SPR-Sensoren aus zunächst getrennt vorliegenden SPR-Sensorbereichen und einem Körper zusammengefügt werden können, werden die SPR-Sensoren vorzugsweise ausgehend von einem einzigen strahlungsleitenden Substrat hergestellt, in welchem SPR-Sensorbereiche gebildet werden, welche auf einer Oberfläche eine SPR-geeignete bzw. SPR-fähige Beschichtung passender Dicke aufweisen (z.B. Platin, Gold, Silber, Aluminium, Kupfer, Nickel, oder
geeignete Legierungen), wobei unter Umständen eine
haftvermittelnde Zwischenschicht (z.B. Chrom) eingefügt ist.
Diese im Substrat gebildeten SPR-Sensorbereiche, in welche
Strahlung eingekoppelt werden kann und durch welche diese
Strahlung geführt werden kann, um Oberflächen-Plasmonen in
der SPR-Schicht anzuregen, und um die durch den SPR-Effekt
(d.h. eine wellenlängenabhängige oder winkelabhängige
Intensitätsverminderung, welche über die dielektrischen
Eigenschaften der Außenseite der SPR-Schicht Auskunft gibt)
modifizierte Strahlung weiter zu einer Auswerteeinrichtung zu
führen, sind durch Trennmittel getrennt, so dass die
Strahlung, welche aus getrennten SPR-Sensorbereichen stammt,
getrennt erfasst werden kann. Die Trennmittel sorgen auch
dafür, dass jeder SPR-Sensorbereich einer auszumessenden
Probe zugeordnet werden, d.h. dass keine Kontamination
zwischen benachbarten SPR-Sensorbereichen stattfindet.

Gemäß eines ersten prinziellen Aufbaus werden die
Trennmittel durch die Aufbringung von Erhebungen auf der
Oberfläche des Substrats gebildet, welche sich zwischen den
SPR-Schichten befinden, wobei der Stoff aus denen diese
Erhebungen bestehen, so gewählt ist, dass keine
Strahlungsausbreitung in den Bereichen des Substrats zwischen
den SPR-Sensorbereichen stattfindet, z.B. indem diese
Strahlung durch diesen Stoff absorbiert wird. Hierzu muss der
Brechungsindex des Stoffs geeignet gewählt werden, um eine
Totalreflexion in den Zwischenbereichen zu verhindern, und
der Stoff muss strahlungsabsorbierend bzw. dämpfend wirken.
Wenn das Substrat aus Glas besteht, ist z.B. Silizium oder
eine Siliziumverbindung hierzu geeignet. Im übrigen sind die
Erhebungen so gewählt, dass sie eine Fluidbarriere
darstellen, so dass keine Kontamination zwischen benachbarten
Proben bzw. Sensorbereichen stattfindet.

Wie man erkennt, bildet bei dem ersten prinziellen Aufbau
das Substrat selbst den tragenden Körper für die SPR-
Sensorbereiche, da diese SPR-Sensorbereiche und die

Kurze Beschreibung der Zeichnungen

Weitere Merkmale, Eigenschaften und Vorteile der vorliegenden Erfindung gehen aus der nachfolgenden ausführlichen Beschreibung bevorzugter Ausführungen hervor, welche auf die Zeichnungen Bezug nehmen, in welchen:
Figur 1a eine Ausführung des ersten prinzipiellen Aufbaus eines Sensors zeigt, bei der die Länge der Oberflächenbeschichtung des SPR-Materials und des Trennmaterials entlang der gesamten Höhe des Sensors verläuft,

Figur 1b eine weitere Ausführung des ersten prinzipiellen Aufbaus zeigt, bei der die Länge der Beschichtung des SPR-Materials und des Trennmaterials nicht entlang der gesamten Höhe des Sensors verläuft,

Figur 2a und 2b den Strahlengang der Strahlung, bei dem die Lichteintritts- und austrittsflächen auf entgegengesetzten Seiten des SPR-Sensorbereichs liegen,

Figur 2c den Strahlengang der Strahlung zeigt, bei dem die Eintrittsfläche mit der Austrittsfläche identisch ist,

Figur 2d eine schematische Perspektivansicht zeigt, welche die Wirkung der Sensorbereiche und der Trennbereiche veranschaulicht,

Figur 3 eine Querschnittsansicht eines Sensors nach dem ersten prinzipiellen Aufbau zeigt,

Figuren 4a und 4b mögliche Arrayanordnungen von Sensoren nach dem ersten prinzipiellen Aufbau zeigen,

Figur 5a und 5b weitere mögliche Ausführungsformen eines Sensors und eines entsprechenden Sensorarrays zeigen,
Figur 6a einen Sensor nach dem zweiten prinzipiellen Aufbau zeigt,

Figur 6b eine mögliche Arrayanordnung mehrerer Sensoren nach Fig. 6a zeigt,

Fig. 7a schematisch eine mögliche Ausführung einer Messanordnung für die winkelabhängige Messung,

Fig. 7b einen vergrößerten Ausschnitt aus dem Strahlengang innerhalb der lichtführenden Schicht nach Fig. 7a zeigt, und

Fig. 8 schematisch eine mögliche Ausführung einer Messanordnung für die wellenlängenabhängige Messung zeigt.

Ausführliche Beschreibung von Ausführungen der Erfindung

Die Figuren 1a und 1b zeigen Ausführungen des ersten prinzipiellen Aufbaus eines erfindungsgemäßen Sensors 10. Dieser besteht aus einer optisch lichtführenden Schicht 1 bzw. allgemein aus einem strahlungsleitenden Substrat 1, das aus einem einheitlichen Material gefertigt ist. Zur Vereinfachung der Beschreibung wird die Abmessung entlang der abgebildeten x-Achse als Breite bezeichnet, die Abmessung entlang der abgebildeten y-Achse als Höhe, und die Abmessung senkrecht zur x-y-Ebene (Blattebene) als Dicke.

Das Substrat 1 trägt Sensorflächen 2, die durch Bereiche 3 getrennt sind, die eine regelmäßige Beabstandung gewährleisten. Vorzugsweise sind die Flächen 2 und 3 streifenförmig, parallel und gleich beabstandet, wie abgebildet. Die Sensorflächen 2 bestehen aus einer SPR-fähigen Schicht, vorzugsweise einer Metallschicht aus Platin, Silber, Aluminium, Kupfer, Nickel, besonders bevorzugt einer Goldschicht. Zusätzlich sollte zwischen lichtführender
Schicht bzw. Substrat und Sensorschicht zur besseren Haftung
eine haftvermittelnde Schicht aufgebracht werden (nicht
dargestellt), z.B. aus Chrom oder Titan. Die Bereiche 3
trennen die Sensorflächen derart, dass eine Kontamination
eines Nachbarfeldes bei Inkontaktdrücken des entsprechenden
Sensorfeldes mit Flüssigkeit vermieden werden kann. Dies wird
z.B. dadurch bewirkt, dass die Trennbereiche 3 als Erhebungen
ausgebildet sind, wie in der Perspektivansicht der Fig. 2d
oder der Querschnittsansicht der Fig. 3 gezeigt. Weiterhin
dient der Bereich 3 dazu, das Licht, welches nicht an der
Sensorfläche reflektiert wird, zu absorbieren. Hierzu sollte
das Material der Trennbereiche 3 einen gegenüber dem
Brechungsindex des Substratmaterials geeigneten
Brechungsindex haben, damit nämlich eine Totalreflexion an
der Grenzfläche vermieden wird, und eine Absorption
stattfinden kann. Hierbei ergibt sich ein Strahlengang, wie
er schematisch in Fig. 2d dargestellt ist. In Fig. 2d wird
zur Detektion der SPR geeignete Strahlung, z.B. im sichtbaren
Wellenlängenbereich, von unten eingestrahlt, und an der zum
Einstrahlenden entgegengesetzten Ende tritt entsprechend der
SPR-Sensorbereiche vereinzelte Strahlung aus, so dass eine
getrennte Analyse der aus verschiedenen Sensorbereichen
austretenden Strahlung erfolgen kann.

In Fig. 1a nehmen die Sensorflächen 2 und die Bereiche 3 die
gesamte Höhe des Sensors 10 ein. In Fig. 1b wird jeweils nur
ein Teil der Gesamthöhe benutzt. Ebenso können die Bereiche 3
die gesamte Höhe und die Sensorflächen jedoch nur einen Teil
der Höhe des lichtleitenden Materials belegen (nicht
dargestellt). Auch ist nicht erforderlich, dass alle Streifen
eines Materials die gleiche Höhe haben. Jedoch sollte die
Höhe der Trennmittel mindestens der Höhe der Sensorbereiche
entsprechen.

In den Abbildungen der Figur 2a-2c werden Möglichkeiten zur
Lichtführung in den Sensorbereichen als Seitenansicht von
Fig. 1b schematisch dargestellt. Das Licht wird am
Eintrittsfenster bzw. der Eintrittsfläche 4 des Sensorstreifens 1, dessen Fläche senkrecht zur Sensorfläche 2 steht, eingestrahlt und innerhalb der lichtleitenden Schicht 1 mittels Totalreflexion geführt. Es tritt im Fall der Fig. 2a und 2b auf der entgegengesetzten Seite zum Eintrittsfenster 4 aus, d. h. durch die Austrittsfläche 41. Hierbei wird das Anregungslicht auch an der Sensorfläche 2 reflektiert. Bei einer geraden Anzahl von Reflexionen tritt das Licht parallel versetzt aus dem Sensorstreifen 1 aus und bei einer ungeraden Anzahl von Reflexionen spiegelbildlich hierzu zur Seite des Lichteinfalls. Der Einstrahlwinkel α sollte ferner so gewählt werden, dass der Austritt des Lichtstrahls nur zu einer Seite erfolgt und der SPR-Effekt optimal ausgeprägt ist. Ein weiterer Fall stellt Fig. 2c dar. Hier wird das Licht durch das gleiche Fenster 4 ein- und ausgekoppelt. Um dies zu ermöglichen ist die mit 4a bezeichnete Seite des Sensors verspiegelt, womit das Licht reflektiert wird und durch das Eintrittsfenster wieder austritt.

Als Material für das Substrat 1 können sowohl Gläser als auch Polymere (z. B. Polycarbonat, PMMA, ORMOCER®), die eine ausreichend hohe optische Transparenz im Bereich des sichtbaren Lichts bis in den Bereich des nahen infraroten Lichts aufweisen, gewählt werden. Gläser wie Borosilikat- oder optische Gläser allgemein werden hierbei bevorzugt, weil die optische Qualität der Oberfläche und das Medium schlierenfreier und mit geringeren Streueigenschaften behaftet ist als bei herkömmlichen Kunststoffen. Zudem zeichnen sich Gläser durch hohe Chemoresistenz und die für Biosensoren wichtige möglichst geringe unspezifische Proteinadsorption aus.

Der Brechungsindex des Materials sollte vorteilhafter Weise bei Verwendung von Gold als SPR-fähiger Schicht im Bereich 1,46 bis 1,58 liegen, um die Messung des SPR-Signals in einer
Lösung mit dem Brechungsindex zwischen 1,33 bis 1,37 zu ermöglichen.

Der Sensor bzw. das Substrat 1 kann sowohl Dicken D annehmen, die eine Ausbreitung des Lichts im Sinne der Modenausbreitung als auch der geometrischen Optik als Strahlen erlaubt. Bevorzugs sind Dicken D zwischen 0,1 mm bis 5 mm. Minimal kann der Sensorstreifen 1 eine Höhe H aufweisen, die nur eine Reflexion an der Sensorfläche 2 erlaubt bzw. die Dimension der Sensorfläche 2 besitzt. Eine maximale Höhenbegrenzung ist je nach gewünschter mechanischer Stabilität der Streifen festzulegen. H und D sind so anzupassen, dass bei gewünschter Anzahl von Reflexionen ein SPR-fähiger Winkel erzielt wird. Eine zusätzliche Trägerschicht ist nicht erforderlich, kann jedoch ergänzend aufgebracht werden.

Um ein Übersprechen bei der Flüssigkeitsbeschickung zwischen einzelnen Sensorflächen zu vermeiden, kann der Trennbereich durch eine Erhebungen 3 bildende Deckschicht - wie in Figur 3 dargestellt - in Form einer Flüssigkeitsbarriere ausgestaltet sein. Die Deckschicht soll weiterhin absorbierend wirken, um die Unterteilung der flächigen Anregung in den einzelnen Sensorflächen durch Auslösung des Lichtes in den Gebieten zwischen zwei Sensorfeldern zu gewährleisten. Das Material der Deckschicht muss somit eine hohe optische Absorption gegenüber dem einfallenden Licht haben, sowie eine chemische Stabilität gegen die verwendeten Reagenzien und Lösemittel besitzen. Ferner soll die Strukturierbarkeit mit bekannten mikrotechnischen Verfahren zur Herstellung von Deckschichten mit Breiten vorzugsweise im Bereich von 0,01 bis 10 mm, insbesondere 0,1 bis 1 mm möglich sein.

Messenordnungen zum parallelen wellenlängenabhängigen
Auslesen solcher Sensorarrays sind in DE 199 55 556.7
beschrieben, auf deren diesbezüglichen Offenbarungsgehalt
hiermit bezug genommen wird und deren Inhalt hiermit durch
Bezugnahme eingeschlossen wird.

Die gleichzeitige winkelabhängige Messung des SPR-Effekts
aller Sensorfelder in einem solchen Array ist apparativ sehr
aufwendig. Jedoch kann leicht eine winkelabhängige Messung
des SPR-Effektes von einzelnen Sensoren mittels geeigneter
Lichtführung parallel durchgeführt werden, wie später noch
beschrieben wird.

Wie in Figur 4a dargestellt, werden zur Bildung einer SPR-
Sensoranordnung bzw. SPR-Sensorarrays mehrere der planaren
Sensoren 10 durch Verkleben der Sensoren an der
Lichtaustrittsseite mit einer transparenten Deckplatte 6 zu
einem Array angeordnet. Der dafür zu verwendende Klebstoff
sollte optisch transparent im Bereich des sichtbaren Lichts
bis in den Bereich des nahen infraroten Lichts sein bzw.
allgemein durchlässig für die SPR-Strahlung sein, und einen
Brechungsindex, ähnlich dem des Glases der Sensoren 10 und
Deckplatte 6, aufweisen. 'Ähnlich' bedeutet hierbei einen
Unterschied von höchstens 10%. Bei der Herstellung der
Sensoren zu einem Array sollte darauf geachtet werden, dass
die planaren, plattenförmigen Sensoren zueinander
planparallel angeordnet werden.

Da sich bei diesem Aufbau keine lichtabsorbierenden Bereiche
zwischen den Sensorstreifen befinden, ist es bei jenen
Sensorarrays, die nach dem Schema der Fig. 2d beleuchtet
werden, notwendig, das Anregungslicht, welches zwischen zwei
Sensoren hindurchtritt, auszublenden. Dafür wird über dem
Array eine Lochmaske 20 angeordnet, welche nur an den Stellen
der Austrittsfenster Öffnungen 21 aufweist und damit Licht,
welches nicht mit den Sensorfeldern in Kontakt kommt,
ausblendet.
Figur 4b stellt die Anordnung von Sensoren zu einem Array unter Verwendung von Zwischenelementen bzw. Abstandhaltern 5 dar.

Im Fall, dass Glas oder ein anderes strahlungsdurchlässige Material als Material für die Abstandhalter verwendet wird, müssen die Stirnseiten der Abstandhalter zusätzlich mit einer lichtabsorbierenden Schicht versehen werden, die garantiert, dass kein Licht durch diese Abstandhalter an den Detektor gelangen kann.

Das Einbringen des Klebstoffs in die Spalten zwischen Sensoren und Abstandhalter kann mittels Kapillarkräften erfolgen. Dadurch kann in einem ersten Schritt der Array
gestapelt werden und in einem zweiten Schritt werden die Sensoren zueinander mit dem Klebstoff fixiert.

Werden die Sensoren nur verklebt, so ermöglicht auch der verbleibende Luftpalt die Totalreflexion des eingestrahlten Lichts.

Die Anordnung mehrerer Sensoren zu einem Array erfordert eine genaue Ausrichtung der Sensoren zueinander, da dies für die optische Lichtein- und auskopplung des parallelen Lichtes unter einem definierten Winkel notwendig ist.

Der Abstand zwischen zwei Sensorbereichen oder Sensoren bestimmt das für die Anwendung notwendige Volumen und sollte möglichst minimal sein und vorzugsweise im Bereich 0,1 mm bis 10 mm liegen. Nach der Messung wird das Sensorarray aus der Messlösung herausgenommen. Handelt es sich bei dem Abstand von Sensor zu Sensor um einen Kapillarpalt, kann die Flüssigkeit mit porösem Material herausgesaugt, herausgeschleudert oder mit Druckluft in ein Auffanggefäss gespült werden. Bei größeren Spalten laufen diese von selber aus.

Verfahren zur Herstellung von Sensoren nach dem ersten prinzipiellen Aufbau sehen mehrere Schritte vor. In einem ersten Schritt können auf der lichtführenden Schicht vor oder nach der mechanischen Bearbeitung der lichteinkoppelnden Stirnflächen die lichtabsorbierenden Bereiche zwischen den Sensorflächen hergestellt werden. Dafür kann eine fotostrukturierbare Schicht verwendet werden, die auf das lichtleitende Substrat aufgetragen und mittels fotolithografischer Methoden strukturiert wird und somit in einem vorgegebenen Raster Bereiche freilegt. Eine in den oben angegebenen Lichtbereichen transparente Trägerplatte, die in ihrer Höhe der Länge der Streifen des lichtleitenden Substrates entspricht, wird mit einer homogenen Schicht Fotolack beschichtet. Diese (Deck-)Schicht ist

Es können ebenso Substrate verwendet werden, die bereits die gewünschte Länge aufweisen und deren Stirnflächen poliert sind und die einzeln mit einem der oben genannten Verfahren die lichtabsorbierenden Stege erhalten. Die Beschichtung mit der SPR-fähigen Metallschicht erfolgt auch hier in einem letzten Arbeitsschritt.

Weiterhin können Siebdrucktechniken eingesetzt werden, die nur an den Öffnungen der Siebdruckmaske die lichtabsorbierende Schicht auf das lichtleitende Material auftragen. Ebenso kann eine vorstrukturierte Abdeckung mit Öffnungen, die den Sensorflächen entsprechen, mittels Kleben oder anderer Fügeverfahren auf das Material aufgebracht werden. Die mit diesen Methoden hergestellten freien Bereiche werden in einem nachfolgenden Schritt zunächst mit einer haftvermittelnden Schicht, vorzugsweise einer dünnen Metallschicht versehen. Mittels Sputtern oder Bedampfen wird dann eine dünne SPR-fähige Schicht, beispielsweise aus Gold aufgetragen. Zuvor wird eine haftvermittelnde Schicht aufgetragen, die dünn (z.B. eine Größenordnung dünner) gegenüber der SPR-fähigen Schicht sein sollte, so dass die SPR-Resonanz möglichst wenig beeinflusst wird. Die lichtabsorbierenden Bereiche können mit beschichtet werden, was die oben beschriebenen Funktionen nicht verändert, weil das Licht nicht bis an diese Schicht vordringt. In anderen Worten, die lichtabsorbierenden Bereiche werden vorzugsweise
als Masken bei der Aufbringung der SPR-fähigen Schicht verwendet.

Die erzeugten Sensorgebiete werden vorteilhafter Weise in einem Raster, welches den derzeitig üblichen Mikrotiterplattenformaten entspricht, einem vielfachen oder ganzzahlig geteiltem Maß davon zueinander angeordnet. Dies erlaubt das Auftragen von Flüssigkeit, beispielsweise Proben beinhaltend, aus Mikrotiterplatten mittels Flüssigkeitstransfergeräten auf die Sensorflächen, die durch das Vorhandensein der flüssigkeitsbegrenzenden Barrieren nicht auf benachbarte Sensorflächen übersprechen können.

Figur 4a und 4b zeigen die Anordnung einzelner Sensorstreifen zu einem Sensorarray. Dabei werden durch das Aneinanderfügen von m Sensoren des lichtleitenden Substrates mit n-Sensorflächen m x n Sensorbereiche bereitgestellt. Die Sensoren werden durch Abstandhalter 5 in einem definierten Abstand zueinander angeordnet und gegeneinander gepresst, oder verklebt, oder mittels einer Deckplatte 6 fixiert, beispielsweise durch Verkleben.

Die dargestellten einzelnen Sensoren der Lichtleiter können mit Hilfe von Pipettierrobotern oder anderen Flüssigkeitstransfergeräten mit Flüssigkeit in Kontakt gebracht werden, bevor sie zu einem Array angeordnet werden. Hierzu ist es erforderlich die Sensoren zu legen. Dabei wird beispielsweise aus Mikrotiterplatten, die in jeder Kavität eine andere Lösung enthält, eine geringe Flüssigkeitsmenge auf die Sensorfläche gegeben. In einer bevorzugten Ausführungsform sind bis zu 96 Sensorflächen auf einem 120 mm breiten Sensor herstellbar. Eine weitere Miniaturisierung ist mit den genannten Mikrotechnikverfahren möglich.

Figur 5a zeigt eine weitere Ausführung, in der Einzelsensoren 100 hergestellt werden, die zusätzlich einen Abstandhalter 50 tragen. Die lichtabsorbierenden und flüssigkeitsbegrenzenden

In Figur 5b ist ein Array aus solchen Sensoren 100 wiedergegeben. Man geht von Einzelsensoren 100 aus, die miteinander so verbunden werden, dass die zwischen den Sensoren 100 befindlichen Kapillarspalten miteinander mäanderförmig verbunden sind und durch eine externe Pumpe befüllt und wieder entleert werden können. In diesem Fall sollten die Sensorregionen auf dem Sensor 100 in einem ersten Schritt mit den zu messenden Proben beschichtet werden und dann mehrere Streifen mittels Verpressen oder Verkleben zu einer Art "Durchfluß-Küvette" verbunden werden.

Figur 6a zeigt eine besonders bevorzugte Ausführung, welche ein Beispiel für den zweiten prinzipiellen Aufbau ist, in der die Trennbereiche 3 durch Ausnehmungen 7 erzeugt werden. Hierbei werden ebenfalls planare, transparente Substrate benutzt, um sowohl einen Sensor mit einer Vielzahl von Sensorfeldern, als auch durch die Anordnung mehrerer Sensoren hintereinander (Array) herzustellen.

In diesem Fall werden die Sensorflächen nicht durch ein lichtabsorbierendes Material, sondern räumlich direkt

Als Ergebnis bleibt ein tragender Körper 1a, von welchem fingerförmig die Sensorbereiche 2 abstehen.

Eine besonders bevorzugte Ausführung eines Sensorarrays zeigt Fig. 6b, das ähnlich wie die Arrays der Figuren 4a und 4b hergestellt wird, unter Verwendung von Sensoren nach Figur 6a.

Es ist auch möglich den ersten prinzipiellen Aufbau und den zweiten prinzipiellen Aufbau zu kombinieren, nämlich in einer
weiteren Ausführung (nicht abgebildet) eines Sensors, der Trennbereiche enthält, die sowohl durch Ausnehmungen als auch durch Deckflächen definiert werden. Somit ist es beispielsweise möglich, dass ein Sensor Sensorbereiche hat, welche abwechselnd durch Ausnehmungen und durch Deckflächen getrennt sind. Es ist ebenfalls möglich eine grundsätzlich kamtsartige Struktur mit Ausnehmungen zu bilden, wie in Fig. 6a gezeigt, wobei allerdings die einzelnen Finger wiederum unterteilt sind, nämlich durch Deckflächen.

Obwohl die in den Figuren gezeigten Sensoren alle parallele und gleich beabstandete Sensorbereiche haben, was bevorzugt ist, ist es genauso möglich, dass andere Strukturen verwirklicht werden. So kann insbesondere der Abstand und/oder die Breite der Sensorbereiche von einem Sensorbereich zum nächsten variieren, z.B. auf solche Weise, dass eine bestimmte Zahl von schmalen Sensorbereichen untereinander durch schmale Ausnehmungen getrennt sind, um eine Gruppe zu bilden, und von anderen gleichartigen Gruppen durch Ausnehmungen getrennt sind, die breiter sind als die schmalen Ausnehmungen innerhalb einer Gruppe.

Das in den Sensor eingekoppelte Licht verlässt nach mindestens einer Reflexion an der Sensorfläche den Sensor und wird dann zur Auswertung auf eine Detektoreinheit (Det, z.B. CCD-Kamera) abgebildet. Licht, welches nicht in die Stirnflächen der SPR-Sensorbereiche 2 eingekoppelt wurde oder durch Streuung an Kanten entsteht, wird weitgehend von den Abstandshaltern 5, 50 bzw. der Abdeckung 6 "geblockt" oder es wird in Richtungen reflektiert, die nicht vom Detektor nachgewiesen werden. An der Lichtaustrittsseite der Sensoren treten Lichtstrahlen an den Stellen aus, unter denen sich eine Sensorfläche befindet; in den Zwischenbereichen tritt kein Licht aus (Fig. 2d).

Neben der Durchleuchtung der Sensorstreifen mit parallelem Licht, wie es bereits in Figur 2a-2d angedeutet wurde, und einer Messung der Wellenlängenabhängigkeit der transmittierten oder reflektierten Intensität, können die Sensoren auch mit einem fokussierten Strahl beleuchtet werden, um die Winkelabhängigkeit der transmittierten Intensität zu messen. Dies wird unter Bezugnahme auf Fig. 7a und 7b beschrieben.

Dazu tritt nach Fig. 7b ein durch eine geeignete Fokussiereinrichtung fokussierter Lichtstrahl durch das Eintrittsfenster 4 in die lichtführende Schicht 1 ein, und wird intern an der aktiven Sensorschicht 2 reflektiert, an der auch der Fokus des Strahls liegt. Nach dieser Reflexion ist der Strahl wieder divergent und tritt aus der lichtführenden Schicht aus. Die Länge und die Anzahl der Reflexionen sollte in dieser Ausführung begrenzt werden, damit der Querschnitt des divergenten Lichtstrahls nicht breiter als das Austrittsfenster der lichtführenden Schicht wird. Die Ein- und Austrittsfenster sollten vorteilhafter Weise bei dieser Beleuchtungsmethode einen kleinen Winkel zur Sensornormalen bilden, so dass der zentrale Kern des Lichtstrahls beim Eintritt und -austritt nicht gebrochen
wird. Die Randstrahler bleiben dann symmetrisch zu diesem zentralen Strahl.

Der mittlere Winkel Θ sollte in etwa dem Winkel entsprechen, unter dem die SPR-Resonanz beobachtet wird. Der Öffnungswinkel des Strahls beträgt ein paar Grad, um einen für die zu erwartende Verschiebung der Resonanz ausreichenden Winkelbereich zu erfassen. Nach der internen Reflexion an der Goldschicht fächert der Strahl wieder auf und tritt nach einer weiteren Reflexion aus der lichtleitenden Schicht heraus. Eine weitere Zylinderlinse Z2 ist im Abstand der Brennweite vor dem Fokus angebracht, so dass anschließend wieder ein paralleler Strahlengang vorliegt. Ein Umlenkspiegel 2 (UL2) und eine Optik aus Linsen L4, L5 bilden die Intensitätsverteilung wie sie in der Ebene der Zylinderlinse 2 vorliegt auf einen Detektor, z.B. einen CCD-

Messenordnungen zum parallelen Auslesen der SPR-Sensoren oder Arrays sind in DE 199 55 556.7 beschrieben, auf deren diesbezüglichen Offenbarungsgehalt hiermit bezug genommen wird, und deren Inhalt durch Bezugnahme eingeschlossen wird.

Ein Messaufbau, der nach dem Prinzip eines parallelen Strahlengangs innerhalb des Sensors (wie in Fig. 2) arbeitet, ist in Fig. 8 dargestellt. Hier wird das Licht einer Halogenlampe durch eine Lichtleitfaser (LLF) zum Monochromator (M) und durch eine weitere Lichtleitfaser zur Strahlauflaufweitung (Linsen L2, L3) geführt. Mittels des Polarisators P wird die TM-Polarisation bezüglich der Reflexion an der Sensorschicht selektiert. Die Beleuchtung des Sensorarrays (SA) erfolgt mit einem aufgeweiteten parallelen Strahlenbündel in einem Winkel unter dem die Resonanz erwartet wird.

Am oberen Ende des Sensors (siehe auch Fig. 2) tritt das Licht entweder nur parallel versetzt (Fig. 2b) unter dem selben Winkel aus (bei gerader Anzahl von Reflexionen), unter dem es unten eingetreten ist oder um den negativen Winkel bei einer ungeraden Anzahl von Reflexionen (Fig. 2a). Die Höhe H und Dicke D des SPR-Sensors sind nun so dimensioniert, dass die Anzahl der Reflexionen ungerade ist und somit nur der
negative Winkel auftritt, das Licht also nach rechts oben (Fig. 8) austritt.

Im weiteren Strahlengang wird der Lichtweg der Beleuchtung praktisch umgekehrt: Über eine Sammellinse L4 mit großem Durchmesser und einem Objektiv L5 wird die Fläche des Sensorarrays auf den CCD Chip (Det) abgebildet (Teleskopabbildung). Da die abzubildende Oberfläche des Sensorarrays nicht senkrecht zur optischen Achse der Anordnung steht, wird bei einer herkömmlichen Kamera bei der das Objektiv parallel zum CCD Chip (Det) steht aufgrund nicht ausreichender Tiefenschärfe nur eine Linie des Objekts scharf abgebildet. Daher muss bildseitig der CCD Chip (D) ebenfalls zur optischen Achse verkippt sein, um über die ganze Sensorarrayfläche eine scharfe Abbildung zu gewährleisten. Dies wird realisiert, indem die CCD Kamera (D) mit einem Goniometer gegenüber dem Objektiv (L5) verkippt wird.

Brechungsindex und Dichte sind für die meisten Proteine gleich, daher ist der Brechungsindex des Mediums vor der Goldschicht direkt proportional zur Massenbelegungsdichte.
Für eine Bestimmung der am jeweiligen SPR-Sensor angelagerten Moleküle ist nun nicht das absolute Intensitätsspektrum einer einzelnen Messung, sondern die Wellenlängenverschiebung des Minimums bei einer Messung in reiner Pufferlösung und zum Minimum bei einer zweiten Messung in Anwesenheit des Zielmoleküls notwendig. Erst diese Differenz erlaubt, eine Aussage über die Anlagerung von Molekülen zu treffen.

Bei der Verwendung von fokussiertem Licht, wie sie in Figur 7 erkennbar ist, müssen zusätzlich zu der in Fig. 8 beschriebenen Optik noch die Linsen Z1 und Z2 in den Strahlengang gebracht werden. Diese dienen der Fokussierung des Lichtstrahls auf einen Punkt bzw. auf eine Linie. Dort wird die Winkelabhängigkeit des SPR-Effekts zur Charakterisierung der Lösung verwendet.

Obwohl die Messanordnungen der Figuren 7 und 8 den Fall einer Transmissionsmessung betrafen (siehe auch Fig. 2a und 2b), ist offensichtlich, dass diese Anordnungen grundsätzlich auch für Reflexionsmessungen verwendet werden können (siehe auch Fig. 2c). Hierzu muss nur beachtet werden, dass dann die Lichteintrittsfläche und die Lichtaustrittsfläche gleich sind, und dementsprechend die Auswerteoptik angeordnet werden muss. Die Verwendung einer Reflexionsmessung hat den Vorteil, dass das Licht nicht durch die zu messende Flüssigkeit treten muss.

Beispiel
Im folgenden wird ein Beispiel für die Herstellung eines Sensors nach Figur 6 erläutert.

Ein Borosilikatstreifen wird mit einer Dicke von 0,7 mm verwendet. Die Höhe der Glasstreifen von 17 mm ist so dimensioniert, dass bei Einstrahlung von parallelem Licht
unter einem Winkel von 83° genau drei Reflexionen zugelassen werden.

Beide Stirnseiten, in die das parallele Licht ein- und ausgekoppelt wird, sind poliert. Die Breite der Streifen beträgt 78 mm. Im Abstand von 2,25 mm werden 33 Ausschnitte mittels einer Glassäge mit einer Breite von 1 mm und 6 mm Tiefe in den Glasstreifen eingebracht. Durch diese Ausschnitte entstehen kammähnliche Streifen mit \textquoteleft\textquoteleft Einzelfingern\textquoteright\textquoteright, die im weiteren als Sensorbereiche dienen.

29

Ansprüche

1. SPR-Sensor für die Oberflächenplasmonen-Resonanz-Spektroskopie, zur parallelen Messung einer Vielzahl von Proben, umfassend einen Körper (1; 1a), welcher mehrere SPR-Sensorbereiche (2) zur Führung von Strahlung für SPR-Messungen aufweist, die mit einem SPR-geeigneten Material beschichtet sind, und Trennmittel (3; 7), welche die SPR-Sensorbereiche (2) durch Unterbrechung der Beschichtung mit SPR-geeignetem Material so trennen, dass jeder SPR-Sensorbereich (2) nur einer Probe zuordenbar ist,

dadurch gekennzeichnet, dass der Körper (1; 1a) strahlungsleitend ist und mit den SPR-Sensorbereichen (2) eine Einheit bildet, so dass der Strahlengang der durch die SPR-Sensorbereiche (2) geführten Strahlung auch durch den strahlungsleitenden Körper (1; 1a) verläuft.

2. SPR-Sensor nach Anspruch 1, dadurch gekennzeichnet, dass der Körper (1; 1a) und die SPR-Sensorbereiche (2) aus ein und demselben strahlungsdurchlässigen Substrat gefertigt sind.

3. SPR-Sensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die SPR-Sensorbereiche (2) und die Trennmittel (3) Bestandteile des Körpers (1) sind, und zusammen zumindest einen Teil des Körpers (1) ausmachen.
4. SPR-Sensor nach Anspruch 3, dadurch gekennzeichnet, dass der Körper (1) aus einem durchgehenden planaren Strahlungsleiter besteht, und die SPR-Sensorbereiche durch erste Flächen auf einer Oberfläche des Körpers (1) definiert sind, welche aus dem SPR-geeigneten Material bestehen, und die Trennmittel durch zweite Flächen definiert sind, welche zwischen den Flächen aus SPR-geeignetem Material auf der gleichen und/oder entgegengesetzten Oberfläche des Körpers aufgebracht sind, und aus einem zweiten Material bestehen, das geeignet ist die Strahlung in dem Strahlungsleiter zwischen den SPR-Sensorbereichen auszulöschen.

5. SPR-Sensor nach Anspruch 4, dadurch gekennzeichnet, dass die zweiten Flächen auf der gleichen Oberfläche des Körpers (1) ausgebildet sind, wie die ersten Flächen, und die zweiten Flächen Flüssigkeitsbarrieren zwischen benachbarten ersten Flächen bilden.

6. SPR-Sensor nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die ersten und zweiten Flächen als Streifen ausgebildet sind, die ersten Streifen alle parallel und gleich beabstandet sind, und der Abstand zwischen benachbarten ersten Streifen 0.01 bis 10 mm, vorzugsweise 0.1 bis 1 mm beträgt.

7. SPR-Sensor nach Anspruch 1 oder 2, gekennzeichnet durch fingerförmige Vorstände, welche SPR-Sensorbereiche (2) umfassen, und Ausnehmungen (7), welche Trennmittel (3; 7) zwischen den Ausnehmungen bilden.

8. SPR-Sensor nach Anspruch 7, dadurch gekennzeichnet, dass die fingerförmigen Vorstände in Sensorbereiche (2)
unterteilt sind, und die Trennmittel (3, 7) zwischen den Sensorbereichen (2) durch weitere Ausnehmungen und/oder durch auf der Oberfläche der Vorstände beschichtete Bereiche gebildet sind.

9. SPR-Sensor nach Anspruch 7, dadurch gekennzeichnet, dass die Vorstände den SPR-Sensorbereichen (2) entsprechen, und parallel und mit gleichem Abstand stehen, und zusammen mit dem Körper (1) eine kammförmige Struktur bilden.

10. SPR-Sensor nach Anspruch 9, dadurch gekennzeichnet, dass die SPR-Sensorbereiche (2) im Raster einer Mikrotiterplatte beabstandet sind.

11. SPR-Sensor nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Strahlung Licht aus dem Infrarotbereich oder dem sichtbaren Bereich ist.

12. SPR-Sensor nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der Körper (1; 1a) und die SPR-Sensorbereiche (2) aus Glas oder einem Polymer bestehen.

13. SPR-Sensor nach Anspruch 12, dadurch gekennzeichnet, dass der Körper (1; 1a) und die SPR-Sensorbereiche (2) aus Borosilikatglas bestehen.

14. SPR-Sensor nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass zwischen den SPR-Sensorbereichen (2) und dem jeweiligen SPR-geeigneten Material eine haftvermittelnde Zwischenschicht, vorzugsweise aus Chrom oder Titan, liegt.
15. SPR-Sensor nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass das SPR-geeignete Material ein Metall ist, vorzugsweise Platin, Gold, Silber, Aluminium, Kupfer, Nickel oder eine Legierung aus zwei oder mehr dieser Metalle.

16. SPR-Sensor nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass der Körper (1; 1a) und die SPR-Sensorbereiche (2) einen Brechungsindex aus dem Bereich von 1.46 bis 1.58 aufweisen, und Gold als SPR-geeignetes Material verwendet wird.

17. SPR-Sensor nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die SPR-Sensorbereiche eine Querschnittsabmessung aufweisen, die im Bereich zwischen 0.1 mm und 5 mm liegt.

18. SPR-Sensoranordnung, umfassend eine Vielzahl von SPR-Sensoren nach einem der Ansprüche 1 bis 17, wobei die SPR-Sensoren planar ausgebildet und alle planparallel angeordnet sind.

19. SPR-Sensoranordnung nach Anspruch 18, dadurch gekennzeichnet, dass die SPR-Sensoren an einer Strahlungsaustrittsfläche oder Strahlungseintrittsfläche mit einer Oberfläche einer strahlungsdurchlässigen Platte (6) verbunden sind, und auf der entgegengesetzten Oberfläche der Platte (6) eine Strahlungsabdeckung (20) vorgesehen ist, welche Strahlungsdurchtrittsfenster (21) aufweist, die so angeordnet sind, dass ein Durchtritt von Strahlung aus den SPR-Sensorbereichen (2) oder in die SPR-Sensorbereiche (2) der einzelnen SPR-Sensoren gestattet wird.
20. SPR-Sensoranordnung nach Anspruch 18, dadurch gekennzeichnet, dass jeweils benachbarte SPR-Sensoren (1, 1a, 100) durch Zwischenelemente (5; 50) getrennt sind, welche jeweils mit den benachbarten SPR-Sensoren (2) verbunden sind.

21. SPR-Sensoranordnung nach Anspruch 20, dadurch gekennzeichnet, dass die Zwischenelemente (5; 50) so ausgebildet sind, dass sie auf der Seite der SPR-Sensoranordnung, aus der die Strahlung aus den Sensorbereichen (2) der SPR-Sensoren austritt, keinen Strahlungsausstritt gestatten.

22. SPR-Sensoranordnung nach Anspruch 20 oder 21, dadurch gekennzeichnet, dass jedes Zwischenelemente (50) mindestens einen ersten Teil (51) aufweist, welcher mit benachbarten SPR-Sensoren verbunden ist und den Abstand zwischen diesen benachbarten SPR-Sensoren definiert, und einen zweiten Teil (52), welcher zwischen benachbarten SPR-Sensoren einen Freiraum lässt, durch welchen ein Fluid fließen kann, wobei in dem zweiten Teil (52) Öffnungen (64) vorgesehen sind, welche mit SPR geeignetem Material beschichtete Flächen von SPR-Sensorbereichen (2) eines der SPR-Sensoren freigeben, so dass das durch den Freiraum fließende Fluid mit den mit SPR geeignetem Material beschichteten Flächen der SPR-Sensorbereichen (2) eines der SPR-Sensoren in Berührung kommen kann.

23. SPR-Sensoranordnung nach Anspruch 22, dadurch gekennzeichnet, dass die Vielzahl der SPR-Sensoren und die Zwischenelemente (50) so angeordnet sind, dass die
einzellen Freiräume zwischen benachbarten SPR-Sensoren einen mäanderförmigen Flusspfad bilden.

24. SPR-Sensoranordnung nach einem der Ansprüche 18 bis 23, dadurch gekennzeichnet, dass 10 bis 100000 SPR-Sensorbereiche angeordnet sind.

25. Verfahren zur Herstellung eines SPR-Sensors nach Anspruch 1, umfassend:

Beschichten von ersten Flächen auf einer Oberfläche eines planaren, strahlungsleitenden Substrats mit dem SPRgeeigneten Material, um die SPR-Sensorbereiche (2) im Substrat zu definieren,

Aufbringen von Erhebungen (3) eines zweiten Materials auf zweiten Flächen, welche zwischen den ersten Flächen liegen, um die Trennmittel (3; 7) zu bilden, wobei das zweite Material so ist, dass die Strahlung in dem Substrat in Bereichen zwischen den SPR-Sensorbereichen (2) ausgelöscht wird, und die Erhebungen (3) eine Höhe von der Substratoberfläche haben, dass jeder SPR-Sensorbereich nur einer Probe zuordenbar ist, indem jede Erhebung (3) eine Flüssigkeitsbarriere für die mit dem SPR-Sensor auszumessenden Flüssigkeiten bildet,

wobei der Schritt der Beschichtung der ersten Flächen vor oder nach dem Schritt des Aufbringens des zweiten Materials erfolgen kann.

26. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass zunächst die Erhebungen (3) auf den zweiten Flächen gebildet werden, und danach das SPR-geeignete Material
auf die ersten Flächen aufgebracht wird, unter Verwendung der Erhebungen (3) auf den zweiten Flächen als Maske.

27. Verfahren nach Anspruch 25 oder 26, dadurch gekennzeichnet, dass die Erhebungen (3) aus dem zweiten Material mit Hilfe einer Maske hergestellt werden.

28. Verfahren nach Anspruch 27, dadurch gekennzeichnet, dass die Maske eine Siebdruckmaske, eine photostrukturierte Lackschicht, oder eine auf die Oberfläche des Substrats gefügte, vorstrukturierte Abdeckung ist.

29. Verfahren zur Herstellung eines SPR-Sensors nach Anspruch 1, umfassend:

Beschichten von ersten Flächen auf einer Oberfläche eines planaren, strahlungsleitenden Substrats mit dem SPR-gereigneten Material, um die SPR-Sensorbereiche (2) im Substrat zu definieren,

Bilden von Ausnehmungen (7) zwischen den SPR-Sensorbereichen (2), um die Trennmittel (3; 7) zu bilden,

wobei der Schritt der Beschichtung der ersten Flächen vor oder nach dem Schritt des Bildens des Ausnehmungen (7) erfolgen kann.

30. Verfahren nach Anspruch 29, dadurch gekennzeichnet, dass das Bilden der Ausnehmungen (7) durch sägen und/oder fräsen und/oder ätzen des strahlungsleitenden Substrats erfolgt.
31. Verfahren nach einem der Ansprüche 25 bis 31, dadurch gekennzeichnet, dass das Substrat aus Glas oder einem Polymer bestehen.

32. Verfahren nach Anspruch 31, dadurch gekennzeichnet, dass das Substrat aus Borosilikatglas bestehen.

35. Verfahren nach einem der Ansprüche 25 bis 34, dadurch gekennzeichnet, dass das Substrat einen Brechungsindex aus dem Bereich von 1.46 bis 1.58 aufweist und Gold als SPR-geeignetes Material verwendet wird.

36. Verfahren nach einem der Ansprüche 24 bis 35, dadurch gekennzeichnet, dass die SPR-Sensorbereiche eine Querschnittsabmessung aufweisen, die im Bereich zwischen 0.1 mm und 5 mm liegt.

37. Verfahren zur Herstellung einer SPR-Sensoranordnung nach Anspruch 18, umfassend:
Verbinden der Lichtseintrittsflächen oder Lichtaustrittsflächen der einzelnen SPR-Sensoren mit einer Oberfläche einer strahlungsdurchlässigen Platte (6),

Anbringen einer Strahlungsabdeckung (20) auf der entgegengesetzten Oberfläche der Platte (6), welche Strahlungsdurchtrittsfenster (21) aufweist, die so angeordnet sind, dass ein Durchtritt von Strahlung aus den SPR-Sensorbereichen (2) oder in die SPR-Sensorbereiche (2) gestattet wird.

38. Verfahren nach Anspruch 37, dadurch gekennzeichnet, dass das Verbinden der SPR-Sensoren mit der Platte (6) mittels eines transparenten Klebstoffs geschieht, der sich vorzugsweise von dem Brechungsindex der Platte (6) und/oder der SPR-Sensoren um höchstens 10% unterscheidet.

39. Verfahren zur Herstellung einer SPR-Sensoranordnung nach Anspruch 18, umfassend das Verbinden der einzelnen SPR-Sensoren durch Zwischenelemente (5; 50), welche jeweils mit zwei benachbarten SPR-Sensoren verbunden werden.

41. Messanordnung für die Oberflächenplasmonen-Resonanz-Spektroskopie, zur gleichzeitigen Messung einer Vielzahl von Proben, umfassend

- einen SPR-Sensor nach einem der Ansprüche 1 bis 17 oder eine SPR-Sensoranordnung nach einem der Ansprüche 18 bis 24,

- eine Strahlungsquelle zum Aussenden von Strahlung einer für SPR-Messungen geeigneten Wellenlänge,

- eine Strahlungs-Fokussiereinrichtung (Z1) zur Bildung von konvergenter Strahlung aus der von der Strahlungsquelle ausgesandten Strahlung, wobei die konvergente Strahlung so geführt wird, dass sie zumindest in zwei unterschiedliche SPR-Sensorbereiche (2) der SPR-Sensoranordnung über jeweilige Strahlungseintrittsflächen (4) der SPR-Sensorbereiche (2) eintritt, und die Strahlungs-Fokussiereinrichtung (Z1) und die SPR-Sensorbereiche (2) so angeordnet sind, dass der Fokus der konvergenten Strahlung auf der Oberfläche des SPR-Sensorbereichs (2) liegt, die mit dem SPR-geeigneten Material beschichtet ist, um von dieser Oberfläche reflektiert zu werden, und

- eine Strahlungs-Auswerteeinrichtung (Z2, UL1, L4, L5, Det), um die reflektierte Strahlung zu erfassen und zu analysieren.

42. Messanordnung nach Anspruch 41, dadurch gekennzeichnet, dass die Strahlungseintrittsflächen (4) der SPR-Sensorbereiche (2) und die konvergente Strahlung so orientiert sind, dass der Mittenstrahl der konvergenten
Strahlung beim Eintritt in den SPR-Sensorbereich (2) nicht gebrochen wird.

43. Messanordnung nach Anspruch 41 oder 42, dadurch gekennzeichnet, dass die Strahlungsaustrittsflächen (40) der SPR-Sensorbereiche (2) und die konvergente Strahlung so orientiert sind, dass der Mittenstrahl der konvergenten Strahlung beim Austritt aus den SPR-Sensorbereich (2) nicht gebrochen wird.

44. Messanordnung nach einem der Ansprüche 41 bis 43, dadurch gekennzeichnet, dass die Strahlungs-Fokussiereinrichtung (Z1) eine Zylinderlinse umfasst, wobei die Zylinderlinse und die SPR-Sensoranordnung so angeordnet sind, dass die von der Zylinderlinse gebildete konvergente Strahlung gleichzeitig in alle SPR-Sensorbereiche (2) des SPR-Sensors oder eines SPR-Sensors der SPR-Sensoranordnung eintritt.

45. Messanordnung nach Anspruch 44, dadurch gekennzeichnet, dass eine SPR-Sensoranordnung vorgesehen ist, und dass eine Verschiebungseinrichtung vorgesehen ist, welche ausgebildet ist die SPR-Sensoranordnung zu verschieben, damit ein SPR-Sensor nach dem anderen ausgemessen werden kann.

46. Messanordnung für die Oberflächenplasmonen-Resonanz-Spektroskopie, zur gleichzeitigen Messung einer Vielzahl von Proben, umfassend

- einen SPR-Sensor nach einem der Ansprüche 1 bis 17 oder eine SPR-Sensoranordnung (SA) nach einem der Ansprüche 18 bis 24,
- eine Strahlungsquelle (L1, LLF, M, P) zum Aussenden von Strahlung einer für SPR-Messungen geeigneten Wellenlänge,

- eine Strahlungs-Parallelisierereinrichtung (L3) zur Bildung von paralleler Strahlung,

- eine Strahlungs-Führungseinrichtung (UL1) zur Führung der parallelen Strahlung, wobei die Strahlungs-Führungseinrichtung (UL1) und die SPR-Sensoranordnung so angeordnet sind, dass die parallele Strahlung auf zumindest zwei der SPR-Sensorbereiche (2) der SPR-Sensoranordnung auf solche Weise trifft, dass die parallele Strahlung über jeweilige Strahlungseintrittsflächen in die SPR-Sensorbereiche (2) eintritt und darin so geführt wird, dass sie von der Oberfläche der SPR-Sensorbereiche reflektiert wird, die mit dem SPR-geeigneten Material beschichtet sind, und

- eine Strahlungs-Auswerteinrichtung (UL2, L4, L5, Det), um die reflektierte Strahlung zu erfassen und zu analysieren.

47. Messanordnung nach Anspruch 46, dadurch gekennzeichnet, dass die Strahlungs-Führungseinrichtung (UL1) und der SPR-Sensor oder die SPR-Sensoranordnung (SA) so angeordnet sind, dass die parallele Strahlung auf alle SPR-Sensorbereiche des SPR-Sensors oder der SPR-Sensoranordnung (SA) trifft.

48. Messanordnung nach Anspruch 46 oder 47, dadurch gekennzeichnet, dass die Strahlungs-Auswerteinrichtung
(UL2, L4, L5, Det) eine Abbildungsoptik (L4, L5) und einen Detektor (Det) umfasst, wobei die Abbildungsoptik (L4, L5) die reflektierte Strahlung auf den Detektor (Det) abbildet und der Detektor (Det) eine räumliche Auflösung der von einzelnen SPR-Sensorbereichen stammenden Strahlung gestattet.

49. Messanordnung nach Anspruch 48, dadurch gekennzeichnet, dass die Strahlungs-Auswerteeinrichtung (UL2, L4, L5, Det) eine Einrichtung zur Verkippung des Detektors (Det) gegenüber der optischen Achse der Abbildungsoptik (L4, L5) umfasst.

50. Messanordnung nach Anspruch 49, dadurch gekennzeichnet, dass die Einrichtung zur Verkippung des Detektors (Det) ein Goniometer ist.

51. Messanordnung nach einem der Ansprüche 48 bis 50, dadurch gekennzeichnet, dass der Detektor (Det) einen CCD-Chip umfasst.

52. Messanordnung nach einem der Ansprüche 46 bis 51, dadurch gekennzeichnet, dass eine Steuereinheit (DV) vorgesehen ist, welche mit der Strahlungsquelle (L1, LLF, M, P) und der Strahlungs-Auswerteeinrichtung (UL2, L4, L5, Det) verbunden ist, und so ausgebildet ist, dass sie die Wellenlänge der von der Strahlungsquelle (L1, LLF, M, P) ausgestrahlten Strahlung einstellen kann, und die bei einer eingestellten Wellenlänge von der Strahlungs-Auswerteeinrichtung (UL2, L4, L5, Det) erfasste Intensität der von einzelnen SPR-Sensorbereichen (2) stammenden Strahlung erfassen und speichern kann.
Figur 2
Figur 3
Fig. 6a

Fig. 6b

Figur 6
Figur 7
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 G01N21/55

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, INSPEC, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5 917 607 A (NAYA MASAYUKI) 29 June 1999 (1999-06-29) column 4-7; figures 1,3,4</td>
<td>1-52</td>
</tr>
<tr>
<td>X</td>
<td>WO 95 22754 A (VALTION TEKNILLINEN ;LEKKALA JUKKA (FI); SADONSKI JANUSZ (FI); JOK) 24 August 1995 (1995-08-24) page 5-7; claim 1; figures 3,4</td>
<td>1-52</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claims or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority data claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "S" document member of the same patent family

Date of the actual completion of the international search:

28 June 2001

Date of mailing of the international search report:

11/07/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (31-70) 340-2040, Tx 31 651 epo nl Fax (+31-70) 340-3016

Authorized officer

Mason, W
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 99 60382 A (VETTER DIRK; BRAEGER ANDREAS (DE); DANZ NORBERT (DE); WALDHAUSSL R) 25 November 1999 (1999-11-25) figures 1-3</td>
<td>1-52</td>
</tr>
<tr>
<td>A</td>
<td>WO 99 30135 A (PERKIN ELMER CORP; TRACY DAVID H (US); WANG YONGDONG (US); BAHATT) 17 June 1999 (1999-06-17) page 40-41; figure 7</td>
<td>1-52</td>
</tr>
<tr>
<td>A</td>
<td>US 5 313 264 A (SJOELANDER STEFAN ET AL) 17 May 1994 (1994-05-17) figures 1,3,4</td>
<td>1-52</td>
</tr>
<tr>
<td>A</td>
<td>US 5 858 799 A (JUNG CHUCK C ET AL) 12 January 1999 (1999-01-12) figure 3</td>
<td>1-52</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9292333 A</td>
</tr>
<tr>
<td>WO 9522754 A</td>
<td>24-08-1995</td>
<td>FI 940737 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000230929 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000321280 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000346845 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7598996 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9715821 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5822073 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5991048 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5815278 A</td>
</tr>
<tr>
<td>WO 9960382 A</td>
<td>25-11-1999</td>
<td>AU 4266499 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 19923820 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1080365 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1038167 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 181423 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 100197 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 68912343 D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 68912343 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 68929019 D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 68929019 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0534941 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4504765 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3064313 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4501462 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 8804075 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9005295 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9005317 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5164589 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9715820 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59306219 D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9415196 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0676046 A</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICH

A. KLASSEFIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 7 GOIN21/55

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchiertes Mindestpräparat (Klassifikationssystem und Klassifikationssymbol)

IPK 7 GOIN

Recherchierte aber nicht zum Mindestpräparat gehörige Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, INSPEC, COMPENDEX

C. ALS WESENTLICH ANGESEHEN UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5 917 607 A (NAYA MASAYUKI) 29. Juni 1999 (1999-06-29) Spalte 4-7; Abbildungen 1,3,4</td>
<td>1-52</td>
</tr>
<tr>
<td>X</td>
<td>WO 95 22754 A (VALTION TEKNIILINEN; LEKKALA JUKKA (FI); SADOWSKI JANUSZ (FI); JOK) 24. August 1995 (1995-08-24) Seite 5-7; Anspruch 1; Abbildungen 3,4</td>
<td>1-52</td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

X Siehe Anhang Patentfamilie

X Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

X* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angeregt ist

X* Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

X* Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

Datum des Abschlusses der internationalen Recherche

28. Juni 2001

11/07/2001

Bevollmächtigter Beibehalter

Mason, W
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 99 60382 A (VETTER DIRK ; BREAUER ANDREAS (DE); DANZ NORBERT (DE); WALDHAEUSL R) 25. November 1999 (1999-11-25) Abbildungen 1-3</td>
<td>1-52</td>
</tr>
<tr>
<td>A</td>
<td>WO 99 30135 A (PERKIN ELMER CORP ; TRACY DAVID H (US); WANG YONGDONG (US); BAHATT) 17. Juni 1999 (1999-06-17) Seite 40-41; Abbildung 7</td>
<td>1-52</td>
</tr>
<tr>
<td>Recherchebericht</td>
<td>Datum Veröffentlichung</td>
<td>Patentfamilie</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9292333 A</td>
</tr>
<tr>
<td>WO 9522754 A</td>
<td>24-08-1995</td>
<td>FI 940737 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000230929 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000321280 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000346845 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7598996 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 9715821 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5822073 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5991048 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5815278 A</td>
</tr>
<tr>
<td>WO 9960382 A</td>
<td>25-11-1999</td>
<td>AU 4266499 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 19923820 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1080365 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1038167 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 181423 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 100197 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 68912343 D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 68912343 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 68929019 D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 68929019 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0534941 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4504765 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3064313 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4501462 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 8804075 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9005295 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9005317 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5164589 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9715820 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59306219 D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9415196 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0676046 A</td>
</tr>
</tbody>
</table>