

(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 200034032 B2
(10) Patent No. 779064

(54) Title
Photostable cosmetic light screening compositions

(51) ⁶ International Patent Classification(s)
A61K 007/44

(21) Application No: 200034032 (22) Application Date: 2000.05.11

(30) Priority Data

(31) Number (32) Date (33) Country
99109515 1999.05.12 EP

(43) Publication Date : 2000.11.23

(43) Publication Journal Date : 2000.11.23

(44) Accepted Journal Date : 2005.01.06

(71) Applicant(s)
DSM IP Assets B.V.

(72) Inventor(s)
Guy Berset; Gilbert Pittet; Joel Francois
Richard; Dominique Sidrac

(74) Agent/Attorney
Davies Collison Cave, GPO Box 3876, SYDNEY NSW 2001

(56) Related Art
EP 610026
US 5876699

Abstract.

The invention relates to a photostable cosmetic or pharmaceutical light screening composition containing a dibenzoyl methane UV-A screening agent and a p-methoxycinnamate UV-B screening agent, one of said agents being incorporated into a polymer latex; and, optionally, other conventional UV-A and UV-B screening agents.

Furthermore the invention relates to a method of photostabilizing dibenzoyl methane UV-A screening agents and p-methoxycinnamate UV-B screening agents when used together, by incorporating one of these agents into a polymer latex.

10

26

AUSTRALIA

Patents Act 1990

ORIGINAL
COMPLETE SPECIFICATION
STANDARD PATENT

Applicant(s): F Hoffmann-La Roche AG DSM IP Assets B.V.
 124 Grenzacherstrasse Het Overloon 1,
 CH-4070 Basle 6411 TE Heerlen
 Switzerland The Netherlands

Address for Service: DAVIES COLLISON CAVE
 Patent & Trade Mark Attorneys
 Level 10, 10 Barrack Street
 SYDNEY NSW 2000

Invention Title: Photostable cosmetic light screening compositions

The following statement is a full description of this invention, including the best method of performing it known to me:-

5020

The invention relates to photostable cosmetic or pharmaceutical light screening compositions for the protection of the human epidermis or hair against ultraviolet rays of wavelengths between 280 and 400 nm (UV-A/UV-B).

5 More specifically, the invention relates to photostable light screening compositions containing a dibenzoyl methane UV-A screening agent and a p-methoxycinnamate UV-B screening agent wherein one of the screening agents is incorporated into a polymer matrix.

10 The US Patent No. 5'372'804 (Chesebrough-Pond's) relates to cosmetic compositions comprising at least one light screening agent wherein the light screening agent is carried in or on polymer latex particles. The polymer latex particles effect a good deposition of the light screening agents onto hair or skin. Specifically disclosed light screening agents include benzophenone compounds, dibenzoyl methane derivatives and cinnamate derivatives such as 2-ethylhexyl-p-methoxycinnamate. (PARSOL® MCX). The polymer particles employed may be of any polymeric material which is a good film former. 15 The polymer particles may be substantially solid or may be porous and have a particle size of about 10-1000 nm. In order to get polymers having good film forming characteristics a low glass transition temperature in the region of the temperature of normal use of the cosmetic composition, approximately 30°C is required.

15 The above mentioned US Patent only teaches that light screening agents can be incorporated into a matrix achieving the advantage of enhanced deposition. Said US Patent does not address to the problem of photostability, which problem is given due to an interaction of 4-tert. butyl-4'-methoxydibenzoyl methane (PARSOL® 1789) with other

Grn 8.3.00

light screening agents under light especially with 2-ethylhexyl-p-methoxycinnamate (PARSOL® MCX).

Cosmetic light screening compositions based on dibenzoyl methane derivatives as UV-A screening agent and photostabilized with 3,3-diphenylacrylate derivatives are 5 described in the European Patent Publication EP-0 514 491 B1 and in the European Publication EP 0 780 119 A1. However, this type of stabilization does not prevent the photochemical interaction between cinnamate derivatives such as 2-ethylhexyl-p-methoxycinnamate and dibenzoyl methane derivatives such as 4-tert. butyl-4'-methoxydibenzoyl methane.

10 It has now been found that the photostability of light screening compositions containing a dibenzoyl methane UV-A screening agent and a p-methoxycinnamate UV-B screening agent is improved if one of said light screening agents is incorporated into a polymer latex.

Accordingly, in one aspect the invention is concerned with a method of 15 photostabilizing mixtures of a dibenzoylmethane UV-A screening agent and a p-methoxycinnamate UV-B screening agent in a light screening composition which method comprises incorporating one of said light screening agents into a polymer latex.

In still another aspect the present invention is concerned with a light screening 20 composition containing, based on the total weight of the composition, about 0.5 wt % to about 5 wt % of a dibenzoyl methane UV-A screening agent incorporated into a polymer latex, about 1 wt % to about 15 wt % of a p-methoxycinnamate UV-B screening agent; and optionally other conventional UV-A and UV-B screening agents.

In yet another aspect the present invention is concerned with a light screening 25 composition containing, based on the total weight of the composition, about 1 wt % to about 15 wt % of p-methoxycinnamate UV-B screening agent incorporated into a polymer latex; about 0.5 wt % to about 5 wt % of a dibenzoyl methane UV-A screening agent; and optionally other conventional UV-A and UV-B screening agents.

As far as the dibenzoyl methane UV-A screening agent is concerned, the preferred compound is 4-tert. butyl-4'-methoxydibenzoyl methane sold under the tradename PARSOL® 1789.

Other suitable compounds of this particular type are: 2-methyldibenzoyl methane, 4-methyl-dibenzoyl methane, 4-isopropyldibenzoyl methane, 4-tert-butylidibenzoyl methane, 2,4-dimethyldibenzoyl methane, 2,5-dimethyldibenzoyl methane, 4,4'-diisopropyldibenzoyl methane, 2-methyl-5-isopropyl-4'-methoxydibenzoyl methane, 2-methyl-5-tert-butyl-4'-methoxydibenzoyl methane, 2,4-dimethyl-4'-methoxydibenzoyl methane and 2,6-dimethyl-4-tert-butyl-4'-methoxydibenzoyl methane.

As used herein the term p-methoxycinnamate UV-B screening agent refers to derivatives such as 2-ethoxyethyl-p-methoxycinnamate, 2-ethylhexyl (or pentyl) p-methoxycinnamate, potassium-p-methoxycinnamate, sodium-p-methoxycinnamate, ammonium-p-methoxycinnamate, salts of primary, secondary or tertiary amines of p-methoxycinnamic acid like mono-, di-, tri-ethanol amine salt and the like. Preferred is 2-ethylhexyl-p-methoxycinnamate sold under the tradename PARSOL® MCX.

As used herein the term "polymer latex" refers to a stable colloidal dispersion of polymer particles in an aqueous or an aqueous based phase including polymers and/or copolymers of unifunctional monomers and/or multifunctional monomers. The dibenzoyl methane UV-A screening agent or the p-methoxycinnamate UV-B screening agent is incorporated into the polymer matrix.

As used herein the term "unifunctional monomers" includes C₁-C₈-alkyl(meth)acrylate, such as 2-ethyl-hexylacrylate, C₁-C₈-alkyl(meth) acrylic acid, acrylic acid, styrene, ethylene, propylene, butylene, butadiene, isoprene, isobornylmethacrylate (IBOMA), trifluoroethylmethacrylate, perfluoralkyl-2-ethylacrylate and the like.

As used herein the term "multifunctional monomers" includes allylmethacrylate (ALMA), ethyleneglycol dimethacrylate (EGDMA) and the like.

A preferred polymer latex is a stable colloidal dispersion of copolymer particles of methylmethacrylate (MMA) and acrylic acid (AA) crosslinked with allylmethacrylate (ALMA) and ethyleneglycol dimethacrylate (EGDMA) or containing isobornylmethacrylate (IBOMA) crosslinked with allylmethacrylate (ALMA).

The polymer particles can have a matrix structure within which the dibenzoyl methane UV-A screening agent or the p-methoxycinnamate UV-B screening agent is homogeneously distributed over the whole volume of the polymer particles, or the polymer particles can have a reservoir structure.

5 As used herein the term "reservoir structure" refers to particles having a polymer core surrounded by a polymer shell whereas the core contains the dibenzoyl methane UV-A screening agent or the p-methoxycinnamate UV-B screening agent.

In one aspect the core and the shell portions of the core/shell polymer particles may have the same chemical composition with regard to the monomers used. Suitable 10 monomers used are unifunctional and multifunctional monomers as listed above.

In another aspect the core and shell portions of the core/shell polymer particles may differ in their chemical composition. In this case the monomers used in the core portion of the core/shell particles may also include the unifunctional and multifunctional monomers as listed above. The monomers used in the shell portion of the core/shell particles suitably 15 include hydrophilic or fluorinated monomers.

Preferred core/shell particles include particles wherein
a) the core consists of a polymer and/or a copolymer of methylmethacrylate (MMA) and acrylic acid (AA) crosslinked with allylmethacrylate (ALMA) and ethyleneglycol dimethacrylate (EGDMA) or containing isobornylmethacrylate (IBOMA) crosslinked with
20 allylmethacrylate (ALMA); and
b) the shell consists of hydrophilic polymer or fluorinated polymer chains.

Hydrophilic polymer shells are obtainable by copolymerization of monomers containing carboxylic acid groups such as acrylic acid, methacrylic acid, monomers bearing hydroxyl groups such as e.g. hydroxy C₁-C₆-alkyl(meth)acrylate, (HEMA) and 25 acrylamides (AAm). A suitable hydroxy C₁-C₆-alkyl(meth)acrylate is hydroxyethyl-methacrylate.

Fluorinated polymer shells are obtainable by copolymerization of acrylic esters such as e.g. methylmethacrylate (MMA) or isobornylmethacrylate (IBOMA) with fluorinated monomers such as e.g. trifluorethylmethacrylate (TRIFEMA) or perfluoroalkyl-2-30 ethylacrylate (PF2EA).

The core can be surrounded by one shell or by two or more shells, whereby the first shell surrounding the core and the following shell may be formed of the same polymer or of different polymers. E. g. the first shell may be formed of a hydrophilic polymer and the following shell may be formed of a fluorinated polymer and vice versa.

5 If core and shell are not formed of the same polymer particles a two component core-shell polymer is obtained having various morphological structures as described by Chen et al. *Macromolecules* 1991, 24, 3779-3787.

The polymer particles as defined above have a glass transition temperature between about 50°C and about 100°C. The glass transition temperature can be adjusted to a given 10 value by choosing the initial content of each monomer and by crosslinking with the above mentioned multifunctional monomers. Generally, a higher content of cross-linking agent increases the glass transition temperature, while increased alkyl chain lengths in acrylate monomers result in lower glass transition temperatures of the polymer latex. Further, the 15 glass transition temperature of the polymer latex will be lowered by increased levels of the incorporated screening agent, e.g., PARSOL® 1789.

The glass transition temperature of the polymer used for the core portion may be the same or different compared to the glass transition temperature of the polymer used for the shell portion.

10 The polymer latex containing polymer particles having the dibenzoyl methane UV-A screening agent or the p-methoxycinnamate UV-B screening agent incorporated into the matrix can be produced by emulsion polymerization including a crosslinking procedure. Thus, polymer particles having a glass transition temperature > 50°C, preferably > 70°C 15 are obtained.

20 The glass transition temperature is an important parameter since the polymer particles must be in a glassy state at storage temperature to impart a high stability and tightness to the system.

25 The preparation of latex polymers by emulsion polymerization has long been known. For example, U.S. Pat. No. 5,189,107 discloses that latex polymers having uniform 30 particle size can be obtained by using latex seeds in the polymerization reaction to better control the particle size distribution.

Thus, the invention also comprises a process for the preparation of polymer particles having matrix structure within which a dibenzoyl methane UV-A-screening agent or a p-methoxycinnamate UV-B screening agent is homogeneously distributed over the whole volume of the particles, which process comprises

- 5 a) dissolving the dibenzoyl methane UV-A screening agent or the p-methoxycinnamate UV-B screening agent in a blend of monomers;
- b) pre-emulsifying the solution of step a) in an aqueous solution containing an emulsifier;
- c1) continuously introducing the pre-emulsion of step b) into a reactor containing an aqueous initiator solution or
- 10 c2) introducing a small amount of the pre-emulsion of step b) into a reactor containing an aqueous initiator solution thus, obtaining seed polymer particles and then continuously introducing the remaining pre-emulsion.

The temperature in the reactor of step c1 or c2 is from about 70°C to about 90°C

- 15 preferably about 80°C.

The latex obtained by the above described emulsion polymerization process consists of a colloidal dispersion of polymer particles having a matrix structure, within which the dibenzoyl methane UV-A screening agent or the p-methoxycinnamate UV-B screening agent is homogeneously distributed over the whole volume of the particles.

- 20 A latex containing polymer particles having a reservoir structure can be prepared by a two step emulsion polymerization process comprising a first step polymerization to obtain the core polymer particles and a second step polymerization to obtain polymer particles having at least one shell surrounding the core.

The first polymerization step can be carried out as described above in steps a), b),
25 c1) and c2).

The second polymerization step comprises another emulsion polymerization which is carried out according to steps b), c1) and c2) in the presence of the latex prepared in the first polymerization step and in the absence of light screening agents, using the same or different monomers as used in the first step.

- 30 In one embodiment of the invention the second polymerization step comprises adding monomers containing carboxylic acid groups such as acrylic acid (AA),

methacrylic acid (MAA), monomers bearing hydroxyl groups such as e.g. hydroxy C₁-C₆-alkyl(meth)acrylate, (HEMA) and acrylamides (AMD).

In another embodiment of the invention the second polymerization step comprises adding monomers containing acrylic esters such as e.g. methylmethacrylate (MMA) or

- 5 isobornylmethacrylate (IBOMA) and fluorinated monomers such as e.g. trifluorethymethacrylate (TRIFEMA) or perfluoroalkyl-2-ethylacrylate (PF2EA).

The core/shell particles of the present invention can also be prepared by an inverted core/shell polymerization process, in which the shell portion is prepared first, followed by polymerization of the core monomer in the presence of the shell materials.

10 The weight ratio of the core portion to shell portion is suitably from about 1 to 10.

Suitable emulsifiers are anionic and nonionic surfactants, preferably anionic surfactants.

Conventional anionic surfactants such as e.g. alkyl sulfates, alkyl ether sulfates, alkyl succinates, alkyl sulfosuccinates, alkyl phosphates, alkyl ether phosphates, alkyl ether carboxylates, especially their sodium, magnesium, ammonium and mono-, di- and triethanolamine salts can be used. The alkyl groups generally contain from 8 to 18 carbon atoms and may be unsaturated.

Suitable anionic surfactants are also sorbitan derivatives sold under the tradename TWEEN by ICI Americas Incorporated, Wilmington. Preferred are polyoxyethylene-sorbitan-fatty acid esters such as e.g. polyoxyethylene (20) sorbitan monolaurate which is commercialized under the tradename TWEEN 20 (ICI Chemicals).

Other suitable and preferred surfactants are ABEX® 3594 (Rhone-Poulenc) or DOWFAX® 8390 (Dow Chemical).

As used herein the term "initiator solution" refers to an aqueous solution of 25 peroxides, perphosphates, percarbonates, persulfates, organic peroxides and salts thereof. Preferred is ammonium persulfate.

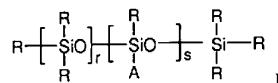
The polymer particles have a particle size of about 100 nm to about 500 nm, preferably about 100 nm to about 400 nm, more preferably about 250 nm to about 350 nm.

Where convenient the light screening composition of the present invention may further include other conventional UV-A and UV-B screening agents.

The term "conventional UV-B screening agents", i.e. substances having absorption maxima between about 290 and 320 nm, refers to the following UV-B screening agents:

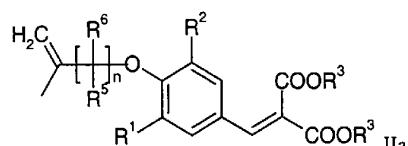
- 5 --- Acrylates such as 2-ethylhexyl 2-cyano-3,3-diphenylacrylate (octocrylene, PARSOL[®] 340), ethyl 2-cyano-3,3-diphenylacrylate and the like;
- 10 --- Camphor derivatives such as methyl benzylidene camphor (PARSOL[®] 5000), 3-benzylidene camphor, camphor benzalkonium methosulfate, polyacrylamidomethyl benzylidene camphor, sulfo benzylidene camphor, sulphomethyl benzylidene camphor, therephthalidene dicamphor sulfonic acid and the like;
- 15 --- Organosiloxane compounds containing benzomalonate groups as described in the European Patent Publications EP 0358584 B1, EP 0538431 B1 and the European Publications EP 0709080 A1 and EP 0897716 A2.
- 20 --- Pigments such as microparticulated TiO₂, and the like. The term "microparticulated" refers to a particle size from about 5 nm to about 200 nm, particularly from about 15 nm to about 100 nm. The TiO₂ particles may also be coated by metal oxides such as e.g. aluminum or zirconium oxides or by organic coatings such as e.g. polyols, methicone, aluminum stearate, alkyl silane. Such coatings are well known in the art.
- 25 --- Imidazole derivatives such as e.g. 2-phenyl benzimidazole sulfonic acid and its salts (PARSOL[®] HS). Salts of 2-phenyl benzimidazole sulfonic acid are e.g. alkali salts such as sodium- or potassium salts, ammonium salts, morpholine salts, salts of primary, sec. and tert. amines like monoethanolamine salts, diethanolamine salts and the like;
- 30 --- Salicylate derivatives such as isopropylbenzyl salicylate, benzyl salicylate, butyl salicylate, octyl salicylate (NEO HELIOPAN OS), isoctyl salicylate or homomenthyl salicylate (homosalate, HELIOPAN) and the like;
- 35 --- Triazole derivatives such as octyl triazole (UVINUL T-150), dioctyl butamido triazole (UVASORB HEB) and the like

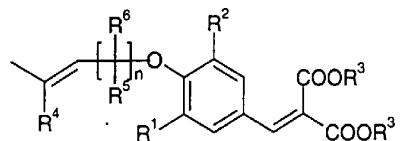
--The term "conventional UV-A screening agents", i.e. substances having absorption maxima between about 320 and 400 nm, refers to the following UV-A screening agents:


--Dibenzoyl methane derivatives such as 4-tert. butyl-4'-methoxydibenzoyl-
5 methane (PARSOL® 1789), dimethoxydibenzoyl methane, isopropyldibenzoyl methane and the like;

--Benzotriazole derivatives such as 2,2'-methylene-bis-(6-(2H-benzotriazole-2-yl)-4-(1,1,3,3,-tetramethylbutyl)-phenol (TINOSORB M) and the like;

-- Triazine derivatives such as 2,2'-[6-(4-methoxyphenyl)-1,3,5-triazine-2,4-
10 diyl]bis[5-[2-ethylhexyl) oxy]-; available under the tradename TINOSORB S from Ciba Speciality Chemicals Holding Switzerland.


-- Pigments such as microparticulated ZnO and the like. The term "microparticulated" refers to a particle size from about 5 nm to about 200 nm, particularly from about 15 nm to about 100 nm. The ZnO particles may also be coated by metal oxides such as e.g. aluminum or zirconium oxides or by organic coatings such as e.g. polyols, 15 methicone, aluminum stearate, alkyl silane. Such coatings are well known in the art.


Suitable organosiloxane compounds are those described in general in the European Patent EP 0538431 B1, namely compounds of the general formula I,

20 wherein

R signifies C_{1-6} alkyl or phenyl;
A signifies a group of the formula IIa and/or IIb;

IIb

wherein

R¹ and R² each independently signify hydrogen, hydroxy, C₁₋₆-alkyl or C₁₋₆-alkoxy;

R³ signifies C₁₋₆-alkyl;

5 R⁴ signifies hydrogen or C₁₋₆-alkyl;

R⁵ and R⁶ each independently signify hydrogen or C₁₋₆-alkyl;

r has a value of from 0 to 250;

s has a value of from 1 to 20;

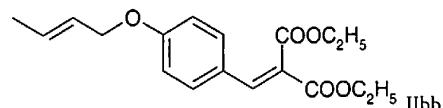
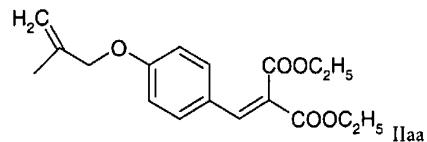
r+s has a value of at least 3;

10 n has a value from 1 to 6;

The term "C₁₋₆-alkyl" refers to groups such as methyl, ethyl, propyl, isopropyl, butyl, sec. butyl, isobutyl, pentyl and neopentyl.

The term "C₁₋₆-alkoxy" refers to the corresponding alkoxy groups.

15 The residues R are preferably methyl.

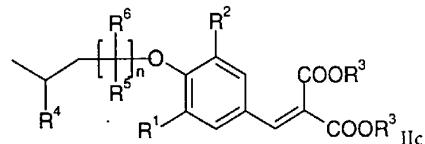


The residues R¹ and R² are preferably hydrogen, methoxy or ethoxy, more preferably hydrogen, or one of R¹ and R² is hydrogen and the other is methyl, methoxy or ethoxy.

The residues R³ are preferably methyl or ethyl, more preferably ethyl.

Preferably, R⁴ is hydrogen or methyl, R⁵ and R⁶ are hydrogen and n is 1.

20 Among the above described organosiloxanes the following organosiloxane compound of the general formula I described in the European Patent Publication EP 0709080 A1 and hereinafter referred to as "Polysiloxane A" is preferred. Polysiloxane A is a compound of the above formula I, wherein

R signifies methyl;
A signifies a group of the formula IIa and/or IIb;


5 r is a statistical mean of about 4;
s is a statistical mean of about 60.

In case A signifies a group of the formula (IIa and IIb) or of the formula (IIaa and IIbb) respectively, the ratio of polysiloxane units having a chromophor residue A of the formula IIa or IIaa respectively, to those having a chromophor residue A of the formula 10 IIb or IIbb respectively, is not critical.

Other suitable organosiloxane compounds are those described in the European Patent EP 0358584 B1, namely e.g. compounds of the general formula I wherein

R signifies methyl;
A signifies a group of the formula IIc

15

wherein R¹-R⁶ and n are as described above.

The preparation of novel light screening compositions, especially of preparations for skin protection and, respectively, sunscreen preparations for everyday cosmetics is well 20 known to the skilled artisan in this field and comprises incorporating the polymer latex containing the dibenzoyl methane UV-A screening agent or the p-methoxycinnamate UV-

B screening agent optionally together with other conventional UV-B screening agents and/or conventional UV-A screening agents as described above in a cosmetic base which is usual for light screening agents.

In a cosmetic composition of the invention the polymer latex particles act as carrier

5 for the dibenzoyl methane UV-A screening agent or for the p-methoxycinnamate UV-B screening agent.

The solid content of polymer particles in the latex is suitably from about 10 wt % to about 50 wt %.

The latex contains the dibenzoyl methane UV-A screening agent suitably in an

10 amount of from about 5 wt % to about 30 wt %, preferably from about 5 wt % to about 15 wt %, more preferably from about 6 wt % to about 10 wt % or the latex contains the p-methoxycinnamate UV-B screening agent in an amount of from about 1 wt % to about 15 wt %, preferably from about 2 wt % to about 8 wt %, more preferably about 5 wt %.

The amount of conventional UV-B screening agents and/or conventional UV-A

15 screening agents is not critical. Suitable amounts are e.g.

"Polysiloxane A":	about 0.5 to about 15wt%,
PARSOL® 340:	about 0.5 to about 10wt%,
PARSOL® 5000:	about 0.5 to about 4wt%,
PARSOL® HS	about 0.5 to about 10 wt %
20 TINOSORB M :	about 0.5 to about 10wt%,
TiO ₂ :	about 0.5 to about 25wt%,
ZnO:	about 0.5 to about 20wt%.

The light screening compositions of the present invention can be used as cosmetic or pharmaceutical formulations. The term "cosmetic" as used herein denotes topical

25 formulations that are intended for the maintainance, improvement or restoration of skin and hair. The term "pharmaceutical" as used herein denotes topical formulations that are intended for therapy and prophylaxis of diseases and includes formulations that contain active ingredients which exert a medicinal effect.

Suitably the compositions of this invention take the form of a lotion, a gel, a solid

30 stick, an emulsion, e.g. cream, milk or of a vesicular dispersion of ionic or nonionic amphiphilic lipids, an aerosol, a spray, a foam, a powder, a shampoo, a hair conditioner or

lacquer or a make-up, etc., see also, Sunscreens, Development, Evaluation and Regulatory Aspects, ed. N.Y. Lowe, N.A. Shaath, Marcel Dekker, Inc. New York and Basel, 1990.

The usual excipients and auxiliary agents known to the skilled practitioner can be used for the preparation of these forms, e.g. oils, waxes, alcohols, polyols, etc., particularly 5 fatty acids, esters, fatty alcohols, but also ethanol, isopropanol, propylene glycol, glycerine, etc.

The formulations may contain further adjuvants, e.g. further solvents, thickeners, emollients, emulsifiers, humectants, tensides, preservatives, antifoams, fragrances, oils, waxes, lower polyols and monohydric alcohols, propellants, silicones, colourings and 10 pigments, etc.

For protection of the hair, the suitable formulations are shampoos, conditioners, lotions, gels, emulsions, dispersions, lacquers, etc.

The preparation of all these formulations is well known to the skilled artisan in this field.

15 The following examples explain the invention in more detail but do not limit its scope in any manner.

Example 1

Determination of the glass transition temperature

Polymer film was prepared from the latex. The latex was dried and water evaporation 20 gave rise to coalescence of the loaded polymer particles and formation of a cracked film. The glass transition temperature was measured by Differential Scanning Calorimetry (DSC) performed with a DSC Mettler TC11 equipment. Film samples were scanned in sealed aluminum pans in the 30°C/130°C temperature range, at a heating rate of 10°C/min.

Example 2

25 Determination of the particle loading

The quantity of dibenzoyl methane UV-A screening agent (loading) incorporated into the polymer particles was determined as follows:

The measurement of PARSOL® 1789 content within the particles (particle loading) was performed using an UV spectrometer working at a wavelength of 357 nm. A known amount of polymer film was introduced in a flask containing tetrahydrofuran (THF). This solvent swelled the latex microparticles and solubilized the encapsulated PARSOL® 1789. The absorption of PARSOL® 1789 was measured and compared with reference solution samples (calibration curve) to determine the actual PARSOL® 1789 content in the polymer film. The incorporation rate is defined as the ratio of the PARSOL® 1789 weight incorporated into the polymer particles (measured using UV-technique) over the polymer weight. The encapsulation yield is defined as the ratio of the PARSOL® 1789 weight incorporated into the polymer particles (measured using UV-technique) over the total weight of PARSOL® 1789 introduced.

Example 3

Determination of the photostabilizing effect

The photostabilizing effect was measured by the hereafter described method. The amount of latex necessary to get the equivalent of 1wt % PARSOL® 1789 was calculated from the solid content and the PARSOL® 1789 loading measured, 2wt % of PARSOL® MCX was added, 30% TWEEN 20 was added and finally completed to 100 wt % with distilled water.

20 mg of the above prepared solution were spread on a glass plate (10 cm²). After a drying time of 30 minutes, three identical samples were irradiated with 10 MED. The samples were then immersed in THF and placed in an ultrasound for 15 minutes. The THF of the three samples together was evaporated and 2 ml of methanol was added to the evaporate. The sample was finally filtered and analyzed by HPLC.

Example 4

Preparation of a latex containing EGDMA

Step a) Solution of PARSOL® 1789

5 A solution of 58.9 g of PARSOL® 1789 was prepared in the blend of the following monomers: 303.9 g MMA, 9.4 g AA, 4.7 g ALMA, 15.7g EGDMA.

Step b) Pre-emulsion

In a polyethylene vessel, 120.1 g of demineralized water were mixed with 5.9 g of an aqueous solution of ABEX ® 3594 surfactant (36% solid content) under gentle stirring.

10 The PARSOL® 1789 solution of step a) was continuously added to the aqueous mixture under stirring (8000 rpm) during 30 minutes.

Step c2) Polymerization

3 wt % of the pre-emulsion and a solution of ammonium persulfate were fed into the water containing reactor and heated at 80°C. After 15 minutes the remaining pre-emulsion

15 was continuously added for 3 hours and 30 minutes at 80°C. Then the latex was cured at 80°C for 120 minutes. The reactor temperature was decreased to 60°C and a redox system (tert. butyl hydroperoxyde/Na₂S₂O₅) was fed into the reactor to eliminate residual monomers. The temperature was maintained at 60°C for 30 minutes. Finally the latex was cooled to room temperature, filtered through a 50 µm sieve and neutralized to pH 7.3 with

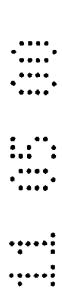
20 NaOH 20wt %. The solid content of the latex was 46.1wt%. The particle size of the polymer particles in the latex was about 260 nm. The glass transition temperature was 83.5 °C.

The PARSOL® 1789 content was 12.9 wt % in the solid part of the latex and 6 wt % in the latex.

Example 5

Preparation of a latex containing IBOMA

Step a) Solution of PARSOL® 1789


5 A solution of 58.9 g of PARSOL® 1789 was prepared in the blend of the following monomers: 249.5 g MMA, 9.7 g AA, 9.7 g ALMA, 64.8 g IBOMA.

Step b) Pre-emulsion

In a polyethylene vessel, 132.8 g of demineralized water were mixed with 5.9 g of an aqueous solution of ABEX ® 3594 surfactant (36% solid content) under gentle stirring.

10 The PARSOL® 1789 solution of step a) was continuously added to the aqueous mixture under stirring (8000 rpm) during 30 minutes.

Step c2) Polymerization

3 wt % of the pre-emulsion and initiator solution were charged into the water containing reactor and heated at 80°C. After 15 minutes the remaining pre-emulsion was continuously added for 3 hours and 30 minutes at 80°C. Then the latex was cured at 80°C for 120 minutes. The reactor temperature was decreased to 60°C and a redox system (tert. butyl hydroperoxyde/Na₂S₂O₅) was fed into the reactor to eliminate residual monomers. The temperature was maintained at 60°C for 30 minutes. Finally the latex was cooled to room temperature, filtered through a 50 µm sieve and neutralized to pH 7.3 with NaOH

20 20wt %. The solid content of the latex was 45.2 wt %. The particle size of the polymer particles in the latex was about 303 nm. The glass transition temperature was 90.0 °C.

The PARSOL® 1789 content was 13.3 wt % in the solid part of the latex and 6 wt % in the latex.

Example 6

In analogy to Example 4, compositions of modified polymer matrices including functional hydrophilic monomers in the polymerisation step were prepared. The compositions and 5 results are shown in Table I below:

Table I

No.	% MMA	% AA	% ALMA	% EGDMA	hydrophilic monomer %	Tg °C	Parsol®1789 measured %	solids measured %	mean diameter nm
i	85	3	1.5	5	HEMA - 5.5	83.8	13.1	46.6	275
ii	88.5	3	1.5	5	HEMA - 2	93.5	15	43.9	262
iii	88.5	3	1.5	5	HPMA - 2	89.8	12.8	47.2	269
iv	88.5	3	1.5	5	AMPS - 2	85.6	12.4	46.2	287
v	88.5	3	1.5	5	AA - 5	113.3	12.4	44.5	264
vi	88.5	3	1.5	5	AMD - 1	89	12.5	45.5	256

Example 7

10 In analogy to the process of Example 4, but adding a hydrophilic monomer (methacrylic or acrylic acid) after the introduction of 80 % of the pre-emulsion the compositions as in Table II were prepared:

Table II

No.	% MMA	% AA	% ALMA	% EGDMA	hydrophilic monomer %	Tg °C	Parsol®1789 measured %	solids measured %	mean diameter nm
vii	86.5	3	2	5	AA - 3.5	79.5	14.3	45.3	336
viii	86.5	3	1.5	5	AMA - 3.5	86.5	12	45.9	303

Example 8

Core-shell nanoparticles were prepared by a two-step emulsion polymerization process. A dispersion of nanoparticles (prepared in analogy to Example 4 using DOWFAX 8390 as the surfactant in the pre-emulsion) is used as a seed to polymerize a polymer shell around the core particles so as to produce a polymer membrane free of screening agent and including hydrophilic monomers. Several blends of monomers were used as summarized in Table III below:

5

Table III

Blend	MMA	MAA	HEMA	EGDMA	ALMA
1	41 %	15 %	40 %	2 %	2 %
2	61 %	10 %	25 %	2 %	2 %
3	73.5 %	7.5 %	15 %	2 %	2 %
4	81 %	15 %	-	2 %	2 %

10

The polymerization process of the shell is performed as described without dilution of the seed latex. However, the same amount of water as the amount of monomers used in the preparation of the polymer shell is added to the polymerization reaction to form the shell. Therefore, the seed latex and the final core-shell latex display the same solid content. The 15 compositions and the results obtained are given in Table IV:

Table IV

Sample	Seed Latex % SC* %PARSOL® 1789	Monomer Blend No. % added	Tg °C	PARSOL®1789 measured (%)	Solid Content measured (%)	Mean diameter (nm)
ix	30 20	1 10	75.1	15.4	30.3	137
			102.1			
x	40 15	2 20	88.9	9.4	37.5	281
			140.9			
xi	40 15	4 20	95.4	9.9	38.9	367
			137.4			
xii	50 15	3 20	95.8	10.6	47.2	315
			140.4			
xiii	50 20	3 20	87.6	13	46.4	318
			135.2			
xiv	50 20	4 20	89.9	14	46.8	314
			110.5			

SC* solid content

These latices exhibit two glass transition temperatures Tg, the first Tg pertaining to the

5 core polymer and the second Tg pertaining to the shell polymer.

Example 9

A latex wherein PARSOL® MCX is incorporated into the polymer particles was prepared in an analogous manner as described in Examples 4 and 5.

The following Examples 10 and 11 refer to sunscreen compositions. The
10 abbreviations and trade names selected have the following significance:

ARLACEL P135	PEG-30 dipolyhydroxystearate sold by ICI
ARLAMOL E	POP-(15)-stearyl alcohol sold by ICI
ARLAMOL HD	Heptamethylnonane sold by ICI
BHT	Butylhydroxytoluol (2,6 di-tert butyl-4-methyl phenol)
BRIJ 72	POE-(2)-stearyl alcohol sold by ICI
BRIJ 721	POE-(21)-stearyl alcohol sold by ICI
EDETA BD	Disodium EDTA sold by BASF
LANETTE O	Cetearyl alcohol sold by Henkel
PARSOL® 340	Octocrylene sold by Roche
PARSOL® 1789	Butyl methoxydibenzoylmethane sold by Roche
PARSOL® 5000	Methyl benzylidene camphor sold by Roche
PARSOL® HS	Phenyl benzimidazole sulfonic acid sold by Roche
PARSOL® MCX	2-Ethylhexyl-p-methoxycinnamate sold by Roche
PHENONIP	Phenoxyethanol (and) methylparaben (and) butylparaben (and) ethylparaben (and) propylparaben sold by NIPA
Propylene glycol	1,2 propanediol sold by BASF
SILBIONE oil 70047 V20	Cyclomethicone sold by Rhône-Poulenc
SILICONE 1401 Fluid	Cyclomethicone & dimethiconol sold by Dow Corning
SILICONE 5225 C Formulation Aid	Cyclopentasiloxane & dimethicone copolyol sold by Dow Corning
SILICONE DC 344	Cyclomethicone sold by Dow Corning
SILICONE DC 5200	Dimethicone copolyol sold by Dow Corning
UMORDANT P	Na-Lactate & Na-PCA & urea & hydrolyzed vegetable protein & Aspa.

Example 10

Preparation of a sunscreen O/W lotion containing 23 wt % encapsulated PARSOL® 1789 prepared according to Ex. 4.

<u>Ingredients</u>	<u>% w/w</u>
ARLAMOL E	5.00
ARLAMOL HD	5.00
BRIJ 72	3.00
BRIJ 721	2.00
ARLACEL P135	0.50
LANETTE O	5.00
Stearic Acid	1.50
SILBIONE Oil 70047V20	1.00
BHT	0.10
PHENONIP	0.60
Deionized Water qsp to	100.00
Xanthan Gum 1% solution	6.00
Propylene Glycol	4.00
UMORDANT P	1.00
PARSOL® 1789 encapsulated	23.00
PARSOL® MCX	5.00

5

The organic phase containing the UV-filters was heated to 75°C, then the pre-heated aqueous phase (75° C) was added while stirring. The resulting emulsion was cooled to ambient temperature.

Example 11

Preparation of a sunscreen O/W lotion containing 23 wt % encapsulated PARSOL® 1789 prepared according to Ex. 4.

	<u>Ingredients</u>	<u>%w/w</u>
5	SILICONE 1401 Substantivity Aid Fluid	10.00
	SILICONE 3225C Formulation Aid	10.00
	SILICONE DC 344	10.00
	SILICONE DC 5200	2.00
10	EDETA BD	0.10
	PHENONIP	0.60
	PARSOL® HS	3.00
	Glycerol	5.00
	Deionized Water qsp to	100.00
15	PARSOL® 1789 encapsulated	23.00
	Sodium Hydroxyde 10% qsp	pH 7

The organic phase containing the UV-filters was heated to 75°C, then the pre-heated aqueous phase (75° C) was added while stirring. The resulting emulsion was cooled to ambient temperature.

- 22A -

Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or 5 steps.

The reference to any prior art in this specification is not, and should not be taken as, an acknowledgment or any form of suggestion that that prior art forms part of the common general knowledge in Australia.

10

B
B
P

S
A
M
D
P

The claims defining the invention are as follows:

1. A photostable cosmetic or pharmaceutical light screening composition containing a dibenzoyl methane UV-A screening agent and a p-methoxycinnamate UV-B screening agent wherein one of the screening agents is incorporated into a polymer matrix.
2. A light screening composition as in claim 1 containing about 0.5 wt % to about 5 wt % of a dibenzoyl methane UV-A screening agent incorporated into a polymer latex; about 1 wt % to about 15 wt % of a p-methoxycinnamate UV-B screening agent; and optionally other conventional UV-A and UV-B screening agents.
- 10 3. A light screening composition as in claim 1 containing about 1 wt % to about 15 wt % of a p-methoxycinnamate UV-B screening agent incorporated into a polymer latex; about 0.5 wt % to about 5 wt % of a dibenzoyl methane UV-A screening agent; and optionally other conventional UV-A and UV-B screening agents.
- 15 4. A light screening composition according to any one of claims 1 to 3, wherein the dibenzoyl methane UV-A screening agent is 4-tert. butyl-4'-methoxydibenzoyl methane and the p-methoxycinnamate UV-B screening agent is 2-ethylhexyl p-methoxycinnamate.
- 20 5. A light screening composition according to any one of claims 1 to 4, wherein the polymer latex is a stable colloidal dispersion of polymer particles in an aqueous or an aqueous based phase including polymers and/or copolymers of unifunctional monomers and/or multifunctional monomers.
- 25 6. A light screening composition according to claim 5, wherein the unifunctional monomer is selected from C₁-C₈-alkyl(meth)acrylate, C₁-C₈-alkyl(meth) acrylic acid, acrylic acid, styrene, ethylene, propylene, butylene, butadiene, isoprene, isobornylmethacrylate (IBOMA), trifluoroethylmethacrylate or perfluoralkyl-2-ethylacrylate.
7. A light screening composition according to claim 5, wherein the multifunctional monomer is selected from allylmethacrylate (ALMA) or ethyleneglycol dimethacrylate (EGDMA).

8. A light screening composition according to any one of claims 5 to 7, wherein the polymer particles have a glass transition temperature between about 50°C and about 100°C.

9. A light screening composition according to any one of claims 1 to 8, wherein the 5 polymer latex is a stable colloidal dispersion of copolymer particles of methylmethacrylate (MMA) and acrylic acid (AA) crosslinked with allylmethacrylate (ALMA) and ethyleneglycol dimethacrylate (EGDMA) or containing isobornylmethacrylate (IBOMA) crosslinked with allylmethacrylate (ALMA).

10. A light screening composition according to any one of claims 5 to 9, wherein the 10 polymer particles have a matrix structure within which the dibenzoyl methane UV-A screening agent or the p-methoxycinnamate UV-B screening agent is homogeneously distributed over the whole volume of the particles.

11. A light screening composition according to any one of claims 5 to 9, wherein the 15 polymer particles have a polymer core surrounded by a polymer shell whereas the core contains the dibenzoyl methane UV-A screening agent or the p-methoxycinnamate UV-B screening agent.

12. A light screening composition according to claim 11, wherein the core and the shell portions of the core/shell polymer particles have the same chemical composition with regard to the monomers used.

20 13. A light screening composition according to claim 11, wherein the core and shell portions of the core/shell particles differ in their chemical composition.

14. A light screening composition according to claim 13, wherein

a) the core consists of a polymer and/or a copolymer of methylmethacrylate (MMA) and acrylic acid (AA) crosslinked with allylmethacrylate (ALMA) and ethyleneglycol 25 dimethacrylate (EGDMA) or containing isobornylmethacrylate (IBOMA) crosslinked with allylmethacrylate (ALMA); and
b) the shell consists of hydrophilic polymer or fluorinated polymer chains.

15. A light screening composition according to any one of claims 1-14 for use as a cosmetic or pharmaceutical for human skin or hair

16. A process for preparing the polymer latex wherein the polymer particles have matrix structure, within which the dibenzoyl methane UV-A screening agent or the p-methoxycinnamate UV-B screening agent is homogeneously distributed over the whole volume of the particles, which process consists of

- 5 a) dissolving the dibenzoyl methane UV-A screening agent or the p-methoxycinnamate UV-B screening agent in a blend of monomers;
- b) pre-emulsifying the solution of step a) in an aqueous solution containing an emulsifier;
- c1) continuously introducing the pre-emulsion of step b) into a reactor containing an aqueous initiator solution or
- 10 c2) introducing a small amount of the pre-emulsion of step b) into a reactor containing an aqueous initiator solution thus, obtaining seed polymer particles and then continuously introducing the remaining pre-emulsion.

17. A process for preparing the polymer latex wherein the polymer particles have a polymer core surrounded by a polymer shell which process consists of a two step emulsion polymerization process comprising a first step polymerization to obtain the core polymer particles and a second step polymerization to obtain polymer particles having at least one shell surrounding the core.

18. A method of photostabilizing mixtures of a dibenzoylmethane UV-A screening agent and a p-methoxycinnamate UV-B screening agent in a light screening composition which method comprises incorporating one of said light screening agents into a polymer latex.

19. The invention substantially as described hereinbefore especially with reference to the Examples.

DATED this NINTH day of MAY 2000
F. HOFFMANN-LA ROCHE AG DSM IP Assets B.V.

By its Patent Attorney
DAVIES COLLISON CAVE