The present invention relates to a wireless communication system to properly switch over a transmission method of radio signals corresponding to a configuration of a receiver. The wireless communication system according to the present invention includes a transmitting device having a plurality of antennas and capable of transmitting radio signals different from each other from these antennas, and a receiving device having at least one antenna and receiving the radio signals transmitted from the transmitting device. The receiving device comprises an information transmitting unit transmitting, to the transmitting device, configuration information about a configuration of the receiving device, and the transmitting device includes a transmitting unit transmitting the radio signals by a transmission method corresponding to the configuration information received from the receiving device.
FIG. 1

TRANSMISSION TAKING ACCOUNT OF (1) AND (2)

11

TRANSMITTER

arrow

201

RECEIVER

202

RECEIVER

203

RECEIVER

arrow

10

(1) CONFIGURATION INFORMATION OF RECEIVER
(2) TRANSMISSION CHARACTERISTIC INFORMATION (STATE OF CHANNEL)
FIG. 2

TRANSMITTING DATA \(x_{0,1} \) → TRANSMITTER

TRANSMITTING DATA \(x_{0,2} \)

TRANSMITTING DATA \(x_{0,3} \)

TRANSMITTING DATA \(x_{0,4} \)

TRANSMITTING DATA VECTOR \(x_0 \) → CHANGE-OF-VARIABLE MATRIX G

CHANNEL H

RECEIVER

\[y_1 = f_{11}x_{0,1} + n_1 \]

\[y_2 = f_{22}x_{0,2} + n_2 \]

\[y_3 = f_{33}x_{0,3} + f_{34}x_{0,4} + n_3 \]

\[y_4 = f_{43}x_{0,4} + f_{44}x_{0,4} + n_4 \]

RECEIVING SIGNAL VECTOR:

\[y = HGx_0 + n = Fx_0 + n \]

\[F = HG \]
FIG. 5A

```
TRANSMITTING DATA $x_{0.1}$

RECEIVER

$y_1 = f_1 x_{0.1} + n_1$
```

TRANSMITTER

CHANNEL H
FIG. 5B

\[y_1 = f_{11}x_{0,1} + f_{12}x_{0,2} + n_1 \]

\[y_1 = f_{21}x_{0,1} + f_{22}x_{0,2} + n_2 \]
FIG. 6A

TRANSMISSION RATE C_{MLD}

TRANSMITTER

CHANNEL H

MLD RECEIVER

RECEIVING SIGNAL VECTOR:

$$y = HGx_0 + n$$
FIG. 6B

TRANSMISSION RATE \(C_{\text{MMSE}} \)

TRANSMITTER

CHANNEL \(H \)

RECEIVER

TRANSMITTING DATA VECTOR \(x_0 \)

RECEIVING SIGNAL VECTOR:
\[y = Hx_0 + n \]

TRANSMISSION RATE:
\[C_{\text{MMSE}} < C_{\text{MLD}} \]
FIG. 9A
PRIOR ART

DE-SPEAKING AND SYNCHRONOUS DETECTION

WEIGHTING SYNTHESIS (RAKE SYNTHESIS)

FIG. 9B
PRIOR ART

WEIGHTING SYNTHESIS (RAKE SYNTHESIS)

DE-SPEAKING AND SYNCHRONOUS DETECTION

GENERATE TRANSMITTING SIGNAL
FIG. 10A
PRIOR ART

PATH 1

PATH 2

TRANSMISSION ENVIRONMENT
(DELAY PROFILE)

FIG. 10B
PRIOR ART

WEIGHTING SYNTHESIS (RAKE CREATING) UNIT

COMPENSATION OF DELAY DIFFERENCE BETWEEN PATH 1 AND PATH 2

WEIGHTING COEFFICIENT OF PATH 1

WEIGHTING COEFFICIENT OF PATH 2
WIRELESS COMMUNICATION SYSTEM AND TRANSMISSION DEVICE

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application is a continuation of U.S. patent application Ser. No. 11/128,285, filed on May 13, 2005, now pending, the entire disclosures of which are incorporated by reference herein.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Present Invention
[0003] The invention relates to a wireless communication system including a transmitting device having a plurality of antennas and capable of transmitting different radio signals from the respective antennas, and to the transmitting device.
[0004] 2. Description of the Related Art
[0005] MIMO (Multi input and Multi Output) communication system is given as a communication system capable of improving a transmission rate (transmission capacity) as a total by transmitting different pieces of data by use of same frequency band (and further the same spread code) from a plurality of antennas in parallel. The MIMO communication system is that plural pieces of data are transmitted from a plurality of transmitting antennas in parallel, and the signals synthesized while passing through a variety of communication paths are received by a plurality of receiving antennas.

[0006] FIG. 7 is a diagram showing an outline of the MIMO communication system. FIG. 7 shows, in the MIMO communication system configured by i pieces of transmitting antennas 500 and j pieces of receiving antennas 510, plural pieces of data (x, y) are transmitted to the receiving antennas 510 from the transmitting antennas 500, and the respective antennas obtain signals y, y synthesized with these pieces of data (x, y).

[0007] In the MIMO communications as shown in FIG. 7, a receiving-side device receiving the signals transmitted from the plurality of antennas and then synthesized, utilizes a method called MLD (Maximum Likelihood Detection) defined as a maximum likelihood decoding method in order to acquire an excellent radio characteristic. By this method, the receiving-side device detects a necessary piece of data by separating the synthesized signals. The MLD is a method of detecting a data pattern by judging, with respect to combinations of all the transmission data patterns that can be transmitted by the transmitting side, if transmitted in such a manner, how much a possibly-acquired receipt signal gets approximate to the actual receipt signal (a degree of maximum likelihood) (see FIG. 8). In the MLD, however, in the case of transmitting the signals from, for example, four pieces of transmitting antennas by 16 QAM (Quadrature Amplitude Modulation) defined as a digital modulation method of transmitting 4-bit data with one symbol, there is a necessity of obtaining the likelihood of data patterns numbered as tremendously as $65536 (=16^{4})$. In this case, it follows that the receiving-side device detects the data pattern exhibiting the maximum likelihood from within this tremendous number of data patterns. Thus, the MIMO communication system requires an enormous throughput for the data detection.

[0008] A method for solving this problem involves employing Pre-Rake, etc. shown in FIG. 9 (B) in the transmitting-side device. The method typified by Pre-Rake is a method for reducing the receiving-side processes by the signal processing on the transmitting side. For instance, FIG. 9 shows wireless communications based on normal CDMA (Code Division Multiple Access) (FIG. 9(A) and CDMA-based wireless communications using Pre-Rake (FIG. 9(B)). In the normal CDMA-based wireless communications shown in FIG. 9(A), the receiving side detects the data by the signal processing (channel compensation) based on the transmission path information. On the other hand, in the case of employing Pre-Rake shown in FIG. 9(B), the signal processing is previously executed based on the transmission path information of the signal before transmitting the signals.

[0009] In the Pre-Rake method, for example, in the case of a transmission environment (an environment where a path 1 and a path 2 shown in FIG. 10(A) exit) as shown in FIG. 10(A), though normally the receiving side makes channel compensation corresponding to the transmission environment, the transmitting side executes a channel compensation process equivalent to that on the receiving side.

[0010] For instance, a weighting synthesis (Rake creating) unit as shown in FIG. 10(B) multiplies the transmission signal by a weighting coefficient of each transmission environment. With this operation, the receiving-side signal processing can be reduced.

[0011] A technology disclosed in the document ("Examinations about Configuration of Transmitter/Receiver of MTMT Array System Using Weight Batchwise Control at Base Station", written by Hoshida, B-5-54, General Meeting of Electronic Information Communication Institution in 2002) is proposed as a method of increasing a channel capacity by executing this type of signal processing employing the transmission path information on the transmitting side in the MIMO communication system.

[0012] That is, in the MIMO communication system, there are proposed a method of using an ML D receiver requiring an enormous throughput for acquiring an excellent radio characteristic and a method of employing a simple receiver requiring merely a low throughput by executing the signal processing that previously takes account of the transmission path on the transmitting side.

[0013] A base station performing the MIMO communications, however, has a case of desiring to separately use the MLD receiver and the simple receiver. In this case, there is none of a method of making the above methods coexistent with each other.

SUMMARY OF THE INVENTION

[0014] It is an object of the present invention to provide a wireless communication system capable of properly switching over a transmission method of a radio signal corresponding to a configuration of a receiver.

[0015] The present invention adopts the following configurations in order to solve the above-mentioned problems. Namely, the present invention is about a wireless communication system comprising a transmitting device having a plurality of antennas and capable of transmitting radio signals different from each other from the plurality of antennas, and a receiving device having at least one of antennas and receiving the radio signals transmitted from the transmitting device.
In the present invention, the receiving device includes an information transmitting unit transmitting, to the transmitting device, configuration information about a configuration of the receiving device, and the transmitting device includes a transmitting unit transmitting the radio signals by a transmission method corresponding to the configuration information received from the receiving device.

Therefore, according to the present invention, the transmission method executed by the transmitting device can be changed corresponding to the configuration of the receiving device.

Further, in the present invention, the configuration information contains a piece of number-of-antenna information held by the receiving device, and the transmitting unit determines the transmission method on the basis of the number-of-antenna information contained in the configuration information.

Hence, according to the present invention, the transmission method executed by the transmitting device can be changed corresponding to the number-of-antenna information of the receiving device.

Moreover, in the present invention, the receiving device further includes an antenna unit extracting, from the received radio signals, transmission characteristic information containing transmission path information corresponding to an environment where the radio signals are transmitted, the information transmitting unit transmits the configuration information and the transmission characteristic information, the transmitting device further includes a detection unit detecting the transmission path information from the transmission characteristic information received from the receiving device, and a transforming unit transforming the transmission signals on the basis of the detected transmission path information and the number-of-antenna information contained in the configuration information, and the transmitting unit transmits the radio signals corresponding to the transformed transmission signals.

In the present invention, the receiving device notifies the receiving device of the transmission characteristic information and the configuration information of the receiving device. Then, the transmitting device detects the transmission path information from the notified transmission characteristic information. Further, the transmitting device transforms the transmission signals based on the detected transmission path information and the number-of-antenna information of the receiving device so that the receiving device can receive only the radio signals corresponding to the number-of-antenna information, and transmits the transformed signals.

Therefore, according to the present invention, it is possible to determine the transmission method corresponding to the number-of-antenna information of the receiving device having none of a high-level demodulating function by taking account of both of the number-of-antenna information of the receiving device and the transmission path information.

The present invention may also be a readable-by-computer storage medium stored with a program.

According to the present invention, it is feasible to actualize the wireless communication system capable of properly switching over the transmission method corresponding to the configuration of the receiver.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a diagram showing an architecture of a MIMO communication system in an embodiment;

Fig. 2 is a diagram showing a principle of the MIMO communication system in the embodiment;

Fig. 3 is a diagram showing a functional configuration of the MIMO communication system in the embodiment;

Fig. 4 is a diagram showing an example of executing weighting of a transmission data symbol and controlling a transmission rate in accordance with transmission path information;

Figs. 5A and 5B are diagram showing a modified example in a case where a transmission side can not know the transmission path information;

Figs. 6A and 6B are diagram showing a modified example 2 in a case where a transmission side can not know the transmission path information;

Fig. 7 is a diagram showing an outline of the MIMO communication system;

Fig. 8 is a diagram showing an outline of MLD;

Figs. 9A and 9B are diagram showing an outline of a Pre-Rake method; and

Figs. 10A and 10B are diagram showing an outline of weighting synthesis by the Pre-Rake method.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

An embodiment of a MIMO communication system according to the present invention will hereinafter be described with reference to the drawings. A configuration in the embodiment is an exemplification, and the present invention is not limited to the configuration in the embodiment.

Device Configuration.

Fig. 1 is a diagram showing an outline of a hardware (H/W) architecture in the embodiment of the MIMO communication system according to the present invention. The outline of the H/W architecture in the embodiment of the present invention will be explained with reference to **Fig. 1**.

The MIMO communication system in the embodiment is comprised of, by way of an example, a transmitter 11 and a plurality of receivers 21, 22, and 23. For instance, the transmitter 11 has four pieces of antenna elements 10, the receiver 21 has one antenna element 200, the receiver 22 has one antenna element 201, and the receiver 23 has two antenna elements 203, respectively.

Signals transmitted from the antenna elements 10 of the transmitter 11 are received by the respective antenna elements 201, 202 and 203, and data (carried on the signals) are detected by the respective receivers 21, 22, 23. Further, pieces of transmission characteristic information of the signals received by the respective antennas are individually specified by signal processing of the receivers 21, 22 and 23 (shown in **Fig. 1**). Then, the transmission characteristic information and information about the configuration of the receiver ((1) shown in **Fig. 1**) are transmitted to the transmitter 11 by use of, e.g., dedicated antennas (unillustrated). As a matter of course, the illustrated antennas can be also
employed. The transmission characteristic information is characteristic information of a transmission path along which the signal is transmitted from each of the transmission antennas 10 to each of the receiving antennas 200, 201, 202 and 203. The configuration information of the receiver can contain at least one item among items such as the number of receivers, the number of antenna elements possessed by each receiver, a demodulation method of each receiver, and performance (a processing speed, a degree of signal processability) of the receiver.

The transmitter 11 receiving the configuration information of the receiver and the transmission characteristic information, after effecting signal processing upon the signals on the basis of these items of information, transmits these signals to the receivers 21, 22 and 23. Note that for an easy understanding of the description in the embodiment, only unidirectional wireless communications are illustrated in separation into the transmitter and the receivers, however, each device may have both of the receiving function and the transmitting function, whereby bidirectional communications may be performed.

Further, the MIMO communication system in the embodiment exemplifies the receivers 21, 22 and 23 having the number of antennas as shown in FIGS. 1 and 2, however, this is nothing but the exemplification, and there may be a single receiver having four pieces of antennas and may also be two receivers each having two pieces of antennas. Namely, the MIMO communication system in the embodiment limits neither the configuration of the receiver nor the configuration of the transmitter.

The principle of System.

Next, the principle of the MIMO communication system having the H/W architecture described above in the embodiment will be explained with reference to FIG. 2. FIG. 2 is a diagram showing the principle of the MIMO communication system in the embodiment.

In the MIMO communication system in the embodiment, the transmitting side previously executes the signal processing corresponding to, e.g., the number of antennas held by the receiver. The transmitter 11 performs the signal processing on the signals so that the symbol data series of which the number is equal to or smaller than the number corresponding to the number of receiving antennas possessed by the respective receivers 21, 22 and 23 reach the respective receivers, and transmits the signals. To be specific, the transmitter 11 performs the signal processing based on the transmission characteristic information on the signals so that one symbol data series directed to the receivers 21, 22 each having one antenna reaches each of the receivers 21, 22, and transmits the signals. Further, the transmitter 11 performs the signal processing on the signals so that two or less symbol data series (which are the data for two antennas) directed to the receiver 23 having two antennas reach the respective antennas as the symbol data of the receiver 23 itself, and transmits the signals. For instance, the signal processing may also be performed so that first and second symbol data series reach both of first and second antennas, and so that the first symbol data series reach the first antenna and the second symbol data series reach the second antenna.

Herein, the principle of the signal processing by the transmitter 11 will be explained. To start with, the signal sent from the transmitter 11 is influenced by a transmission environment of the respective channels between the transmitter 11 and the respective receivers 21, 22, 23. Further, in the MIMO communication system, plural items of data are transmitted from the plurality of transmitting antennas, and hence the signals sent thereto pass through a variety of communication paths and are received by the respective receiving antennas in the form of being synthesized with the signals sent from other antennas. Therefore, in the case of transforming the channel transmission environment into numerical values, this can be expressed by a matrix corresponding to the number of antennas held by the transmitter and the number of antennas held by the receiver.

Specifically, in the MIMO communication system in the embodiment, when h_i represents transmission characteristics of transmission paths from four pieces of transmitting antennas to four pieces of receiving antennas, whereby the channel transmission environment can be expressed by a matrix H (which will hereinafter be called a transmission path matrix H) in a formula (1.1).

Then, when the transmission signal and the receipt signal are expressed in vector, a transmission signal vector x and a receipt signal vector y can be expressed by a formula (1.2).

where n is a noise vector of each of the receiving antennas.

The signal vectors of the signals received by the receivers 21, 22 and 23 are expressed by the formula (1.2), and hence the transmitter 11 executes the following process in order for the symbol data series of which the number corresponds to the number of antennas of the receiving antennas held by the receivers 21, 22 and 23 to reach the respective receivers. Namely, the transmitter 11 executes the process of multiplying the transmission symbol data by a 4-row/4-column matrix G (which will hereinafter be called a change-of-variable matrix G) that satisfies the following formula (1.3).

With the transmission of the signals subjected this change of variable, it follows that the receivers 21 and 22 each having the single receiving antenna receive one self-addressed data series, and the receiver 23 having the two antennas receive the two data series in parallel. Herein, f is an appropriate complex number. Namely, let x_0 be a pre-trans-
formation symbol data vector, and the receiving data vector
y can be expressed by a calculation formula as by the formula
(1.4).

\[y = Hx = HG_0y = F_0 \]

(1.4)

\[
\begin{pmatrix}
 f_1 \\
 f_2 \\
 f_3 \\
 f_4
\end{pmatrix}
\]

[0052] As can be understood also from the formula (1.4),
with the multiplication by the change-of-variable matrix G,
the transmitter 21 may simply consider only the signals
influenced by only the element f_1, i.e., the signals that are trans-
mittred from the transmitting antenna 1 and should be received
by the receiver 11 without taking account of the synthesis of
the signals transmitted from other antennas. That is, the influ-
ence of the signals transmitted from other antennas can be
already restrained at a stage of receiving the signals by
the self-antenna.

[0053] This is the same with the receiver 22. The receiver
23, as the influence of the transmission signals from other
antennas were already restrained at the stage of receiving
the signals by the self-antenna, may simply consider the signals
influenced by elements f_1, f_2, f_3, and f_4, i.e., the signals
received by the two antennas possessed by the receiver 23.

[0055] Next, functions of the respective devices in the
MIMO communication system in the embodiment will be
described with reference to FIG. 3. FIG. 3 is a diagram show-
ing a functional configuration of the MIMO communication
system in the embodiment. The functional units shown in
FIG. 3 actualize the principle of the system described earlier.
FIG. 23 shows the transmitter 11 and the receiver 23 illus-
trated in FIG. 1. The receivers 21, 22 unillustrated in FIG. 3
have the same configuration as that of the receiver 23 except
that each of the receivers 21, 22 has a single piece of antenna
and has none of high-level demodulating function (which is a
signal separating function exemplified as below).

[0056] To begin with, the functional configuration of the
transmitter 11 will be explained as follows. The transmitter 11
is constructed of a variable changing unit 111 (corresponding
on a transmission unit and a transformation unit according
to the present invention), a signal separating unit 112, a trans-
mission processing unit 113, antenna elements 10, an antenna
element 100, a receiver processing unit 114 and a transmission
characteristic information/receiver configuration information
detecting unit 115 (corresponding to a detection unit
according to the present invention).

[0057] ..Variable Changing Unit 111..

[0058] The variable changing unit 111 obtains (updates),
based on transmission characteristic information and receiver
configuration information inputted from the transmission
characteristic information/receiver configuration information
detecting unit 115, the change-of-variable matrix G that
satisfies the formula (1.3). A method by which the variable
changing unit 111 obtains the change-of-variable matrix G
will be explained in depth in an item of <Operational Example>.

[0059] The variable changing unit 111, when a data trans-
mision request is given, multiplies the transmission symbol
data by this change-of-variable matrix G, and outputs the
transmission symbol data after being multiplied to the signal
separating unit 112.

[0060] ..Signal Separating Unit 112..

[0061] The signal separating unit 112 separates the serially-
arranged symbol data signals inputted from the variable
changing unit 111 in parallel for every antenna to which the
data signal is transmitted, and outputs the data signal to the
transmission processing unit 113 for sending from each of the
antenna elements 10. The signal separating unit 112, when
separating the signals, by a use of the symbol data signal
inputted from the variable changing unit 111, determines the
antenna to which the symbol data signal should be trans-
mitted. This transmitting antenna is determined based on the
transmission signal transformed by the variable changing unit
111.

[0062] ..Transmission Processing Unit 113..

[0063] The transmission processing units 113 output, to the
antenna elements 10, high-frequency signals obtained by per-
forming a modulation process upon the transmission signals
inputted from the signal separating unit 112. Simultaneously,
the transmission processing units 113 transmit a plurality of
different known signals (which will hereinafter be referred to
as transmission characteristic estimation signals) having sig-
nal patterns orthogonal to each other in order to make the
receiver 23 estimate a transmission path characteristic. Note
that the transmission processing units 113 in the embodiment
are configured in the form of being divided for every antenna
element 10 and may also be made to operate in the form of
being organized into one unit.

[0064] ..Antenna Element 10..

[0065] The antenna element 10 is an antenna for transmit-
ting the high-frequency signals outputted from the transmis-
sion processing units 113 to the receiver 23. Though
explained later on, the antenna element 10 can be constructed
as a transmitting/receiving dual-purpose antenna by use of a
duplexer, etc.

[0066] ..Antenna Element 100..

[0067] The antenna element 100 is an antenna for receiving
the high-frequency signals transmitted from an antenna
element 200 of the receiver 23. The high-frequency signals
received by the antenna element 100 are outputted to the
receiver processing unit 114.

[0068] ..Receive Processing Unit 114..

[0069] The receive processing unit 114 acquires the receive
signals by effecting an amplifying process upon the high-
frequency signals inputted from the antenna element 100. The
receive processing unit 114 outputs the receive signals to the
transmission characteristic information/receiver configuration
information detecting unit 115.

[0070] ..Transmission Characteristic Information/Receiver
Configuration Information Detecting Unit 115.

[0071] The transmission characteristic information/recei-
ver configuration information detecting unit 115 detects
data of the transmission characteristic information and data of
the receiver configuration information from the inputted
receive signals (receive signals received from each of the
receivers). The detected transmission characteristic information
and the detected receiver configuration information are
outputted to the variable changing unit 111. Note that the
transmission characteristic information and the receiver con-
figuration information are detected and generated by the
receiver 23. Incidentally, the receiver configuration information
may be acquired from upper device side. For example,
the receiver configuration information is stored in an HLR (Home Location Register), and is downloaded as the necessity may arise. On this occasion, the respective terminal configurations may be distinguished from each other by use of terminal IDs, etc.

[0072] Next, the functional configuration of the receiver 23 will be explained as below. The receiver 23 is constructed of an antenna element 203, a reception processing unit 231, a transmission characteristic estimating unit 232, transmitting-to-reception file generating unit 234, a transmission processing unit 235 (corresponding to an information transmitting unit 231, transmitting every antenna as in the case of the antenna 100), and an antenna element 200.

[0073] ...Antenna Element 203...

[0074] The antenna element 203 is an antenna for receiving the signals transmitted from the antenna elements 10 of the transmitter 11. The high-frequency signals received by the antenna element 203 are outputted to the reception processing unit 231. As will be explained later on, the antenna element 203 may be constructed as a transmitting/receiving dual-purpose antenna as in the case of the antenna 100.

[0075] ...Reception Processing Unit 231...

[0076] The reception processing unit 231 acquires the signal receiving the input by the amplifying process, etc. upon the high-frequency signals inputted from the antenna element 203. The input signal is outputted to the signal separating/data detecting unit 233 and to the transmission characteristic estimating unit 232.

[0077] ...Transmission Characteristic Estimating Unit 232...

[0078] The transmission characteristic estimating unit 232 obtains a transmission path matrix H of the transmission paths between the antenna elements 10 and the antenna elements 203 by use of the known signals, etc. from the inputted signal receiving the input, and estimates transmission characteristic information conveyed by transmission characteristic matrix F (=H^T G) in a form multiplied by a change of variable matrix G by which the variable changing unit 111 of the transmitter 11 multiplies the transmission signals. In the embodiment, the transmission characteristic matrix F is a matrix expressed by the formula (1.4), and it follows that the change of variable matrix G can be updated with this estimated value, corresponding to, even when the transmission path changes, this change. Further, the transmission characteristic information is matrix elements f_{13}, f_{44}, f_{23}, and f_{40}, of the transmission characteristic matrix F shown in the formula (1.4) in the transmission characteristic estimating unit 232 of the receiver 23. Note that the matrix elements f_{13} and f_{23} of the transmission characteristic matrix F shown in the formula (1.4) are estimated in the illustrated receivers 21 and 22.

[0079] Then, the transmission characteristic estimating unit 232 outputs the transmission characteristic information to the signal separating/data detecting unit 233. This transmission path matrix H, the transmission path becoming different corresponding to each antenna element on the receiving side, as a matter of course, changes for every antenna element receiving the signal. Accordingly, the transmission characteristic estimating unit 232 is prepared for every antenna element 203 and estimates the transmission characteristic information from the signals received by each antenna. An in-depth description of how the transmission characteristic estimating unit 232 estimates the transmission characteristic information, will be given in the item of <Operational Example>.

[0080] ...Signal Separating/Data Detecting Unit 233...

[0081] The signal separating/data detecting unit 233 separates the transmitted signal (which will hereinafter be called a signal separating function) based on the MIMO method by employing the transmission characteristic information (the matrix elements f_{13}, f_{44}, f_{23}, and f_{40} shown in the formula (1.4)) inputted from the transmission characteristic estimating unit 232, and detects the receiving data. Note that the receiving data may involve employing MLD, etc.

[0082] Further, the illustrated receivers 21 and 22 may not have the signal separating function with the signal processing performed by the transmitter 11 as the transmitting side so that each of the receiving only the signals that should be received by the self-receiver.

[0083] ...Transmission Characteristic Information/Receiver Configuration Information Generating Unit 234...

[0084] The transmission characteristic information/receiver configuration information generating unit 234 generates the receiver configuration information of the self-device (e.g., stores the configuration information on an unillustrated memory, reads the information therefrom and generates the information), and also generates the transmission data to be transmitted together with the transmission characteristic information estimated by the transmission characteristic estimating unit 232 to the transmitter 11. In the embodiment, it is assumed that the receiver configuration information contains information about the number of antennas held by the receiver 23 (this is the same with other receivers).

[0085] ...Transmission Processing Unit 235...

[0086] The transmission processing unit 235 performs the modulation process upon the transmission signals in order to transmit, to the transmitter 11, the transmission data containing the transmission characteristic information and the receiver configuration information inputted from the transmission characteristic information/receiver configuration information generating unit 234 by a use of signaling, etc., and outputs the high-frequency signals to the antenna element 200. Simultaneously, the transmission processing unit 235 transmits the transmission characteristic estimation signals with their signal patterns orthogonal to each other to make the transmitter 11 estimate the transmission path characteristic.

[0087] Note that the known signals for the transmission characteristic estimation may be transmitted in the form of being distinguished from the actual transmission data by employing a timewise separating method with respect to the data, a spread-code based separating method utilizing CDMA, a sub-carrier frequency based separating method utilizing OFDM (orthogonal Frequency Division Multiplexing) and a combined method of these separating methods.

[0088] ...Antenna Element 200...

[0089] The antenna element 200 is an antenna for transmitting, to the transmitter 11, the high-frequency signals outputted from the transmission processing unit 235.

[0090] ...Receiver Configuration Information...

[0091] Next, the receiver configuration information of which each of the receivers 21-23 notifies the transmitter 11, will be explained as follows.

[0092] An example of employing the number of antennas for every receiver is given as the receiver configuration information in the embodiment. The receiver configuration infor-
mation can be also categorized as below by way of other example. Further, it is also possible to categorize in a way that combines the following categorizations.

[0093] Categorization 1. Categorization corresponding to the number of antennas held by the receiver.

[0094] Categorization 2. Categorization corresponding to the demodulation method held by the receiver. The demodulation method connoted herein can exemplify the aforementioned signal separating function. There is considered a case, wherein the receiver is categorized as a receiver capable of demodulating received signals into which radio signals transmitted from the transmitter are synthesized with radio signals transmitted from other antenna possessed by this transmitter, or a receiver capable of demodulating only the signals received in the form of being separated so as not to be synthesized with the radio signals transmitted from other antenna, or a receiver capable of demodulating by use of signals that are partially separated and received by other receiving antenna. An operation of the transmitter in this case will be explained in detail in an item of <<Generation of Change-of-Variable Matrix G Suited to Configuration of Receiver>>.

[0095] Categorization 3. Categorization corresponding to a data identifying method held by the receiver. For instance, there is considered a case of categorization depending on whether ML or MMSE (Minimum Mean Square Error).

Operational Example

Estimation of Transmission Characteristic Information by Transmission Characteristic Estimating Unit 232

[0096] The transmission characteristic estimating unit 232 estimates the transmission characteristic information from the received signals. This transmission characteristic information is estimated by the following method as elements of the transmission characteristic matrix F expressed by the formula (1.4) and comprising of the transmission path matrix H reflecting the transmission path environment and the change-of-variable matrix G multiplied by the transmitter 11.

[0097] The transmission characteristic estimating unit 232 estimates the transmission characteristic information by use of the transmission characteristic estimation signals as the known signals given from the transmitter 11. To be specific, the transmission characteristic estimating unit 232 estimates the matrix elements f_{33}, f_{34}, f_{43}, and f_{44} shown in the formula (1.4).

[0098] The transmission characteristic estimation signals involve using data patterns $(1, 1, 1, 1), (1, -1, 1, -1), (1, -1, 1, -1)$ and $(1, -1, -1, 1)$ defined as the known signals with their signal patterns orthogonal to each other. Note that each data pattern is transmitted from each of the transmitting antennas. Then, preferably, the known signals orthogonal to each other are transmitted from the respective receiving antennas of the receiver and also received by the transmitting antenna of the transmitter in order for the transmitter to estimate the transmission path between each of the receiving antennas of each receiver and the transmitting antenna of the transmitter.

[0099] From the left element in the brackets, there are shown the first symbol data, the second symbol data, the third symbol data and the fourth symbol data. In the receiver 23 receiving the transmission characteristic estimation signals, the data received by one of the two receiving antennas are expressed such as $y_{1,1}$ and $y_{1,2}$ in the formula (2.1) and the formula (2.2). The symbol $y_{1,1}$ represents the first symbol receive data, and the symbol $y_{1,2}$ represents the second symbol receive data. With this operation, the transmission characteristic estimating unit 232 of the receiver 23 estimates f_{33} by adding the two symbols and estimates f_{44} by subtracting the symbols. Note that the estimations of f_{33} and f_{44} employs only the first symbol data and the second symbol data, however, as a matter of course, the third symbol data and the fourth symbol data may also be used.

[0100] The data $y_{2,1}$ and $y_{2,2}$ received by the other receiving antenna are subjected to the same processing, thereby estimating f_{33} and f_{44}.

$$y_{1,1} - f_{33}f_{44}$$

$$y_{1,2} - f_{33}f_{44}$$

$$y_{2,1} - f_{33}f_{44}$$

$$y_{2,2} - f_{33}f_{44}$$

[0101] Note that the known signals for the transmission characteristic estimation may be transmitted in the form of being distinguished from the actual transmission data by employing the timewise separating method with respect to the data, the spread-code based separating method utilizing CDMA (Code Division Multiple Access), the sub-carrier frequency based separating method utilizing OFDM (Orthogonal Frequency Division Multiplexing) and the combined method of these separating methods.

[0102] <<Generation of Change-of-Variable Matrix G by Variable Changing Unit 111>>

[0103] The transmission path environment momentarily changes, and hence, unless the change-of-variable matrix G is used in response to changing in the transmission path environment, the communications exhibiting a high-level wireless characteristic can not be performed. Such being the case, the way of how the variable changing unit 111 obtains the change-of-variable matrix G reflecting the latest transmission path environment, will be next described as below.

[0104] At first, the variable changing unit 111 obtains the latest transmission path matrix H by making use of the transmission characteristic information to be transmitted to the transmitter 11 from each of the receivers 21, 22, 23. Namely, the transmission characteristic information $(f_{11}, f_{12}, f_{13}, f_{14}, f_{21}, f_{22}, f_{23}, f_{24}, f_{33}, f_{34}, f_{43}, f_{44})$ transmitted from the respective receivers 21, 22, 23 consists of the change-of-variable matrix G by that the variable changing unit 111 multiplies the transmission data last time and the transmission path matrix H reflecting the transmission path environment at that time ($F=HG$), and therefore the variable changing unit 111 acquires the transmission path matrix H by employing the change-of-variable matrix G used last time, which corresponds to this transmission characteristic matrix F. Then, the variable changing unit 111 obtains a new change-of-variable matrix G by use of the latest transmission characteristic information F received and the formula (1.3) from the obtained transmission path matrix H.

[0105] Further, on the occasion of getting the feedback about the transmission characteristic information and the receiver configuration information to the transmitter from the receiver, when the transmission processing unit 235 utilizes TDD (Time Division Duplex), the different and orthogonal known signals (the transmission characteristic estimation signals) may be transmitted from the respective receivers. With this operation, the variable changing unit 111 estimates the
transmission path matrix H by employing the transmission characteristic estimation signals, thereby acquiring the change-of-variable matrix G. Namely, as the proper transmission characteristic information F (e.g., as shown in FIG. 3, other elements excluding a part of the elements (which is set to, e.g., 1) are set to 0), the change-of-variable matrix G is obtained by using the formula (1.3) and can be employed for converting the transmission signal.

Note that the first setting of the change-of-variable matrix G, in the case of adopting, e.g., the TDD method employing the same frequency and so on, can be done by the transmitter estimating the transmission path between each receiving antenna of each receiver and the transmitting antenna of the transmitter.

First Configuration.

In this case, the transmission characteristic information/receiver configuration information generating unit 234 transmits the change-of-variable matrix G in the case of adopting, e.g., the TDD method employed by the same frequency, and so on, can be done by the transmitter estimating the transmission path matrix H. If the TDD method is adopted, bidirectional paths may be deemed as the same transmission paths, and hence there are obtained the estimated transmission path matrix H and the change-of-variable matrix G as the proper transmission characteristic information F (e.g., as shown in FIG. 3, other elements excluding a part of the elements (which is set to, e.g., 1) are set to 0), and these matrices can be employed for the conversion of the transmission signals. On this occasion, as a matter of course, it is desirable that the receiver configuration information be also employed.

Second Configuration.

A second configuration is a case in which there is a single receiver holding four pieces of antennas, and the receiver has the following demodulation method. The receiver in the second configuration enables simple modulation in the way that the receiver provides predetermined order per antenna, the data are detected with respect to the signals received by the antennas in this order, and a result of the data detection in the earlier order is utilized on the occasion of the data detection.

In this case, the transmission characteristic information/receiver configuration information generating unit 234 of the receiver 23 organizes the receiver configuration information so as to contain a piece of information showing that the demodulation method described above is adopted. Then, the variable changing unit 111 obtains, based on this information, the change-of-variable matrix G shown in the formula (1.6). Subsequently, the variable changing unit 111 multiplies the transmission data by this change-of-variable matrix G and transmits the data, whereby the receiver can demodulate the data received from the antennas in the predetermined order.

In this example, the signal received by the receiving antenna corresponding to the first row in the following matrix or a transmission signal x_i is obtained. Next, a transmission signal x_j is obtained by use of a signal received by the receiving antenna corresponding to the second row in the following matrix and the transmission signal x_i, sequentially, and results that are thus acquired in the order from the top are utilized at the receiving time, thereby making it possible to easily regenerate the transmission signals.

Note that the respective elements such as f_{ij}, etc., can be estimated by use of the known signals, and it follows that unknown transmission signals are easily obtained while giving a degree of freedom to some extent to the elements of the matrix F.

In this case, the transmission characteristic information/receiver configuration information generating unit 234 of the receiver 23 organizes the receiver configuration information so as to contain a piece of category information showing that the receiver has the demodulation method as described above. Then, the variable changing unit 111 obtains, based on the category information, a change-of-variable matrix G that will be given as follows. Subsequently, the variable changing unit 111 multiplies the transmission data by this change-of-variable matrix G and transmits the data, and each receiver may detect the data per antenna.

Third Configuration.

A third configuration is a case of the receiver capable of demodulating the signals obtained by synthesizing the radio signals transmitted from the transmitter with the radio signals transmitted from other antenna possessed by this transmitter and received.
Even in the case of this receiver having the highest-level data detecting function, the variable changing unit 111 obtains the change-of-variable matrix G shown in the formula (1.7) by which a transmission capacity can be maximized without any restraint condition. Namely, the variable changing unit 111 sets the elements fixed to “0” less than a half, ideally, to zero (0).

$$F = HG = \begin{bmatrix} f_1 & f_2 & f_3 & f_4 \\ f_1 & f_2 & f_3 & f_4 \\ f_1 & f_2 & f_3 & f_4 \\ f_1 & f_2 & f_3 & f_4 \end{bmatrix}$$ \hspace{1cm} (1.7)

Modified Example 1

In the MIMO communication system in the embodiment, the transmitter executes the signal processing based on the configuration of the receiver, however, the transmission path matrix H as the transmission path information is employed on the occasion of effecting the signal processing.

Namely, the transmitter side knows the transmission path information, and hence the signal processing may be executed to perform the high-speed data transmission on the transmission path exhibiting a high quality of the transmission path, and to perform the low-speed data transmission on the low-quality transmission path (which corresponds to a transmission rate control unit according to the present invention).

With this contrivance, the high-speed data transmission can be performed as a whole of the system.

Modified Example 2

Further, the higher-speed data transmission may additionally be conducted on the high-quality transmission path by increasing the electric power for transmission, and the lower-speed data transmission may be executed on the low-quality transmission path by decreasing the electric power for transmission. With this contrivance, the higher-speed data transmission can be done as a total system because of getting approximate to the power control based on Waterfilling Principal. In this case, for example, when constructed of the simple receiver as in the aforementioned (first configuration), the transmitter may execute processing as below.

The transmitter at first effects weighting in a way that multiplies the change-of-variable matrix G given in the formula (1.8) with respect to the transmission path matrix H by a weighting coefficient w_1, so that an electric power weight P_1 with respect to a diagonal section a_1 of the matrix A shown in the formula (1.9) meets the formula (1.10). Herein, H represents Conjugate Transpose, max (x, y) indicates that the larger of x and y is selected, and λ and σ_2 are constants determined from average transmission power and noise power. The transmitter multiplies the weighted signal by the change-of-variable matrix G in the same way as in the embodiment, and transmits this signal.

$$G = H^{-1} \hspace{1cm} (1.8)$$

$$A = G^H G \hspace{1cm} (1.9)$$

The transmitter may further effect rate matching upon each symbol data series so as to gain a transmission rate proportional to C_i shown in the formula (1.12), and may thus transmit the symbol data series.

Modified Example 3

The system described so far has the configuration in which the transmission side can know the transmission path information and may also take a configuration in which the transmission side can not know the transmission path information. In this case also, it is possible to adopt the transmission method corresponding to the receiver by notifying the transmission side of the receiver configuration information.

Fig. 4 is a diagram showing an example of the transmitter that executes power weighting corresponding to the transmission path information and transmission rate control. The transmitter shown in **Fig. 4** puts a weight w_1, w_2 on the transmission signal controlled to have a transmission rate of a transmission rate $C_i - C_4$ for every transmitting antenna.

With this contrivance, the high-speed data transmission can be done as the total system.

Moreover, there are categorized, according to not the number of antennas but a type of receiver, into a case of being a MLD receiver and a case of being an MMSE (Minimum Mean Square Error) receiver, and the transmitter may control the transmission rate. **Fig. 6(A)** shows the case of having the MLD receiver, and **Fig. 6(B)** shows the example of having the MMSE receiver. The transmitter in this case controls the transmission rate to perform the high-speed data transmission to the MLD receiver exhibiting a high wireless characteristic and to perform the low-speed data transmission to the MMSE receiver inferior in characteristic to the MLD receiver.

With this contrivance, even in the case where the transmitter has such a configuration as to be recognizable of the transmission path information, it is possible to conduct the transmission corresponding to the configuration of the receiver.

What is claimed is:

1. A wireless communication system including a transmitting apparatus that includes a plurality of antennas and can transmit different radio signals from the respective antennas, and a receiving apparatus that includes at least one antenna and receives the radio signals transmitted from the transmitting apparatus,

 the receiving apparatus comprising:

 an information notification unit to expressly notify the transmitting apparatus of information on the number of antennas of the receiving apparatus or information on the number of multiplexed signals concurrently-processable by the receiving apparatus;

 the transmitting apparatus comprising:

 a transforming unit to transform transmitting signals based on the information on the number of antennas or the information on the number of multiplexed signals from the configuration information received from the receiving apparatus;

 and

 a transmission unit to transmit radio signals corresponding to the transformed transmitting signals.

2. A wireless communication system including a transmitting apparatus that includes a plurality of antennas and can transmit different radio signals from the respective antennas, and a receiving apparatus that includes at least one antenna and receives the radio signals transmitted from the transmitting apparatus,

 the receiving apparatus comprising:

 an information transmission unit to transmit, to the transmitting apparatus, configuration information on configuration of the receiving apparatus, the configuration information including information on the number of antennas of the receiving apparatus or information on the number of multiplexed signals concurrently-processable by the receiving apparatus;

 the transmitting apparatus comprising:

 a detection unit to detect the information on the number of antennas or the information on the number of multiplexed signals from the configuration information received from the receiving apparatus; a transforming unit to transform transmitting signals based on the detected information on the number of antennas or the detected information on the number of multiplexed signals; and

 a transmission unit to transmit radio signals corresponding to the transformed transmitting signals.

3. A wireless communication system including a transmitting apparatus that includes a plurality of antennas and can transmit different radio signals from the respective antennas, and a receiving apparatus that includes at least one antenna and receives the radio signals transmitted from the transmitting apparatus,

 the receiving apparatus comprising:

 an extraction unit to extract, from received radio signals, transmission characteristic information including transmission path information corresponding to an environment where the received radio signals have been transmitted; and

 an information transmission unit to transmit, to the transmitting apparatus, configuration information on configuration of the receiving apparatus and the extracted transmission characteristic information, the configuration information including information on the number of antennas of the receiving apparatus or information on the number of multiplexed signals concurrently-processable by the receiving apparatus;

 the transmitting apparatus comprising:

 a detection unit to detect the information on the number of antennas or the information on the number of multiplexed signals from the configuration information received from the receiving apparatus, and detect the transmission path information from the transmission characteristic information received from the receiving apparatus;

 a transforming unit to transform transmitting signals based on the detected information on the number of antennas or the detected information on the number of multiplexed signals and based on the detected transmission path information; and

 a transmission unit to transmit radio signals corresponding to the transformed transmitting signals.