(12) INTERNATIONAL APPLICATION PUBLISHED

(19) World Intellectual Property Organization Vd”Ij

International Bureau

(43) International Publication Date
15 May 2008 (15.05.2008)

UNDER THE PATENT COOPERATION TREATY (PCT)

) IO O OO 00

(10) International Publication Number

WO 2008/058154 A2

(51) International Patent Classification:
GOGF 12/02 (2006.01) GOGF 9/44 (2006.01)
GOG6F 12/00 (2006.01)

(21) International Application Number:
PCT/US2007/083828

(22) International Filing Date:
6 November 2007 (06.11.2007)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
11/557,439 7 November 2006 (07.11.2006) US
(71) Applicant (for all designated States except US): SPAN-
SION LLC [US/US]; 915 Deguigne Drive, Sunnyvale, CA

94088-3453 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): TOM, Joe Y.
[US/US]; 1306 Melbourne Street, Foster City, CA 944404
(US). NATARAJAN, Venkat [US/US]; 19500 Pruneridge
Avenue, Apt. 2208, Cupertino, CA 95014 (US).

(74) Agents: AMIN, Himanshu S. et al.; Amin & Turocy, LLP,
1900 E. 9th Street, 24th Floor, National City Center, Cleve-
land, OH 44114 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

(54) Title: USING SHARED MEMORY WITH AN EXECUTE-IN-PLACE PROCESSOR AND A CO-PROCESSOR

Ve 100

/— 120

/—110

SECURITY PROCESSOR
(FINITE STATE MACHINE)

/ 140

/- 130

CRYPTOGRAPHIC
COMPONENT

HOST
PROCESSOR

-

A

MEMORY

BYP

COMPONENT

ASS

7

150/

(57) Abstract: The claimed subject matter provides systems a
- channel of access, between two or more processors. A host proce
& in series. The host processor can execute in place to enable it to

87058154 A2 I} 10 0O 00 DO A A

nd/or methods that facilitate sharing of a memory, having a single
ssor can be operatively connected to a co-processor and the memory
execute code directly from the memory, and can arbitrate access to

€\ the memory bus and thus the memory, so that the host processor can perform all memory fetches to the memory without interruption

=
=

by the co-processor. The co-processor can be implemented as a finite state machine, and only accesses the memory during read or
write cycles issued by the host processor. Various types of co-processors can be employed to perform various functions, such as
cryptography and digital signal processing, for example. The memory can be volatile or non-volatile memory.

WO 2008/058154 PCT/US2007/083828

Title: USING SHARED MEMORY WITH AN EXECUTE-IN-PLACE
PROCESSOR AND A CO-PROCESSOR

TECHNICAL FIELD
[0001] The present invention relates generally to memory systems and in
particular to systems and methods for managing access to a memory shared by a

processor that executes in place and a co-processor.

BACKGROUND
[0002] With many electronic products, security of the data written to and read
from memory is important. Examples of such products include portable devices such
as cell phones, portable computers, voice recorders, and the like, as well as many
larger electronic systems that are utilized in cars, planes, and industrial control
systems. To improve security, a processor may be used to encrypt and decrypt data
being transferred to and from memory. Typically, a host processor will have access to
a memory channel, and the security processor will have access to a separate memory
channel. However, for reasons of security, cost, and efficiency, it would be
advantageous for the host processor and security processor to have access to the same
memory channel.
[0003] Normally, where two or more processors share the same memory
channel to a memory device, a bus arbiter is required to determine which processor
will have access to the memory device at a particular time. However, some
processors, such as a processor that eXecutes In Place (XIP), can place significant
demands on memory access, as a processor that XIPs can process a significant
number of memory reads (e.g., instructions, data), and writes associated with the host
processor and must be able to access the memory any time it needs to execute such a
memory read or write, or else it will crash. When a processor that XIPs is utilized in a
multi-processor system where the processors all share a single channel to access a
memory device, bus arbitration can become complicated, if not unworkable. Thus,
where a host processor that XIPs and security processor share a single channel (bus)
to access a memory device, it would be advantageous for the host processor to have
access to the memory device any and every time it needs to execute a memory read or

write associated with the host processor, while also allowing the security processor to

WO 2008/058154 PCT/US2007/083828

access the memory device to read or write data from the memory device and perform

its co-processing functions.

SUMMARY
[0004] The following presents a simplified summary of the innovation in
order to provide a basic understanding of some aspects described herein. This
summary is not an extensive overview of the claimed subject matter. It is intended to
neither identify key or critical elements of the claimed subject matter nor delineate the
scope of the subject innovation. Its sole purpose is to present some concepts of the
claimed subject matter in a simplified form as a prelude to the more detailed
description that is presented later.
[0005] The subject matter disclosed and claimed herein, in one aspect thereof,
can comprise a host processor, which can be a processor that XIPs, that can be
operatively coupled to a security processor and memory in a series connection so as to
facilitate integrated security capabilities, for example. The memory can store
software, such as security software, and data, such as secured data. The security
processor, for example, can be positioned in series with the host processor and
memory and can process security functions associated with secured data stored in the
memory. At all times the host processor controls if and when the security processor
can access the memory bus and thus the memory. The memory has only one channel
(memory bus) of access, and the host processor and security processor share access to
the memory. The memory can include a memory address for each element of
memory therein, and can be partitioned so that each processor has a memory partition
dedicated to that processor. The host processor and security processor each know to
which memory partition a particular memory address corresponds. Further, the
memory partitions can be dynamic, as the partitions can either be fixed or
programmable at run time.
[0006] The claimed subject matter obviates the need for a separate bus arbiter
by employing a master-slave relationship between the host processor and the security
processor. The host processor can act like a “master,” as it can issue instructions to
the security processor (“slave”), which can be implemented as a finite state machine,
so that the host processor can arbitrate when the security processor accesses the
memory bus and thus the memory. This master-slave structure can thereby enable

the host processor to XIP and have access to the memory any and every time

WO 2008/058154 PCT/US2007/083828

necessary to execute its memory reads and writes associated with the host processor,
while allowing the security processor to access the memory to write or read data
associated with the security processor and perform its co-processing functions at
certain times when the host processor desires, but also restricting the security
processor from accessing the memory during any time cycles the host processor is
accessing the memory bus. The host processor can XIP with regard to its memory
reads or writes, and knows exactly how many time cycles the security processor needs
to perform a given task, such as encryption or decryption. During certain time cycles
where the host processor wants the security processor to perform a function, the host
processor can generate a read cycle or write cycle, associated with the security
processor, to a specific address of the memory, also associated with the security
processor. The security processor can know which memory addresses are reserved
for the security processor, and the security processor and memory can receive
information regarding such read cycle or write cycle via a memory address line of the
bus, for example, and the security processor knows that it can perform its co-
processing security operations during such read or write cycles.

[0007] In accordance with another aspect of the claimed subject matter, the
security processor can include a bypass mode, so that when the host processor is
accessing the memory, the security processor is essentially transparent to the host
processor and the memory as the host processor performs its memory reads and writes
and executes with regard to instructions and data.

[0008] The following description and the annexed drawings set forth in detail
certain illustrative aspects of the claimed subject matter. These aspects are indicative,
however, of but a few of the various ways in which the principles of the innovation
may be employed and the claimed subject matter is intended to include all such
aspects and their equivalents. Other advantages and novel features of the claimed
subject matter will become apparent from the following detailed description of the

innovation when considered in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
[0009] FIG. 1 illustrates a system that facilitates sharing memory, having a
single access channel, by more than one processor in accordance with an aspect of the

subject matter disclosed herein.

WO 2008/058154 PCT/US2007/083828

[0010] FIG. 2 illustrates a system that facilitates shared access to a single
channel (memory bus) to memory by multiple processors in accordance with an
aspect of the subject matter disclosed herein.

[0011] FIG. 3 illustrates performing a memory request in accordance with an
aspect of the subject matter disclosed herein.

[0012] FIG. 4 illustrates an exemplary methodology that facilitates performing
a read request in accordance with an aspect of the subject matter disclosed herein.
[0013] FIG. 5 illustrates an exemplary methodology that facilitates performing
a write request in accordance with an aspect of the subject matter disclosed herein.
[0014] FIG. 6 is a schematic block diagram illustrating a suitable operating
environment.

[0015] FIG. 7 is a schematic block diagram of a sample-computing

environment.

DETAILED DESCRIPTION
[0016] The claimed subject matter is described with reference to the drawings,
wherein like reference numerals are used to refer to like elements throughout. In the
following description, for purposes of explanation, numerous specific details are set
forth in order to provide a thorough understanding of the subject innovation. It may
be evident, however, that the claimed subject matter may be practiced without these
specific details. In other instances, well-known structures and devices are shown in

block diagram form in order to facilitate describing the subject innovation.

29 < 99 Cey

[0017] As utilized herein, terms “component,” “system,” “interface,” and the
like are intended to refer to a computer-related entity, either hardware, software (e.g.,
in execution), and/or firmware. For example, a component can be a process running
on a processor, a processor, an object, an executable, a program, and/or a computer.
By way of illustration, both an application running on a server and the server can be a
component. One or more components can reside within a process and a component
can be localized on one computer and/or distributed between two or more computers.
[0018] Furthermore, the claimed subject matter may be implemented as a
method, apparatus, or article of manufacture using standard programming and/or
engineering techniques to produce software, firmware, hardware, or any combination

thereof to control a computer to implement the disclosed subject matter. The term

"article of manufacture” as used herein is intended to encompass a computer program

WO 2008/058154 PCT/US2007/083828

accessible from any computer-readable device, carrier, or media. For example,
computer readable media can include but are not limited to magnetic storage devices
(e.g., hard disk, floppy disk, magnetic strips...), optical disks (e.g., compact disk
(CD), digital versatile disk (DVD)...), smart cards, and flash memory devices (e.g.,
card, stick, key drive...). Additionally it should be appreciated that a carrier wave can
be employed to carry computer-readable electronic data such as those used in
transmitting and receiving electronic mail or in accessing a network such as the
Internet or a local area network (LAN). Of course, those skilled in the art will
recognize many modifications may be made to this configuration without departing
from the scope or spirit of the claimed subject matter. Moreover, the word
“exemplary” is used herein to mean serving as an example, instance, or illustration.
Any aspect or design described herein as “exemplary” is not necessarily to be
construed as preferred or advantageous over other aspects or designs.

[0019] Security of data can be important in network-based systems, such as
when applications deal with sensitive information. It would be beneficial to have a
processor dedicated to managing security functions, so as to free a host processor to
perform its functions without interruptions associated with security functions. To
optimize security, as well as for reasons of cost and efficiency, it would also be
advantageous to implement such a multi-processor system by having the processors
share access to a single channel (bus) to memory. Accordingly, the following claimed
subject matter optimizes processor and memory utilization, and facilitates a
heightened level of security in user applications.

[0020] The claimed subject matter enables shared access to a single channel
(memory bus) to memory by more than one processor. The need for a separate bus
arbiter is obviated by employing a master-slave relationship between a host processor
running user applications, for example, and the security processor performing security
functions associated with secured data. The host processor can act like the “master,”
as it can generate read cycles or write cycles, associated with the security processor,
to the security processor (“slave”), which can be implemented as a finite state
machine, so that the host processor can arbitrate when the security processor accesses
the memory bus and thus the memory. This master-slave structure can thereby
enable the host processor to execute in place and have access to the memory any and
every time necessary to execute its memory reads or writes, so that the host processor

does not crash. Further, such a structure allows the security processor to access the

WO 2008/058154 PCT/US2007/083828

memory to write/read data associated with its security functions and perform its co-
processing functions at times specified by the host processor when the host processor
wants the security processor to perform some function, while restricting the security
processor from accessing the memory during any time cycles the host processor is
accessing the memory.

[0021] Now turning to FIG. 1, a system 100 that facilitates sharing memory,
having a single access channel, by more than one processor is illustrated. The system
100 can include a host processor 110, which can be a typical applications processor
that handles communications and runs applications. The host processor 110 can be a
baseband processor for a mobile handset, personal data assistant (PDA), or the like.
The host processor 110 can communicate, and be connected in series, with a security
processor 120 positioned between the host processor 110 and the memory 130 via a
split or shared bus to facilitate integrated security capabilities and efficiency.

[0022] The security processor 120 can include a cryptographic component 140
capable of performing cryptography processes to encrypt or decrypt data, for
example, to provide security capabilities. The security processor 120 can further
include a bypass component 150 that when selected or enabled allows data and other
information to flow through it, so the host processor 110 can access the memory 130
directly without any processing or interference by the security processor 120. In the
bypass mode, the security processor 120 is, in effect, “transparent” to the host
processor 110 and memory 130, as the data and other information flows on the shared
or split bus to/from the host processor 110, through a system bus (not shown) of the
security processor 120, and from/to the memory 130. For example, the bypass
component 150 can be selected or enabled to put the security processor 120 into
bypass mode when the host processor 110 is performing memory reads (e.g.,
instruction fetch, data) or writes involving instructions and/or data or other
information that are not secured, such as application programs, efc.

[0023] When the bypass component 150 is not selected or enabled, the
security processor 120 can access the memory 130 via the split or shared bus. The
host processor 110 can provide the signal timing to both the security processor 120
and memory 130. Thus, the host processor 110 can control when data is moved in/out
of the memory from/to the security processor 120. An aspect of the claimed subject
matter is that the host processor 110 can “move” data to and from the memory 130

without the host processor 110 actually making a copy of the memory data. This

WO 2008/058154 PCT/US2007/083828

architecture can thereby enhance the security of the system as well as simplify the
design of the interface.

[0024] The memory 130 can have a separate memory addresses to which data
can be stored. The memory 130 can also be partitioned into two or more partitions,
such that the host processor 110 can access the host partition (not shown) in the
memory 130 and the memory addresses contained within that partition, and the
security processor 120 can access the security processor partition (not shown) in the
memory 130 and the memory addresses contained within that partition. The partitions
can be dynamic, as the partitions can either be fixed or programmable at run time, and
the host processor 110 and security processor 120 can each know what their
respective partitions are as well as the respective memory addresses associated
therewith. For example, the host processor 110 can access its respective memory
partition (not shown) in the memory 130 via the memory bus, through the system bus
(not shown) of the security processor, and can store data and other information in that
partition. Further, the memory partition (not shown) dedicated to the security
processor 120 can store secured data, and the security processor 120 can access the
secured data via the memory bus.

[0025] It is to be appreciated that, while the system 100 is shown with only
two processors, the host processor 110 and security processor 120, the system 100 can
include more than two processors. Further, system 100 is shown with a security
processor 110 handling security aspects of the system. However, the claimed subject
matter is not so limited. The system is adaptable to meet a variety of processing
needs and can include digital signal processors, Fast Fourier Transform (FFT)
processors, Finite Impulse Response (FIR) Filter processors, image processors, data
compression processors (e.g., mP3), and the like.

[0026] It is to be further appreciated that the memory 130 can include volatile
memory (e.g, random access memory (RAM), static RAM (SRAM), and the like) and
non-volatile memory (e.g., read only memory (ROM), programmable ROM (PROM),
flash, and the like).

[0027] The host processor 110 can eXecute In Place (XIP) enabling the host
processor 110 to execute code directly from the memory 130. Since the host
processor 110 can XIP, it must have access to the memory 130 to perform memory
reads or writes, otherwise the host processor 110 will crash. Further, the security

processor 120 must be able to access the memory 130 to carry out its security

WO 2008/058154 PCT/US2007/083828

processing functions. However, as stated, supra, to facilitate increased security and
efficiency, the system 100 can be constructed so that the host processor 110 is in
series with the security processor 120 and the memory 130, which has only one
channel (memory bus) of access to it.

[0028] To permit both the host processor 110 and the security processor 120
to have access to the memory 130 via a single channel, the host processor 110 and
security processor 120 can be implemented in a master-slave type relationship. The
host processor 110 can be employed as the “master” and can control the security
processor 120 (“slave”), which can be implemented as a finite state machine, for
example. The timing for all operations can be derived from the host processor. As
the host processor 110 XIPs, the host processor 110 will be performing memory reads
or writes, in accordance with read or write cycles associated with, and generated by,
the host processor 110, and executions associated with the functions of the host
processor 110. At certain times specified by the host processor 100, when the host
processor 110 wants the security processor 120 to perform some function(s), the host
processor 110 can generate a write cycle or read cycle associated with the security
processor 120 that will be sent to the security processor 120 and memory 130 to let
the security processor 120 know that it can access the memory bus and thus the
memory 130 to perform a task associated with its security processing functions. The
read or write cycles associated with the security processor 120 can be asynchronous
and generated as determined by the host processor 110. When a read cycle or write
cycle associated with the security processor 120 is generated by the host processor
110, the bypass component 150 can be de-selected or disabled to take the security
processor 120 out of its “transparent” bypass mode and allow the cryptographic
component 140 as well as other processing components of the security processor 120
to access the memory 130 and perform read or write operations associated with its
security processing operations. This architecture thereby obviates the need for a
separate bus arbiter, as the host processor 110 arbitrates access to the memory bus.
Accordingly, the host processor 110 and the security processor 120 coordinate
read/write access to the memory 130 so as to optimize processor/memory utilization
while ensuring a heightened level of security.

[0029] In more detail, FIG. 2 illustrates a system 200 comprising dual
processors that share a single access channel (memory bus) to memory. The system

200 can include a host processor 202, which can be a typical applications processor

WO 2008/058154 PCT/US2007/083828

that handles communications and runs applications. The host processor 202 can be a
baseband processor for a mobile handset, personal data assistant (PDA), or the like.
The host processor 202 can communicate, and can be connected in series, with a
security processor 204 and memory 206 (e.g., volatile or non-volatile memory) via a
shared or split memory bus, such that the security processor 204 is positioned in
between the host processor 202 and memory 206 in the series connection.

[0030] The security processor 204 can include a central processing unit (CPU)
208 or any other type of low power application processor. The CPU 208 can provide
a secure environment to implement authentication algorithms and security software.
However, as described, infra, the timing associated with the reading or writing of data
to the memory 206 by the security processor 204 can be derived from and controlled
by the host processor 202. Generally, the CPU 208 can only have control over certain
functions associated with the security processor 204 when the host processor 202 is
not XIPing, but in any event, the security processor 204 cannot have access to the
memory bus and thus the memory 206 unless it receives a read or write cycle
associated with the security processor 204 that is generated by the host processor 202.
[0031] The security processor 204 can also include a host memory interface
(I/F) 210 that can be associated with the system bus 212 and can handle all memory
transactions with the host processor 202. Specifically, the host memory I/F 210 can
manage signaling, thus complying with the interface definitions of the memory 206.
The host memory I/F 210 also can manage interpreting or differentiating between a
secure and non-secure request, and monitoring requests via enforcing access rights
and permissions associated with the security processor 204.

[0032] The security processor 204 can include a host buffer 214 can be
associated with the host memory I/F 210 and can hold data associated with secured
transactions to and from the host processor 202. The host buffer 214 also can serve as
a mailbox between the CPU 208 and the host processor 202, wherein interpretation of
the messages is carried out by the CPU 208. The security processor 204 can further
include a cryptographic engine 216 that can be associated with the host buffer 214 and
system bus 212 and perform all the cryptographic algorithms, symmetric and a-
symmetric, or the like, needed by the system 200. The cryptographic engine 216 can
include one or more buffers (not shown) that can be utilized by the engine 216 when
performing its operations. The CPU 208 can configure the cryptographic engine 216
and control data flow through the security processor 204. The CPU 208 can interface

WO 2008/058154 PCT/US2007/083828

the system bus 212 and the security applications that run on the CPU 208, arbitrating
with the host processor 202. The security processor 204 can also include a memory
buffer 218 that can be associated with the system bus 212 and cryptographic engine
214, and can hold data associated with secured transactions as the data proceeds to
and from the memory 206. Further, the security processor 204 can include a memory
interface (I/F) 220 that can be associated with the system bus 212 and memory buffer
218, and can handle all transactions to and from the memory 206 and the security
processor 204, such as signaling and interpretation.

[0033] The security processor 204 can further employ a bypass component
222 that can be associated with the system bus 212, host memory I/F 210, and
memory I/F 220, and when selected or enabled can allow data and other information
to flow through it via the system bus 212, so the host processor 202 can access the
memory 206 directly without any processing or interference by the security processor
204. The bypass component 222 can be a co-processor, for example, such as a simple
co-processor that is able to receive memory address data, and select or enable the
bypass mode when the memory address in the read/write cycle is associated with the
host processor 202, or de-select or disable the bypass mode when the memory address
is associated with the security processor 204. In the bypass mode, the security
processor 204 is essentially “transparent” to the host processor 202 and memory 206,
as the data and other information flows via the shared or split bus to/from the host
processor 202, through the security processor 204, via the system bus 212 and from/to
the memory 206 via the memory bus. For example, the bypass component 222 can be
selected or enabled to put the security processor 204 into bypass mode when the host
processor 202 is performing memory reads or writes associated with the host
processor 202 that involve instructions, or data or other information that are not
secured, such as with regard to application programs, etc.

[0034] When the bypass component 222 is de-selected or not enabled, the
security processor 204 can access the memory 206 via the shared memory bus. The
host processor 202 still provides the signal timing to both the security processor 204
and memory 206 to control the security processor’s 204 access to the memory bus,
and thus the memory 206. Thus, the host processor 202 can control when data is
moved in/out of the memory 206 from/to the security processor 204, as well as moved
between internal components (e.g., cryptographic engine 216, memory buffer 218) of

the security processor 204, as described, infra. An aspect of the claimed subject

10

WO 2008/058154 PCT/US2007/083828

matter is that the host processor 202 can “move” data to and from the memory 206
without the host processor 202 actually making a copy of the memory data. This
architecture can thereby enhance the security of the system as well as simplify the
design of the interface.

[0035] The memory 206 can have separate memory addresses to which
memory data can be stored. The memory 206 can also be partitioned into two or
more partitions, such that the host processor 202 can access the host partition 224 in
the memory 206 and the memory addresses (not shown) contained within that
partition, and the security processor 204 can access the security processor partition
226 in the memory 206 and the memory addresses (not shown) contained within that
partition. The partitions 224, 226 can be dynamic, and can be fixed or programmable
at run time, and the host processor 202 and security processor 204 can each know
what their respective partitions are as well as the respective memory addresses
associated therewith. For example, the host processor 202 can access its respective
memory partition 224 and can store data and other information associated with the
host processor 202 in its partition 224. Further, the memory partition 226 dedicated to
the security processor 204 can store security software and data, and the security
processor 204 can access the security software and data, and can perform security
functions based on the specific security software stored.

[0036] It is to be appreciated that, while the system 200 is shown with only
two processors, the system 200 can include more than two processors. Further,
system 200 is shown with a security processor 204 handling security aspects of the
system. However, the claimed subject matter is not so limited. The system is
adaptable to meet a variety of processing needs and can include digital signal
processors, Fast Fourier Transform (FFT) processors, Finite Impulse Response (FIR)
Filter processors, image processors, data compression processors (e.g., mP3), and the
like.

[0037] It is to be further appreciated that the memory 206 can include volatile
memory (e.g, random access memory (RAM), static RAM (SRAM), and the like) and
non-volatile memory (e.g., read only memory (ROM), programmable ROM (PROM),
flash, and the like).

[0038] The host processor 202 can eXecute In Place (XIP) enabling it to
execute code directly from the memory 206. Since the host processor 202 can XIP, it

must have access to the memory 206 to perform memory reads or writes associated

11

WO 2008/058154 PCT/US2007/083828

with the host processor 202, otherwise the host processor 202 will crash. Further, the
security processor 204 must be able to access the memory 206 to carry out its security
processing functions. However, as stated, supra, to facilitate increased security and
efficiency, the system 200 can be constructed so that the host processor 202 is in
series with the security processor 204, positioned between the host processor 202 and
the memory 206, which has only one channel (memory bus) of access to it.

[0039] To permit both the host processor 202 and the security processor 204
to have access to the memory 206 vig a single channel (memory bus), the host
processor 202 and security processor 204 can be implemented in a master-slave type
relationship. The host processor 202 can be employed as the “master” and can control
the security processor 204 (“slave”). Further, the security processor 204 can be
implemented as a finite state machine, for example. As stated, supra, the timing for
all operations can be derived from the host processor 202. As the host processor 202
XIPs, it will be performing memory reads or writes, in accordance with read or write
cycles associated with, and generated by, the host processor 204, and executions,
associated with its host processing functions. At certain times specified by the host
processor 202 when the host processor 202 wants the security processor 204 to
perform some function(s), the host processor 202 can generate a write cycle or read
cycle associated with the security processor 204 that will be sent to the security
processor 204 and memory 206 to let the security processor 204 know that it can
access the memory 206 to perform a task associated with its security processing
functions. When a read cycle or write cycle associated with the security processor
204 is generated by the host processor 202, the bypass component 222 can be de-
selected or disabled to take the security processor 204 out of its “transparent” bypass
mode and allows the cryptographic engine 216, as well as other processing
components of the security processor 204, to access the memory 206 and perform
read or write operations associated with its security processing operations. This
architecture thereby obviates the need for a separate bus arbiter, as the host processor
202 arbitrates access to the memory bus. Accordingly, the host processor 202 and the
security processor 204 coordinate read/write access to the memory 206 so as to
optimize processor/memory utilization while ensuring a heightened level of security.
[0040] For example, the host processor 202 can XIP and perform memory
reads or writes associated with its host processing duties by accessing the memory

206 via the single channel (memory bus) through the system bus 212. At this point,

12

WO 2008/058154 PCT/US2007/083828

the security processor 204 will be “transparent” to the host processor 202 and memory
206, as the bypass component 222 will be selected or enabled. The bypass component
can be selected or enabled when the security processor 204 sees that the current time
cycle is a memory read or write associated with the host processor 202 as it XIPs.
When the host processor 202 generates such a read or write cycle, the host processor
202 can also send control information and memory address information via a control
line (not shown) and an address line (not shown), respectively, associated with the
bus, to the security processor 204 and memory 206. For example, control information
can include data associated with chip enable, write enable, address valid, data ready,
data not ready, etc. Based on the particular memory address, the host processor 202
and security processor 204 will know whether that particular memory address is in the
host processor partition 224 or security processor partition 226 of the memory 206.
The security processor 204 can see that the current cycle involves a memory address
associated with the host processor partition 224, and can therefore select or enable the
bypass component 222, so that the security processor 204 can be in bypass mode and
be “transparent” to the host processor 202 and memory 206, and can thereby allow the
host processor 202 to access the memory 206 via the memory bus and the system bus
212 of the security processor 204.

[0041] At certain times (e.g., every 10 cycles, every 20 cycles, or a varying
number of cycles), the host processor 202 can determine that it wants the security
processor 204 to perform a function(s). At that point, the host processor 202 can
generate a read cycle(s) or write cycle(s) associated with the security processor 204 to
allow the security processor 204 to access the memory 206 via the single channel
(memory bus). When generating the read cycle or write cycle associated with the
security processor 204, the host processor 202 can also send control information and
memory address information via a control line (not shown) and an address line (not
shown), respectively, associated with the bus, to both the security processor 204 and
memory 206. The security processor 204 can see that the memory address specified
in the address line is a memory address located in the security processor partition 226
of the memory 206. The security processor 204 then knows to de-select or disable the
bypass component 222, so that the security processor 204 can access the memory 206
via the single channel (memory bus) to the memory 206, and perform the appropriate

security processing operation (e.g., read, write).

13

WO 2008/058154 PCT/US2007/083828

[0042] If the cycle generated is a read cycle associated with the security
processor 204, for instance, the security processor 204 can access the memory 206
and read the data from the memory address (in the security processor partition 226)
specified with the read command. The data read from the memory address can be
transferred through the memory bus to the memory buffer 218 via the memory I/F 220
in the security processor 204. At the same time, the host buffer 214 can send data via
the host memory I/F 210 through the bus, as split, between the host processor 202 and
security processor 204. The data sent from the host buffer 214 to the host processor
202 can be “junk” data, or may be valid data with respect to the host processing
function; the host processor 202 will know whether the data it is receiving is “junk”
data or valid data, and will process such data accordingly. At the same time, data in
the memory buffer 218 can be transferred or transmitted to the cryptographic engine
216 for processing. The cryptographic engine 216 can have a sufficient number of
buffers to enable the engine 216 to handle its cryptography functions. Furthermore, at
the same time, data at the end of the internal buffers (that is, data that is at the end of
the processing by the engine 216) in the engine 216 can be transferred to transmitted
to the host buffer 214, where the host buffer 214 has sent the data it was holding to
the host processor 202, as previously stated. Thus, an efficient “pipeline” is employed
to read the data from the flash memory 206, process it in the security processor 204,
and transmit it to the host processor 202. For each read cycle associated with the
security processor 204, data is moved to the next state in the process until it is
ultimately sent to the host processor 202. If the cycle is not a read cycle associated
with the security processor 204, such as when the host processor 202 performs a
memory fetch associated with host processor 202, the security processor is in bypass
mode and does not do any security processing, and it is transparent to the host
processor 202 and memory 206. When the next read cycle associated with the
security processor 204 is generated by the host processor 202, the components of the
security processor 204 will perform an operation associated with the respective
component (e.g., cryptographic engine 214 will perform a cryptography-related
operation), and the data will move through the “pipeline” to the next state, and so on.
[0043] Similarly, when a write cycle associated with the security processor
204 is generated by the host processor 202, the security processor 204 will receive
memory address information associated with the write cycle and will know that the

memory address is located in the security processing partition 226 of the memory 206.

14

WO 2008/058154 PCT/US2007/083828

The security processor 204 will get out of bypass mode by de-selecting or disabling
the bypass component 222 and will process data through the “pipeline” which goes
from the host processor 202 to the memory 206. That is, data in the memory buffer
218 will be sent through the memory I/F 220 to be written in the memory address
corresponding with the write cycle. The cryptographic engine 216 will send data
from its internal buffer to the memory buffer 218; the host buffer 214 will send data
therein to the cryptographic engine 216; and the host processor 202 will send data
through the bus, as split, from its internal buffer through the host memory I/F 210 to
the host buffer 214.

[0044] It should be further appreciated that read cycles associated with the
security processor 204 can be generated by the host processor 202 before all data
associated with previously generated write cycles has been processed by the security
processor 204, and vice versa. That is, the claimed subject matter can include
sufficient buffers in its respective components to have a read “pipeline” flowing in
one direction from memory 206 to host processor 202, and a write “pipeline” flowing
from the host processor 202 to memory 206. For example, the host processor 202 can
generate a write cycle associated with the security processor 204, and start a write
“pipeline” from the host processor 202 through the security processor 204 to the
memory 206. Before all data associated with that write have been completed, a read
cycle associated with the security processor 204 can be generated by the host
processor 202, and a read “pipeline” can be started utilizing other buffers in the host
processor 202 and security processor 202, such that a component may have data
associated with the write cycle in one buffer, and data associated with the read cycle
in another buffer.

[0045] FIGs. 3-5 illustrate methodologies in accordance with the claimed
subject matter. For simplicity of explanation, the methodologies are depicted and
described as a series of acts. It is to be understood and appreciated that the subject
innovation is not limited by the acts illustrated and/or by the order of acts, for
example acts can occur in various orders and/or concurrently, and with other acts not
presented and described herein. Furthermore, not all illustrated acts may be required
to implement the methodologies in accordance with the claimed subject matter. In
addition, those skilled in the art will understand and appreciate that the methodologies
could alternatively be represented as a series of interrelated states via a state diagram

or events. Additionally, it should be further appreciated that the methodologies

15

WO 2008/058154 PCT/US2007/083828

disclosed hereinafter and throughout this specification are capable of being stored on
an article of manufacture to facilitate transporting and transferring such
methodologies to computers. The term article of manufacture, as used herein, is
intended to encompass a computer program accessible from any computer-readable
device, carrier, or media.

[0046] Referring now to FIG. 3, a methodology of performing a memory
request by a host processor is illustrated. At 310, the host processor can generate a
request. At 320, a determination is made as to whether the request is a memory read
or write associated with the host processor. If the request is not a read or write
associated with the host processor, then such a memory read or write is not performed
and another course of action can be taken, as will be described, infra, at FIGs. 4 and 5,
and the disclosure related thereto. If the request is a memory read/write associated
with the host processor, then, at 330, the bypass component in the security processor
can be selected or enabled, so that the security processor is essentially “transparent” to
the host processor and memory, and the host processor can access the memory via the
single memory channel (memory bus) connected to the memory through the system
bus of the security processor. At 340, the read or write can be performed by accessing
the memory address specified in the read or write. At 350, the host processor can
execute code associated with the read or write received from the memory. The host
processor can XIP with regard to code it reads from the memory, for example. At this
point, the process ends.

[0047] Turning now to FIG. 4, a methodology of performing a read request for
the security processor in accordance with the claimed subject matter is illustrated. At
410, a determination had been made at 320 in FIG. 3 that the request was not a read or
write associated with the host processor. At 420, a determination is made as to
whether the request is a read or write associated with the security processor. If the
request is a write associated with the security processor, another course of action can
be taken, as will be described, infra, at FIG. 5, and the disclosure related thereto. If
the request is a read (e.g., a read cycle) associated with the security processor, then at
430, the memory address in the memory from where the read is to be performed is
selected in accordance with the information specified in the read request. At this
point, the bypass component in the security processor is de-selected or disabled, so
that the security processor can access the memory (e.g., flash memory) via the single

channel (memory bus) connected to the memory. At 440, the data stored in the

16

WO 2008/058154 PCT/US2007/083828

memory address can be read from the memory. At 450, the data can be transferred to
the memory buffer via the memory buffer I/F in the security processor. At 460,
during the next read cycle associated with the security processor that is generated by
the host processor, the data can be transferred from the memory buffer to the internal
buffer(s) in the cryptographic engine within the security processor for further
processing. At 470, during the next read cycle associated with the security processor
that is generated by the host processor, the cryptographic engine can decrypt the data.
At 480, during the next read cycle associated with the security processor, the
decrypted data can be transferred to the host buffer in the security processor. At 490,
during the next read cycle associated with the security processor, the decrypted data
can be transferred to the host processor via the host buffer I/F and the bus connected
to the host processor. At this point, the process ends.

[0048] FIG. 5 illustrates a methodology of performing a write request for the
security processor in accordance with the claimed subject matter. At 510, a
determination had been made at 420 in FIG. 4 that the request was a write request
associated with the security processor. Further, at 410 of FIG. 4, a reference was
made to the determination in FIG. 3, at 320, that the request was not a read or write
associated with the host processor. At 520, the memory address in the memory (e.g.,
flash memory) from where the write is to be performed is selected in accordance with
the information specified in the write request. At this point, the bypass component in
the security processor is de-selected or disabled, so that the security processor can
access the memory via the single channel (memory bus) connected to the memory. At
530, during the write cycle associated with the security processor that is generated by
the host processor, the data stored in the internal buffer of the host processor can be
transferred from the host processor to the host buffer in the security processor via the
host buffer I/F connected to the bus. At 540, during the next write cycle associated
with the security processor that is generated by the host processor, the data can be
transferred from the host buffer to the internal buffer(s) in the cryptographic engine
for further processing. At 550, during the next write cycle associated with the
security processor, the cryptographic engine can encrypt the data. At 560, during the
next write cycle associated with the security processor, the encrypted data can be
transferred from the cryptographic engine to the memory buffer. At 570, during the
next write cycle associated with the security processor, the encrypted data can be

transferred from the memory buffer via the memory buffer I/F connected to the single

17

WO 2008/058154 PCT/US2007/083828

channel (memory bus) and written to and stored in the memory at the specified
memory address. At this point, the process ends.

[0049] It is to be appreciated that the above methodologies have been
described with each component (e.g., cryptographic engine) having only one buffer.
However, the claimed subject matter is not so limited. Each component claimed
herein can include sufficient buffers to permit the processing of data and other
information in accordance with the claimed subject matter. Further, while the above
has been described as including a security processor, it is to be appreciated that the
claimed subject matter is not so limited, and another type of processor (e.g., FFT, FIR
filter, DSP, ...) can be utilized in conjunction with the host processor.

[0050] Further, it is to be appreciated that the memory can include volatile
memory (e.g, random access memory (RAM), static RAM (SRAM), and the like) and
non-volatile memory (e.g., read only memory (ROM), programmable ROM (PROM),
flash, and the like).

[0051] In order to provide a context for the various aspects of the disclosed
subject matter, FIGs. 6 and 7 as well as the following discussion are intended to
provide a brief, general description of a suitable environment in which the various
aspects of the disclosed subject matter may be implemented. While the subject matter
has been described above in the general context of computer-executable instructions
of'a computer program that runs on a computer and/or computers, those skilled in the
art will recognize that the subject innovation also may be implemented in combination
with other program modules. Generally, program modules include routines,
programs, components, data structures, ezc. that perform particular tasks and/or
implement particular abstract data types. Moreover, those skilled in the art will
appreciate that the inventive methods may be practiced with other computer system
configurations, including single-processor or multiprocessor computer systems, mini-
computing devices, mainframe computers, as well as personal computers, hand-held
computing devices (e.g., personal digital assistant (PDA), phone, watch),
microprocessor-based or programmable consumer or industrial electronics, and the
like. The illustrated aspects may also be practiced in distributed computing
environments where tasks are performed by remote processing devices that are linked
through a communications network. However, some, if not all aspects of the claimed

innovation can be practiced on stand-alone computers. In a distributed computing

18

WO 2008/058154 PCT/US2007/083828

environment, program modules may be located in both local and remote memory
storage devices.

[0052] With reference to Fig. 6, a suitable environment 600 for implementing
various aspects of the claimed subject matter includes a computer 612. The computer
612 includes a processing unit 614, a system memory 616, and a system bus 618. The
system bus 618 couples system components including, but not limited to, the system
memory 616 to the processing unit 614. The processing unit 614 can be any of
various available processors. Dual microprocessors and other multiprocessor
architectures also can be employed as the processing unit 614.

[0053] The system bus 618 can be any of several types of bus structure(s)
including the memory bus or memory controller, a peripheral bus or external bus,
and/or a local bus using any variety of available bus architectures including, but not
limited to, Industrial Standard Architecture (ISA), Micro-Channel Architecture
(MSA), Extended ISA (EISA), Intelligent Drive Electronics (IDE), VESA Local Bus
(VLB), Peripheral Component Interconnect (PCI), Card Bus, Universal Serial Bus
(USB), Advanced Graphics Port (AGP), Personal Computer Memory Card
International Association bus (PCMCIA), Firewire (IEEE 1394), and Small Computer
Systems Interface (SCSI).

[0054] The system memory 616 includes volatile memory 620 and nonvolatile
memory 622. The basic input/output system (BIOS), containing the basic routines to
transfer information between elements within the computer 612, such as during start-
up, is stored in nonvolatile memory 622. By way of illustration, and not limitation,
nonvolatile memory 622 can include read only memory (ROM), programmable ROM
(PROM), electrically programmable ROM (EPROM), electrically erasable
programmable ROM (EEPROM), or flash memory. Volatile memory 620 includes
random access memory (RAM), which acts as external cache memory. By way of
illustration and not limitation, RAM is available in many forms such as static RAM
(SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate
SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM
(SLDRAM), Rambus direct RAM (RDRAM), direct Rambus dynamic RAM
(DRDRAM), and Rambus dynamic RAM (RDRAM).

[0055] Computer 612 also includes removable/non-removable, volatile/ non-
volatile computer storage media. Fig. 6 illustrates, for example, a disk storage 624.

Disk storage 624 includes, but is not limited to, devices like a magnetic disk drive,

19

WO 2008/058154 PCT/US2007/083828

floppy disk drive, tape drive, Jaz drive, Zip drive, LS-100 drive, flash memory card,
or memory stick. In addition, disk storage 624 can include storage media separately
or in combination with other storage media including, but not limited to, an optical
disk drive such as a compact disk ROM device (CD-ROM), CD recordable drive
(CD-R Drive), CD rewritable drive (CD-RW Drive) or a digital versatile disk ROM
drive (DVD-ROM). To facilitate connection of the disk storage devices 624 to the
system bus 618, a removable or non-removable interface is typically used, such as
interface 626.

[0056] It is to be appreciated that Fig. 6 describes software that acts as an
intermediary between users and the basic computer resources described in the suitable
operating environment 600. Such software includes an operating system 628.
Operating system 628, which can be stored on disk storage 624, acts to control and
allocate resources of the computer system 612. System applications 630 take
advantage of the management of resources by operating system 628 through program
modules 632 and program data 634 stored either in system memory 616 or on disk
storage 624. It is to be appreciated that the claimed subject matter can be
implemented with various operating systems or combinations of operating systems.
[0057] A user enters commands or information into the computer 612 through
input device(s) 636. Input devices 636 include, but are not limited to, a pointing
device such as a mouse, trackball, stylus, touch pad, keyboard, microphone, joystick,
game pad, satellite dish, scanner, TV tuner card, digital camera, digital video camera,
web camera, and the like. These and other input devices connect to the processing
unit 614 through the system bus 618 vig interface port(s) 638. Interface port(s) 638
include, for example, a serial port, a parallel port, a game port, and a universal serial
bus (USB). Output device(s) 640 use some of the same type of ports as input
device(s) 636. Thus, for example, a USB port may be used to provide input to
computer 612, and to output information from computer 612 to an output device 640.
Output adapter 642 is provided to illustrate that there are some output devices 640 like
monitors, speakers, and printers, among other output devices 640, which require
special adapters. The output adapters 642 include, by way of illustration and not
limitation, video and sound cards that provide a means of connection between the
output device 640 and the system bus 618. It should be noted that other devices
and/or systems of devices provide both input and output capabilities such as remote

computer(s) 644.

20

WO 2008/058154 PCT/US2007/083828

[0058] Computer 612 can operate in a networked environment using logical
connections to one or more remote computers, such as remote computer(s) 644. The
remote computer(s) 644 can be a personal computer, a server, a router, a network PC,
a workstation, a microprocessor based appliance, a peer device or other common
network node and the like, and typically includes many or all of the elements
described relative to computer 612. For purposes of brevity, only a memory storage
device 646 is illustrated with remote computer(s) 644. Remote computer(s) 644 is
logically connected to computer 612 through a network interface 648 and then
physically connected via communication connection 650. Network interface 648
encompasses wire and/or wireless communication networks such as local-arca
networks (LAN) and wide-arca networks (WAN). LAN technologies include Fiber
Distributed Data Interface (FDDI), Copper Distributed Data Interface (CDDI),
Ethernet, Token Ring and the like. WAN technologies include, but are not limited to,
point-to-point links, circuit switching networks like Integrated Services Digital
Networks (ISDN) and variations thereon, packet switching networks, and Digital
Subscriber Lines (DSL).

[0059] Communication connection(s) 650 refers to the hardware/software
employed to connect the network interface 648 to the bus 618. While communication
connection 650 is shown for illustrative clarity inside computer 612, it can also be
external to computer 612. The hardware/software necessary for connection to the
network interface 648 includes, for exemplary purposes only, internal and external
technologies such as, modems including regular telephone grade modems, cable
modems and DSL modems, ISDN adapters, and Ethernet cards.

[0060] Fig. 7 is a schematic block diagram of a sample-computing
environment 700 with which the subject innovation can interact. The system 700
includes one or more client(s) 710. The client(s) 710 can be hardware and/or software
(e.g., threads, processes, computing devices). The system 700 also includes one or
more server(s) 730. Thus, system 700 can correspond to a two-tier client server
model or a multi-tier model (e.g., client, middle tier server, data server), amongst
other models. The server(s) 730 can also be hardware and/or software (e.g., threads,
processes, computing devices). The servers 730 can house threads to perform
transformations by employing the subject innovation, for example. One possible
communication between a client 710 and a server 730 may be in the form of a data

packet transmitted between two or more computer processes.

21

WO 2008/058154 PCT/US2007/083828

[0061] The system 700 includes a communication framework 750 that can be
employed to facilitate communications between the client(s) 710 and the server(s)730.
The client(s) 710 are operatively connected to one or more client data store(s) 760 that
can be employed to store information local to the client(s) 710. Similarly, the
server(s) 730 are operatively connected to one or more server data store(s) 740 that
can be employed to store information local to the servers 730.

[0062] What has been described above includes examples of aspects of the
claimed subject matter. It is, of course, not possible to describe every conceivable
combination of components or methodologies for purposes of describing the claimed
subject matter, but one of ordinary skill in the art may recognize that many further
combinations and permutations of the disclosed subject matter are possible.
Accordingly, the disclosed subject matter is intended to embrace all such alterations,
modifications and variations that fall within the spirit and scope of the appended
claims. Furthermore, to the extent that the terms “includes,” “has,” or “having,” or
variations thereof, are used in either the detailed description or the claims, such terms
are intended to be inclusive in a manner similar to the term “comprising” as

“comprising” is interpreted when employed as a transitional word in a claim.

22

WO 2008/058154 PCT/US2007/083828

CLAIMS

What is claimed is:

1. A system that facilitates sharing of a memory, comprising:

a host processor that performs at least one of a data read or data write by
accessing the memory via an access channel and generates at least one of a read cycle
or write cycle associated with at least one other processor when the host processor
wants the at least one other processor to perform a function; and

the at least one other processor that is implemented as a finite state machine
and cannot access the memory via the access channel unless the at least one other
processor receives the at least one of a read cycle or write cycle from the host

Processor.

2. The system of claim 1, the host processor executes in place and executes code

directly from the memory.

3. The system of claim 1, the memory is at least one of volatile memory or non-

volatile memory.

4. The system of claim 3, the non-volatile memory is flash memory.

5. The system of claim 1, the memory is partitioned so that a subset of memory
addresses is accessed by the host processor and another subset of memory addresses is

accessed by the other processor, wherein the partitioning of the memory is dynamic.

6. The system of claim 1, the at least one other processor performs at least one
process associated with at least one of a digital signal process, a Fast Fourier
Transform process, a Finite Impulse Response filter process, a cryptography process,

an image process, or a data compression process.

7. The system of claim 1, the access channel is a bus, comprising control lines,

memory address lines, and data lines.

23

WO 2008/058154 PCT/US2007/083828

8. A device that facilitates sharing of memory, comprising:

a host processor that retrieves data by accessing a memory vig an access
channel and generates a read cycle or write cycle associated with at least one other
processor at a time when the host processor wants the at least one other processor to
perform an operation; and

the at least one other processor that is implemented as a finite state machine
and cannot access the memory via the access channel unless the at least one other

processor receives the read cycle or write cycle from the host processor.

9. The device of claim 8, the host processor executes in place and executes code

directly from the memory.

10. The device of claim 8, the memory is at least one of volatile or non-volatile

memory.
11. The device of claim 10, the non-volatile memory is flash memory.
12. The device of claim &, the memory is partitioned so that a subset of one or

more memory addresses in the memory is associated with the host processor and at
least one other subset of one or more memory addresses is associated with the at least

one other processor.

13. The device of claim &, the at least one other processor is at least one of a
digital signal processor, a Fast Fourier Transform processor, a Finite Impulse
Response filter processor, a cryptography processor, an image processor, or a data

COl’l’lpI'eSSiOI’l Processor.

14. A method for facilitating access to a memory, having a single access channel,
shared by a host processor and at least one other processor, comprising:

gencrating at least one of a read or write associated with the host processor;

selecting a bypass mode to provide the host processor access to the memory
via the single access channel; and

retrieving data, associated with the at least one of a read, or write stored in the

memory.

24

WO 2008/058154 PCT/US2007/083828

15. The method of claim 14, further comprising:

generating at least one of a read cycle or write cycle associated with the at
least one other processor;

de-selecting the bypass mode to the provide the at least one other processor
access to the memory via the single access channel;

writing data to the memory via the single access channel when a write cycle
associated with the at least one other processor is generated; and

reading data from the memory via the single access channel when a read cycle

associated with the at least one other processor is generated.

16. The method of claim 15, further comprising:

transferring data from the memory to the at least one other processor when a
read cycle associated with the at least one other processor is generated, or transferring
data from the host processor to the at least one other processor when a write cycle
associated with the at least one other processor is generated; and

performing at least one process on the data transferred to the at least one other

Processor.

17. The method of claim 14, the host processor generates at least one of an

instruction fetch cycle, a read cycle, or a write cycle.

18. The method of claim 14, the at least one other processor is at least one of a
digital signal processor, a Fast Fourier Transform processor, a Finite Impulse
Response filter processor, a cryptography processor, an image processor, or a data

COl’l’lpI'GSSiOl’l Processor.

19. The method of claim 14, the at least one other processor is implemented as a

finite state machine.

20. The method of claim 14, the memory is at least one of volatile or non-volatile

memory.

25

PCT/US2007/083828

WO 2008/058154

1/7

| K

AJdOWIIN

LINIHNOdINOD
SSVdAd

S

LINIHNOdINOD
IJIHdVIDOLdAYED

(ANIHDVIN ALV.LS ALINI)
MOSSAD0Ad ALIMNDAS

\oﬁ

JOSSHO0dd
LSOH

0TI |\

o:\

PCT/US2007/083828
2/7

WO 2008/058154

¢OH
\l 9cc

/
NOILILYVd
YOSSAD0Ud
ALDNDAES
I A/ (drx)
> MONAIN AMOWHIN YOSSHD0Ud

NOLLLLYVd PN dd44ng PN ANIONH < qd44nd «»] LSOH LSOH

XIOWAN DIHdVIDOLIAND 1SOH
YOSSAD0Ud X — ST e b o=k

< y L2 Q 0¢
/(SNE WALSAS _ -
0zT
KIOWAN]
J ~—
¥TT 90T
y gor—1 40
| [INGNOdWOD |
SSVdAd
re~ (ANIHOVIN 4LV.LS ALINIA)
M0SSAD0Ud ALINNOAS

00T A

WO 2008/058154

3/7

START

310
~

ISSUE REQUEST

320

IS REQUEST A
HOST READ OR
WRITE?

330 BN SELECT
BYPASS MODE
390—~__| PERFORM HOST READ OR
WRITE
350
N EXECUTE CODE

FIG. 3

PCT/US2007/083828

/— 300

WO 2008/058154 PCT/US2007/083828

4/7

/— 400

410

IS REQUEST A
SECURITY
PROCESSOR READ
OR WRITE?

420

430

SELECT MEMORY ADDRESS

'

READ DATA FROM MEMORY

I
I
<o

N
W
[e)

S)]

TRANSFER DATA
TO MEMORY BUFFER

TRANSFER DATA
TO CRYPTOGRAPHIC ENGINE

'

470
DECRYPT DATA
480
TRANSFER DATA
TO HOST BUFFER
490 TRANSFER DATA
TO HOST PROCESSOR

FIG. 4

WO 2008/058154

5/7

510
520 ~_
SELECT MEMORY ADDRESS
530 —~__| TRANSFER DATA FROM HOST
PROCESSOR TO HOST
MEMORY BUFFER
540
TN TRANSFER DATA
TO CRYPTOGRAPHIC ENGINE
550 l
N ENCRYPT DATA
560
TN TRANSFER DATA
TO MEMORY BUFFER
570
B WRITE DATA
TO MEMORY ADDRESS

FIG. §

PCT/US2007/083828

/— 500

WO 2008/058154 PCT/US2007/083828

6/7
600
A | _— 628
| { OPERATING SYSTEM
|
| _— 630
| { APPLICATIONS
|
|m— e ———— —: /- 632
: ! MODULES
|
|
| "4
| L~ 614
| PROCESSING |[__ 642
| UNIT -
! | | OUTPUT [.| OUTPUT
| — ADAPTER(S) H~ DEVICE(S)
|
| __J/ SYSTEM 638 640
| MEMORY -
| i | | INTERFACE |4 | INPUT
| VOLATILE \620 PORT(S) H° DEVICE(S)
: NON ™ \‘
| VOLATILE 636
| 622 m& 61
i 2 - 650
| INTERFACE NETWORK
| = 626 || COMMUNICATION i, | | NTERFACE
| CONNECTION(S) i
| N 648
l—— - DISK A
STORAGE REMOTE
COMPUTER(S)
624
MEMORY

STORAGE

FIG. 6

WO 2008/058154 PCT/US2007/083828

77

s 700
710 720‘\

CLIENT(S) SERVER(S)
CLIENT SERVER
DATA DATA
STORE(S) STORE(S)

COMMUNICATION
FRAMEWORK

740

FIG. 7

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings

