(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number WO 2017/029576 A1

(43) International Publication Date 23 February 2017 (23.02.2017)

(51)	International Patent Classification:		
	H01L 21/336 (2006.01)	H01L 27/06 (2006.01)	
	C01B 21/082 (2006.01)	H01L 27/08 (2006.01)	
	C23C 16/34 (2006.01)	H01L 27/088 (2006.01)	
	G02F 1/1368 (2006.01)	H01L 27/146 (2006.01)	
	G09F 9/00 (2006.01)	H01L 29/786 (2006.01)	
	H01L 21/28 (2006.01)	H01L 51/50 (2006.01)	
	H01L 21/318 (2006.01)	H05B 33/14 (2006.01)	
	H01L 21/8234 (2006.01)		

(21) International Application Number:

PCT/IB2016/054765

(22) International Filing Date:

8 August 2016 (08.08.2016)

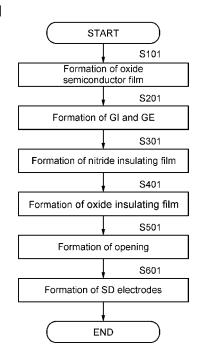
(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:


2015-161583	19 August 2015 (19.08.2015)	JP
2015-167792	27 August 2015 (27.08.2015)	JP
2015-195546	1 October 2015 (01.10.2015)	JP
2016-120042	16 June 2016 (16.06.2016)	JP
	,	

- (71) Applicant: SEMICONDUCTOR ENERGY LABORAT-ORY CO., LTD. [JP/JP]; 398, Hase, Atsugi-shi, Kanagawa 2430036 (JP).
- (72) Inventors: KOEZUKA, Junichi; c/o SEMICONDUCT-OR ENERGY LABORATORY CO., LTD., 398, Hase, Atsugi-shi, Kanagawa 2430036 (JP). JINTYOU, Masami. KUROSAKI, Daisuke. SHIMA, Yukinori. OBONAI, Toshimitsu.
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,

[Continued on next page]

(54) Title: MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE

FIG. 1

(57) Abstract: A method for manufacturing a semiconductor device has a first step including a step of forming an oxide semiconductor film, a second step including a step of forming a gate insulating film over the oxide semiconductor film and a step of forming a gate electrode over the gate insulating film, a third step including a step of forming a nitride insulating film over the oxide semiconductor film and the gate electrode, a fourth step including a step of forming an oxide insulating film over the nitride insulating film, a fifth step including a step of forming an opening in the nitride insulating film and the oxide insulating film, and a sixth step including a step of forming source and drain electrodes over the oxide insulating film so as to cover the opening. In the third step, the nitride insulating film is formed through at least two steps: plasma treatment and deposition treatment. The two steps are each performed at a temperature higher than or equal to 150 deg C and lower than 300 deg C.

TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

with international search report (Art. 21(3))

DESCRIPTION

PCT/IB2016/054765

MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE

5 TECHNICAL FIELD

[0001]

One embodiment of the present invention relates to a method for manufacturing a semiconductor device including an oxide semiconductor film.

[0002]

10

15

20

Note that one embodiment of the present invention is not limited to the above technical field. The technical field of one embodiment of the invention disclosed in this specification and the like relates to an object, a method, or a manufacturing method. In addition, the present invention relates to a process, a machine, manufacture, or a composition of matter. In particular, one embodiment of the present invention relates to a semiconductor device, a display device, a light-emitting device, a power storage device, a memory device, a driving method thereof, or a manufacturing method thereof.

[0003]

In this specification and the like, a semiconductor device generally means a device that can function by utilizing semiconductor characteristics. A semiconductor element such as a transistor, a semiconductor circuit, an arithmetic device, and a memory device are each one embodiment of a semiconductor device. An imaging device, a display device, a liquid crystal display device, a light-emitting device, an electro-optical device, a power generation device (including a thin film solar cell, an organic thin film solar cell, and the like), and an electronic device may each include a semiconductor device.

25

30

35

BACKGROUND ART

[0004]

Attention has been focused on a technique for forming a transistor using a semiconductor thin film formed over a substrate having an insulating surface (also referred to as a field-effect transistor (FET) or a thin film transistor (TFT)). Such transistors are used for a wide range of electronic devices such as an integrated circuit (IC) and an image display device (display device). A semiconductor material typified by silicon is widely known as a material for a semiconductor thin film that can be used for a transistor. As another material, an oxide semiconductor has been attracting attention.

For example, a technique for forming a transistor using an amorphous oxide containing In, Zn, Ga, Sn, and the like as an oxide semiconductor is disclosed (see Patent Document 1). In addition, a technique for forming a self-aligned top-gate transistor using an oxide thin film is disclosed (see Patent Document 2).

5 [0006]

Furthermore, a semiconductor device including, as a base insulating layer of an oxide semiconductor layer in which a channel is formed, an insulating layer that releases oxygen by heating to reduce oxygen vacancies in the oxide semiconductor layer is disclosed (see Patent Document 3).

10 [Reference]

[Patent Documents]

[0007]

[Patent Document 1] Japanese Published Patent Application No. 2006-165529

[Patent Document 2] Japanese Published Patent Application No. 2009-278115

15 [Patent Document 3] Japanese Published Patent Application No. 2012-009836

DISCLOSURE OF INVENTION

[8000]

20

25

30

35

As examples of a transistor including an oxide semiconductor film, an inverted staggered transistor (also referred to as a bottom-gate transistor) and a staggered transistor (also referred to as a top-gate transistor) can be given. In the case where a transistor including an oxide semiconductor film is used for a display device, an inverted staggered transistor is used more often than a staggered transistor because its manufacturing process is relatively simple and its manufacturing cost is low. However, an increase in the screen size of a display device or an increase in the resolution of an image on a display device (e.g., a high-resolution display device typified by a 4K × 2K display device (3840 pixels in the horizontal direction and 2160 pixels in the vertical direction) or an 8K × 4K display device (7680 pixels in the horizontal direction and 4320 pixels in the vertical direction)) might cause parasitic capacitance between a gate electrode and source and drain electrodes in an inverted staggered transistor. Depending on the value of the parasitic capacitance, a signal delay or the like becomes more severe, leading to degradation of the display quality of the display device. Thus, regarding a staggered transistor including an oxide semiconductor film, a structure with stable semiconductor characteristics and high reliability is desired to be developed.

[0009]

Furthermore, in the case where a transistor is formed using an oxide semiconductor film

for a channel region, an oxygen vacancy which is formed in the channel region of the oxide semiconductor film adversely affects the transistor characteristics. For example, the oxygen vacancy in the channel region of the oxide semiconductor film causes carrier generation. The carrier generation in the channel region of the oxide semiconductor film causes a change in the electrical characteristics, typically, a shift of the threshold voltage, of the transistor including the channel region in the oxide semiconductor film. Furthermore, there is a problem in that electrical characteristics vary among transistors. Therefore, it is preferable that the number of oxygen vacancies in the channel region of the oxide semiconductor film be as small as possible. Meanwhile, in the transistor formed using the oxide semiconductor film for the channel region, the oxide semiconductor film in regions in contact with a source electrode and a drain electrode preferably includes a large number of oxygen vacancies and has low resistance to reduce the contact resistance of the oxide semiconductor film with the source electrode and the drain electrode.

[0010]

5

10

15

20

25

35

In view of the foregoing problems, an object of one embodiment of the present invention is to prevent variation in electrical characteristics of a transistor including an oxide semiconductor and to improve the reliability of the transistor. Another object of one embodiment of the present invention is to provide a staggered transistor including an oxide semiconductor. Another object of one embodiment of the present invention is to provide a transistor including an oxide semiconductor and having high on-state current. Another object of one embodiment of the present invention is to provide a transistor including an oxide semiconductor and having low off-state current. Another object of one embodiment of the present invention is to provide a semiconductor device with low power consumption. Another object of one embodiment of the present invention is to provide a novel semiconductor device.

[0011]

Note that the description of the above objects does not preclude the existence of other objects. One embodiment of the present invention does not necessarily achieve all the objects. Other objects are apparent from and can be derived from the description of the specification and the like.

30 [0012]

One embodiment of the present invention is a method for manufacturing a semiconductor device including first to sixth steps. The first step includes a step of forming an oxide semiconductor film. The second step includes a step of forming a gate insulating film over the oxide semiconductor film and a step of forming a gate electrode over the gate insulating film. The third step includes a step of forming a nitride insulating film over the oxide

semiconductor film and the gate electrode. The fourth step includes a step of forming an oxide insulating film over the nitride insulating film. The fifth step includes a step of forming an opening in the nitride insulating film and the oxide insulating film. The sixth step includes a step of forming a source electrode and a drain electrode over the oxide insulating film so as to cover the opening. In the third step, the nitride insulating film is formed through at least two steps: plasma treatment and deposition treatment. The two steps are each performed at a temperature higher than or equal to 150 °C and lower than 300 °C.

[0013]

5

10

15

20

25

In the above embodiment, the gate electrode is preferably formed using an oxide semiconductor film or an oxide conductor film.

[0014]

Another embodiment of the present invention is a method for manufacturing a semiconductor device including first to eighth steps. The seventh step includes a step of forming a first gate electrode. The eighth step includes a step of forming a first gate insulating film over the first gate electrode. The first step includes a step of forming an oxide semiconductor film over the first gate insulating film. The second step includes a step of forming a second gate insulating film over the oxide semiconductor film and a step of forming a second gate electrode over the second gate insulating film. The third step includes a step of forming a nitride insulating film over the oxide semiconductor film and the second gate electrode. The fourth step includes a step of forming an oxide insulating film over the nitride insulating The fifth step includes a step of forming an opening in the nitride insulating film and the oxide insulating film. The sixth step includes a step of forming a source electrode and a drain electrode over the oxide insulating film so as to cover the opening. In the third step, the nitride insulating film is formed through at least two steps: plasma treatment and deposition treatment. The two steps are each performed at a temperature higher than or equal to 150 °C and lower than 300 °C.

[0015]

In the above embodiment, the second gate electrode is preferably formed using an oxide semiconductor or an oxide conductor.

30 [0016]

In the above embodiment, the plasma treatment is preferably performed in an argon gas atmosphere. In the above embodiment, the deposition treatment is preferably performed using a silane gas, a nitrogen gas, and an ammonia gas. In the above embodiment, the nitride insulating film is preferably formed with a plasma CVD apparatus.

According to one embodiment of the present invention, variation in electrical characteristics of a transistor including an oxide semiconductor can be prevented and the reliability of the transistor can be improved. According to another embodiment of the present invention, a staggered transistor including an oxide semiconductor can be provided. According to another embodiment of the present invention, a transistor including an oxide semiconductor and having high on-state current can be provided. According to another embodiment of the present invention, a transistor including an oxide semiconductor and having low off-state current can be provided. According to another embodiment of the present invention, a semiconductor device with low power consumption can be provided. According to another embodiment of the present invention, a novel semiconductor device can be provided.

[0018]

5

10

15

20

30

35

Note that the description of these effects does not preclude the existence of other effects. One embodiment of the present invention does not necessarily have all the effects. Other effects are apparent from and can be derived from the description of the specification, the drawings, the claims, and the like.

BRIEF DESCRIPTION OF DRAWINGS

[0019]

- FIG. 1 is a process flow chart showing a method for manufacturing a semiconductor device.
 - FIG. 2 is a process flow chart showing a method for manufacturing a semiconductor device.
 - FIGS. 3A to 3C are a top view and cross-sectional views illustrating a semiconductor device.
- FIGS. 4A to 4C are a top view and cross-sectional views illustrating a semiconductor device.
 - FIGS. 5A and 5B are cross-sectional views illustrating a semiconductor device.
 - FIGS. 6A and 6B are cross-sectional views illustrating a semiconductor device.
 - FIGS. 7A and 7B are cross-sectional views illustrating a semiconductor device.
 - FIGS. 8A and 8B are cross-sectional views illustrating a semiconductor device.
 - FIGS. 9A and 9B are cross-sectional views illustrating a semiconductor device.
 - FIGS. 10A and 10B are cross-sectional views illustrating a semiconductor device.
 - FIGS. 11A and 11B are cross-sectional views illustrating a semiconductor device.
 - FIGS. 12A and 12B are cross-sectional views illustrating a semiconductor device.
 - FIGS. 13A and 13B are cross-sectional views illustrating a semiconductor device.

FIGS. 14A to 14C illustrate band structures.

10

15

25

30

- FIGS. 15A to 15D are cross-sectional views illustrating a method for manufacturing a semiconductor device.
- FIGS. 16A to 16C are cross-sectional views illustrating a method for manufacturing a semiconductor device.
 - FIGS. 17A and 17B are cross-sectional views illustrating a method for manufacturing a semiconductor device.
 - FIGS. 18A to 18D are cross-sectional views illustrating a method for manufacturing a semiconductor device.
 - FIGS. 19A to 19C are cross-sectional views illustrating a method for manufacturing a semiconductor device.
 - FIGS. 20A to 20C are cross-sectional views illustrating a method for manufacturing a semiconductor device.
 - FIGS. 21A to 21E show structural analysis of a CAAC-OS and a single crystal oxide semiconductor by XRD and selected-area electron diffraction patterns of a CAAC-OS.
 - FIGS. 22A to 22E show a cross-sectional TEM image and plan-view TEM images of a CAAC-OS and images obtained through analysis thereof.
 - FIGS. 23A to 23D show electron diffraction patterns and a cross-sectional TEM image of an nc-OS.
- FIGS. 24A and 24B show cross-sectional TEM images of an a-like OS.
 - FIG. 25 shows a change in a crystal part of an In-Ga-Zn oxide induced by electron irradiation.
 - FIG. 26 is a top view illustrating one embodiment of a display device.
 - FIG. 27 is a cross-sectional view illustrating one embodiment of a display device.
 - FIG. 28 is a cross-sectional view illustrating one embodiment of a display device.
 - FIG. 29 is a cross-sectional view illustrating one embodiment of a display device.
 - FIGS. 30A to 30C are a top view and cross-sectional views illustrating one embodiment of a semiconductor device.
 - FIGS. 31A to 31C are a top view and cross-sectional views illustrating one embodiment of a semiconductor device.
 - FIGS. 32A to 32C are a top view and cross-sectional views illustrating one embodiment of a semiconductor device.
 - FIGS. 33A to 33C are a top view and cross-sectional views illustrating one embodiment of a semiconductor device.
- FIGS. 34A to 34D are cross-sectional views illustrating embodiments of a

semiconductor device.

5

10

25

- FIG. 35 illustrates a circuit configuration of a semiconductor device.
- FIG. 36A is a diagram illustrating a configuration of a pixel circuit, and FIG. 36B is a timing chart of the operation of the pixel circuit.
 - FIGS. 37A to 37C are a block diagram and circuit diagrams illustrating a display device.
- FIGS. 38A to 38C are circuit diagrams and a timing chart illustrating one embodiment of the present invention.
- FIGS. 39A to 39C are a graph and circuit diagrams illustrating one embodiment of the present invention.
- FIGS. 40A and 40B are a circuit diagram and a timing chart illustrating one embodiment of the present invention.
 - FIGS. 41A and 41B are a circuit diagram and a timing chart illustrating one embodiment of the present invention.
- FIGS. 42A to 42E are a block diagram, circuit diagrams, and waveform charts illustrating one embodiment of the present invention.
 - FIGS. 43A and 43B are a circuit diagram and a timing chart illustrating one embodiment of the present invention.
 - FIGS. 44A and 44B are circuit diagrams each illustrating one embodiment of the present invention.
- FIGS. 45A to 45C are circuit diagrams each illustrating one embodiment of the present invention.
 - FIGS. 46A and 46B are circuit diagrams each illustrating one embodiment of the present invention.
 - FIGS. 47A to 47C are circuit diagrams each illustrating one embodiment of the present invention.
 - FIGS. 48A and 48B are circuit diagrams each illustrating one embodiment of the present invention.
 - FIGS. 49A and 49B are cross-sectional views each illustrating an example of an input/output device.
- FIG. 50 illustrates a display module.
 - FIGS. 51A to 51G illustrate electronic devices.
 - FIGS. 52A and 52B are perspective views illustrating a display device.
 - FIGS. 53A and 53B each illustrate a structure of a data processor.
 - FIGS. 54A to 54C illustrate cross-sectional structures of samples in Examples.
- FIGS. 55A to 55C show TDS measurement results in Example.

WO 2017/029576 PCT/IB2016/054765

FIG. 56 shows TDS measurement results in Example.

FIG. 57 shows $I_{\rm d}$ – $V_{\rm g}$ characteristics of transistors in Example.

FIG. 58 shows GBT test results of transistors in Example.

FIGS. 59A to 59D show ESR spectra in Example.

FIG. 60 shows the spin density of insulating films in Example.

FIGS. 61A and 61B illustrate cross-sectional structures of samples in Examples.

FIG. 62 shows I_d – V_g characteristics of transistors in Example.

FIG. 63 shows GBT test results of a transistor in Example.

FIG. 64 shows I_d – V_g characteristics of transistors in Example.

FIG. 65 shows I_d – V_g characteristics of transistors in Example.

FIG. 66 shows I_d – V_g characteristics of transistors in Example.

FIG. 67 shows probability and statistics of $V_{\rm th}$ of transistors in Example.

FIG. 68 shows GBT test results of transistors in Example.

FIG. 69 shows measured XRD spectra of samples.

FIGS. 70A and 70B are TEM images of samples and FIGS. 70C to 70L are electron diffraction patterns thereof.

FIGS. 71A to 71C show EDX mapping images of a sample.

BEST MODE FOR CARRYING OUT THE INVENTION

20 [0020]

5

10

15

25

30

Hereinafter, embodiments will be described with reference to the drawings. Note that embodiments can be carried out in many different modes, and it is easily understood by those skilled in the art that modes and details can be modified in various ways without departing from the spirit and the scope of the present invention. Therefore, the present invention should not be interpreted as being limited to the following description of the embodiments.

[0021]

In the drawings, the size, the layer thickness, or the region is exaggerated for clarity in some cases. Therefore, one embodiment of the present invention is not limited to such a scale. Note that the drawings schematically show ideal examples, and embodiments of the present invention are not limited to shapes or values shown in the drawings.

[0022]

In this specification, ordinal numbers such as "first", "second", and "third" are used in order to avoid confusion among components, and the terms do not limit the components numerically.

In this specification, terms for explaining arrangement, such as "over" and "under," are used for convenience to describe the positional relation between components with reference to drawings. The positional relation between components is changed as appropriate in accordance with the direction in which the components are described. Thus, the positional relation is not limited by a term used in the specification and can be described with another term as appropriate depending on the situation.

[0024]

5

10

15

20

25

30

35

In this specification and the like, a transistor is an element having at least three terminals: a gate, a drain, and a source. A channel region is formed between the drain (a drain terminal, a drain region, or a drain electrode) and the source (a source terminal, a source region, or a source electrode), and current can flow through the drain, the channel region, and the source. In this specification and the like, a channel region refers to a region through which current mainly flows.

[0025]

Furthermore, functions of a source and a drain are sometimes replaced by each other when a transistor of opposite polarity is used or when the direction of current flow is changed in circuit operation, for example. Therefore, the terms "source" and "drain" can be used to denote the drain and the source, respectively, in this specification and the like.

[0026]

In this specification and the like, the expression "electrically connected" includes the case where components are connected through an "object having any electric function". There is no particular limitation on an object having any electric function as long as electric signals can be transmitted and received between components that are connected through the object. Examples of an "object having any electric function" are, in addition to an electrode and a wiring, a switching element such as a transistor, a resistor, an inductor, a capacitor, and elements with a variety of functions.

[0027]

In this specification and the like, the term "parallel" indicates that the angle formed between two straight lines is greater than or equal to -10° and less than or equal to 10° , and accordingly also includes the case where the angle is greater than or equal to -5° and less than or equal to 5° . The term "perpendicular" indicates that the angle formed between two straight lines is greater than or equal to 80° and less than or equal to 100° , and accordingly also includes the case where the angle is greater than or equal to 85° and less than or equal to 95° .

[0028]

In this specification and the like, the terms "film" and "layer" can be interchanged with

each other. For example, in some cases, the term "conductive film" can be used instead of the term "conductive layer", and the term "insulating layer" can be used instead of the term "insulating film".

[0029]

5

10

15

20

25

30

Unless otherwise specified, off-state current in this specification and the like refers to drain current of a transistor in an off state (also referred to as a non-conducting state and a cutoff state). Unless otherwise specified, the off state of an n-channel transistor means that the voltage between its gate and source ($V_{\rm gs}$: gate-source voltage) is lower than the threshold voltage $V_{\rm th}$, and the off state of a p-channel transistor means that the gate-source voltage $V_{\rm gs}$ is higher than the threshold voltage $V_{\rm th}$. For example, the off-state current of an n-channel transistor sometimes refers to drain current that flows when the gate-source voltage $V_{\rm gs}$ is lower than the threshold voltage $V_{\rm th}$.

[0030]

The off-state current of a transistor depends on $V_{\rm gs}$ in some cases. Therefore, "the off-state current of a transistor is I or lower" may mean that the off-state current of the transistor is I or lower at a certain $V_{\rm gs}$. The off-state current of a transistor may refer to off-state current at a given $V_{\rm gs}$, at $V_{\rm gs}$ in a given range, or at $V_{\rm gs}$ at which sufficiently low off-state current is obtained, for example.

[0031]

As an example, an assumption is made that an n-channel transistor has a threshold voltage $V_{\rm th}$ of 0.5 V and a drain current of 1×10^{-9} A at $V_{\rm gs}$ of 0.5 V, 1×10^{-13} A at $V_{\rm gs}$ of 0.1 V, 1×10^{-19} A at $V_{\rm gs}$ of -0.5 V, and 1×10^{-22} A at $V_{\rm gs}$ of -0.8 V. The drain current of the transistor is 1×10^{-19} A or lower at $V_{\rm gs}$ of -0.5 V or at $V_{\rm gs}$ in the range of -0.8 V to -0.5 V; therefore, it may be said that the off-state current of the transistor is 1×10^{-19} A or lower. Since the drain current of the transistor is 1×10^{-22} A or lower at a certain $V_{\rm gs}$, it may be said that the off-state current of the transistor is 1×10^{-22} A or lower.

[0032]

In this specification and the like, the off-state current of a transistor with a channel width W is sometimes represented by a current value per channel width W or by a current value per given channel width (e.g., 1 μ m). In the latter case, the off-state current may be represented by current per length (e.g., A/μ m).

[0033]

The off-state current of a transistor depends on temperature in some cases. Unless otherwise specified, the off-state current in this specification may be off-state current at room

temperature, 60 °C, 85 °C, 95 °C, or 125 °C. Alternatively, the off-state current may be off-state current at a temperature at which the reliability of a semiconductor device or the like including the transistor is ensured or a temperature at which the semiconductor device or the like including the transistor is used (e.g., a temperature in the range of 5 °C to 35 °C). The state in which the off-state current of a transistor is I or lower may indicate that the off-state current of the transistor at room temperature, 60 °C, 85 °C, 95 °C, 125 °C, a temperature at which the reliability of a semiconductor device or the like including the transistor is ensured, or a temperature at which the semiconductor device or the like including the transistor is used (e.g., a temperature in the range of 5 °C to 35 °C) is I or lower at a certain $V_{\rm gs}$.

10 [0034]

5

15

20

The off-state current of a transistor depends on the voltage $V_{\rm ds}$ between its drain and source in some cases. Unless otherwise specified, the off-state current in this specification may be off-state current at $V_{\rm ds}$ of 0.1 V, 0.8 V, 1 V, 1.2 V, 1.8 V, 2.5 V, 3 V, 3.3 V, 10 V, 12 V, 16 V, or 20 V. Alternatively, the off-state current may be off-state current at $V_{\rm ds}$ at which the reliability of a semiconductor device or the like including the transistor is ensured or at $V_{\rm ds}$ used in the semiconductor device or the like including the transistor. The state in which the off-state current of a transistor is I or lower may indicate that the off-state current of the transistor at $V_{\rm ds}$ of 0.1 V, 0.8 V, 1 V, 1.2 V, 1.8 V, 2.5 V, 3 V, 3.3 V, 10 V, 12 V, 16 V, or 20 V, at $V_{\rm ds}$ at which the reliability of a semiconductor device or the like including the transistor is ensured, or at $V_{\rm ds}$ used in the semiconductor device or the like including the transistor is I or lower at a certain $V_{\rm gs}$. [0035]

In the above description of the off-state current, a drain may be replaced by a source. That is, the off-state current sometimes refers to current that flows through a source of a transistor in the off state.

25 [0036]

In this specification and the like, the term "leakage current" sometimes expresses the same meaning as "off-state current". In this specification and the like, the off-state current sometimes refers to current that flows between a source and a drain of a transistor in the off state, for example.

30 [0037]

35

In this specification and the like, a "semiconductor" includes characteristics of an "insulator" in some cases when the conductivity is sufficiently low, for example. Furthermore, a "semiconductor" and an "insulator" cannot be strictly distinguished from each other in some cases because a border between the "semiconductor" and the "insulator" is not clear. Accordingly, a "semiconductor" in this specification and the like can be called an "insulator" in

some cases. Similarly, an "insulator" in this specification and the like can be called a "semiconductor" in some cases. Alternatively, an "insulator" in this specification and the like can be called a "semi-insulator" in some cases.

[0038]

5

10

15

20

25

30

In this specification and the like, a "semiconductor" includes characteristics of a "conductor" in some cases when the conductivity is sufficiently high, for example. Furthermore, a "semiconductor" and a "conductor" cannot be strictly distinguished from each other in some cases because a border between the "semiconductor" and the "conductor" is not clear. Accordingly, a "semiconductor" in this specification and the like can be called a "conductor" in some cases. Similarly, a "conductor" in this specification and the like can be called a "semiconductor" in some cases.

[0039]

In this specification and the like, an impurity in a semiconductor refers to an element that is not a main component of the semiconductor. For example, an element with a concentration lower than 0.1 atomic% is an impurity. If a semiconductor contains an impurity, the density of states (DOS) may be formed therein, the carrier mobility may be decreased, or the crystallinity may be decreased, for example. In the case where the semiconductor includes an oxide semiconductor, examples of an impurity which changes the characteristics of the semiconductor include Group 1 elements, Group 2 elements, Group 14 elements, Group 15 elements, and transition metals other than the main components; specific examples are hydrogen (included in water), lithium, sodium, silicon, boron, phosphorus, carbon, and nitrogen. In an oxide semiconductor, an oxygen vacancy may be formed by entry of an impurity such as hydrogen. Furthermore, in the case where the semiconductor includes silicon, examples of an impurity which changes the characteristics of the semiconductor include oxygen, Group 1 elements except hydrogen, Group 2 elements, Group 13 elements, and Group 15 elements.

[0040]

(Embodiment 1)

In this embodiment, examples of a semiconductor device including a transistor and a method for manufacturing the semiconductor device will be described with reference to FIG. 1 through FIGS. 20A to 20C.

[0041]

<1-1. Structure example 1 of semiconductor device>

FIGS. 3A to 3C illustrate an example of a semiconductor device including a transistor. Note that the transistor in FIGS. 3A to 3C has a staggered (top-gate) structure.

35 [0042]

FIG. 3A is a top view of a transistor 100. FIG. 3B is a cross-sectional view taken along dashed-dotted line X1–X2 in FIG. 3A. FIG. 3C is a cross-sectional view taken along dashed-dotted line Y1–Y2 in FIG. 3A. For clarity, FIG. 3A does not illustrate some components such as an insulating film 110. As in FIG. 3A, some components are not illustrated in some cases in top views of transistors described below. Furthermore, the direction of dashed-dotted line X1–X2 may be referred to as a channel length (L) direction, and the direction of dashed-dotted line Y1–Y2 may be referred to as a channel width (W) direction.

The transistor 100 illustrated in FIGS. 3A to 3C includes an insulating film 104 over a substrate 102; an oxide semiconductor film 108 over the insulating film 104; the insulating film 110 over the oxide semiconductor film 108; a conductive film 112 over the insulating film 110; and an insulating film 116 over the insulating film 104, the oxide semiconductor film 108, and the conductive film 112. Note that the oxide semiconductor film 108 includes a channel region 108i overlapping with the conductive film 112, a source region 108s in contact with the insulating film 116, and a drain region 108d in contact with the insulating film 116.

Furthermore, the insulating film 116 contains nitrogen or hydrogen. The insulating film 116 is in contact with the source region 108s and the drain region 108d, so that nitrogen or hydrogen that is contained in the insulating film 116 is added to the source region 108s and the drain region 108d. The source region 108s and the drain region 108d each have a high carrier density when nitrogen or hydrogen is added thereto.

[0045]

The transistor 100 may further include an insulating film 118 over the insulating film 116, a conductive film 120a electrically connected to the source region 108s through an opening 141a provided in the insulating films 116 and 118, and a conductive film 120b electrically connected to the drain region 108d through an opening 141b provided in the insulating films 116 and 118.

[0046]

5

10

15

20

25

30

[0044]

In this specification and the like, the insulating film 104 may be referred to as a first insulating film, the insulating film 110 may be referred to as a second insulating film, the insulating film 116 may be referred to as a third insulating film, and the insulating film 118 may be referred to as a fourth insulating film. The conductive film 112 functions as a gate electrode, the conductive film 120a functions as a source electrode, and the conductive film 120b functions as a drain electrode.

The insulating film 110 functions as a gate insulating film. The insulating film 110 includes an excess oxygen region. Since the insulating film 110 includes the excess oxygen region, excess oxygen can be supplied to the channel region 108i included in the oxide semiconductor film 108. As a result, oxygen vacancies that might be formed in the channel region 108i can be filled with excess oxygen, which can provide a highly reliable semiconductor device.

[0048]

5

10

15

20

25

30

35

To supply excess oxygen to the oxide semiconductor film 108, excess oxygen may be supplied to the insulating film 104 that is formed under the oxide semiconductor film 108. However, in that case, excess oxygen contained in the insulating film 104 might also be supplied to the source region 108s and the drain region 108d included in the oxide semiconductor film 108. When excess oxygen is supplied to the source region 108s and the drain region 108d, the resistance of the source region 108s and the drain region 108d might be increased.

[0049]

In contrast, in the structure in which the insulating film 110 formed over the oxide semiconductor film 108 contains excess oxygen, excess oxygen can be selectively supplied only to the channel region 108i. Alternatively, the carrier density of the source and drain regions 108s and 108d can be selectively increased after excess oxygen is supplied to the channel region 108i and the source and drain regions 108s and 108d, in which case an increase in the resistance of the source and drain regions 108s and 108d can be prevented.

[0050]

Furthermore, each of the source region 108s and the drain region 108d included in the oxide semiconductor film 108 preferably contains an element that forms an oxygen vacancy or an element that is bonded to an oxygen vacancy. Typical examples of the element that forms an oxygen vacancy or the element that is bonded to an oxygen vacancy include hydrogen, boron, carbon, nitrogen, fluorine, phosphorus, sulfur, chlorine, titanium, and a rare gas. Typical examples of the rare gas include helium, neon, argon, krypton, and xenon. The element that forms an oxygen vacancy is diffused from the insulating film 116 to the source region 108s and the drain region 108d in the case where the insulating film 116 contains one or more such elements. In addition or alternatively, the element that forms an oxygen vacancy is added to the source region 108s and the drain region 108d by impurity addition treatment.

[0051]

An impurity element added to the oxide semiconductor film cuts a bond between a metal element and oxygen in the oxide semiconductor film, so that an oxygen vacancy is formed. Alternatively, when an impurity element is added to the oxide semiconductor film, oxygen

bonded to a metal element in the oxide semiconductor film is bonded to the impurity element and detached from the metal element, so that an oxygen vacancy is formed. As a result, the oxide semiconductor film has a higher carrier density, and thus, the conductivity thereof becomes higher.

5 [0052]

10

15

For the structure in which the insulating film 110 contains excess oxygen, a step performed after the insulating film 110 is formed plays an important role. The deposition conditions of the insulating film 116 are particularly important. In the case where the insulating film 116 is formed at high temperatures (specifically, higher than or equal to 300 °C and lower than or equal to 450 °C), for example, excess oxygen might be released from a side surface of the insulating film 110 to the outside. Thus, in a method for manufacturing a semiconductor device of one embodiment of the present invention, the formation temperature of the insulating film 116 is set higher than or equal to 150 °C and lower than 300 °C, preferably higher than or equal to 160 °C and lower than or equal to 270 °C, and further preferably higher than or equal to 180 °C and lower than or equal to 250 °C.

[0053]

Here, a method for manufacturing the transistor 100 in FIGS. 3A to 3C will be described with reference to FIG. 1. Note that FIG. 1 is a process flow chart showing a method for manufacturing a semiconductor device.

20 [0054]

The transistor 100 illustrated in FIGS. 3A to 3C is manufactured through at least first to sixth steps in FIG. 1.

[0055]

[First step: Formation of oxide semiconductor film]

25 The first step includes a step of forming an oxide semiconductor film (see Step S101 in FIG. 1).

[0056]

30

35

In the case of the transistor 100, the first step corresponds to a step of forming the oxide semiconductor film 107 in the following manner: an oxide semiconductor film is formed over the insulating film 104, and then, the oxide semiconductor film is processed into an island shape. [0057]

[Second step: Formation of GI and GE]

The second step includes a step of forming a gate insulating film (GI) over the oxide semiconductor film and a step of forming a gate electrode (GE) over the gate insulating film (see Step S201 in FIG. 1).

[0058]

In the case of the transistor 100, the second step corresponds to steps of forming the insulating film 110 functioning as the gate insulating film and the conductive film 112 functioning as the gate electrode in the following manner: an insulating film and a conductive film are formed over the oxide semiconductor film 107, and then, the insulating film and the conductive film are processed into island shapes.

[0059]

5

10

20

25

30

35

[Third step: Formation of nitride insulating film]

The third step includes a step of forming a nitride insulating film over the oxide semiconductor film and the gate electrode (see Step S301 in FIG. 1).

[0060]

In the third step, the nitride insulating film is formed through at least two steps: plasma treatment and deposition treatment. The two steps are each performed at a temperature higher than or equal to $150\,^{\circ}\text{C}$ and lower than $300\,^{\circ}\text{C}$.

15 [0061]

In the case of the transistor 100, the third step corresponds to a step of forming the insulating film 116 over the oxide semiconductor film 107 and the conductive film 112. Note that the source region 108s, the drain region 108d, and the channel region 108i are formed through the third step; thus, the oxide semiconductor film 107 becomes the oxide semiconductor film 108.

[0062]

As described above, the formation temperature of the insulating film 116 is set higher than or equal to 150 °C and lower than 300 °C, preferably higher than or equal to 160 °C and lower than or equal to 270 °C, and further preferably higher than or equal to 180 °C and lower than or equal to 250 °C. With the formation temperature of the insulating film 116 in the above range, oxygen release from the side surface of the insulating film 110 can be suppressed. Furthermore, with the formation temperature of the insulating film 116 in the above range, diffusion of nitrogen or hydrogen contained in the insulating film 116 into the insulating film 110 can be suppressed. In addition, with the formation temperature of the insulating film 116 in the above range, distortion or bending of a substrate can be reduced when a large substrate (e.g., an 8th generation mother glass (2160 mm × 2460 mm), a 9th generation mother glass (2400 mm × 2800 mm or 2450 mm × 3050 mm), or a 10th generation mother glass (2950 mm × 3400 mm)) is used for mass production.

[0063]

The insulating film 116 is formed through two steps: plasma treatment and deposition

17

treatment. It is suitable that the plasma treatment is performed in an argon gas atmosphere. It is also suitable that the deposition treatment is performed using a silane gas, a nitrogen gas, and an ammonia gas. The plasma treatment has an effect of reducing the resistance of the source region 108s and the drain region 108d included in the oxide semiconductor film 108. The use of an ammonia gas for the deposition treatment can reduce a nitrogen oxide (NO_x, where x is greater than 0 and less than or equal to 2 and preferably greater than or equal to 1 and less than or equal to 2; typified by NO or NO₂) that might be formed in the nitride insulating film. Note that it is suitable to perform the plasma treatment and the deposition treatment in succession in a vacuum with a plasma CVD apparatus because manufacturing cost can be reduced.

10 [0064]

5

[Fourth step: Formation of oxide insulating film]

The fourth step includes a step of forming an oxide insulating film over the nitride insulating film (see Step S401 in FIG. 1).

[0065]

15

20

In the case of the transistor 100, the fourth step corresponds to a step of forming the insulating film 118 over the insulating film 116.

[0066]

[Fifth step: Formation of opening]

The fifth step includes a step of forming an opening in the nitride insulating film and the oxide insulating film (see Step S501 in FIG. 1).

[0067]

In the case of the transistor 100, the fifth step corresponds to a step of forming the openings 141a and 141b that reach the oxide semiconductor film 108 in the insulating film 116 and the insulating film 118.

25 [0068]

[Sixth step: Formation of SD electrodes]

The sixth step includes a step of forming a source electrode and a drain electrode (also referred to as SD electrodes) over the oxide insulating film so as to cover the opening (see Step S601 in FIG. 1).

30 [0069]

In the case of the transistor 100, the sixth step corresponds to a step of forming the conductive films 120a and 120b in the following manner: a conductive film is formed over the insulating film 118 and the conductive film is processed into an island shape.

[0070]

35

The details of the method for manufacturing the transistor 100 will be described later.

[0071]

As described above, in the method for manufacturing a semiconductor device of one embodiment of the present invention, the third step, that is, the step of forming the nitride insulating film, is performed at a temperature higher than or equal to 150 °C and lower than 300 °C; accordingly, oxygen release from the side surface of the insulating film containing excess oxygen to the outside can be suppressed. As a result, variation in electrical characteristics of a transistor including an oxide semiconductor can be prevented and the reliability of the transistor can be improved.

[0072]

5

10

15

20

25

35

Next, details of the components of the semiconductor device in FIGS. 3A to 3C will be described.

[0073]

[Substrate]

As the substrate 102, a variety of substrates can be used without particular limitation. Examples of the substrate include a semiconductor substrate (e.g., a single-crystal substrate or a silicon substrate), an SOI substrate, a glass substrate, a quartz substrate, a plastic substrate, a metal substrate, a stainless steel substrate, a substrate including stainless steel foil, a tungsten substrate, a substrate including tungsten foil, a flexible substrate, an attachment film, paper containing a fibrous material, and a base material film. As examples of the glass substrate, a barium borosilicate glass substrate, an aluminoborosilicate glass substrate, and a soda lime glass substrate can be given. Examples of materials of the flexible substrate, the attachment film, the base film, and the like are plastics typified by polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyether sulfone (PES). Another example is a synthetic resin such as acrylic. Furthermore, polypropylene, polyester, polyvinyl fluoride, and polyvinyl chloride can be given as examples. Other examples are polyamide, polyimide, aramid, epoxy, an inorganic vapor deposition film, and paper. In particular, a transistor formed using a semiconductor substrate, a single-crystal substrate, an SOI substrate, or the like can have little variation in characteristics, size, shape, or the like, high current capability, and a small size. transistor can achieve lower power consumption or higher integration of a circuit.

30 [0074]

Alternatively, a flexible substrate may be used as the substrate 102, and the transistor may be formed directly on the flexible substrate. Alternatively, a separation layer may be provided between the substrate 102 and the transistor. The separation layer can be used when part or the whole of a semiconductor device formed over the separation layer is separated from the substrate 102 and transferred to another substrate. In such a case, the transistor can be

transferred to even a substrate having low heat resistance or a flexible substrate. For example, the above separation layer can be an organic resin film of polyimide or the like formed over the substrate or a stack including inorganic films (e.g., a tungsten film and a silicon oxide film).

[0075]

Examples of a substrate to which a transistor is transferred include, in addition to the above substrates over which the transistor can be formed, a paper substrate, a cellophane substrate, an aramid film substrate, a polyimide film substrate, a stone substrate, a wood substrate, a cloth substrate (including a natural fiber (silk, cotton, or hemp), a synthetic fiber (nylon, polyurethane, or polyester), a regenerated fiber (acetate, cupra, rayon, or regenerated polyester), and the like), a leather substrate, and a rubber substrate. When such a substrate is used, a transistor with excellent characteristics or a transistor with low power consumption can be formed, a device with high durability can be manufactured, high heat resistance can be provided, or a reduction in weight or thickness can be achieved.

[0076]

5

10

15

20

25

30

35

[First insulating film]

The insulating film 104 can be formed by a sputtering method, a CVD method, an evaporation method, a pulsed laser deposition (PLD) method, a printing method, a coating method, or the like as appropriate. For example, the insulating film 104 can be formed to have a single-layer structure or stacked-layer structure of an oxide insulating film and/or a nitride insulating film. To improve the properties of the interface with the oxide semiconductor film 108, at least a region of the insulating film 104 which is in contact with the oxide semiconductor film 108 is preferably formed using an oxide insulating film. When the insulating film 104 is formed using an oxide insulating film from which oxygen is released by heating, oxygen contained in the insulating film 104 can be moved to the oxide semiconductor film 108 by heat treatment.

[0077]

The thickness of the insulating film 104 can be greater than or equal to 50 nm, greater than or equal to 100 nm and less than or equal to 3000 nm, or greater than or equal to 200 nm and less than or equal to 1000 nm. By increasing the thickness of the insulating film 104, the amount of oxygen released from the insulating film 104 can be increased, and interface states at the interface between the insulating film 104 and the oxide semiconductor film 108 and oxygen vacancies included in the channel region 108i of the oxide semiconductor film 108 can be reduced.

[0078]

For example, the insulating film 104 can be formed to have a single-layer structure or

stacked-layer structure of silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, aluminum oxide, hafnium oxide, gallium oxide, a Ga-Zn oxide, or the like. In this embodiment, the insulating film 104 has a stacked-layer structure of a silicon nitride film and a silicon oxynitride film. With the insulating film 104 having such a stack-layer structure including a silicon nitride film as a lower layer and a silicon oxynitride film as an upper layer, oxygen can be efficiently introduced into the oxide semiconductor film 108.

[0079]

5

10

15

20

30

35

[Oxide semiconductor film]

The oxide semiconductor film 108 is formed using a metal oxide such as an In-M-Zn oxide (M is Al, Ga, Y, or Sn). Alternatively, an In-Ga oxide or an In-Zn oxide may be used for the oxide semiconductor film 108.

[0800]

In the case where the oxide semiconductor film 108 includes an In-M-Zn oxide, the proportions of In and M, the summation of which is assumed to be 100 atomic%, are as follows: the proportion of In is higher than 25 atomic% and the proportion of M is lower than 75 atomic%, or the proportion of In is higher than 34 atomic% and the proportion of M is lower than 66 atomic%.

[0081]

The energy gap of the oxide semiconductor film 108 is preferably 2 eV or more, 2.5 eV or more, or 3 eV or more.

[0082]

The thickness of the oxide semiconductor film 108 is greater than or equal to 3 nm and less than or equal to 200 nm, preferably greater than or equal to 3 nm and less than or equal to 100 nm, further preferably greater than or equal to 3 nm and less than or equal to 60 nm.

25 [0083]

In the case where the oxide semiconductor film 108 includes an In-M-Zn oxide, the atomic ratio of metal elements in a sputtering target used for depositing the In-M-Zn oxide preferably satisfies In $\geq M$ and Zn $\geq M$. The atomic ratio of In to M and Zn in such a sputtering target is preferably 1:1:1, 1:1:1.2, 2:1:1.5, 2:1:2.3, 2:1:3, 3:1:2, 4:2:4.1, 5:1:7, or the like. Note that the atomic ratios of metal elements in the deposited oxide semiconductor film 108 may vary from the above atomic ratio of metal elements in the sputtering target within a range of approximately ± 40 %. For example, when a sputtering target whose atomic ratio of In to Ga and Zn in the deposited oxide semiconductor film may be approximately 4:2:3. In the case where a sputtering target whose atomic ratio of In to Ga and Zn in the

deposited oxide semiconductor film may be approximately 5:1:6. [0084]

When contained in the oxide semiconductor film 108, silicon or carbon, which are elements belonging to Group 14, may cause oxygen vacancies to be increased and the oxide semiconductor film to have n-type conductivity. Thus, the concentration of silicon or carbon in the oxide semiconductor film 108, particularly in the channel region 108i, is set to be lower than or equal to 2×10^{18} atoms/cm³ or lower than or equal to 2×10^{17} atoms/cm³. As a result, the transistor has a positive threshold voltage (normally-off characteristics). Note that the concentration of silicon or carbon can be measured by secondary ion mass spectrometry (SIMS), for example.

[0085]

5

10

15

20

25

30

35

Furthermore, the concentration of alkali metal or alkaline earth metal in the channel region 108i, which is measured by SIMS, can be lower than or equal to 1×10^{18} atoms/cm³ or lower than or equal to 2×10^{16} atoms/cm³. Alkali metal and alkaline earth metal might generate carriers when bonded to an oxide semiconductor, in which case the off-state current of the transistor might be increased. Therefore, it is preferable to reduce the concentration of alkali metal or alkaline earth metal in the channel region 108i. As a result, the transistor has a positive threshold voltage (normally-off characteristics).

If nitrogen is contained in the channel region 108i, electrons serving as carriers are generated and the carrier density is increased, so that the channel region 108i may have n-type conductivity. A transistor including an oxide semiconductor film containing nitrogen is likely to have normally-on characteristics. For this reason, nitrogen in the channel region 108i is preferably reduced as much as possible. For example, the nitrogen concentration measured by SIMS may be 5×10^{18} atoms/cm³ or lower.

[0087]

By reducing impurity elements in the channel region 108i, the carrier density in the oxide semiconductor film can be reduced. Therefore, the channel region 108i can have a carrier density lower than or equal to 1×10^{17} /cm³, lower than or equal to 1×10^{15} /cm³, lower than or equal to 1×10^{13} /cm³, or lower than or equal to 1×10^{11} /cm³.

When an oxide semiconductor film with a low impurity concentration and a low density of defect states is used as the channel region 108i, the transistor can have more excellent electrical characteristics. Here, the state in which the impurity concentration is low and the density of defect states is low (the number of oxygen vacancies is small) is referred to as "highly

purified intrinsic", "substantially highly purified intrinsic", "intrinsic", or "substantially intrinsic". A highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor has few carrier generation sources and thus can have a low carrier density in some cases. Thus, a transistor whose channel region is formed in the oxide semiconductor film is likely to have a positive threshold voltage (normally-off characteristics). The highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor film has a low density of defect states and accordingly has a low density of trap states in some cases. Furthermore, the highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor film enables extremely low off-state current. Thus, the transistor whose channel region is formed in the oxide semiconductor film has little variation in electrical characteristics and high reliability in some cases.

[0089]

5

10

15

20

25

30

35

Meanwhile, since the source region 108s and the drain region 108d are in contact with the insulating film 116, hydrogen or nitrogen is added from the insulating film 116 to the source region 108s and the drain region 108d; thus, the carrier density of the source region 108s and the drain region 108d is increased.

[0090]

Furthermore, the oxide semiconductor film 108 may have a non-single-crystal structure. The non-single-crystal structure includes a c-axis aligned crystalline oxide semiconductor (CAAC-OS) described later, a polycrystalline structure, a microcrystalline structure described later, or an amorphous structure, for example. Among the non-single-crystal structures, the amorphous structure has the highest density of defect states, whereas the CAAC-OS has the lowest density of defect states.

[0091]

Note that the oxide semiconductor film 108 may be a single film or stacked films including two or more of the following regions: a region having an amorphous structure, a region having a microcrystalline structure, a region having a polycrystalline structure, a CAAC-OS region, and a region having a single-crystal structure.

[0092]

In the oxide semiconductor film 108, the crystallinity of the channel region 108i may be different from that of the source region 108s and the drain region 108d. Specifically, in the oxide semiconductor film 108, the source region 108s and the drain region 108d may have lower crystallinity than the channel region 108i. This is because the source region 108s and the drain region 108d are damaged by the impurity addition, which results in a decrease in the crystallinity of the source region 108s and the drain region 108d.

[0093]

5

10

15

20

25

30

[Second insulating film]

The insulating film 110 functions as a gate insulating film of the transistor 100. In addition, the insulating film 110 has a function of supplying oxygen to the oxide semiconductor film 108, particularly to the channel region 108i. The insulating film 110 can be formed to have a single-layer structure or a stacked-layer structure of an oxide insulating film or a nitride insulating film, for example. To improve the interface properties with the oxide semiconductor film 108, a region which is in the insulating film 110 and in contact with the oxide semiconductor film 108 is preferably formed using at least an oxide insulating film. For example, silicon oxide, silicon oxynitride, silicon nitride oxide, or silicon nitride may be used for the insulating film 110.

[0094]

The thickness of the insulating film 110 can be greater than or equal to 5 nm and less than or equal to 400 nm, greater than or equal to 5 nm and less than or equal to 300 nm, or greater than or equal to 10 nm and less than or equal to 250 nm.

[0095]

It is preferable that the insulating film 110 have few defects and typically have as few signals observed by electron spin resonance (ESR) spectroscopy as possible. Examples of the signals include a signal due to an E' center observed at a g-factor of 2.001. Note that the E' center is due to the dangling bond of silicon. As the insulating film 110, a silicon oxide film or a silicon oxynitride film whose spin density of a signal due to the E' center is lower than or equal to 3×10^{17} spins/cm³ and preferably lower than or equal to 5×10^{16} spins/cm³ may be used. [0096]

In addition to the above-described signal, a signal due to nitrogen dioxide (NO₂) might be observed in the insulating film 110. The signal is divided into three signals according to the N nuclear spin; a first signal, a second signal, and a third signal. The first signal is observed at a *g*-factor of greater than or equal to 2.037 and less than or equal to 2.039. The second signal is observed at a *g*-factor of greater than or equal to 2.001 and less than or equal to 2.003. The third signal is observed at a *g*-factor of greater than or equal to 1.964 and less than or equal to 1.966.

[0097]

It is suitable to use an insulating film whose spin density of a signal due to nitrogen dioxide (NO₂) is higher than or equal to 1×10^{17} spins/cm³ and lower than 1×10^{18} spins/cm³ as the insulating film 110, for example.

Note that a nitrogen oxide (NO_x) such as a nitrogen dioxide (NO_2) forms a level in the insulating film 110. The level is positioned in the energy gap of the oxide semiconductor film 108. Thus, when nitrogen oxide (NO_x) is diffused to the interface between the insulating film 110 and the oxide semiconductor film 108, an electron might be trapped by the level on the insulating film 110 side. As a result, the trapped electron remains in the vicinity of the interface between the insulating film 110 and the oxide semiconductor film 108, leading to a positive shift of the threshold voltage of the transistor. Accordingly, the use of a film with a low nitrogen oxide content as the insulating film 110 can reduce a shift of the threshold voltage of the transistor.

10 [0099]

5

15

25

30

35

As an insulating film that releases a small amount of nitrogen oxide (NO_x), for example, a silicon oxynitride film can be used. The silicon oxynitride film releases more ammonia than nitrogen oxide (NO_x) in thermal desorption spectroscopy (TDS); the typical released amount of ammonia is greater than or equal to 1×10^{18} molecules/cm³ and less than or equal to 5×10^{19} molecules/cm³. Note that the released amount of ammonia is the total amount of ammonia released by heat treatment in a range of 50 °C to 650 °C or 50 °C to 550 °C in TDS.

Since nitrogen oxide (NO_x) reacts with ammonia and oxygen in heat treatment, the use of an insulating film that releases a large amount of ammonia reduces nitrogen oxide (NO_x) .

20 [0101]

Note that in the case where the insulating film 110 is analyzed by SIMS, nitrogen concentration in the film is preferably lower than or equal to 6×10^{20} atoms/cm³. [0102]

The insulating film 110 may be formed using a high-k material such as hafnium silicate (HfSiO_x), hafnium silicate to which nitrogen is added (HfSi_xO_yN_z), hafnium aluminate to which nitrogen is added (HfAl_xO_yN_z), or hafnium oxide. The use of such a high-k material enables a reduction in gate leakage current of a transistor.

[0103]

[Third insulating film]

The insulating film 116 contains nitrogen or hydrogen. The insulating film 116 may contain fluorine. As the insulating film 116, for example, a nitride insulating film can be used. The nitride insulating film can be formed using silicon nitride, silicon nitride oxide, silicon oxynitride, silicon nitride fluoride, silicon fluoronitride, or the like. The hydrogen concentration in the insulating film 116 is preferably higher than or equal to 1×10^{22} atoms/cm³. Furthermore, the insulating film 116 is in contact with the source region 108s and the drain

region 108d of the oxide semiconductor film 108. Thus, the concentration of an impurity (nitrogen or hydrogen) in the source region 108s and the drain region 108d in contact with the insulating film 116 is increased, leading to an increase in the carrier density of the source region 108s and the drain region 108d.

5 [0104]

[Fourth insulating film]

As the insulating film 118, an oxide insulating film can be used. Alternatively, a stack including an oxide insulating film and a nitride insulating film can be used as the insulating film 118. The insulating film 118 can be formed using, for example, silicon oxide, silicon oxynitride, silicon nitride oxide, aluminum oxide, hafnium oxide, gallium oxide, or Ga-Zn oxide.

[0105]

10

15

20

25

30

35

Furthermore, the insulating film 118 preferably functions as a barrier film against hydrogen, water, and the like from the outside.

[0106]

The thickness of the insulating film 118 can be greater than or equal to 30 nm and less than or equal to 500 nm, or greater than or equal to 100 nm and less than or equal to 400 nm.

[0107]

[Conductive film]

The conductive films 112, 120a, and 120b can be formed by a sputtering method, a vacuum evaporation method, a pulsed laser deposition (PLD) method, a thermal CVD method, The conductive films 112, 120a, and 120b can be formed using, for example, a metal element selected from aluminum, chromium, copper, tantalum, titanium, molybdenum, nickel, iron, cobalt, and tungsten, an alloy containing the metal element as a component, or an alloy containing any of the metal elements in combination. Furthermore, one or more metal elements selected from manganese and zirconium may be used. In addition, the conductive films 112, 120a, and 120b may have a single-layer structure or a stacked-layer structure of two or more layers. For example, the following structure may be used: a single-layer structure of an aluminum film containing silicon; a single-layer structure of a copper film containing manganese; a two-layer structure in which a titanium film is stacked over an aluminum film; a two-layer structure in which a titanium film is stacked over a titanium nitride film; a two-layer structure in which a tungsten film is stacked over a titanium nitride film; a two-layer structure in which a tungsten film is stacked over a tantalum nitride film or a tungsten nitride film; a two-layer structure in which a copper film is stacked over a copper film containing manganese; a two-layer structure in which a copper film is stacked over a titanium film; a three-layer structure in which a titanium film, an aluminum film, and a titanium film are stacked in this order; or a three-layer structure in which a copper film containing manganese, a copper film, and a copper film containing manganese are stacked in this order. Alternatively, an alloy film or a nitride film in which aluminum and one or more elements selected from titanium, tantalum, tungsten, molybdenum, chromium, neodymium, and scandium are combined may be used.

5 [0108]

It is particularly suitable to use a material containing copper for the conductive films 112, 120a, and 120b. The use of a material containing copper for the conductive films 112, 120a, and 120b can reduce the resistance. A signal delay or the like can be suppressed even in the case of using a large-sized substrate as the substrate 102, for example.

10 [0109]

15

20

25

30

35

The conductive films 112, 120a, and 120b can also be formed using a light-transmitting conductive material such as indium tin oxide (ITO), indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, or indium tin oxide containing silicon (also referred to as an In-Sn-Si oxide or ITSO). It is also possible to employ a stacked-layer structure of the above light-transmitting conductive material and the above metal element.

Note that an oxide semiconductor typified by an In-Ga-Zn oxide may be used for the conductive film 112. The oxide semiconductor can have a high carrier density when nitrogen or hydrogen is supplied from the insulating film 116. In other words, the oxide semiconductor functions as an oxide conductor (OC). Accordingly, the oxide semiconductor can be used for a gate electrode.

[0111]

[0110]

The conductive film 112 can have, for example, a single-layer structure of an oxide conductor (OC), a single-layer structure of a metal film, or a stacked-layer structure of an oxide conductor (OC) and a metal film.

[0112]

Note that it is suitable that the conductive film 112 has a single-layer structure of a light-shielding metal film or a stacked-layer structure of an oxide conductor (OC) and a light-shielding metal film because the channel region 108i formed under the conductive film 112 can be shielded from light. In the case where the conductive film 112 has a stacked-layer structure of an oxide semiconductor or an oxide conductor (OC) and a light-shielding metal film, formation of a metal film (e.g., a titanium film or a tungsten film) over the oxide semiconductor or the oxide conductor (OC) produces any of the following effects: the resistance of the oxide semiconductor or the oxide conductor (OC) is reduced by the diffusion of the constituent element

of the metal film to the oxide semiconductor or oxide conductor (OC) side, the resistance is reduced by damage (e.g., sputtering damage) during the deposition of the metal film, and the resistance is reduced when oxygen vacancies are formed by the diffusion of oxygen in the oxide semiconductor or the oxide conductor (OC) to the metal film.

5 [0113]

The thickness of the conductive films 112, 120a, and 120b can be greater than or equal to 30 nm and less than or equal to 500 nm, or greater than or equal to 100 nm and less than or equal to 400 nm.

[0114]

10

15

20

25

30

35

<1-2. Structure example 2 of semiconductor device>

Next, a structure of a semiconductor device different from that in FIGS. 3A to 3C will be described with reference to FIGS. 4A to 4C.

[0115]

FIG. 4A is a top view of a transistor 100A. FIG. 4B is a cross-sectional view taken along dashed-dotted line X1–X2 in FIG. 4A. FIG. 4C is a cross-sectional view taken along dashed-dotted line Y1–Y2 in FIG. 4A.

[0116]

The transistor 100A illustrated in FIGS. 4A to 4C includes a conductive film 106 over the substrate 102; the insulating film 104 over the conductive film 106; the oxide semiconductor film 108 over the insulating film 104; the insulating film 110 over the oxide semiconductor film 108; the conductive film 112 over the insulating film 110; and the insulating film 116 over the insulating film 104, the oxide semiconductor film 108, and the conductive film 112. Note that the oxide semiconductor film 108 includes the channel region 108i overlapping with the conductive film 112, the source region 108s in contact with the insulating film 116, and the drain region 108d in contact with the insulating film 116.

[0117]

The transistor 100A includes the conductive film 106 and an opening 143 in addition to the components of the transistor 100 described above.

[0118]

Note that the opening 143 is provided in the insulating films 104 and 110. The conductive film 106 is electrically connected to the conductive film 112 through the opening 143. Thus, the same potential is applied to the conductive film 106 and the conductive film 112. Note that different potentials may be applied to the conductive film 106 and the conductive film 112 without providing the opening 143. Alternatively, the conductive film 106 may be used as a light-shielding film without providing the opening 143. When the conductive film 106 is

formed using a light-shielding material, for example, light irradiating the channel region 108i from the bottom can be reduced.

[0119]

5

10

15

20

25

35

In the case of the structure of the transistor 100A, the conductive film 106 functions as a first gate electrode (also referred to as a bottom-gate electrode), the conductive film 112 functions as a second gate electrode (also referred to as a top-gate electrode), the insulating film 104 functions as a first gate insulating film, and the insulating film 110 functions as a second gate insulating film.

[0120]

The conductive film 106 can be formed using a material similar to the above-described materials of the conductive films 112, 120a, and 120b. It is particularly suitable to use a material containing copper for the conductive film 106 because the resistance can be reduced. It is suitable that, for example, each of the conductive films 106, 120a, and 120b has a stacked-layer structure in which a copper film is over a titanium nitride film, a tantalum nitride film, or a tungsten film. In that case, when the transistor 100A is used as a pixel transistor and/or a driving transistor of a display device, parasitic capacitance generated between the conductive films 106 and 120a and between the conductive films 106 and 120a and between the conductive films 106 and 120b can be reduced. Thus, the conductive films 106, 120a, and 120b can be used not only as the first gate electrode, the source electrode, and the drain electrode of the transistor 100A, but also as power source supply wirings, signal supply wirings, connection wirings, or the like of the display device.

[0121]

In this manner, unlike the transistor 100 described above, the transistor 100A in FIGS. 4A to 4C has a structure in which a conductive film functioning as a gate electrode is provided over and under the oxide semiconductor film 108. As in the transistor 100A, a semiconductor device of one embodiment of the present invention may have a plurality of gate electrodes.

[0122]

Here, a method for manufacturing the transistor 100A in FIGS. 4A to 4C will be described with reference to FIG. 2. Note that FIG. 2 is a process flow chart showing a method for manufacturing a semiconductor device.

30 [0123]

The transistor 100A illustrated in FIGS. 4A to 4C is manufactured through at least first to eighth steps in FIG. 2.

[0124]

[Seventh step: Formation of 1st GE]

The seventh step includes a step of forming a first gate electrode (see Step S701 in FIG.

2).

[0125]

In the case of the transistor 100A, the seventh step corresponds to a step of forming the conductive film 106 over the substrate 102.

5 [0126]

[Eighth step: Formation of 1st_GI]

The eighth step includes a step of forming a first gate insulating film over the first gate electrode (see Step S801 in FIG. 2).

[0127]

10

15

20

25

30

35

In the case of the transistor 100A, the eighth step corresponds to a step of forming the insulating film 104 over the substrate 102 and the conductive film 106.

[0128]

[First step: Formation of oxide semiconductor film]

The first step includes a step of forming an oxide semiconductor film (see Step S101 in FIG. 2).

[0129]

In the case of the transistor 100A, the first step corresponds to a step of forming the oxide semiconductor film 107 in the following manner: an oxide semiconductor film is formed over the insulating film 104, and then, the oxide semiconductor film is processed into an island shape.

[0130]

[Second step: Formation of 2nd GI and 2nd GE]

The second step includes a step of forming a second gate insulating film (2nd_GI) over the oxide semiconductor film and a step of forming a second gate electrode (2nd_GE) over the second gate insulating film (see Step S201 in FIG. 2).

[0131]

In the case of the transistor 100A, the second step corresponds to steps of forming the insulating film 110 functioning as the second gate insulating film and the conductive film 112 functioning as the second gate electrode in the following manner: an insulating film and a conductive film are formed over the oxide semiconductor film 107, and then, the insulating film and the conductive film are processed into island shapes.

[0132]

[Third step: Formation of nitride insulating film]

The third step includes a step of forming a nitride insulating film over the oxide semiconductor film and the gate electrode (see Step S301 in FIG. 2).

[0133]

In the third step, the nitride insulating film is formed through at least two steps: plasma treatment and deposition treatment. The two steps are each performed at a temperature higher than or equal to $150\,^{\circ}$ C and lower than $300\,^{\circ}$ C.

5 [0134]

In the case of the transistor 100A, the third step corresponds to a step of forming the insulating film 116 over the oxide semiconductor film 107 and the conductive film 112.

[0135]

10

15

20

30

35

As described above, the formation temperature of the insulating film 116 is set higher than or equal to 150 °C and lower than 300 °C, preferably higher than or equal to 160 °C and lower than or equal to 270 °C, and further preferably higher than or equal to 180 °C and lower than or equal to 250 °C. With the formation temperature of the insulating film 116 in the above range, oxygen release from the side surface of the insulating film 110 can be suppressed. Furthermore, with the formation temperature of the insulating film 116 in the above range, diffusion of nitrogen or hydrogen contained in the insulating film 116 into the insulating film 110 can be suppressed.

[0136]

The insulating film 116 is formed through two steps: plasma treatment and deposition treatment. It is suitable that the plasma treatment is performed in an argon gas atmosphere. It is also suitable that the deposition treatment is performed using a silane gas, a nitrogen gas, and an ammonia gas. The plasma treatment has an effect of reducing the resistance of the source region 108s and the drain region 108d included in the oxide semiconductor film 108. The use of an ammonia gas for the deposition treatment can reduce a nitrogen oxide (NO_x) that might be formed in the nitride insulating film.

25 [0137]

[Fourth step: Formation of oxide insulating film]

The fourth step includes a step of forming an oxide insulating film over the nitride insulating film (see Step S401 in FIG. 2).

[0138]

In the case of the transistor 100A, the fourth step corresponds to a step of forming the insulating film 118 over the insulating film 116.

[0139]

[Fifth step: Formation of opening]

The fifth step includes a step of forming an opening in the nitride insulating film and the oxide insulating film (see Step S501 in FIG. 2).

[0140]

In the case of the transistor 100A, the fifth step corresponds to a step of forming the openings 141a and 141b that reach the oxide semiconductor film 108 in the insulating film 116 and the insulating film 118.

5 [0141]

[Sixth step: Formation of SD electrodes]

The sixth step includes a step of forming a source electrode and a drain electrode (also referred to as SD electrodes) over the oxide insulating film so as to cover the opening (see Step S601 in FIG. 2).

10 [0142]

In the case of the transistor 100A, the sixth step corresponds to a step of forming the conductive films 120a and 120b in the following manner: a conductive film is formed over the insulating film 118 and the conductive film is processed into an island shape.

[0143]

15

20

25

30

35

The details of the method for manufacturing the transistor 100A will be described later. [0144]

As described above, in the method for manufacturing a semiconductor device of one embodiment of the present invention, the third step, that is, the step of forming the nitride insulating film, is performed at a temperature higher than or equal to 150 °C and lower than 300 °C; accordingly, oxygen release from the side surface of the insulating film containing excess oxygen to the outside can be suppressed. As a result, variation in electrical characteristics of a transistor including an oxide semiconductor can be prevented and the reliability of the transistor can be improved.

[0145]

As illustrated in FIG. 4C, the oxide semiconductor film 108 faces the conductive film 106 functioning as a first gate electrode and the conductive film 112 functioning as a second gate electrode and is positioned between the two conductive films functioning as the gate electrodes. [0146]

Furthermore, the length of the conductive film 112 in the channel width direction is larger than the length of the oxide semiconductor film 108 in the channel width direction. In the channel width direction, the whole oxide semiconductor film 108 is covered with the conductive film 112 with the insulating film 110 provided therebetween. Since the conductive film 112 is connected to the conductive film 106 through the opening 143 provided in the insulating films 104 and 110, a side surface of the oxide semiconductor film 108 in the channel width direction faces the conductive film 112 with the insulating film 110 provided

therebetween.

[0147]

In other words, in the channel width direction of the transistor 100A, the conductive films 106 and 112 are connected to each other through the opening 143 provided in the insulating films 104 and 110, and the conductive films 106 and 112 surround the oxide semiconductor film 108 with the insulating films 104 and 110 positioned therebetween.

[0148]

5

10

20

25

30

Such a structure enables the oxide semiconductor film 108 included in the transistor 100A to be electrically surrounded by electric fields of the conductive film 106 functioning as a first gate electrode and the conductive film 112 functioning as a second gate electrode. A device structure of a transistor, like that of the transistor 100A, in which electric fields of a first gate electrode and a second gate electrode electrically surround an oxide semiconductor film in which a channel region is formed can be referred to as a surrounded channel (S-channel) structure.

15 [0149]

Since the transistor 100A has the S-channel structure, an electric field for inducing a channel can be effectively applied to the oxide semiconductor film 108 by the conductive film 106 or the conductive film 112; thus, the current drive capability of the transistor 100A can be improved and high on-state current characteristics can be obtained. As a result of the high on-state current, it is possible to reduce the size of the transistor 100A. Furthermore, since the transistor 100A has a structure in which the oxide semiconductor film 108 is surrounded by the conductive film 106 and the conductive film 112, the mechanical strength of the transistor 100A can be increased.

[0150]

When seen in the channel width direction of the transistor 100A, an opening different from the opening 143 may be formed on the side of the oxide semiconductor film 108 on which the opening 143 is not formed.

[0151]

When a transistor has a pair of gate electrodes between which a semiconductor film is positioned as in the transistor 100A, one of the gate electrodes may be supplied with a signal A, and the other gate electrode may be supplied with a fixed potential V_b . Alternatively, one of the gate electrodes may be supplied with the signal A, and the other gate electrode may be supplied with a signal B. Alternatively, one of the gate electrodes may be supplied with a fixed potential V_a , and the other gate electrode may be supplied with the fixed potential V_b .

35 [0152]

The signal A is, for example, a signal for controlling the on/off state. The signal A may be a digital signal with two kinds of potentials, a potential V1 and a potential V2 (V1 > V2). For example, the potential V1 can be a high power supply potential, and the potential V2 can be a low power supply potential. The signal A may be an analog signal.

[0153]

5

10

15

20

25

30

35

The fixed potential V_b is, for example, a potential for controlling a threshold voltage V_{thA} of the transistor. The fixed potential V_b may be the potential V1 or the potential V2. In that case, a potential generator circuit for generating the fixed potential V_b is not necessary, which is preferable. The fixed potential V_b may be different from the potential V1 or the potential V2. When the fixed potential V_b is low, the threshold voltage V_{thA} can be high in some cases. As a result, the drain current flowing when the gate-source voltage V_{gs} is 0 V can be reduced, and leakage current in a circuit including the transistor can be reduced in some cases. The fixed potential V_b may be, for example, lower than the low power supply potential. Meanwhile, a high fixed potential V_b can lower the threshold voltage V_{thA} in some cases. As a result, the drain current flowing when the gate-source voltage V_{gs} is a high power supply potential and the operating speed of the circuit including the transistor can be increased in some cases. The fixed potential V_b may be, for example, higher than the low power supply potential. [0154]

The signal B is, for example, a signal for controlling the on/off state. The signal B may be a digital signal with two kinds of potentials, a potential V3 and a potential V4 (V3 > V4). For example, the potential V3 can be a high power supply potential, and the potential V4 can be a low power supply potential. The signal B may be an analog signal. [0155]

When both the signal A and the signal B are digital signals, the signal B may have the same digital value as the signal A. In this case, it may be possible to increase the on-state current of the transistor and the operating speed of the circuit including the transistor. Here, the potential V1 and the potential V2 of the signal A may be different from the potential V3 and the potential V4 of the signal B. For example, if a gate insulating film for the gate to which the signal B is input is thicker than a gate insulating film for the gate to which the signal A is input, the potential amplitude of the signal B (V3 - V4) may be larger than the potential amplitude of the signal A (V1 - V2). In this manner, the influence of the signal A and that of the signal B on the on/off state of the transistor can be substantially the same in some cases.

When both the signal A and the signal B are digital signals, the signal B may have a digital value different from that of the signal A. In this case, the signal A and the signal B can

separately control the transistor, and thus, higher performance can be achieved. The transistor which is, for example, an n-channel transistor can function by itself as a NAND circuit, a NOR circuit, or the like in the following case: the transistor is turned on only when the signal A has the potential V1 and the signal B has the potential V3, or the transistor is turned off only when the signal A has the potential V2 and the signal B has the potential V4. The signal B may be a signal for controlling the threshold voltage $V_{\rm thA}$. For example, the potential of the signal B in a period in which the circuit including the transistor operates may be different from the potential of the signal B may vary depending on the operation mode of the circuit. In this case, the potential of the signal B is not changed as frequently as the potential of the signal A in some cases.

[0157]

5

10

15

25

35

When both the signal A and the signal B are analog signals, the signal B may be an analog signal having the same potential as the signal A, an analog signal whose potential is a constant times the potential of the signal A, an analog signal whose potential is higher or lower than the potential of the signal A by a constant, or the like. In this case, it may be possible to increase the on-state current of the transistor and the operating speed of the circuit including the transistor. The signal B may be an analog signal different from the signal A. In this case, the signal A and the signal B can separately control the transistor, and thus, higher performance can be achieved.

20 [0158]

The signal A may be a digital signal, and the signal B may be an analog signal. Alternatively, the signal A may be an analog signal, and the signal B may be a digital signal.

[0159]

When both of the gate electrodes of the transistor are supplied with the fixed potentials, the transistor can function as an element equivalent to a resistor in some cases. For example, in the case where the transistor is an n-channel transistor, the effective resistance of the transistor can be sometimes low (high) when the fixed potential V_a or the fixed potential V_b is high (low). When both the fixed potential V_a and the fixed potential V_b are high (low), the effective resistance can be lower (higher) than that of a transistor with only one gate in some cases.

30 [0160]

Except for the above-mentioned points, the transistor 100A has a structure and an effect similar to those of the transistor 100 described above.

[0161]

<1-3. Structure example 3 of semiconductor device>

Next, structures of a semiconductor device different from that in FIGS. 4A to 4C will be

described with reference to FIGS. 5A and 5B, FIGS. 6A and 6B, FIGS. 7A and 7B, and FIGS. 8A and 8B.

[0162]

5

10

15

FIGS. 5A and 5B are cross-sectional views of a transistor 100B, FIGS. 6A and 6B are cross-sectional views of a transistor 100C, FIGS. 7A and 7B are cross-sectional views of a transistor 100D, and FIGS. 8A and 8B are cross-sectional views of a transistor 100E. Note that top views of the transistor 100B, the transistor 100C, the transistor 100D, and the transistor 100E are similar to that of the transistor 100A illustrated in FIG. 4A and thus are not described here.

The transistor 100B illustrated in FIGS. 5A and 5B is different from the above-described transistor 100A in the shape of the insulating film 110 and the conductive film 112. Specifically, in the cross section of the transistor in the channel length (L) direction, the shape of the insulating film 110 and the conductive film 112 is a rectangle in the transistor 100A but is a tapered shape in the transistor 100B. More specifically, in the cross section of the transistor in the channel length (L) direction, an upper end portion of the conductive film 112 in the transistor 100A is substantially aligned with a lower end portion of the insulating film 110, whereas an upper end portion of the conductive film 112 in the transistor 100B is located inward from a lower end portion of the insulating film 110. In other words, a side end portion of the insulating film 110 is located outward from a side end portion of the conductive film 112.

20 [0164]

To fabricate the transistor 100A, the conductive film 112 and the insulating film 110 are collectively formed by a dry etching method using the same mask. To fabricate the transistor 100B, the conductive film 112 and the insulating film 110 are formed by a combination of a wet etching method and a dry etching method using the same mask.

25 [0165]

A structure like that of the transistor 100A is preferable because end portions of the source region 108s and the drain region 108d can be substantially aligned with end portions of the conductive film 112. Meanwhile, a structure like that of the transistor 100B is preferable because the coverage with the insulating film 116 can be improved.

30 [0166]

35

The transistor 100C illustrated in FIGS. 6A and 6B is different from the above-described transistor 100A in the shape of the conductive film 112 and the insulating film 110. Specifically, in the cross section of the transistor 100C in the channel length (L) direction, a lower end portion of the conductive film 112 is not aligned with an upper end portion of the insulating film 110. The lower end portion of the conductive film 112 is located inward from the upper end portion of

the insulating film 110.

[0167]

For example, the structure of the transistor 100C can be obtained in the following manner: the conductive film 112 and the insulating film 110 are formed by a wet etching method and a dry etching method, respectively, using the same mask.

[0168]

5

10

15

20

25

30

35

With the structure of the transistor 100C, regions 108f are formed in the oxide semiconductor film 108 in some cases. The regions 108f are formed between the channel region 108i and the source region 108s and between the channel region 108i and the drain region 108d.

[0169]

The regions 108f function as high-resistance regions or low-resistance regions. The high-resistance regions have the same level of resistance as the channel region 108i and do not overlap with the conductive film 112 functioning as a gate electrode. In the case where the regions 108f are high-resistance regions, the regions 108f function as offset regions. To suppress a decrease in the on-state current of the transistor 100C, the regions 108f functioning as offset regions may each have a length of 1 μ m or less in a cross section in the channel length (L) direction.

[0170]

The low-resistance regions have a resistance that is lower than that of the channel region 108i and higher than that of the source region 108s and the drain region 108d. In the case where the regions 108f are low-resistance regions, the regions 108f function as lightly doped drain (LDD) regions. The regions 108f functioning as LDD regions can relieve an electric field in the drain region, thereby reducing a change in the threshold voltage of the transistor due to the electric field in the drain region.

[0171]

Note that in the case where the regions 108f serve as LDD regions, for example, the regions 108f are formed by supplying nitrogen or hydrogen from the insulating film 116 to the regions 108f or by adding an impurity element from above the conductive film 112 and the insulating film 110 using the conductive film 112 and the insulating film 110 as a mask so that the impurity element is added to the oxide semiconductor film 108 through the insulating film 110.

[0172]

The transistor 100D illustrated in FIGS. 7A and 7B is different from the above-described transistor 100A in the shape of the conductive film 112 and the insulating film

110. Specifically, in the cross section of the transistor 100D in the channel length (L) direction, a lower end portion of the conductive film 112 is not aligned with an upper end portion of the insulating film 110. More specifically, the lower end portion of the conductive film 112 is located outward from the upper end portion of the insulating film 110.

[0173]

5

10

15

20

25

30

For example, the structure of the transistor 100D can be obtained in the following manner: the conductive film 112 and the insulating film 110 are formed by a dry etching method and a wet etching method, respectively, using the same mask.

[0174]

With the structure of the transistor 100D, parts of the source region 108s and the drain region 108d are provided inward from side surfaces of the conductive film 112 functioning as a gate electrode. Note that a region where the conductive film 112 and the source region 108s overlap with each other and a region where the conductive film 112 and the drain region 108d overlap with each other function as what are called overlap regions (also referred to as Lov regions). Note that the Lov regions overlap with the conductive film 112 functioning as the gate electrode and have lower resistance than the channel region 108i. With the Lov regions, no high-resistance region is formed between the channel region 108i and the source region 108s or the drain region 108d; accordingly, the on-state current of the transistor can be increased.

The transistor 100E illustrated in FIGS. 8A and 8B is different from the above-described transistor 100A in that an insulating film 122 functioning as a planarization film is provided over the insulating film 118. The other components of the transistor 100E are similar to those of the transistor 100A described above and have similar effects.

[0176]

The insulating film 122 has a function of covering unevenness and the like caused by the transistor or the like. The insulating film 122 has an insulating property and is formed using an inorganic material or an organic material. Examples of the inorganic material include a silicon oxide film, a silicon oxynitride film, a silicon nitride oxide film, a silicon nitride film, an aluminum oxide film, and an aluminum nitride film. Examples of the organic material include photosensitive resin materials such as an acrylic resin and a polyimide resin.

[0177]

Note that the size of each opening in the insulating film 122 is not limited to that in FIGS. 8A and 8B, in which the openings are larger than the openings 141a and 141b, and may be smaller than or equal to the size of each of the openings 141a and 141b, for example.

In addition, the structure is not limited to the example in FIGS. 8A and 8B, in which the conductive films 120a and 120b are provided over the insulating film 122; for example, the insulating film 122 may be provided over the conductive films 120a and 120b formed over the insulating film 118.

5 [0179]

<1-4. Structure example 4 of semiconductor device>

Next, structures of a semiconductor device different from that in FIGS. 4A to 4C will be described with reference to FIGS. 9A and 9B, FIGS. 10A and 10B, FIGS. 11A and 11B, FIGS. 12A and 12B, FIGS. 13A and 13B, and FIGS. 14A to 14C.

10 [0180]

15

20

25

30

35

FIGS. 9A and 9B are cross-sectional views of a transistor 100F, FIGS. 10A and 10B are cross-sectional views of a transistor 100G, FIGS. 11A and 11B are cross-sectional views of a transistor 100H, FIGS. 12A and 12B are cross-sectional views of a transistor 100J, and FIGS. 13A and 13B are cross-sectional views of a transistor 100K. Note that top views of the transistor 100F, the transistor 100G, the transistor 100H, the transistor 100J, and the transistor 100K are similar to that of the transistor 100A illustrated in FIG. 4A and thus are not described here.

[0181]

The transistors 100F, 100G, 100H, 100J, and 100K are different from the above-described transistor 100A in the structure of the oxide semiconductor film 108. The other components of the transistors 100F, 100G, 100H, 100J, and 100K are similar to those of the transistor 100A described above and have similar effects.

[0182]

The oxide semiconductor film 108 of the transistor 100F illustrated in FIGS. 9A and 9B includes an oxide semiconductor film 108_1 over the insulating film 104, an oxide semiconductor film 108_2 over the oxide semiconductor film 108_1, and an oxide semiconductor film 108_3 over the oxide semiconductor film 108_2. The channel region 108i, the source region 108s, and the drain region 108d each have a three-layer structure of the oxide semiconductor film 108_1, the oxide semiconductor film 108_2, and the oxide semiconductor film 108_3.

[0183]

The oxide semiconductor film 108 of the transistor 100G illustrated in FIGS. 10A and 10B includes the oxide semiconductor film 108_2 over the insulating film 104, and the oxide semiconductor film 108_3 over the oxide semiconductor film 108_2. The channel region 108i, the source region 108s, and the drain region 108d each have a two-layer structure of the oxide

semiconductor film 108_2 and the oxide semiconductor film 108_3.

[0184]

5

10

15

20

25

30

The oxide semiconductor film 108 of the transistor 100H illustrated in FIGS. 11A and 11B includes the oxide semiconductor film 108_1 over the insulating film 104, and the oxide semiconductor film 108_2 over the oxide semiconductor film 108_1. The channel region 108i, the source region 108s, and the drain region 108d each have a two-layer structure of the oxide semiconductor film 108_1 and the oxide semiconductor film 108_2.

The oxide semiconductor film 108 of the transistor 100J illustrated in FIGS. 12A and 12B includes the oxide semiconductor film 108_1 over the insulating film 104, the oxide semiconductor film 108_2 over the oxide semiconductor film 108_1, and the oxide semiconductor film 108_3 over the oxide semiconductor film 108_2. The channel region 108i has a three-layer structure of the oxide semiconductor film 108_1, the oxide semiconductor film 108_2, and the oxide semiconductor film 108_3. The source region 108s and the drain region 108d each have a two-layer structure of the oxide semiconductor film 108_1 and the oxide semiconductor film 108_2. Note that in the cross section of the transistor 100J in the channel width (W) direction, the oxide semiconductor film 108_3 covers side surfaces of the oxide semiconductor film 108_1 and the oxide semiconductor film 108_2.

The oxide semiconductor film 108 of the transistor 100K illustrated in FIGS. 13A and 13B includes the oxide semiconductor film 108_2 over the insulating film 104, and the oxide semiconductor film 108_3 over the oxide semiconductor film 108_2. The channel region 108i has a two-layer structure of the oxide semiconductor film 108_2 and the oxide semiconductor film 108_3. The source region 108s and the drain region 108d each have a single-layer structure of the oxide semiconductor film 108_2. Note that in the cross section of the transistor 100K in the channel width (W) direction, the oxide semiconductor film 108_3 covers side surfaces of the oxide semiconductor film 108_2.

A side surface of the channel region 108i in the channel width (W) direction or a region in the vicinity of the side surface is easily damaged by processing, resulting in a defect (e.g., oxygen vacancy), or easily contaminated by an impurity attached thereto. Therefore, even when the channel region 108i is substantially intrinsic, stress such as an electric field applied thereto activates the side surface of the channel region 108i in the channel width (W) direction or the region in the vicinity of the side surface and turns it into a low-resistance (n-type) region

easily. Moreover, if the side surface of the channel region 108i in the channel width (W) direction or the region in the vicinity of the side surface is an n-type region, a parasitic channel may be formed because the n-type region serves as a carrier path.

[0188]

5

10

15

20

25

30

Thus, in the transistor 100J and the transistor 100K, the channel region 108i has a stacked-layer structure and side surfaces of the channel region 108i in the channel width (W) direction are covered with one layer of the stacked layers. With such a structure, defects on or in the vicinity of the side surfaces of the channel region 108i can be suppressed or adhesion of an impurity to the side surfaces of the channel region 108i or to regions in the vicinity of the side surfaces can be reduced.

[0189]

<1-5. Band structure>

Here, a band structure of the insulating film 104, the oxide semiconductor films 108_1, 108_2, and 108_3, and the insulating film 110, a band structure of the insulating film 104, the oxide semiconductor films 108_2 and 108_3, and the insulating film 110, and a band structure of the insulating film 104, the oxide semiconductor films 108_1 and 108_2, and the insulating film 110 will be described with reference to FIGS. 14A to 14C. Note that FIGS. 14A to 14C are each a band structure of the channel region 108i.

[0190]

FIG. 14A shows an example of a band structure in the thickness direction of a stack including the insulating film 104, the oxide semiconductor films 108_1 , 108_2 , and 108_3 , and the insulating film 110. FIG. 14B shows an example of a band structure in the thickness direction of a stack including the insulating film 104, the oxide semiconductor films 108_2 and 108_3 , and the insulating film 110. FIG. 14C shows an example of a band structure in the thickness direction of a stack including the insulating film 104, the oxide semiconductor films 108_1 and 108_2 , and the insulating film 110. For easy understanding, the band structures show the conduction band minimum (E_0) of the insulating film 104, the oxide semiconductor films 108_1 , 108_2 , and 108_3 , and the insulating film 110.

In the band structure of FIG. 14A, a silicon oxide film is used as each of the insulating films 104 and 110, an oxide semiconductor film formed using a metal oxide target whose atomic ratio of In to Ga and Zn is 1:3:2 is used as the oxide semiconductor film 108_1, an oxide semiconductor film formed using a metal oxide target whose atomic ratio of In to Ga and Zn is 4:2:4.1 is used as the oxide semiconductor film 108_2, and an oxide semiconductor film formed

using a metal oxide target whose atomic ratio of In to Ga and Zn is 1:3:2 is used as the oxide semiconductor film 108 3.

[0192]

5

10

20

30

In the band structure of FIG. 14B, a silicon oxide film is used as each of the insulating films 104 and 110, an oxide semiconductor film formed using a metal oxide target whose atomic ratio of In to Ga and Zn is 4:2:4.1 is used as the oxide semiconductor film 108_2, and an oxide semiconductor film formed using a metal oxide target whose atomic ratio of In to Ga and Zn is 1:3:2 is used as the oxide semiconductor film 108_3.

[0193]

In the band structure of FIG. 14C, a silicon oxide film is used as each of the insulating films 104 and 110, an oxide semiconductor film formed using a metal oxide target whose atomic ratio of In to Ga and Zn is 1:3:2 is used as the oxide semiconductor film 108_1, and an oxide semiconductor film formed using a metal oxide target whose atomic ratio of In to Ga and Zn is 4:2:4.1 is used as the oxide semiconductor film 108_2.

15 [0194]

As illustrated in FIG. 14A, the conduction band minimum gradually varies between the oxide semiconductor films 108_1, 108_2, and 108_3. As illustrated in FIG. 14B, the conduction band minimum gradually varies between the oxide semiconductor films 108_2 and 108_3. As illustrated in FIG. 14C, the conduction band minimum gradually varies between the oxide semiconductor films 108_1 and 108_2. In other words, the conduction band minimum is continuously changed or continuously connected. To obtain such a band structure, there exists no impurity, which forms a defect state such as a trap center or a recombination center, at the interface between the oxide semiconductor films 108_1 and 108_2 or the interface between the oxide semiconductor films 108_3 and 108_3.

25 [0195]

To form a continuous junction between the oxide semiconductor films 108_1, 108_2, and 108_3, it is necessary to form the films successively without exposure to the air with a multi-chamber deposition apparatus (sputtering apparatus) provided with a load lock chamber. [0196]

With the band structure of FIG. 14A, FIG. 14B, or FIG. 14C, the oxide semiconductor film 108_2 serves as a well, and a channel region is formed in the oxide semiconductor film 108_2 in the transistor with the stacked-layer structure.

[0197]

By providing the oxide semiconductor films 108 1 and 108 3, the oxide semiconductor

film 108_2 can be distanced away from trap states.
[0198]

In addition, the trap states might be more distant from the vacuum level than the conduction band minimum (E_c) of the oxide semiconductor film 108_2 functioning as a channel region, so that electrons are likely to be accumulated in the trap states. When the electrons are accumulated in the trap states, the electrons become negative fixed electric charge, so that the threshold voltage of the transistor is shifted in the positive direction. Therefore, it is preferable that the trap states be closer to the vacuum level than the conduction band minimum (E_c) of the oxide semiconductor film 108_2. Such a structure inhibits accumulation of electrons in the trap states. As a result, the on-state current and the field-effect mobility of the transistor can be increased.

[0199]

5

10

15

20

25

30

The conduction band minimum of each of the oxide semiconductor films 108_1 and 108_3 is closer to the vacuum level than that of the oxide semiconductor film 108_2. A typical difference between the conduction band minimum of the oxide semiconductor film 108_2 and the conduction band minimum of each of the oxide semiconductor films 108_1 and 108_3 is 0.15 eV or more or 0.5 eV or more and 2 eV or less or 1 eV or less. That is, the difference between the electron affinity of each of the oxide semiconductor films 108_1 and 108_3 and the electron affinity of the oxide semiconductor film 108_2 is 0.15 eV or more or 0.5 eV or more and 2 eV or less or 1 eV or less.

[0200]

In such a structure, the oxide semiconductor film 108_2 serves as a main path of a current. In other words, the oxide semiconductor film 108_2 serves as a channel region, and the oxide semiconductor films 108_1 and 108_3 serve as oxide insulating films. It is preferable that the oxide semiconductor films 108_1 and 108_3 each include one or more metal elements constituting a part of the oxide semiconductor film 108_2 in which a channel region is formed. With such a structure, interface scattering hardly occurs at the interface between the oxide semiconductor film 108_1 and the oxide semiconductor film 108_2 or at the interface between the oxide semiconductor film 108_3. Thus, the transistor can have high field-effect mobility because the movement of carriers is not hindered at the interface.

[0201]

To prevent each of the oxide semiconductor films 108_1 and 108_3 from functioning as part of a channel region, a material having sufficiently low conductivity is used for the oxide

semiconductor films 108_1 and 108_3. Thus, the oxide semiconductor films 108_1 and 108_3 can be referred to as oxide insulating films for such properties and/or functions. Alternatively, a material that has a smaller electron affinity (a difference between the vacuum level and the conduction band minimum) than the oxide semiconductor film 108_2 and has a difference in the conduction band minimum from the oxide semiconductor film 108_2 (band offset) is used for the oxide semiconductor films 108_1 and 108_3. Furthermore, to inhibit generation of a difference in threshold voltage due to the value of the drain voltage, it is preferable to form the oxide semiconductor films 108_1 and 108_3 using a material whose conduction band minimum is closer to the vacuum level than that of the oxide semiconductor film 108_2. For example, a difference between the conduction band minimum of the oxide semiconductor films 108_1 and 108_3 and the conduction band minimum of each of the oxide semiconductor films 108_1 and 108_3 is preferably greater than or equal to 0.2 eV, more preferably greater than or equal to 0.5 eV.

It is preferable that the oxide semiconductor films 108_1 and 108_3 not have a spinel crystal structure. This is because if the oxide semiconductor films 108_1 and 108_3 have a spinel crystal structure, constituent elements of the conductive films 120a and 120b might be diffused into the oxide semiconductor film 108_2 at the interface between the spinel crystal structure and another region. Note that each of the oxide semiconductor films 108_1 and 108_3 is preferably a CAAC-OS film described later, in which case a higher blocking property against constituent elements of the conductive films 120a and 120b, for example, copper elements, can be obtained.

[0203]

5

10

15

20

25

30

Although the example where an oxide semiconductor film formed using a metal oxide target whose atomic ratio of In to Ga and Zn is 1:3:2, is used as each of the oxide semiconductor films 108_1 and 108_3 is described in this embodiment, one embodiment of the present invention is not limited thereto. For example, an oxide semiconductor film formed using a metal oxide target whose atomic ratio of In to Ga and Zn is 1:1:1, 1:1:1.2, 1:3:4, 1:3:6, 1:4:5, 1:5:6, or 1:10:1 may be used as each of the oxide semiconductor films 108_1 and 108_3. Alternatively, oxide semiconductor films formed using a metal oxide target whose atomic ratio of Ga to Zn is 10:1 may be used as the oxide semiconductor films 108_1 and 108_3. In that case, it is suitable that an oxide semiconductor film formed using a metal oxide target whose atomic ratio of In to Ga and Zn is 1:1:1 is used as the oxide semiconductor film 108_2 because the difference between the conduction band minimum of the oxide semiconductor film 108 1 or 108 3 can be 0.6

eV or more.

[0204]

5

10

15

20

25

30

35

When the oxide semiconductor films 108_1 and 108_3 are formed using a metal oxide target whose atomic ratio of In to Ga and Zn is 1:1:1, the atomic ratio of In to Ga and Zn in the oxide semiconductor films 108_1 and 108_3 might be 1: β 1: β 2 (0 < β 1 \leq 2, 0 < β 2 \leq 2). When the oxide semiconductor films 108_1 and 108_3 are formed using a metal oxide target whose atomic ratio of In to Ga and Zn is 1:3:4, the atomic ratio of In to Ga and Zn in the oxide semiconductor films 108_1 and 108_3 might be 1: β 3: β 4 (1 \leq β 3 \leq 5, 2 \leq β 4 \leq 6). When the oxide semiconductor films 108_1 and 108_3 are formed using a metal oxide target whose atomic ratio of In to Ga and Zn is 1:3:6, the atomic ratio of In to Ga and Zn in the oxide semiconductor films 108_1 and 108_3 might be 1: β 5: β 6 (1 \leq β 5 \leq 5, 4 \leq β 6 \leq 8).

<1-6. Method 1 for manufacturing semiconductor device>

Next, an example of the method for manufacturing the transistor 100 illustrated in FIG. 1 will be described with reference to FIGS. 15A to 15D, FIGS. 16A to 16C, and FIGS. 17A and 17B. Note that FIGS. 15A to 15D, FIGS. 16A to 16C, and FIGS. 17A and 17B are cross-sectional views in the channel length (L) direction and the channel width (W) direction and illustrate a method for manufacturing the transistor 100.

[0206]

First, the insulating film 104 is formed over the substrate 102. Subsequently, an oxide semiconductor film is formed over the insulating film 104. Then, the oxide semiconductor film is processed into an island shape, whereby an oxide semiconductor film 107 is formed (see FIG. 15A).

[0207]

The insulating film 104 can be formed by a sputtering method, a CVD method, an evaporation method, a pulsed laser deposition (PLD) method, a printing method, a coating method, or the like as appropriate. In this embodiment, as the insulating film 104, a 400-nm-thick silicon nitride film and a 50-nm-thick silicon oxynitride film are formed with a plasma CVD apparatus. Note that the oxide semiconductor film 108 may be formed over the substrate 102 without forming the insulating film 104.

[0208]

After the insulating film 104 is formed, oxygen may be added to the insulating film 104. As oxygen added to the insulating film 104, an oxygen radical, an oxygen atom, an oxygen atomic ion, an oxygen molecular ion, or the like may be used. Oxygen can be added by an ion doping method, an ion implantation method, a plasma treatment method, or the like.

Alternatively, a film that suppresses oxygen release may be formed over the insulating film 104, and then, oxygen may be added to the insulating film 104 through the film.

[0209]

The film that suppresses oxygen release can be formed using a conductive film or a semiconductor film containing one or more of indium, zinc, gallium, tin, aluminum, chromium, tantalum, titanium, molybdenum, nickel, iron, cobalt, and tungsten.

[0210]

5

10

15

20

25

30

35

In the case where oxygen is added by plasma treatment in which oxygen is excited by a microwave to generate high-density oxygen plasma, the amount of oxygen added to the insulating film 104 can be increased.

[0211]

The oxide semiconductor film 107 can be formed by a sputtering method, a coating method, a pulsed laser deposition method, a laser ablation method, a thermal CVD method, or the like. Note that the oxide semiconductor film can be processed into the oxide semiconductor film 107 in the following manner: a mask is formed over the oxide semiconductor film by a lithography process, and then, the oxide semiconductor film is partly etched using the mask. Alternatively, the isolated oxide semiconductor film 107 may be directly formed by a printing method.

[0212]

As a power supply device for generating plasma when the oxide semiconductor film is formed by a sputtering method, an RF power supply device, an AC power supply device, a DC power supply device, or the like can be used as appropriate. As a sputtering gas for forming the oxide semiconductor film, a rare gas (typically argon), oxygen, or a mixed gas of a rare gas and oxygen is used as appropriate. In the mixed gas of a rare gas and oxygen, the proportion of oxygen to the rare gas is preferably increased.

[0213]

To increase the crystallinity of the oxide semiconductor film formed by a sputtering method, for example, the oxide semiconductor film is preferably deposited at a substrate temperature higher than or equal to 150 °C and lower than or equal to 750 °C, higher than or equal to 150 °C and lower than or equal to 200 °C and lower than or equal to 350 °C.

[0214]

In this embodiment, as the oxide semiconductor film 107, a 35-nm-thick oxide semiconductor film is deposited with a sputtering apparatus using an In-Ga-Zn metal oxide (In:Ga:Zn = 4:2:4.1 [atomic ratio]) as a sputtering target.

[0215]

After the oxide semiconductor film 107 is formed, the oxide semiconductor film 107 may be dehydrated or dehydrogenated by heat treatment. The temperature of the heat treatment is typically higher than or equal to 150 $^{\circ}$ C and lower than the strain point of the substrate, higher than or equal to 250 $^{\circ}$ C and lower than or equal to 450 $^{\circ}$ C, or higher than or equal to 300 $^{\circ}$ C and lower than or equal to 450 $^{\circ}$ C.

[0216]

5

10

15

20

25

30

35

The heat treatment can be performed in an inert gas atmosphere containing nitrogen or a rare gas such as helium, neon, argon, xenon, or krypton. Alternatively, the heat treatment may be performed in an inert gas atmosphere first, and then, in an oxygen atmosphere. It is preferable that the above inert gas atmosphere and the above oxygen atmosphere do not contain hydrogen, water, and the like. The treatment time may be longer than or equal to 3 minutes and shorter than or equal to 24 hours.

[0217]

An electric furnace, an RTA apparatus, or the like can be used for the heat treatment. With the use of an RTA apparatus, the heat treatment can be performed at a temperature higher than or equal to the strain point of the substrate if the heating time is short. Therefore, the heat treatment time can be shortened.

[0218]

By depositing the oxide semiconductor film while it is heated or by performing heat treatment after the formation of the oxide semiconductor film, the hydrogen concentration in the oxide semiconductor film, which is measured by SIMS, can be 5×10^{19} atoms/cm³ or lower, 1×10^{19} atoms/cm³ or lower, 5×10^{18} atoms/cm³ or lower, 1×10^{18} atoms/cm³ or lower, or 1×10^{16} atoms/cm³ or lower.

[0219]

Next, an insulating film 110_0 is formed over the insulating film 104 and the oxide semiconductor film 107 (see FIG. 15B).

[0220]

For the insulating film 110_0, a silicon oxide film or a silicon oxynitride film can be formed with a plasma-enhanced chemical vapor deposition apparatus (a PECVD apparatus or simply referred to as a plasma CVD apparatus). In this case, a deposition gas containing silicon and an oxidizing gas are preferably used as a source gas. Typical examples of the deposition gas containing silicon include silane, disilane, trisilane, and silane fluoride. As examples of the oxidizing gas, oxygen, ozone, dinitrogen monoxide, and nitrogen dioxide can be given.

A silicon oxynitride film having few defects can be formed as the insulating film 110_0 with the plasma CVD apparatus under the conditions that the flow rate of the oxidizing gas is more than 20 times and less than 100 times, or more than or equal to 40 times and less than or equal to 80 times the flow rate of the deposition gas and that the pressure in a treatment chamber is lower than 100 Pa or lower than or equal to 50 Pa.

[0222]

5

10

15

20

25

30

As the insulating film 110_0, a dense silicon oxide film or a dense silicon oxynitride film can be formed under the following conditions: the substrate placed in a vacuum-evacuated treatment chamber of the plasma CVD apparatus is held at a temperature higher than or equal to 280 °C and lower than or equal to 400 °C, the pressure in the treatment chamber into which a source gas is introduced is set to be higher than or equal to 20 Pa and lower than or equal to 250 Pa, preferably higher than or equal to 100 Pa and lower than or equal to 250 Pa, and a high-frequency power is supplied to an electrode provided in the treatment chamber.

The insulating film 110_0 may be formed by a plasma CVD method using a microwave. A microwave refers to a wave in the frequency range of 300 MHz to 300 GHz. In a microwave, electron temperature and electron energy are low. Furthermore, in supplied power, the proportion of power used for acceleration of electrons is low, and therefore, much more power can be used for dissociation and ionization of molecules. Thus, plasma with a high density (high-density plasma) can be excited. This method causes little plasma damage to the deposition surface or a deposit, so that the insulating film 110_0 having few defects can be formed.

Alternatively, the insulating film 110_0 can also be formed by a CVD method using an organosilane gas. As the organosilane gas, the following silicon-containing compound can be used: tetraethyl orthosilicate (TEOS) (chemical formula: $Si(OC_2H_5)_4$), tetramethylsilane (TMS) (chemical formula: $Si(CH_3)_4$), tetramethylcyclotetrasiloxane (TMCTS), octamethylcyclotetrasiloxane (OMCTS), hexamethyldisilazane (HMDS), triethoxysilane (SiH(OC₂H₅)₃), trisdimethylaminosilane (SiH(N(CH₃)₂)₃), or the like. By a CVD method using an organosilane gas, the insulating film 110_0 having high coverage can be formed.

In this embodiment, as the insulating film 110_0 , a 100-nm-thick silicon oxynitride film is formed with the plasma CVD apparatus.

[0226]

[0224]

Next, a conductive film 112_0 is formed over the insulating film 110_0. In the case where a metal oxide film is used as the conductive film 112_0, for example, oxygen might be added from the conductive film 112_0 to the insulating film 110_0 during the formation of the conductive film 112_0 (see FIG. 15C).

5 [0227]

In FIG. 15C, oxygen added to the insulating film 110_0 is schematically shown by arrows.

[0228]

In the case where a metal oxide film is used as the conductive film 112_0, the conductive film 112_0 is preferably formed by a sputtering method in an atmosphere containing an oxygen gas. Formation of the conductive film 112_0 in an atmosphere containing an oxygen gas allows suitable addition of oxygen to the insulating film 110_0. Note that a method for forming the conductive film 112_0 is not limited to a sputtering method, and other methods such as an ALD method may be used.

15 [0229]

10

20

30

In this embodiment, a 100-nm-thick IGZO film containing an In-Ga-Zn oxide (In:Ga:Zn = 4:2:4.1 [atomic ratio]) is formed as the conductive film 112_0 by a sputtering method. Note that oxygen addition treatment may be performed on the insulating film 110_0 before or after the formation of the conductive film 112_0. The oxygen addition treatment can be performed similarly to the oxygen addition that can be performed after the formation of the insulating film 104.

[0230]

Subsequently, a mask 140 is formed by a lithography process in a desired position over the conductive film 112 0 (see FIG. 15D).

25 [0231]

Next, etching is performed from above the mask 140 to process the conductive film 112_0 and the insulating film 110_0. Then, the mask 140 is removed, so that the island-shaped conductive film 112 and the island-shaped insulating film 110 are formed (see FIG. 16A). [0232]

In this embodiment, the conductive film 112_0 and the insulating film 110_0 are processed by a dry etching method.

[0233]

In the processing of the conductive film 112_0 and the insulating film 110_0, the thickness of the oxide semiconductor film 107 in a region not overlapping with the conductive

film 112 is decreased in some cases. In other cases, in the processing of the conductive film 112_0 and the insulating film 110_0, the thickness of the insulating film 104 in a region not overlapping with the oxide semiconductor film 107 is decreased. In the processing of the conductive film 112_0 and the insulating film 110_0, an etchant or an etching gas (e.g., chlorine) might be added to the oxide semiconductor film 107 or the constituent element of the conductive film 112_0 or the insulating film 110_0 might be added to the oxide semiconductor film 107. [0234]

Then, the insulating film 116 is formed over the insulating film 104, the oxide semiconductor film 107, and the conductive film 112. Note that when the insulating film 116 is formed, the oxide semiconductor film 107 in regions in contact with the insulating film 116 becomes the source region 108s and the drain region 108d. The oxide semiconductor film 107 in a region in contact with the insulating film 110 becomes the channel region 108i. Accordingly, the oxide semiconductor film 108 including the channel region 108i, the source region 108s, and the drain region 108d is formed (see FIG. 16B).

[0235]

5

10

15

20

25

30

35

Note that the insulating film 116 can be formed using a material selected from the above-mentioned materials. In this embodiment, as the insulating film 116, a 100-nm-thick silicon nitride oxide film is formed with a plasma CVD apparatus. In the formation of the silicon nitride oxide film, plasma treatment and deposition treatment are performed at 220 °C. The plasma treatment is performed before deposition under the following conditions: an argon gas at a flow rate of 100 sccm is introduced into a chamber, the pressure in the chamber is set to 40 Pa, and power of 1000 W is supplied to an RF power source (27.12 MHz). The deposition treatment is performed under the following conditions: a silane gas at a flow rate of 50 sccm, a nitrogen gas at a flow rate of 5000 sccm, and an ammonia gas at a flow rate of 100 sccm are introduced into the chamber; the pressure in the chamber is set to 100 Pa; and power of 1000 W is supplied to the RF power source (27.12 MHz).

When a silicon nitride oxide film is used for the insulating film 116, nitrogen or hydrogen in the silicon nitride oxide film can be supplied to the source region 108s and the drain region 108d in contact with the insulating film 116. In addition, when the formation temperature of the insulating film 116 is the above temperature, release of excess oxygen contained in the insulating film 110 to the outside can be suppressed.

[0237]

Note that an impurity element may be added to the oxide semiconductor film 107 before the insulating film 116 is formed. Alternatively, an impurity element may be added to the oxide

semiconductor film 107 through the insulating film 116 after the insulating film 116 is formed. [0238]

The impurity element can be added by an ion doping method, an ion implantation method, a plasma treatment method, or the like. In a plasma treatment method, an impurity element can be added using plasma generated in a gas atmosphere containing the impurity element. A dry etching apparatus, an ashing apparatus, a plasma CVD apparatus, a high-density plasma CVD apparatus, or the like can be used to generate plasma.

[0239]

5

10

15

20

25

30

35

[0242]

As a source gas of the impurity element, at least one of B₂H₆, PH₃, CH₄, N₂, NH₃, AlH₃, AlCl₃, SiH₄, Si₂H₆, F₂, HF, H₂, and a rare gas can be used. Alternatively, at least one of B₂H₆, PH₃, N₂, NH₃, AlH₃, AlCl₃, F₂, HF, and H₂ which are diluted with a rare gas can be used. Typical examples of the rare gas include helium, neon, argon, krypton, and xenon.

Alternatively, after a rare gas is added to the oxide semiconductor film 107, at least one of B₂H₆, PH₃, CH₄, N₂, NH₃, AlH₃, AlCl₃, SiH₄, Si₂H₆, F₂, HF, and H₂ may be added thereto. Further alternatively, after at least one of B₂H₆, PH₃, CH₄, N₂, NH₃, AlH₃, AlCl₃, SiH₄, Si₂H₆, F₂, HF, and H₂ is added to the oxide semiconductor film 107, a rare gas may be added thereto. [0241]

Next, the insulating film 118 is formed over the insulating film 116 (see FIG. 16C).

The insulating film 118 can be formed using a material selected from the above-mentioned materials. In this embodiment, as the insulating film 118, a 300-nm-thick silicon oxynitride film is formed with a plasma CVD apparatus.

[0243]

Subsequently, a mask is formed by lithography in a desired position over the insulating film 118, and then, the insulating film 118 and the insulating film 116 are partly etched, so that the opening 141a reaching the source region 108s and the opening 141b reaching the drain region 108d are formed (see FIG. 17A).

[0244]

To etch the insulating film 118 and the insulating film 116, a wet etching method and/or a dry etching method can be used. In this embodiment, the insulating film 118 and the insulating film 116 are processed by a dry etching method.

[0245]

Next, a conductive film is formed over the source region 108s, the drain region 108d, and the insulating film 118 so as to cover the openings 141a and 141b and the conductive film is

processed into a desired shape, whereby the conductive films 120a and 120b are formed (see FIG. 17B).

[0246]

5

10

15

20

25

30

35

The conductive films 120a and 120b can be formed using a material selected from the above-mentioned materials. In this embodiment, for the conductive films 120a and 120b, a stack including a 50-nm-thick tungsten film and a 400-nm-thick copper film is formed with a sputtering apparatus.

[0247]

To process the conductive film to be the conductive films 120a and 120b, a wet etching method and/or a dry etching method can be used. In this embodiment, in the processing of the conductive film into the conductive films 120a and 120b, the copper film is etched by a wet etching method and then the tungsten film is etched by a dry etching method.

[0248]

Through the above steps, the transistor 100 in FIGS. 3A to 3C can be manufactured.

[0249]

Note that the films constituting a part of the transistor 100 (the insulating film, the metal oxide film, the oxide semiconductor film, the conductive film, and the like) can be formed by, other than the above methods, a sputtering method, a chemical vapor deposition (CVD) method, a vacuum evaporation method, a pulsed laser deposition (PLD) method, or an ALD method. Alternatively, a coating method or a printing method can be used. Although a sputtering method and a plasma-enhanced chemical vapor deposition (PECVD) method are typical deposition methods, a thermal CVD method may also be used. As an example of a thermal CVD method, a metal organic chemical vapor deposition (MOCVD) method can be given.

Deposition by a thermal CVD method is performed in the following manner: a source gas and an oxidizer are supplied at a time to a chamber in which the pressure is set to an atmospheric pressure or a reduced pressure, and the source gas and the oxidizer react with each other in the vicinity of the substrate or over the substrate. As seen above, no plasma is generated during deposition by a thermal CVD method, which has an advantage in that no defect due to plasma damage is formed.

[0251]

Films such as the conductive film, the insulating film, the oxide semiconductor film, and the metal oxide film can be formed by a thermal CVD method such as an MOCVD method. For example, in the case where an In-Ga-Zn-O film is deposited, trimethylindium (In(CH₃)₃), trimethylgallium (Ga(CH₃)₃), and dimethylzinc (Zn(CH₃)₂) are used. Without being limited to

the above combination, triethylgallium ($Ga(C_2H_5)_3$) can be used instead of trimethylgallium, and diethylzinc ($Zn(C_2H_5)_2$) can be used instead of dimethylzinc.

[0252]

5

10

15

20

25

30

In the case where a hafnium oxide film is formed with a deposition apparatus employing an ALD method, two kinds of gases are used, namely, ozone (O₃) as an oxidizer and a source gas which is obtained by vaporizing liquid containing a solvent and a hafnium precursor (hafnium alkoxide or hafnium amide such as tetrakis(dimethylamide)hafnium (TDMAH, Hf[N(CH₃)₂]₄) or tetrakis(ethylmethylamide)hafnium).

[0253]

In the case where an aluminum oxide film is formed with a deposition apparatus employing an ALD method, two kinds of gases are used, namely, H₂O as an oxidizer and a source gas which is obtained by vaporizing liquid containing a solvent and an aluminum precursor (e.g., trimethylaluminum (TMA, Al(CH₃)₃)). Examples of another material include tris(dimethylamide)aluminum, triisobutylaluminum, and aluminum tris(2,2,6,6-tetramethyl-3,5-heptanedionate).

[0254]

In the case where a silicon oxide film is formed with a deposition apparatus employing an ALD method, hexachlorodisilane is adsorbed on a surface on which a film is to be deposited, and radicals of an oxidizing gas (O_2 or dinitrogen monoxide) are supplied to react with the adsorbate.

[0255]

In the case where a tungsten film is formed with a deposition apparatus employing an ALD method, a WF $_6$ gas and a B $_2$ H $_6$ gas are sequentially introduced to form an initial tungsten film, and then, a WF $_6$ gas and an H $_2$ gas are used to form a tungsten film. Note that an SiH $_4$ gas may be used instead of a B $_2$ H $_6$ gas.

[0256]

In the case where an oxide semiconductor film such as an In-Ga-Zn-O film is formed with a deposition apparatus employing an ALD method, an In(CH₃)₃ gas and an O₃ gas are used to form an In-O layer, a Ga(CH₃)₃ gas and an O₃ gas are used to form a Ga-O layer, and then, a Zn(CH₃)₂ gas and an O₃ gas are used to form a Zn-O layer. Note that the order of these layers is not limited to this example. A mixed compound layer such as an In-Ga-O layer, an In-Zn-O layer, or a Ga-Zn-O layer may be formed using these gases. Although an H₂O gas which is obtained by bubbling water with an inert gas such as Ar may be used instead of an O₃ gas, it is preferable to use an O₃ gas, which does not contain H.

<1-7. Method 2 for manufacturing semiconductor device>

Next, an example of a method for manufacturing the transistor 100A in FIGS. 4A to 4C will be described with reference to FIGS. 18A to 18D, FIGS. 19A to 19C, and FIGS. 20A to 20C. Note that FIGS. 18A to 18D, FIGS. 19A to 19C, and FIGS. 20A to 20C are cross-sectional views in the channel length (L) direction and the channel width (W) direction and illustrate a method for manufacturing the transistor 100A.

[0258]

5

10

15

20

30

35

First, the conductive film 106 is formed over the substrate 102. Then, the insulating film 104 is formed over the substrate 102 and the conductive film 106, and an oxide semiconductor film is formed over the insulating film 104. After that, the oxide semiconductor film is processed into an island shape, whereby the oxide semiconductor film 107 is formed (see FIG. 18A).

[0259]

The conductive film 106 can be formed using a material and a method similar to those of the conductive films 120a and 120b. In this embodiment, as the conductive film 106, a stack including a 50-nm-thick tantalum nitride film and a 100-nm-thick copper film is formed by a sputtering method.

[0260]

Next, the insulating film 110_0 is formed over the insulating film 104 and the oxide semiconductor film 107 (see FIG. 18B).

[0261]

Subsequently, a mask is formed by lithography in a desired position over the insulating film 110_0, and then, the insulating film 110_0, and the insulating film 104 are partly etched, so that the opening 143 reaching the conductive film 106 is formed (see FIG. 18C).

25 [0262]

To form the opening 143, a wet etching method and/or a dry etching method can be used. In this embodiment, the opening 143 is formed by a dry etching method.

[0263]

Next, the conductive film 112_0 is formed over the conductive film 106 and the insulating film 110_0 so as to cover the opening 143. In the case where a metal oxide film is used as the conductive film 112_0, for example, oxygen might be added from the conductive film 112_0 to the insulating film 110_0 during the formation of the conductive film 112_0 (see FIG. 18D).

[0264]

In FIG. 18D, oxygen added to the insulating film 110 0 is schematically shown by

arrows. Furthermore, the conductive film 112_0 formed to cover the opening 143 is electrically connected to the conductive film 106.

[0265]

Subsequently, the mask 140 is formed by a lithography process in a desired position over the conductive film 112_0 (see FIG. 19A).

[0266]

5

10

20

25

35

Next, etching is performed from above the mask 140 to process the conductive film 112_0 and the insulating film 110_0. After the processing of the conductive film 112_0 and the insulating film 110_0, the mask 140 is removed. As a result of the processing of the conductive film 112_0 and the insulating film 110_0, the island-shaped conductive film 112 and the island-shaped insulating film 110 are formed (see FIG. 19B).

[0267]

In this embodiment, the conductive film 112_0 and the insulating film 110_0 are processed by a dry etching method.

15 [0268]

After that, the insulating film 116 is formed over the insulating film 104, the oxide semiconductor film 107, and the conductive film 112. Note that when the insulating film 116 is formed, the oxide semiconductor film 107 in regions in contact with the insulating film 116 becomes the source region 108s and the drain region 108d. The oxide semiconductor film 107 in a region in contact with the insulating film 110 becomes the channel region 108i. Accordingly, the oxide semiconductor film 108 including the channel region 108i, the source region 108s, and the drain region 108d is formed (see FIG. 19C).

Note that the insulating film 116 can be formed using a material selected from the above-mentioned materials. In this embodiment, as the insulating film 116, a 100-nm-thick silicon nitride oxide film is formed with a plasma CVD apparatus. In the formation of the silicon nitride oxide film, plasma treatment and deposition treatment are performed at 220 °C. Note that the plasma treatment and the deposition treatment can be performed in the same manner described above.

30 [0270]

[0269]

Next, the insulating film 118 is formed over the insulating film 116 (see FIG. 20A). [0271]

Subsequently, a mask is formed by lithography in a desired position over the insulating film 118, and then, the insulating film 118 and the insulating film 116 are partly etched, so that the opening 141a reaching the source region 108s and the opening 141b reaching the drain

region 108d are formed (see FIG. 20B).

[0272]

Next, a conductive film is formed over the source region 108s, the drain region 108d, and the insulating film 118 so as to cover the openings 141a and 141b and the conductive film is processed into a desired shape, whereby the conductive films 120a and 120b are formed (see FIG. 20C).

[0273]

5

10

15

Through the above steps, the transistor 100A in FIGS. 4A to 4C can be manufactured. [0274]

One embodiment of the present invention is not limited to the example described in this embodiment, in which the transistor includes an oxide semiconductor film. In one embodiment of the present invention, the transistor does not necessarily include an oxide semiconductor film. For example, a channel region, the vicinity of the channel region, a source region, or a drain region of the transistor may be formed using a material containing silicon (Si), germanium (Ge), silicon germanium (SiGe), gallium arsenide (GaAs), or the like.

[0275]

The structures and the methods described in this embodiment can be combined as appropriate with any of the structures and the methods described in the other embodiments and examples.

20 [0276]

(Embodiment 2)

In this embodiment, the structure and the like of an oxide semiconductor will be described with reference to FIGS. 21A to 21E, FIGS. 22A to 22E, FIGS. 23A to 23D, FIGS. 24A and 24B, and FIG. 25.

25 [0277]

30

35

<2-1. Structure of oxide semiconductor>

An oxide semiconductor is classified into a single-crystal oxide semiconductor and a non-single-crystal oxide semiconductor. Examples of the non-single-crystal oxide semiconductor include a c-axis aligned crystalline oxide semiconductor (CAAC-OS), a polycrystalline oxide semiconductor, a nanocrystalline oxide semiconductor (nc-OS), an amorphous-like oxide semiconductor (a-like OS), and an amorphous oxide semiconductor.

From another perspective, an oxide semiconductor is classified into an amorphous oxide semiconductor and a crystalline oxide semiconductor. Examples of the crystalline oxide semiconductor include a single-crystal oxide semiconductor, a CAAC-OS, a polycrystalline

oxide semiconductor, and an nc-OS.

[0279]

An amorphous structure is generally thought to be isotropic and have no non-uniform structure, to be metastable and have no fixed atomic arrangement, to have a flexible bond angle, and to have a short-range order but have no long-range order, for example.

[0280]

5

10

15

20

25

35

In other words, a stable oxide semiconductor cannot be regarded as a completely amorphous oxide semiconductor. Moreover, an oxide semiconductor that is not isotropic (e.g., an oxide semiconductor that has a periodic structure in a microscopic region) cannot be regarded as a completely amorphous oxide semiconductor. In contrast, an a-like OS, which is not isotropic, has an unstable structure that includes a void. Because of its instability, an a-like OS has physical properties similar to those of an amorphous oxide semiconductor.

[0281]

<2-2. CAAC-OS>

First, a CAAC-OS will be described.

[0282]

A CAAC-OS is one of oxide semiconductors and has a plurality of c-axis aligned crystal parts (also referred to as pellets).

[0283]

Analysis of a CAAC-OS by X-ray diffraction (XRD) will be described. For example, when the structure of a CAAC-OS including an InGaZnO₄ crystal, which is classified into the space group R–3m, is analyzed by an out-of-plane method, a peak appears at a diffraction angle (2 θ) of around 31° as shown in FIG. 21A. This peak is derived from the (009) plane of the InGaZnO₄ crystal, which indicates that crystals in the CAAC-OS have c-axis alignment and that the c-axes are aligned in the direction substantially perpendicular to a surface over which the CAAC-OS is formed (also referred to as a formation surface) or a top surface of the CAAC-OS. Note that a peak sometimes appears at 2 θ of around 36° in addition to the peak at 2 θ of around 31°. The peak at 2 θ of around 36° is attributed to a crystal structure classified into the space group Fd–3m; thus, this peak is preferably not exhibited in the CAAC-OS.

30 [0284]

On the other hand, in structural analysis of the CAAC-OS by an in-plane method in which an X-ray is incident on the CAAC-OS in the direction parallel to the formation surface, a peak appears at 2θ of around 56° . This peak is derived from the (110) plane of the InGaZnO₄ crystal. When analysis (ϕ scan) is performed with 2θ fixed at around 56° while the sample is rotated around a normal vector to the sample surface as an axis (ϕ axis), as shown in FIG. 21B, a

peak is not clearly observed. In contrast, in the case where single-crystal InGaZnO₄ is subjected to ϕ scan with 2θ fixed at around 56° , as shown in FIG. 21C, six peaks which are derived from crystal planes equivalent to the (110) plane are observed. Accordingly, the structural analysis using XRD shows that the directions of the a-axes and b-axes are irregularly oriented in the CAAC-OS.

[0285]

5

10

15

20

25

30

35

Next, a CAAC-OS analyzed by electron diffraction will be described. For example, when an electron beam with a probe diameter of 300 nm is incident on a CAAC-OS including an InGaZnO₄ crystal in the direction parallel to the formation surface of the CAAC-OS, a diffraction pattern (also referred to as a selected-area electron diffraction pattern) in FIG. 21D This diffraction pattern includes spots derived from the (009) plane of the can be obtained. InGaZnO₄ crystal. Thus, the results of electron diffraction also indicate that pellets included in the CAAC-OS have c-axis alignment and that the c-axes are aligned in the direction substantially perpendicular to the formation surface or the top surface of the CAAC-OS. Meanwhile, FIG. 21E shows a diffraction pattern obtained in such a manner that an electron beam with a probe diameter of 300 nm is incident on the same sample in the direction perpendicular to the sample surface. In FIG. 21E, a ring-like diffraction pattern is observed. Thus, the results of electron diffraction using an electron beam with a probe diameter of 300 nm also indicate that the a-axes and b-axes of the pellets included in the CAAC-OS do not have regular alignment. The first ring in FIG. 21E is derived from the (010) plane, the (100) plane, and the like of the InGaZnO₄ The second ring in FIG. 21E is derived from the (110) plane and the like. crystal. [0286]

In a combined analysis image (also referred to as a high-resolution transmission electron microscope (TEM) image) of a bright-field image and a diffraction pattern of a CAAC-OS, which is obtained using a TEM, a plurality of pellets can be observed. However, even in the high-resolution TEM image, a boundary between pellets, that is, a grain boundary is not clearly observed in some cases. Thus, in the CAAC-OS, a reduction in electron mobility due to the grain boundary is less likely to occur.

FIG. 22A shows a high-resolution TEM image of a cross section of the CAAC-OS which is observed in the direction substantially parallel to the sample surface. The high-resolution TEM image is obtained with a spherical aberration corrector function. The high-resolution TEM image obtained with a spherical aberration corrector function is particularly referred to as a Cs-corrected high-resolution TEM image. The Cs-corrected high-resolution TEM image can be observed with, for example, an atomic resolution analytical electron

microscope JEM-ARM200F manufactured by JEOL Ltd. [0288]

FIG. 22A shows pellets in which metal atoms are arranged in a layered manner. FIG. 22A proves that the size of a pellet is greater than or equal to 1 nm or greater than or equal to 3 nm. Therefore, the pellet can also be referred to as a nanocrystal (nc). Furthermore, the CAAC-OS can also be referred to as an oxide semiconductor including c-axis aligned nanocrystals (CANC). A pellet reflects unevenness of a formation surface or a top surface of the CAAC-OS and is parallel to the formation surface or the top surface of the CAAC-OS.

FIGS. 22B and 22C show Cs-corrected high-resolution TEM images of a plane of the CAAC-OS observed in the direction substantially perpendicular to the sample surface. FIGS. 22D and 22E are images obtained by image processing of FIGS. 22B and 22C. The method of image processing is as follows. The image in FIG. 22B is subjected to fast Fourier transform (FFT) to obtain an FFT image. Then, mask processing is performed on the obtained FFT image such that part in the range of 2.8 nm⁻¹ to 5.0 nm⁻¹ from the reference point is left. After the mask processing, the FFT image is subjected to inverse fast Fourier transform (IFFT) to obtain a processed image. The image obtained in this manner is referred to as an FFT filtering image. The FFT filtering image is a Cs-corrected high-resolution TEM image from which a periodic component is extracted and shows a lattice arrangement.

20 [0290]

5

10

15

25

30

35

In FIG. 22D, a portion in which the lattice arrangement is broken is shown by dashed lines. A region surrounded by dashed lines corresponds to one pellet. The portion denoted by the dashed lines is a junction of pellets. The dashed lines draw a hexagon, which means that the pellet has a hexagonal shape. Note that the shape of the pellet is not always a regular hexagon but is a non-regular hexagon in many cases.

[0291]

In FIG. 22E, a dotted line denotes a portion where the direction of a lattice arrangement changes between a region with a well lattice arrangement and another region with a well lattice arrangement, and a dashed line denotes the change in the direction of the lattice arrangement. A clear crystal grain boundary cannot be observed even in the vicinity of the dotted line. When a lattice point in the vicinity of the dotted line is regarded as a center and surrounding lattice points are joined, a distorted hexagon, a distorted pentagon, or a distorted heptagon can be formed, for example. That is, a lattice arrangement is distorted so that formation of a crystal grain boundary is inhibited. This is probably because the CAAC-OS can tolerate distortion owing to a low density of the atomic arrangement in an a-b plane direction, the interatomic bond

distance changed by substitution of a metal element, and the like.

[0292]

As described above, the CAAC-OS has c-axis alignment, its pellets (nanocrystals) are connected in the a-b plane direction, and its crystal structure has distortion. For this reason, the CAAC-OS can also be referred to as an oxide semiconductor including a c-axis-aligned a-b-plane-anchored (CAA) crystal.

[0293]

5

10

15

25

30

The CAAC-OS is an oxide semiconductor with high crystallinity. Entry of impurities, formation of defects, or the like might decrease the crystallinity of an oxide semiconductor. This means that the CAAC-OS has few impurities and defects (e.g., oxygen vacancies).

[0294]

Note that an impurity means an element other than the main components of an oxide semiconductor, such as hydrogen, carbon, silicon, or a transition metal element. For example, an element (e.g., silicon) having stronger bonding force to oxygen than a metal element constituting a part of an oxide semiconductor extracts oxygen from the oxide semiconductor, which results in a disordered atomic arrangement and reduced crystallinity of the oxide semiconductor. A heavy metal such as iron or nickel, argon, carbon dioxide, or the like has a large atomic radius (or molecular radius), and thus disturbs the atomic arrangement of the oxide semiconductor and decreases crystallinity.

20 [0295]

The characteristics of an oxide semiconductor having impurities or defects might be changed by light, heat, or the like. Impurities contained in the oxide semiconductor might serve as carrier traps or carrier generation sources, for example. For example, an oxygen vacancy in the oxide semiconductor might serve as a carrier trap or serve as a carrier generation source when hydrogen is captured therein.

[0296]

The CAAC-OS having few impurities and oxygen vacancies is an oxide semiconductor with a low carrier density (specifically, lower than 8×10^{11} /cm³, preferably lower than 1×10^{11} /cm³, further preferably lower than 1×10^{10} /cm³, and higher than or equal to 1×10^{-9} /cm³). Such an oxide semiconductor is referred to as a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor. A CAAC-OS has a low impurity concentration and a low density of defect states. Thus, the CAAC-OS can be regarded as an oxide semiconductor having stable characteristics.

[0297]

Next, an nc-OS will be described.

[0298]

Analysis of an nc-OS by XRD will be described. When the structure of an nc-OS is analyzed by an out-of-plane method, a peak indicating orientation does not appear. That is, a crystal of an nc-OS does not have orientation.

[0299]

5

10

15

20

25

30

35

For example, when an electron beam with a probe diameter of 50 nm is incident on a 34-nm-thick region of a thinned nc-OS including an InGaZnO₄ crystal in the direction parallel to the formation surface, a ring-like diffraction pattern (nanobeam electron diffraction pattern) shown in FIG. 23A is observed. FIG. 23B shows a diffraction pattern (nanobeam electron diffraction pattern) obtained when an electron beam with a probe diameter of 1 nm is incident on the same sample. In FIG. 23B, a plurality of spots are observed in a ring-like region. Thus, ordering in an nc-OS is not observed with an electron beam with a probe diameter of 50 nm but is observed with an electron beam with a probe diameter of 1 nm.

[0300]

When an electron beam with a probe diameter of 1 nm is incident on a region with a thickness less than 10 nm, an electron diffraction pattern in which spots are arranged in an approximately hexagonal shape as shown in FIG. 23C is observed in some cases. This means that an nc-OS has a well-ordered region, that is, a crystal, in the thickness range of less than 10 nm. Note that an electron diffraction pattern having regularity is not observed in some regions because crystals are aligned in various directions.

[0301]

FIG. 23D shows a Cs-corrected high-resolution TEM image of a cross section of an nc-OS observed in the direction substantially parallel to the formation surface. In the high-resolution TEM image, the nc-OS has a region in which a crystal part is observed as indicated by additional lines and a region in which a crystal part is not clearly observed. In most cases, the size of a crystal part included in the nc-OS is greater than or equal to 1 nm and less than or equal to 10 nm, specifically greater than or equal to 1 nm and less than or equal to 3 nm. Note that an oxide semiconductor including a crystal part whose size is greater than 10 nm and less than or equal to 100 nm may be referred to as a microcrystalline oxide semiconductor. In a high-resolution TEM image of the nc-OS, for example, a grain boundary is not clearly observed in some cases. Note that there is a possibility that the origin of the nanocrystal is the same as that of a pellet in a CAAC-OS. Therefore, a crystal part of the nc-OS may be referred to as a pellet in the following description.

As described above, in the nc-OS, a microscopic region (for example, a region with a size greater than or equal to 1 nm and less than or equal to 10 nm, in particular, a region with a size greater than or equal to 1 nm and less than or equal to 3 nm) has a periodic atomic arrangement. There is no regularity of crystal orientation between different pellets in the nc-OS. Thus, the orientation of the whole film is not observed. Accordingly, in some cases, the nc-OS cannot be distinguished from an a-like OS or an amorphous oxide semiconductor, depending on an analysis method.

[0303]

5

10

15

20

25

30

Since there is no regularity of crystal orientation between the pellets (nanocrystals), the nc-OS can also be referred to as an oxide semiconductor including random aligned nanocrystals (RANC) or an oxide semiconductor including non-aligned nanocrystals (NANC).

[0304]

The nc-OS is an oxide semiconductor that has higher regularity than an amorphous oxide semiconductor. Therefore, the nc-OS has a lower density of defect states than the a-like OS and the amorphous oxide semiconductor. Note that there is no regularity of crystal orientation between different pellets in the nc-OS. Therefore, the nc-OS has a higher density of defect states than the CAAC-OS.

[0305]

<2-4. a-like OS>

An a-like OS has a structure between the structure of an nc-OS and the structure of an amorphous oxide semiconductor.

[0306]

FIGS. 24A and 24B show high-resolution cross-sectional TEM images of an a-like OS. The high-resolution cross-sectional TEM image of the a-like OS in FIG. 24A is taken at the start of the electron irradiation. The high-resolution cross-sectional TEM image of the a-like OS in FIG. 24B is taken after the irradiation with electrons (e⁻) at 4.3 × 10⁸ e⁻/nm². FIGS. 24A and 24B show that striped bright regions extending vertically are observed in the a-like OS from the start of the electron irradiation. It can be also found that the shape of the bright region changes after the electron irradiation. Note that the bright region is presumably a void or a low-density region.

[0307]

The a-like OS has an unstable structure because it includes a void. To verify that an a-like OS has an unstable structure as compared with a CAAC-OS and an nc-OS, a change in structure caused by electron irradiation will be described below.

35 [0308]

An a-like OS, an nc-OS, and a CAAC-OS are prepared as samples. Each of the samples is an In-Ga-Zn oxide.

[0309]

5

10

15

20

25

30

35

First, a high-resolution cross-sectional TEM image of each sample is obtained. The high-resolution cross-sectional TEM images show that all the samples have crystal parts.

[0310]

It is known that a unit cell of an InGaZnO₄ crystal has a structure in which nine layers including three In-O layers and six Ga-Zn-O layers are stacked in the c-axis direction. The distance between the adjacent layers is equivalent to the lattice spacing on the (009) plane (also referred to as d value). The value is calculated to be 0.29 nm from crystal structural analysis. Accordingly, a portion in which the spacing between lattice fringes is greater than or equal to 0.28 nm and less than or equal to 0.30 nm is regarded as a crystal part of InGaZnO₄ in the following description. Each lattice fringe corresponds to the a-b plane of the InGaZnO₄ crystal.

FIG. 25 shows a change in the average size of crystal parts (at 22 points to 30 points) in each sample. Note that the crystal part size corresponds to the length of a lattice fringe. FIG. 25 indicates that the crystal part size in the a-like OS increases with an increase in the cumulative electron dose in obtaining TEM images, for example. As shown in FIG. 25, a crystal part with a size of approximately 1.2 nm (also referred to as an initial nucleus) at the start of TEM observation grows to a size of approximately 1.9 nm at a cumulative electron (e⁻) dose of 4.2 × 10⁸ e⁻/nm². In contrast, the crystal part sizes in the nc-OS and the CAAC-OS show few changes from the start of electron irradiation to a cumulative electron dose of 4.2 × 10⁸ e⁻/nm². As shown in FIG. 25, the crystal part sizes in the nc-OS and the CAAC-OS are approximately 1.3 nm and approximately 1.8 nm, respectively, regardless of the cumulative electron dose. For the electron beam irradiation and TEM observation, a Hitachi H-9000NAR transmission electron microscope was used. The conditions of the electron beam irradiation were as follows: the accelerating voltage was 300 kV; the current density was 6.7 × 10⁵ e⁻/(nm²·s); and the diameter of an irradiation region was 230 nm.

In this manner, growth of the crystal part in the a-like OS may be induced by electron irradiation. In contrast, in the nc-OS and the CAAC-OS, growth of the crystal part is hardly induced by electron irradiation. That is, the a-like OS has an unstable structure as compared with the nc-OS and the CAAC-OS.

[0313]

[0312]

The a-like OS has a lower density than the nc-OS and the CAAC-OS because it includes

a void. Specifically, the density of the a-like OS is higher than or equal to 78.6 % and lower than 92.3 % of the density of the single-crystal oxide semiconductor having the same composition. The density of the nc-OS and the density of the CAAC-OS are each higher than or equal to 92.3 % and lower than 100 % of the density of the single-crystal oxide semiconductor having the same composition. It is difficult to deposit an oxide semiconductor having a density lower than 78 % of the density of the single-crystal oxide semiconductor.

[0314]

5

10

15

20

25

30

35

For example, in the case of an oxide semiconductor whose atomic ratio of In to Ga and Zn is 1:1:1, the density of single-crystal InGaZnO₄ with a rhombohedral crystal structure is 6.357 g/cm³. Accordingly, in the case of the oxide semiconductor whose atomic ratio of In to Ga and Zn is 1:1:1, the density of the a-like OS is higher than or equal to 5.0 g/cm³ and lower than 5.9 g/cm³, for example. In the case of the oxide semiconductor whose atomic ratio of In to Ga and Zn is 1:1:1, the density of the nc-OS and the density of the CAAC-OS are each higher than or equal to 5.9 g/cm³ and lower than 6.3 g/cm³, for example.

[0315]

In the case where an oxide semiconductor having a certain composition does not exist in a single-crystal state, single-crystal oxide semiconductors with different compositions are combined at an adequate ratio, which makes it possible to calculate a density equivalent to that of a single-crystal oxide semiconductor with the desired composition. The density of a single-crystal oxide semiconductor having the desired composition may be calculated using a weighted average with respect to the combination ratio of the single-crystal oxide semiconductors with different compositions. Note that it is preferable to use as few kinds of single-crystal oxide semiconductors as possible to calculate the density.

[0316]

As described above, oxide semiconductors have various structures and various properties. Note that an oxide semiconductor may be a stacked film including two or more of an amorphous oxide semiconductor, an a-like OS, an nc-OS, and a CAAC-OS, for example.

[0317]

<2-5. Composition of CAC-OS>

Described below is the composition of a cloud aligned complementary oxide semiconductor (CAC-OS) applicable to a transistor disclosed in one embodiment of the present invention.

[0318]

In this specification and the like, a metal oxide means an oxide of metal in a broad sense. Metal oxides are classified into an oxide insulator, an oxide conductor (including a transparent oxide conductor), an oxide semiconductor (also simply referred to as an OS), and the like. For example, a metal oxide used in an active layer of a transistor is called an oxide semiconductor in some cases. In other words, an OS FET is a transistor including a metal oxide or an oxide semiconductor.

[0319]

5

10

15

20

25

30

35

In this specification, a metal oxide in which regions functioning as a conductor and regions functioning as a dielectric are mixed and which functions as a semiconductor as a whole is defined as a CAC-OS or a CAC-metal oxide.

[0320]

The CAC-OS has, for example, a composition in which elements included in an oxide semiconductor are unevenly distributed. Materials including unevenly distributed elements each have a size of greater than or equal to 0.5 nm and less than or equal to 10 nm, preferably greater than or equal to 0.5 nm and less than or equal to 3 nm, or a similar size. Note that in the following description of an oxide semiconductor, a state in which one or more elements are unevenly distributed and regions including the element(s) are mixed is referred to as a mosaic pattern or a patch-like pattern. The region has a size of greater than or equal to 0.5 nm and less than or equal to 10 nm, preferably greater than or equal to 0.5 nm and less than or equal to 3 nm, or a similar size.

[0321]

The physical properties of a region including an unevenly distributed element are determined by the properties of the element. For example, a region including an unevenly distributed element which relatively tends to serve as an insulator among elements included in a metal oxide serves as a dielectric region. In contrast, a region including an unevenly distributed element which relatively tends to serve as a conductor among elements included in a metal oxide serves as a conductive region. A material in which conductive regions and dielectric regions are mixed to form a mosaic pattern serves as a semiconductor.

[0322]

That is, a metal oxide in one embodiment of the present invention is a kind of matrix composite or metal matrix composite, in which materials having different physical properties are mixed.

[0323]

Note that an oxide semiconductor preferably contains at least indium. In particular, indium and zinc are preferably contained. In addition, an element M (M is one or more of gallium, aluminum, silicon, boron, yttrium, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum,

tungsten, magnesium, and the like) may be contained. [0324]

For example, of the CAC-OS, an In-Ga-Zn oxide with the CAC composition (such an In-Ga-Zn oxide may be particularly referred to as CAC-IGZO) has a composition in which materials are separated into indium oxide (InO_{XI}, where XI is a real number greater than 0) or indium zinc oxide (In_{X2}Zn_{Y2}O_{Z2}, where X2, Y2, and Z2 are real numbers greater than 0), and gallium oxide (GaO_{X3}, where X3 is a real number greater than 0), gallium zinc oxide (Ga_{X4}Zn_{Y4}O_{Z4}, where X4, Y4, and Z4 are real numbers greater than 0), or the like, and a mosaic pattern is formed. Then, InO_{XI} and In_{X2}Zn_{Y2}O_{Z2} forming the mosaic pattern are evenly distributed in the film. This composition is also referred to as a cloud-like composition.

That is, the CAC-OS is a composite oxide semiconductor with a composition in which a region including GaO_{X3} as a main component and a region including $In_{X2}Zn_{Y2}O_{Z2}$ or InO_{XI} as a main component are mixed. Note that in this specification, for example, when the atomic ratio of In to an element M in a first region is greater than the atomic ratio of In to an element M in a second region, the first region has higher In concentration than the second region.

Note that a compound including In, Ga, Zn, and O is also known as IGZO. Typical examples of IGZO include a crystalline compound represented by $InGaO_3(ZnO)_{ml}$ (ml is a natural number) and a crystalline compound represented by $In_{(1+x0)}Ga_{(1-x0)}O_3(ZnO)_{m0}$ ($-1 \le x0 \le 1$; m0 is a given number).

[0327]

5

10

15

20

25

30

35

The above crystalline compounds have a single crystal structure, a polycrystalline structure, or a CAAC structure. Note that the CAAC structure is a crystal structure in which a plurality of IGZO nanocrystals have c-axis alignment and are connected in the a-b plane direction without alignment.

[0328]

On the other hand, the CAC-OS relates to the material composition of an oxide semiconductor. In a material composition of a CAC-OS including In, Ga, Zn, and O, nanoparticle regions including Ga as a main component are observed in part of the CAC-OS and nanoparticle regions including In as a main component are observed in part thereof. These nanoparticle regions are randomly dispersed to form a mosaic pattern. Therefore, the crystal structure is a secondary element for the CAC-OS.

[0329]

Note that in the CAC-OS, a stacked-layer structure including two or more films with

different atomic ratios is not included. For example, a two-layer structure of a film including In as a main component and a film including Ga as a main component is not included.

[0330]

A boundary between the region including GaO_{X3} as a main component and the region including $In_{X2}Zn_{Y2}O_{Z2}$ or InO_{X1} as a main component is not clearly observed in some cases.

[0331]

5

10

15

20

25

30

35

In the case where one or more of aluminum, silicon, boron, yttrium, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, and the like are contained instead of gallium in a CAC-OS, nanoparticle regions including the selected element(s) as a main component(s) are observed in part of the CAC-OS and nanoparticle regions including In as a main component are observed in part thereof, and these nanoparticle regions are randomly dispersed to form a mosaic pattern in the CAC-OS.

[0332]

<2-6. Analysis of CAC-OS>

Next, measurement results of an oxide semiconductor over a substrate by a variety of methods are described.

[0333]

[Structure of samples and formation method thereof]

Nine samples of one embodiment of the present invention are described below. The samples are formed at different substrate temperatures and with different ratios of an oxygen gas flow rate in formation of the oxide semiconductor. Note that each sample includes a substrate and an oxide semiconductor over the substrate.

[0334]

A method for forming the samples is described.

[0335]

A glass substrate is used as the substrate. Over the glass substrate, a 100-nm-thick In-Ga-Zn oxide is formed as an oxide semiconductor with a sputtering apparatus. The formation conditions are as follows: the pressure in a chamber is 0.6 Pa, and an oxide target (with an atomic ratio of In:Ga:Zn = 4:2:4.1) is used as a target. The oxide target provided in the sputtering apparatus is supplied with an AC power of 2500 W.

[0336]

As for the conditions in the formation of the oxide of the nine samples, the substrate temperature is set to a temperature that is not increased by intentional heating (hereinafter such a temperature is also referred to as room temperature or R.T.), to 130 °C, and to 170 °C. The

ratio of a flow rate of an oxygen gas to a flow rate of a mixed gas of Ar and oxygen (also referred to as an oxygen gas flow rate ratio) is set to 10 %, 30 %, and 100 %.

[0337]

5

10

15

20

25

30

[Analysis by X-ray diffraction]

In this section, results of X-ray diffraction (XRD) measurement performed on the nine samples are described. As an XRD apparatus, D8 ADVANCE manufactured by Bruker AXS is used. The conditions are as follows: scanning is performed by an out-of-plane method at $\theta/2\theta$, the scanning range is 15 deg. to 50 deg., the step width is 0.02 deg., and the scanning speed is 3.0 deg./min.

[0338]

FIG. 69 shows XRD spectra measured by an out-of-plane method. In FIG. 69, the top row shows the measurement results of the samples formed at a substrate temperature of 170 °C; the middle row shows the measurement results of the samples formed at a substrate temperature of 130 °C; the bottom row shows the measurement results of the samples formed at a substrate temperature of R.T. The left column shows the measurement results of the samples formed with an oxygen gas flow rate ratio of 10 %; the middle column shows the measurement results of the samples formed with an oxygen gas flow rate ratio of 30 %; the right column shows the measurement results of the samples formed with an oxygen gas flow rate ratio of 100 %.

In the XRD spectra shown in FIG. 69, the higher the substrate temperature at the time of formation is or the higher the oxygen gas flow rate ratio at the time of formation is, the higher the intensity of the peak at around $2\theta = 31^{\circ}$ is. Note that it is found that the peak at around $2\theta = 31^{\circ}$ is derived from a crystalline IGZO compound whose c-axes are aligned in a direction substantially perpendicular to a formation surface or a top surface of the crystalline IGZO compound (such a compound is also referred to as c-axis aligned crystalline (CAAC) IGZO). [0340]

As shown in the XRD spectra in FIG. 69, as the substrate temperature at the time of formation is lower or the oxygen gas flow rate ratio at the time of formation is lower, a peak becomes less clear. Accordingly, it is found that there are no alignment in the a-b plane direction and c-axis alignment in the measured areas of the samples that are formed at a lower substrate temperature or with a lower oxygen gas flow rate ratio.

[0341]

[Analysis with electron microscope]

This section describes the observation and analysis results of the samples formed at a

substrate temperature of R.T. and with an oxygen gas flow rate ratio of 10 % with a high-angle annular dark-field scanning transmission electron microscope (HAADF-STEM). An image obtained with an HAADF-STEM is also referred to as a TEM image.

[0342]

5

10

15

20

25

30

35

Described are the results of image analysis of plan-view images and cross-sectional images obtained with an HAADF-STEM (also referred to as plan-view TEM images and cross-sectional TEM images, respectively). The TEM images are observed with a spherical aberration corrector function. The HAADF-STEM images are obtained using an atomic resolution analytical electron microscope JEM-ARM200F manufactured by JEOL Ltd. under the following conditions: the acceleration voltage is 200 kV, and irradiation with an electron beam with a diameter of approximately 0.1 nm is performed.

[0343]

FIG. 70A is a plan-view TEM image of the sample formed at a substrate temperature of R.T. and with an oxygen gas flow rate ratio of 10 %. FIG. 70B is a cross-sectional TEM image of the sample formed at a substrate temperature of R.T. and with an oxygen gas flow rate ratio of 10 %.

[0344]

[Analysis of electron diffraction patterns]

This section describes electron diffraction patterns obtained by irradiation of the sample formed at a substrate temperature of R.T. and an oxygen gas flow rate ratio of 10 % with an electron beam with a probe diameter of 1 nm (also referred to as a nanobeam).

[0345]

Electron diffraction patterns of points indicated by black dots a1, a2, a3, a4, and a5 in the plan-view TEM image in FIG. 70A of the sample formed at a substrate temperature of R.T. and an oxygen gas flow rate ratio of 10 % are observed. Note that the electron diffraction patterns are observed while electron beam irradiation is performed at a constant rate for 35 seconds. FIGS. 70C, 70D, 70E, 70F, and 70G show the results of the points indicated by the black dots a1, a2, a3, a4, and a5, respectively.

[0346]

In FIGS. 70C, 70D, 70E, 70F, and 70G, regions with high luminance in a circular (ring) pattern can be shown. Furthermore, a plurality of spots can be shown in a ring-like shape.

[0347]

Electron diffraction patterns of points indicated by black dots b1, b2, b3, b4, and b5 in the cross-sectional TEM image in FIG. 70B of the sample formed at a substrate temperature of R.T. and an oxygen gas flow rate ratio of 10 % are observed. FIGS. 70H, 70I, 70J, 70K, and

70L show the results of the points indicated by the black dots b1, b2, b3, b4, and b5, respectively. [0348]

In FIGS. 70H, 70I, 70J, 70K, and 70L, regions with high luminance in a ring pattern can be shown. Furthermore, a plurality of spots can be shown in a ring-like shape.

[0349]

5

10

15

20

25

30

35

For example, when an electron beam with a probe diameter of 300 nm is incident on a CAAC-OS including an InGaZnO₄ crystal in a direction parallel to the sample surface, a diffraction pattern including a spot derived from the (009) plane of the InGaZnO₄ crystal is obtained. That is, the CAAC-OS has c-axis alignment and the c-axes are aligned in the direction substantially perpendicular to the formation surface or the top surface of the CAAC-OS. Meanwhile, a ring-like diffraction pattern is shown when an electron beam with a probe diameter of 300 nm is incident on the same sample in a direction perpendicular to the sample surface. That is, it is found that the CAAC-OS has neither a-axis alignment nor b-axis alignment.

Furthermore, a diffraction pattern like a halo pattern is observed when an oxide semiconductor including a nanocrystal (a nanocrystalline oxide semiconductor (nc-OS)) is subjected to electron diffraction using an electron beam with a large probe diameter (e.g., 50 nm or larger). Meanwhile, bright spots are shown in a nanobeam electron diffraction pattern of the nc-OS obtained using an electron beam with a small probe diameter (e.g., smaller than 50 nm). Furthermore, in a nanobeam electron diffraction pattern of the nc-OS, regions with high luminance in a circular (ring) pattern are shown in some cases. Also in a nanobeam electron diffraction pattern of the nc-OS, a plurality of bright spots are shown in a ring-like shape in some cases.

[0351]

The electron diffraction pattern of the sample formed at a substrate temperature of R.T. and with an oxygen gas flow rate ratio of 10 % has regions with high luminance in a ring pattern and a plurality of bright spots appear in the ring-like pattern. Accordingly, the sample formed at a substrate temperature of R.T. and with an oxygen gas flow rate ratio of 10 % exhibits an electron diffraction pattern similar to that of the nc-OS and does not show alignment in the plane direction and the cross-sectional direction.

[0352]

According to what is described above, an oxide semiconductor formed at a low substrate temperature or with a low oxygen gas flow rate ratio is likely to have characteristics distinctly different from those of an oxide semiconductor film having an amorphous structure and an oxide semiconductor film having a single crystal structure.

[0353]

[Elementary analysis]

This section describes the analysis results of elements included in the sample formed at a substrate temperature of R.T. and with an oxygen gas flow rate ratio of 10 %. For the analysis, by energy dispersive X-ray spectroscopy (EDX), EDX mapping images are obtained. An energy dispersive X-ray spectrometer AnalysisStation JED-2300T manufactured by JEOL Ltd. is used as an elementary analysis apparatus in the EDX measurement. A Si drift detector is used to detect an X-ray emitted from the sample.

[0354]

5

10

15

20

25

30

35

In the EDX measurement, an EDX spectrum of a point is obtained in such a manner that electron beam irradiation is performed on the point in a detection target region of a sample, and the energy of characteristic X-ray of the sample generated by the irradiation and its frequency are measured. In this embodiment, peaks of an EDX spectrum of the point are attributed to electron transition to the L shell in an In atom, electron transition to the K shell in a Ga atom, and electron transition to the K shell in a Zn atom and the K shell in an O atom, and the proportions of the atoms in the point are calculated. An EDX mapping image indicating distributions of proportions of atoms can be obtained through the process in an analysis target region of a sample.

[0355]

FIGS. 71A to 71C show EDX mapping images in a cross section of the sample formed at a substrate temperature of R.T. and with an oxygen gas flow rate ratio of 10 %. FIG. 71A shows an EDX mapping image of Ga atoms. The proportion of the Ga atoms in all the atoms is 1.18 atomic% to 18.64 atomic%. FIG. 71B shows an EDX mapping image of In atoms. The proportion of the In atoms in all the atoms is 9.28 atomic% to 33.74 atomic%. FIG. 71C shows an EDX mapping image of Zn atoms. The proportion of the Zn atoms in all the atoms is 6.69 atomic% to 24.99 atomic%. FIGS. 71A to 71C show the same region in the cross section of the sample formed at a substrate temperature of R.T. and with an oxygen gas flow rate ratio of 10 %. In the EDX mapping images, the proportion of an element is indicated by grayscale: the more measured atoms exist in a region, the brighter the region is; the less measured atoms exist in a region, the darker the region is. The magnification of the EDX mapping images in FIGS. 71A to 71C is 7200000 times.

[0356]

The EDX mapping images in FIGS. 71A to 71C show relative distribution of brightness indicating that each element has a distribution in the sample formed at a substrate temperature of R.T. and with an oxygen gas flow rate ratio of 10 %. Areas surrounded by solid lines and areas

surrounded by dashed lines in FIGS. 71A to 71C are examined.

[0357]

In FIG. 71A, a relatively dark region occupies a large area in the area surrounded by the solid line, while a relatively bright region occupies a large area in the area surrounded by the dashed line. In FIG. 71B, a relatively bright region occupies a large area in the area surrounded by the solid line, while a relatively dark region occupies a large area in the area surrounded by the dashed line.

[0358]

5

10

15

20

25

30

35

That is, the areas surrounded by the solid lines are regions including a relatively large number of In atoms and the areas surrounded by the dashed lines are regions including a relatively small number of In atoms. In FIG. 71C, the right portion of the area surrounded by the solid line is relatively bright and the left portion thereof is relatively dark. Thus, the area surrounded by the solid line is a region including $In_{X2}Zn_{Y2}O_{Z2}$, InO_{X1} , and the like as main components.

[0359]

The area surrounded by the solid line is a region including a relatively small number of Ga atoms and the area surrounded by the dashed line is a region including a relatively large number of Ga atoms. In FIG. 71C, the upper left portion of the area surrounded by the dashed line is relatively bright and the lower right portion thereof is relatively dark. Thus, the area surrounded by the dashed line is a region including GaO_{X3} , $Ga_{X4}Zn_{Y4}O_{Z4}$, and the like as main components.

[0360]

Furthermore, as shown in FIGS. 71A to 71C, the In atoms are relatively more uniformly distributed than the Ga atoms, and regions including InO_{XI} as a main component is seemingly joined to each other through a region including $In_{X2}Zn_{Y2}O_{Z2}$ as a main component. Thus, the regions including $In_{X2}Zn_{Y2}O_{Z2}$ and InO_{XI} as main components extend like a cloud.

[0361]

An In-Ga-Zn oxide having a composition in which the regions including GaO_{X3} or the like as a main component and the regions including $In_{X2}Zn_{Y2}O_{Z2}$ or InO_{X1} as a main component are unevenly distributed and mixed can be referred to as a CAC-OS.

[0362]

The crystal structure of the CAC-OS includes an nc structure. In an electron diffraction pattern of the CAC-OS with the nc structure, several or more bright spots appear in addition to bright sports derived from IGZO including a single crystal, a polycrystal, or a CAAC. Alternatively, the crystal structure is defined as having high luminance regions appearing in a

ring pattern in addition to the several or more bright spots.

[0363]

5

10

20

25

30

35

As shown in FIGS. 71A to 71C, each of the regions including GaO_{X3} or the like as a main component and the regions including $In_{X2}Zn_{Y2}O_{Z2}$ or InO_{X1} as a main component has a size of greater than or equal to 0.5 nm and less than or equal to 10 nm, or greater than or equal to 1 nm and less than or equal to 3 nm. Note that it is preferable that a diameter of a region including each metal element as a main component be greater than or equal to 1 nm and less than or equal to 2 nm in the EDX mapping images.

[0364]

As described above, the CAC-OS has a structure different from that of an IGZO compound in which metal elements are evenly distributed, and has characteristics different from those of the IGZO compound. That is, in the CAC-OS, regions including GaO_{X3} or the like as a main component and regions including $In_{X2}Zn_{Y2}O_{Z2}$ or InO_{X1} as a main component are separated to form a mosaic pattern.

15 [0365]

The conductivity of a region including $In_{X2}Zn_{Y2}O_{Z2}$ or InO_{XI} as a main component is higher than that of a region including GaO_{X3} or the like as a main component. In other words, when carriers flow through regions including $In_{X2}Zn_{Y2}O_{Z2}$ or InO_{XI} as a main component, the conductivity of an oxide semiconductor exhibits. Accordingly, when regions including $In_{X2}Zn_{Y2}O_{Z2}$ or InO_{XI} as a main component are distributed in an oxide semiconductor like a cloud, high field-effect mobility (μ) can be achieved.

[0366]

In contrast, the insulating property of a region including GaO_{X3} or the like as a main component is higher than that of a region including $In_{X2}Zn_{Y2}O_{Z2}$ or InO_{X1} as a main component. In other words, when regions including GaO_{X3} or the like as a main component are distributed in an oxide semiconductor, leakage current can be suppressed and favorable switching operation can be achieved.

[0367]

Accordingly, when a CAC-OS is used for a semiconductor element, the insulating property derived from GaO_{X3} or the like and the conductivity derived from $In_{X2}Zn_{Y2}O_{Z2}$ or InO_{X1} complement each other, whereby high on-state current (I_{on}) and high field-effect mobility (μ) can be achieved.

[0368]

A semiconductor element including a CAC-OS has high reliability. Thus, the CAC-OS is suitably used in a variety of semiconductor devices typified by a display.

[0369]

The structures described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments and examples.

[0370]

5 (Embodiment 3)

In this embodiment, an example of a display device that includes the transistor described in the above embodiment will be described below with reference to FIG. 26, FIG. 27, FIG. 28, FIG. 29, FIGS. 30A to 30C, FIGS. 31A to 31C, FIGS. 32A to 32C, FIGS. 33A to 33C, and FIGS. 34A to 34D.

10 [0371]

15

20

25

30

35

FIG. 26 is a top view illustrating an example of a display device. A display device 700 in FIG. 26 includes a pixel portion 702 provided over a first substrate 701, a source driver circuit portion 704 and a gate driver circuit portion 706 which are provided over the first substrate 701, a sealant 712 provided to surround the pixel portion 702, the source driver circuit portion 704, and the gate driver circuit portion 706, and a second substrate 705 provided to face the first substrate 701. The first substrate 701 and the second substrate 705 are sealed with the sealant 712. That is, the pixel portion 702, the source driver circuit portion 704, and the gate driver circuit portion 706 are enclosed by the first substrate 701, the sealant 712, and the second substrate 705. Although not illustrated in FIG. 26, a display element is provided between the first substrate 701 and the second substrate 705 and the second substrate 705.

[0372]

In the display device 700, a flexible printed circuit (FPC) terminal portion 708 which is electrically connected to the pixel portion 702, the source driver circuit portion 704, and the gate driver circuit portion 706 is provided in a region different from the region which is over the first substrate 701 and surrounded by the sealant 712. Furthermore, an FPC 716 is connected to the FPC terminal portion 708, and a variety of signals and the like are supplied from the FPC 716 to the pixel portion 702, the source driver circuit portion 704, and the gate driver circuit portion 706. Furthermore, a signal line 710 is connected to the pixel portion 702, the source driver circuit portion 704, the gate driver circuit portion 706, and the FPC terminal portion 708. Through the signal line 710, a variety of signals and the like are supplied from the FPC 716 to the pixel portion 702, the source driver circuit portion 704, the gate driver circuit portion 706, and the FPC terminal portion 706, and the FPC terminal portion 706, and the FPC terminal portion 708.

[0373]

A plurality of gate driver circuit portions 706 may be provided in the display device 700. The structure of the display device 700 is not limited to the example shown here, in which the

source driver circuit portion 704 and the gate driver circuit portion 706 as well as the pixel portion 702 are formed over the first substrate 701. For example, only the gate driver circuit portion 706 may be formed over the first substrate 701, or only the source driver circuit portion 704 may be formed over the first substrate 701. In this case, a substrate over which a source driver circuit, a gate driver circuit, or the like is formed (e.g., a driver circuit board formed using a single-crystal semiconductor film or a polycrystalline semiconductor film) may be mounted on the first substrate 701. Note that there is no particular limitation on the method for connecting the separately prepared driver circuit board, and a chip on glass (COG) method, a wire bonding method, or the like can be used.

10 [0374]

5

The pixel portion 702, the source driver circuit portion 704, and the gate driver circuit portion 706 included in the display device 700 include a plurality of transistors. As the plurality of transistors, any of the transistors that are semiconductor devices of embodiments of the present invention can be used.

15 [0375]

The display device 700 can include a variety of elements. As examples of the elements, electroluminescent (EL) element (e.g., an EL element containing organic and inorganic materials, an organic EL element, an inorganic EL element, or an LED), a light-emitting transistor element (a transistor which emits light depending on current), an electron emitter, a liquid crystal element, an electronic ink display, an electrophoretic element, an electrowetting element, a plasma display panel (PDP), a micro electro mechanical systems (MEMS) display (e.g., a grating light valve (GLV), a digital micromirror device (DMD), a digital micro shutter (DMS) element, or an interferometric modulator display (IMOD) element), and a piezoelectric ceramic display can be given.

25 [0376]

20

30

35

An example of a display device including an EL element is an EL display. Examples of a display device including an electron emitter include a field emission display (FED) and an SED-type flat panel display (SED: surface-conduction electron-emitter display). An example of a display device including a liquid crystal element is a liquid crystal display (a transmissive liquid crystal display, a transflective liquid crystal display, a reflective liquid crystal display, a direct-view liquid crystal display, or a projection liquid crystal display). An example of a display device including an electronic ink display or an electrophoretic element is electronic paper. In a transflective liquid crystal display or a reflective liquid crystal display, some or all of pixel electrodes may function as reflective electrodes. For example, some or all of pixel electrodes may contain aluminum, silver, or the like. In this case, a memory circuit such as an

SRAM can be provided under the reflective electrodes, leading to lower power consumption. [0377]

As a display system of the display device 700, a progressive system, an interlace system, or the like can be employed. Furthermore, color elements controlled in pixels at the time of color display are not limited to three colors: R, G, and B (R, G, and B correspond to red, green, and blue, respectively). For example, four pixels of an R pixel, a G pixel, a B pixel, and a W (white) pixel may be used. Alternatively, a color element may be composed of two colors of R, G, and B as in PenTile layout. The two colors may differ between color elements. Alternatively, one or more colors of yellow, cyan, magenta, and the like may be added to RGB. Note that the size of a display region may differ between dots of color elements. One embodiment of the disclosed invention is not limited to a color display device; the disclosed invention can also be applied to a monochrome display device.

[0378]

5

10

15

20

25

30

35

A coloring layer (also referred to as a color filter) may be used to obtain a full-color display device in which white light (W) is used for a backlight (e.g., an organic EL element, an inorganic EL element, an LED, or a fluorescent lamp). For example, a red (R) coloring layer, a green (G) coloring layer, a blue (B) coloring layer, and a yellow (Y) coloring layer can be combined as appropriate. With the use of the coloring layer, high color reproducibility can be obtained as compared with the case without the coloring layer. Here, by providing a region with a coloring layer and a region without a coloring layer, white light in the region without the coloring layer may be directly utilized for display. By partly providing the region without a coloring layer, a decrease in the luminance of a bright image due to the coloring layer can be suppressed, and approximately 20 % to 30 % of power consumption can be reduced in some cases. In the case where full-color display is performed using a self-luminous element such as an organic EL element or an inorganic EL element, elements may emit light in their respective colors R, G, B, Y, and W. By using a self-luminous element, power consumption may be further reduced as compared with the case of using a coloring layer. [0379]

As a coloring system, any of the following systems may be used: the above-described color filter system in which part of white light is converted into red light, green light, and blue light through color filters; a three-color system in which red light, green light, and blue light are used; and a color conversion system or a quantum dot system in which part of blue light is converted into red light or green light.

[0380]

In this embodiment, a structure including a liquid crystal element as a display element

and a structure including an EL element as a display element will be described with reference to FIG. 27 and FIG. 28. FIG. 27 is a cross-sectional view taken along dashed-dotted line Q-R in FIG. 26 and illustrates the structure including a liquid crystal element as a display element. FIG. 28 is a cross-sectional view taken along dashed-dotted line Q-R in FIG. 26 and illustrates the structure including an EL element as a display element.

[0381]

5

Portions common to FIG. 27 and FIG. 28 will be described first, and then, different portions will be described.

[0382]

10 <3-1. Portions common to display devices>

The display device 700 in each of FIG. 27 and FIG. 28 includes a lead wiring portion 711, the pixel portion 702, the source driver circuit portion 704, and the FPC terminal portion 708. The lead wiring portion 711 includes the signal line 710. The pixel portion 702 includes a transistor 750 and a capacitor 790. The source driver circuit portion 704 includes a transistor 752.

[0383]

15

25

30

The transistor 750 and the transistor 752 each have a structure similar to that of the transistor 100 described above. Note that the transistor 750 and the transistor 752 may each have the structure of any of the other transistors described in the above embodiments.

20 [0384]

The transistor used in this embodiment includes an oxide semiconductor film which is highly purified and in which formation of an oxygen vacancy is suppressed. The transistor can have low off-state current. Accordingly, an electrical signal such as an image signal can be held for a long time, and a long writing interval can be set in an on state. Accordingly, the frequency of refresh operation can be reduced, which suppresses power consumption.

[0385]

In addition, the transistor used in this embodiment can have relatively high field-effect mobility and thus is capable of high-speed operation. For example, in a liquid crystal display device which includes such a transistor capable of high-speed operation, a switching transistor in a pixel portion and a driver transistor in a driver circuit portion can be formed over one substrate. That is, no additional semiconductor device formed using a silicon wafer or the like is needed as a driver circuit; therefore, the number of components of the semiconductor device can be reduced. In addition, the transistor capable of high-speed operation can also be used in the pixel portion, whereby a high-quality image can be provided.

The capacitor 790 includes a lower electrode and an upper electrode. The lower electrode is formed through a step of processing the same oxide semiconductor film included in the transistor 750. The upper electrode is formed through a step of processing the same conductive film as a conductive film functioning as a source electrode or a drain electrode of the transistor 750. Between the lower electrode and the upper electrode, an insulating film formed through a step of forming the same insulating film as a third insulating film and a fourth insulating film included in the transistor 750 is provided. That is, the capacitor 790 has a stacked-layer structure in which the insulating films functioning as a dielectric are positioned between the pair of electrodes.

[0387]

5

10

15

20

25

In FIG. 27 and FIG. 28, a planarization insulating film 770 is provided over the transistor 750, the transistor 752, and the capacitor 790.

[0388]

The planarization insulating film 770 can be formed using a heat-resistant organic material such as a polyimide resin, an acrylic resin, a polyimide amide resin, a benzocyclobutene resin, a polyamide resin, or an epoxy resin. Note that the planarization insulating film 770 may be formed by stacking a plurality of insulating films formed using any of these materials. A structure without the planarization insulating film 770 may also be employed.

[0389]

Although FIG. 27 and FIG. 28 each illustrate an example in which the transistor 750 included in the pixel portion 702 and the transistor 752 included in the source driver circuit portion 704 have the same structure, one embodiment of the present invention is not limited thereto. For example, the pixel portion 702 and the source driver circuit portion 704 may include different transistors.

[0390]

In the case where the pixel portion 702 and the source driver circuit portion 704 include different transistors, any of the staggered transistors described in Embodiment 1 and an inverted staggered transistor may be used in combination. Specifically, a structure in which a staggered transistor is used in the pixel portion 702 and an inverted staggered transistor is used in the source driver circuit portion 704, or a structure in which an inverted staggered transistor is used in the pixel portion 702 and a staggered transistor is used in the source driver circuit portion 704 may be employed. Note that the term "source driver circuit portion 704" can be replaced by the term "gate driver circuit portion".

[0391]

30

34A to 34D illustrate examples of an inverted staggered transistor that can be used in the pixel portion 702 or the source driver circuit portion 704.

[0392]

FIG. 30A is a top view of a transistor 300A. FIG. 30B is a cross-sectional view taken along dashed-dotted line X1–X2 in FIG. 30A. FIG. 30C is a cross-sectional view taken along dashed-dotted line Y1–Y2 in FIG. 30A. Note that in FIG. 30A, some components of the transistor 300A (e.g., an insulating film functioning as a gate insulating film) are not illustrated to avoid complexity. The direction of dashed-dotted line X1–X2 may be referred to as a channel length direction, and the direction of dashed-dotted line Y1–Y2 may be referred to as a channel width direction. As in FIG. 30A, some components are not illustrated in some cases in top views of transistors described below.

[0393]

5

10

15

20

25

30

35

The transistor 300A includes a conductive film 304 functioning as a gate electrode over a substrate 302, an insulating film 306 over the substrate 302 and the conductive film 304, an insulating film 307 over the insulating film 306, an oxide semiconductor film 308 over the insulating film 307, a conductive film 312a functioning as a source electrode electrically connected to the oxide semiconductor film 308, and a conductive film 312b functioning as a drain electrode electrically connected to the oxide semiconductor film 308. Over the transistor 300A, specifically, over the conductive films 312a and 312b and the oxide semiconductor film 308, an insulating film 314, an insulating film 316, and an insulating film 318 are provided. The insulating films 314, 316, and 318 function as a protective insulating film for the transistor 300A.

[0394]

FIG. 31A is a top view of a transistor 300B. FIG. 31B is a cross-sectional view taken along dashed-dotted line X1–X2 in FIG. 31A. FIG. 31C is a cross-sectional view taken along dashed-dotted line Y1–Y2 in FIG. 31A.

[0395]

The transistor 300B includes the conductive film 304 functioning as a gate electrode over the substrate 302, the insulating film 306 over the substrate 302 and the conductive film 304, the insulating film 307 over the insulating film 306, the oxide semiconductor film 308 over the insulating film 307, the insulating film 314 over the oxide semiconductor film 308, the insulating film 316 over the insulating film 314, the conductive film 312a functioning as a source electrode, and the conductive film 312b functioning as a drain electrode. The conductive film 312a is electrically connected to the oxide semiconductor film 308 through an opening 341a provided in the insulating films 314 and 316. The conductive film 312b is electrically connected to the

oxide semiconductor film 308 through an opening 341b provided in the insulating films 314 and 316. Over the transistor 300B, specifically, over the conductive films 312a and 312b and the insulating film 316, the insulating film 318 is provided. The insulating films 314 and 316 function as a protective insulating film for the oxide semiconductor film 308. The insulating film 318 functions as a protective insulating film for the transistor 300B.

[0396]

5

10

15

20

25

30

35

The transistor 300A has a channel-etched structure, whereas the transistor 300B in FIGS. 31A to 31C has a channel-protective structure.

[0397]

FIG. 32A is a top view of a transistor 300C. FIG. 32B is a cross-sectional view taken along dashed-dotted line X1–X2 in FIG. 32A. FIG. 32C is a cross-sectional view taken along dashed-dotted line Y1–Y2 in FIG. 32A.

[0398]

The transistor 300C is different from the transistor 300B in FIGS. 31A to 31C in the shapes of the insulating films 314 and 316. Specifically, the insulating films 314 and 316 of the transistor 300C have island shapes and are provided over a channel region of the oxide semiconductor film 308. Other components are similar to those of the transistor 300B.

[0399]

FIG. 33A is a top view of a transistor 300D. FIG. 33B is a cross-sectional view taken along dashed-dotted line X1–X2 in FIG. 33A. FIG. 33C is a cross-sectional view taken along dashed-dotted line Y1–Y2 in FIG. 33A.

[0400]

The transistor 300D includes the conductive film 304 functioning as a first gate electrode over the substrate 302, the insulating film 306 over the substrate 302 and the conductive film 304, the insulating film 307 over the insulating film 306, the oxide semiconductor film 308 over the insulating film 307, the insulating film 314 over the oxide semiconductor film 308, the insulating film 316 over the insulating film 314, the conductive film 312a functioning as a source electrode, the conductive film 312b functioning as a drain electrode, the insulating film 318 over the conductive films 312a and 312b and the insulating film 316, and a conductive film 320a and a conductive film 320b over the insulating film 318. The conductive films 312a and 312b are electrically connected to the oxide semiconductor film 308.

In the transistor 300D, the insulating films 314, 316, and 318 function as a second gate insulating film of the transistor 300D. Furthermore, the conductive film 320a in the transistor 300D functions as a pixel electrode used for the display device. The conductive film 320a is

connected to the conductive film 312b through an opening 342c provided in the insulating films 314, 316, and 318. In the transistor 300D, the conductive film 320b functions as a second gate electrode (also referred to as a back gate electrode).

As illustrated in FIG. 33C, the conductive film 320b is connected to the conductive film 304, which functions as the first gate electrode, in an opening 342a and an opening 342b provided in the insulating films 306, 307, 314, 316, and 318. Thus, the same potential is applied to the conductive film 320b and the conductive film 304.

The structure of the transistor 300D is not limited to that described above, in which the openings 342a and 342b are provided so that the conductive film 320b is connected to the conductive film 304. For example, a structure in which only one of the openings 342a and 342b is provided so that the conductive film 320b is connected to the conductive film 304, or a structure in which the conductive film 320b is connected to the conductive film 304 without providing the openings 342a and 342b may be employed. Note that in the case where the conductive film 320b is not connected to the conductive film 304, it is possible to apply different potentials to the conductive film 320b and the conductive film 304.

Note that the transistor 300D has the s-channel structure described above.

20 [0405]

[0404]

[0402]

5

10

15

25

30

35

The oxide semiconductor film 308 included in the transistor 300A in FIGS. 30A to 30C may have a stacked-layer structure. FIGS. 34A to 34D illustrate examples of such a case. [0406]

FIGS. 34A and 34B are cross-sectional views of a transistor 300E and FIGS. 34C and 34D are cross-sectional views of a transistor 300F. The top views of the transistors 300E and 300F are similar to that of the transistor 300A illustrated in FIG. 30A.

[0407]

The oxide semiconductor film 308 of the transistor 300E illustrated in FIGS. 34A and 34B includes an oxide semiconductor film 308_1, an oxide semiconductor film 308_2, and an oxide semiconductor film 308_3. The oxide semiconductor film 308 of the transistor 300F illustrated in FIGS. 34C and 34D includes the oxide semiconductor film 308_2 and the oxide semiconductor film 308_3.

[0408]

Note that the conductive film 304, the insulating film 306, the insulating film 307, the oxide semiconductor film 308, the conductive film 312a, the conductive film 312b, the insulating

film 314, the insulating film 316, the insulating film 318, and the conductive films 320a and 320b can be formed using the materials and formation methods of the conductive film 112, the insulating film 116, the insulating film 110, the oxide semiconductor film 108, the conductive film 120a, the conductive film 120b, the insulating film 104, the insulating film 118, the insulating film 116, and the conductive film 112, respectively, described in Embodiment 1. [0409]

The structures of the transistors 300A to 300F can be freely combined with each other. [0410]

5

10

15

20

25

30

35

With reference to FIG. 26 to FIG. 28 again, the display device is described. The signal line 710 is formed through the same process as the conductive films functioning as source electrodes and drain electrodes of the transistors 750 and 752. Note that the signal line 710 may be formed using a conductive film which is formed through a process different from the process of forming the source electrodes and the drain electrodes of the transistors 750 and 752. For example, an oxide semiconductor film formed through the same process as an oxide semiconductor film functioning as a gate electrode may be used. In the case where the signal line 710 is formed using a material containing a copper element, signal delay or the like due to wiring resistance is reduced, which enables display on a large screen.

The FPC terminal portion 708 includes a connection electrode 760, an anisotropic conductive film 780, and the FPC 716. Note that the connection electrode 760 is formed through the same process as the conductive films functioning as source electrodes and drain electrodes of the transistors 750 and 752. The connection electrode 760 is electrically connected to a terminal included in the FPC 716 through the anisotropic conductive film 780.

For example, glass substrates can be used as the first substrate 701 and the second substrate 705. As the first substrate 701 and the second substrate 705, flexible substrates may also be used. An example of the flexible substrate is a plastic substrate.

[0413]

A structure 778 is provided between the first substrate 701 and the second substrate 705. The structure 778 is a columnar spacer obtained by selective etching of an insulating film and is provided to control the distance (cell gap) between the first substrate 701 and the second substrate 705. Alternatively, a spherical spacer may also be used as the structure 778.

A light-shielding film 738 functioning as a black matrix, a coloring film 736 functioning as a color filter, and an insulating film 734 in contact with the light-shielding film 738 and the

coloring film 736 are provided on the second substrate 705 side.

[0415]

5

10

15

20

25

30

<3-2. Structure example of display device including liquid crystal element>

The display device 700 in FIG. 27 includes a liquid crystal element 775. The liquid crystal element 775 includes a conductive film 772, a conductive film 774, and a liquid crystal layer 776. The conductive film 774 is provided on the second substrate 705 side and functions as a counter electrode. The display device 700 in FIG. 27 can display an image in such a manner that transmission or non-transmission of light is controlled by the alignment state in the liquid crystal layer 776 which is changed depending on the voltage applied between the conductive film 772 and the conductive film 774.

[0416]

The conductive film 772 is connected to the conductive film functioning as the source electrode or the drain electrode of the transistor 750. The conductive film 772 is formed over the planarization insulating film 770 and functions as a pixel electrode, that is, one electrode of the display element. The conductive film 772 functions as a reflective electrode. The display device 700 in FIG. 27 is a reflective color liquid crystal display device which displays an image by utilizing external light that is reflected by the conductive film 772 and then extracted through the coloring film 736.

[0417]

A conductive film that transmits visible light or a conductive film that reflects visible light can be used as the conductive film 772. For example, a material containing an element selected from indium (In), zinc (Zn), and tin (Sn) may be used for the conductive film that transmits visible light. For example, a material containing aluminum or silver may be used for the conductive film that reflects visible light. In this embodiment, a conductive film that reflects visible light is used as the conductive film 772.

[0418]

Note that projections and depressions are provided in part of the planarization insulating film 770 in the pixel portion 702 of the display device 700 in FIG. 27. For example, the projections and depressions can be formed in the following manner: the planarization insulating film 770 is formed using a resin film, and projections and depressions are formed on the surface of the resin film. The conductive film 772 functioning as a reflective electrode is formed along the projections and depressions. Accordingly, external light that is incident on the conductive film 772 can be diffusely reflected by the surface of the conductive film 772, whereby visibility can be improved.

Note that the display device 700 is not limited to the example in FIG. 27, which illustrates a reflective color liquid crystal display device, and may be a transmissive color liquid crystal display device in which a conductive film that transmits visible light is used as the conductive film 772. In a transmissive color liquid crystal display device, projections and depressions are not necessarily provided on the planarization insulating film 770. FIG. 29 illustrates an example of a transmissive color liquid crystal display device. FIG. 29 is a cross-sectional view of a structure in which a liquid crystal element is used as the display element, taken along dashed-dotted line Q–R in FIG. 26. The display device 700 illustrated in FIG. 29 is an example of employing a transverse electric field mode (e.g., an FFS mode) as a driving mode of the liquid crystal element. In the structure illustrated in FIG. 29, an insulating film 773 is provided over the conductive film 772 functioning as a pixel electrode, and the conductive film 774 functions as a common electrode, and an electric field generated between the conductive film 772 and the conductive film 774 through the insulating film 773 can control the alignment state in the liquid crystal layer 776.

[0420]

5

10

15

20

25

30

35

Although not illustrated in FIG. 27 and FIG. 29, the conductive film 772 and/or the conductive film 774 may be provided with an alignment film on a side in contact with the liquid crystal layer 776. Although not illustrated in FIG. 27 and FIG. 29, an optical member (optical substrate) or the like, such as a polarizing member, a retardation member, or an anti-reflection member, may be provided as appropriate. For example, circular polarization may be obtained by using a polarizing substrate and a retardation substrate. In addition, a backlight, a sidelight, or the like may be used as a light source.

[0421]

In the case where a liquid crystal element is used as the display element, a thermotropic liquid crystal, a low-molecular liquid crystal, a high-molecular liquid crystal, a polymer dispersed liquid crystal, a ferroelectric liquid crystal, an anti-ferroelectric liquid crystal, or the like can be used. These liquid crystal materials exhibit a cholesteric phase, a smectic phase, a cubic phase, a chiral nematic phase, an isotropic phase, or the like depending on conditions.

[0422]

In the case where a horizontal electric field mode is employed, a liquid crystal exhibiting a blue phase for which an alignment film is unnecessary may be used. The blue phase is one of liquid crystal phases, which is generated just before a cholesteric phase changes into an isotropic phase when the temperature of a cholesteric liquid crystal is increased. Since the blue phase appears only in a narrow temperature range, a liquid crystal composition in which

several weight percent or more of a chiral material is mixed is used for the liquid crystal layer in order to improve the temperature range. The liquid crystal composition containing a liquid crystal exhibiting a blue phase and a chiral material has a short response time and optical isotropy, which eliminates the need for an alignment process. An alignment film does not need to be provided, and thus, rubbing treatment is not necessary; accordingly, electrostatic discharge damage caused by the rubbing treatment can be prevented, and defects and damage of a liquid crystal display device in the manufacturing process can be reduced. Moreover, the liquid crystal material which exhibits a blue phase has a small viewing angle dependence.

[0423]

5

10

In the case where a liquid crystal element is used as a display element, a twisted nematic (TN) mode, an in-plane switching (IPS) mode, a fringe field switching (FFS) mode, an axially symmetric aligned micro-cell (ASM) mode, an optical compensated birefringence (OCB) mode, a ferroelectric liquid crystal (FLC) mode, an anti-ferroelectric liquid crystal (AFLC) mode, or the like can be used.

15 [0424]

Furthermore, a normally black liquid crystal display device such as a vertical alignment (VA) mode transmissive liquid crystal display device may also be used. Examples of a possible vertical alignment mode include a multi-domain vertical alignment (MVA) mode, a patterned vertical alignment (PVA) mode, and an ASV mode.

20 [0425]

25

30

35

<3-3. Display device including light-emitting element>

The display device 700 illustrated in FIG. 28 includes a light-emitting element 782. The light-emitting element 782 includes a conductive film 784, an EL layer 786, and a conductive film 788. The display device 700 illustrated in FIG. 28 can display an image by utilizing light emission from the EL layer 786 of the light-emitting element 782. Note that the EL layer 786 contains an organic compound or an inorganic compound such as a quantum dot. [0426]

Examples of materials that can be used for an organic compound include a fluorescent material and a phosphorescent material. Examples of materials that can be used for a quantum dot include a colloidal quantum dot material, an alloyed quantum dot material, a core-shell quantum dot material, and a core quantum dot material. A material containing elements belonging to Groups 12 and 16, elements belonging to Groups 13 and 15, or elements belonging to Groups 14 and 16, may be used. Alternatively, a quantum dot material containing an element such as cadmium (Cd), selenium (Se), zinc (Zn), sulfur (S), phosphorus (P), indium (In), tellurium (Te), lead (Pb), gallium (Ga), arsenic (As), or aluminum (Al) may be used.

[0427]

The conductive film 784 is connected to a conductive film functioning as a source electrode or a drain electrode of the transistor 750. The conductive film 784 is formed over the planarization insulating film 770 and functions as a pixel electrode, that is, one electrode of the display element. A conductive film that transmits visible light or a conductive film that reflects visible light can be used as the conductive film 784. For example, a material containing an element selected from indium (In), zinc (Zn), and tin (Sn) may be used for the conductive film that transmits visible light. For example, a material containing aluminum or silver may be used for the conductive film that reflects visible light.

10 [0428]

5

15

25

30

35

In the display device 700 in FIG. 28, an insulating film 730 is provided over the planarization insulating film 770 and the conductive film 784. The insulating film 730 covers part of the conductive film 784. Note that the light-emitting element 782 has a top-emission structure. Therefore, the conductive film 788 has a light-transmitting property and transmits light emitted from the EL layer 786. Although the top-emission structure is described as an example in this embodiment, the structure is not limited thereto. For example, a bottom-emission structure in which light is emitted to the conductive film 784 side or a dual-emission structure in which light is emitted to both the conductive film 784 side and the conductive film 788 side may also be employed.

20 [0429]

The coloring film 736 is provided to overlap with the light-emitting element 782, and the light-shielding film 738 is provided in the lead wiring portion 711 and the source driver circuit portion 704 to overlap with the insulating film 730. The coloring film 736 and the light-shielding film 738 are covered with the insulating film 734. A space between the light-emitting element 782 and the insulating film 734 is filled with a sealing film 732. The structure of the display device 700 is not limited to the example in FIG. 28, in which the coloring film 736 is provided. For example, a structure without the coloring film 736 may also be employed in the case where the EL layer 786 is formed by separate coloring.

[0430]

The structures described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments and examples.

[0431]

(Embodiment 4)

In this embodiment, an example of a circuit configuration of a semiconductor device which can hold stored data even when not powered and does not have a limitation on the number of write cycles will be described with reference to FIG. 35.

[0432]

5

10

15

20

<4-1. Circuit configuration>

FIG. 35 illustrates a circuit configuration of a semiconductor device. In FIG. 35, a first wiring (1st Line) is electrically connected to one of a source electrode and a drain electrode of a p-channel transistor 1280a. The other of the source electrode and the drain electrode of the p-channel transistor 1280a is electrically connected to one of a source electrode and a drain electrode of an n-channel transistor 1280b. The other of the source electrode and the drain electrode of the n-channel transistor 1280b is electrically connected to one of a source electrode and a drain electrode of an n-channel transistor 1280c.

[0433]

A second wiring (2nd Line) is electrically connected to one of a source electrode and a drain electrode of a transistor 1282. The other of the source electrode and the drain electrode of the transistor 1282 is electrically connected to one electrode of a capacitor 1281 and a gate electrode of the n-channel transistor 1280c.

[0434]

A third wiring (3rd Line) is electrically connected to gate electrodes of the p-channel transistor 1280a and the n-channel transistor 1280b. A fourth wiring (4th Line) is electrically connected to a gate electrode of the transistor 1282. A fifth wiring (5th Line) is electrically connected to the other electrode of the capacitor 1281 and the other of the source electrode and the drain electrode of the n-channel transistor 1280c. A sixth wiring (6th Line) is electrically connected to the other of the source electrode and the drain electrode of the p-channel transistor 1280a and the one of the source electrode and the drain electrode of the n-channel transistor 1280b.

25 [0435]

Note that the transistor 1282 can be formed using an oxide semiconductor (OS). Therefore, in FIG. 35, "OS" is written beside the transistor 1282. Any of the transistors described in the above embodiments is applicable to the transistor 1282. Note that the transistor 1282 may be formed using a material other than an oxide semiconductor.

30 [0436]

35

In FIG. 35, "FN", which denotes a floating node, is written at a connection portion of the other of the source electrode and the drain electrode of the transistor 1282, the one electrode of the capacitor 1281, and the gate electrode of the n-channel transistor 1280c. When the transistor 1282 is turned off, a potential supplied to the floating node, the one electrode of the capacitor 1281, and the gate electrode of the n-channel transistor 1280c can be held.

[0437]

The circuit configuration in FIG. 35 utilizes the advantage that the potential of the gate electrode of the n-channel transistor 1280c can be held, whereby writing, holding, and reading of data can be performed as described below.

5 [0438]

<4-2. Writing and holding of data>

First, writing and holding of data will be described. The potential of the fourth wiring is set to a potential at which the transistor 1282 is turned on, so that the transistor 1282 is turned on. Accordingly, the potential of the second wiring is supplied to the gate electrode of the n-channel transistor 1280c and the capacitor 1281. That is, predetermined charge is applied to the gate electrode of the n-channel transistor 1280c (writing). After that, the potential of the fourth wiring is set to a potential at which the transistor 1282 is turned off, so that the transistor 1282 is turned off. Accordingly, charge applied to the gate electrode of the n-channel transistor 1280c is held (holding).

15 [0439]

10

20

25

30

35

Since the off-state current of the transistor 1282 is extremely low, the charge in the gate electrode of the n-channel transistor 1280c is held for a long time.

[0440]

<4-3. Data reading>

Next, data reading will be described. When the potential of the third wiring is set to a low-level potential, the p-channel transistor 1280a is turned on and the n-channel transistor 1280b is turned off. In this case, the potential of the first wiring is supplied to the sixth wiring. On the other hand, when the potential of the third wiring is set to a high-level potential, the p-channel transistor 1280a is turned off and the n-channel transistor 1280b is turned on. In this case, the potential of the sixth wiring depends on the amount of charge held in the floating node (FN). Therefore, the stored data can be read out by measuring the potential of the sixth wiring (reading).

[0441]

The transistor 1282, whose channel formation region is formed using an oxide semiconductor, has extremely low off-state current. The off-state current of the transistor 1282 including an oxide semiconductor is less than or equal to one hundred-thousandth of the off-state current of a transistor formed using a silicon semiconductor or the like; thus, loss of charge accumulated in the floating node (FN) due to leakage current of the transistor 1282 is negligible. That is, the transistor 1282 including an oxide semiconductor makes it possible to provide a nonvolatile memory circuit which can hold data even when not powered.

[0442]

By using the semiconductor device having the above-described circuit configuration for a memory device such as a register or a cache memory, data in the memory device can be prevented from being lost owing to the stop of the supply of a power supply voltage. Furthermore, shortly after the supply of the power supply voltage is restarted, the memory device can return to the same state as before the power supply is stopped. Therefore, the power supply can be stopped even for a short time when the whole memory device or one or a plurality of logic circuits constituting a part of the memory device is in a standby state. Accordingly, power consumption can be suppressed.

10 [0443]

5

The structures, the methods, and the like described in this embodiment can be combined as appropriate with any of the structures, the methods, and the like described in the other embodiments and examples.

[0444]

15 (Embodiment 5)

In this embodiment, a configuration of a pixel circuit that can be used for a semiconductor device of one embodiment of the present invention will be described below with reference to FIG. 36A.

[0445]

20 <5-1. Configuration of pixel circuit>

FIG. 36A illustrates a configuration of a pixel circuit. The circuit in FIG. 36A includes a photoelectric conversion element 1360, a transistor 1351, a transistor 1352, a transistor 1353, and a transistor 1354.

[0446]

25

30

35

An anode of the photoelectric conversion element 1360 is connected to a wiring 1316, and a cathode of the photoelectric conversion element 1360 is connected to one of a source electrode and a drain electrode of the transistor 1351. The other of the source electrode and the drain electrode of the transistor 1351 is connected to a charge accumulation portion (FD). A gate electrode of the transistor 1351 is connected to a wiring 1312 (TX). One of a source electrode and a drain electrode of the transistor 1352 is connected to a wiring 1314 (GND). The other of the source electrode and the drain electrode of the transistor 1352 is connected to one of a source electrode and a drain electrode of the transistor 1354. A gate electrode of the transistor 1352 is connected to the charge accumulation portion (FD). One of a source electrode and a drain electrode of the transistor 1353 is connected to the charge accumulation portion (FD). The other of the source electrode and the drain electrode of the transistor 1353 is

connected to a wiring 1317. A gate electrode of the transistor 1353 is connected to a wiring 1311 (RS). The other of the source electrode and the drain electrode of the transistor 1354 is connected to a wiring 1315 (OUT). A gate electrode of the transistor 1354 is connected to a wiring 1313 (SE). Note that all the above connections are electrical connections.

5 [0447]

A potential such as GND, VSS, or VDD may be supplied through the wiring 1314. Here, a potential or a voltage has a relative value. Therefore, the potential GND is not necessarily 0 V.

[0448]

10

15

20

25

30

35

The photoelectric conversion element 1360 is a light-receiving element and has a function of generating current corresponding to the amount of light that enters the pixel circuit. The transistor 1353 has a function of controlling accumulation of charge in the charge accumulation portion (FD) by the photoelectric conversion element 1360. The transistor 1354 has a function of outputting a signal corresponding to the potential of the charge accumulation portion (FD). The transistor 1352 has a function of resetting the potential of the charge accumulation portion (FD). The transistor 1352 has a function of controlling selection of the pixel circuit at the time of reading.

[0449]

Note that the charge ac

Note that the charge accumulation portion (FD) is a charge retention node and retains charge that is changed depending on the amount of light received by the photoelectric conversion element 1360.

[0450]

Note that the transistor 1352 and the transistor 1354 only need to be connected in series between the wiring 1314 and the wiring 1315. Therefore, the wiring 1314, the transistor 1352, the transistor 1354, and the wiring 1315 may be arranged in this order, or the wiring 1314, the transistor 1354, the transistor 1352, and the wiring 1315 may be arranged in this order.

[0451]

The wiring 1311 (RS) functions as a signal line for controlling the transistor 1353. The wiring 1312 (TX) functions as a signal line for controlling the transistor 1351. The wiring 1313 (SE) functions as a signal line for controlling the transistor 1354. The wiring 1314 (GND) functions as a signal line for supplying a reference potential (e.g., GND). The wiring 1315 (OUT) functions as a signal line for reading a signal output from the transistor 1352. The wiring 1316 functions as a signal line for outputting charge from the charge accumulation portion (FD) through the photoelectric conversion element 1360 and is a low potential line in the circuit in FIG. 36A. The wiring 1317 functions as a signal line for resetting the potential of the

charge accumulation portion (FD) and is a high potential line in the circuit in FIG. 36A.

[0452]

Next, the structure of each component in FIG. 36A will be described.

[0453]

5

10

15

20

25

30

35

<5-2. Photoelectric conversion element>

An element including selenium or a selenium-containing compound (hereinafter referred to as a selenium-based material) or an element including silicon (e.g., an element in which a pin junction is formed) can be used as the photoelectric conversion element 1360. The photoelectric conversion element including a selenium-based material is preferably used in combination with a transistor including an oxide semiconductor, in which case high reliability can be achieved.

[0454]

<5-3. Transistor>

Although a silicon semiconductor such as amorphous silicon, microcrystalline silicon, polycrystalline silicon, or single-crystal silicon can be used to form the transistor 1351, the transistor 1352, the transistor 1353, and the transistor 1354, an oxide semiconductor is preferably used to form the transistors. A transistor whose channel formation region is formed using an oxide semiconductor has extremely low off-state current. The transistor described in Embodiment 1 can be used as a transistor whose channel formation region is formed using an oxide semiconductor.

[0455]

In particular, when the transistor 1351 and the transistor 1353 which are connected to the charge accumulation portion (FD) have high leakage current, charge accumulated in the charge accumulation portion (FD) cannot be held for a sufficient time. The use of an oxide semiconductor at least for the two transistors prevents unwanted leakage of charge from the charge accumulation portion (FD).

[0456]

Unwanted leakage of charge to the wiring 1314 or the wiring 1315 also occurs when the transistor 1352 and the transistor 1354 have high leakage current; thus, a transistor whose channel formation region is formed using an oxide semiconductor is preferably used as each of these transistors.

[0457]

One embodiment of the present invention is not limited to the example in FIG. 36A, in which the transistor includes one gate electrode. For example, the transistor may include a plurality of gate electrodes. The transistor including a plurality of gate electrodes may include,

for example, a first gate electrode and a second gate electrode (also referred to as a back gate electrode) which overlap with a semiconductor film in which a channel formation region is formed. The back gate electrode may be supplied with the same potential as the first gate electrode, a floating potential, or a potential different from that supplied to the first gate electrode, for example.

[0458]

5

15

25

30

35

<5-4. Timing chart of circuit operation>

An example of the operation of the circuit in FIG. 36A will be described with reference to a timing chart in FIG. 36B.

10 [0459]

In FIG. 36B, the potential of each wiring is denoted by a signal which varies between two levels for simplicity. Note that each potential is an analog signal; therefore, in practice, the potential can have various levels depending on conditions without being limited to two levels. In FIG. 36B, a signal 1401 corresponds to the potential of the wiring 1311 (RS), a signal 1402 corresponds to the potential of the wiring 1312 (TX), a signal 1403 corresponds to the potential of the wiring 1313 (SE), a signal 1404 corresponds to the potential of the charge accumulation portion (FD), and a signal 1405 corresponds to the potential of the wiring 1315 (OUT). The potential of the wiring 1316 is always at a low level, and the potential of the wiring 1317 is always at a high level.

20 [0460]

At time A, the potential of the wiring 1311 (signal 1401) and the potential of the wiring 1312 (signal 1402) are set to the high level, so that the potential of the charge accumulation portion (FD) (signal 1404) is initialized to the potential (high level) of the wiring 1317, and reset operation is started. Note that the potential of the wiring 1315 (signal 1405) is precharged to the high level.

[0461]

At time B, the potential of the wiring 1311 (signal 1401) is set to the low level, so that the reset operation is terminated and accumulation operation is started. Here, a reverse bias is applied to the photoelectric conversion element 1360, so that the potential of the charge accumulation portion (FD) (signal 1404) starts to decrease owing to reverse current. Since irradiation of the photoelectric conversion element 1360 with light increases the reverse current, the rate of decrease in the potential of the charge accumulation portion (FD) (signal 1404) changes depending on the amount of irradiation light. In other words, the channel resistance between the source and the drain of the transistor 1354 changes depending on the amount of light delivered to the photoelectric conversion element 1360.

[0462]

5

10

15

20

25

30

35

At time C, the potential of the wiring 1312 (signal 1402) is set to the low level to terminate the accumulation operation, so that the potential of the charge accumulation portion (FD) (signal 1404) becomes constant. Here, the potential is determined by the amount of charge generated by the photoelectric conversion element 1360 during the accumulation operation. That is, the potential changes depending on the amount of light delivered to the photoelectric conversion element 1360. Furthermore, since each of the transistors 1351 and 1353 is a transistor whose channel formation region is formed using an oxide semiconductor and which has extremely low off-state current, the potential of the charge accumulation portion (FD) can be kept constant until subsequent selection operation (read operation) is performed.

When the potential of the wiring 1312 (signal 1402) is set to the low level, the potential of the charge accumulation portion (FD) might change owing to parasitic capacitance between the wiring 1312 and the charge accumulation portion (FD). In the case where the potential change is significant, the amount of charge generated by the photoelectric conversion element 1360 during the accumulation operation cannot be obtained accurately. Examples of effective measures to reduce the potential change include reducing the capacitance between the gate electrode and the source electrode (or between the gate electrode and the drain electrode) of the transistor 1351, increasing the gate capacitance of the transistor 1352, and providing a storage capacitor in the charge accumulation portion (FD). In this embodiment, the potential change can be ignored by the adoption of these measures.

At time D, the potential of the wiring 1313 (signal 1403) is set to the high level to turn on the transistor 1354, so that the selection operation is started and the wiring 1314 and the wiring 1315 are electrically connected to each other through the transistor 1352 and the transistor 1354. Thus, the potential of the wiring 1315 (signal 1405) starts to decrease. Note that the precharge of the wiring 1315 is terminated before time D. Here, the rate at which the potential of the wiring 1315 (signal 1405) decreases depends on current between the source electrode and the drain electrode of the transistor 1352, that is, the amount of light delivered to the photoelectric conversion element 1360 during the accumulation operation.

[0465]

At time E, the potential of the wiring 1313 (signal 1403) is set to the low level to turn off the transistor 1354, so that the selection operation is terminated and the potential of the wiring 1315 (signal 1405) becomes a constant value. Here, the constant value changes depending on the amount of light delivered to the photoelectric conversion element 1360.

Therefore, the amount of light delivered to the photoelectric conversion element 1360 during the accumulation operation can be determined by measuring the potential of the wiring 1315.

[0466]

Specifically, when the photoelectric conversion element 1360 is irradiated with intense light, the potential of the charge accumulation portion (FD), that is, the gate voltage of the transistor 1352 decreases. Therefore, the current flowing between the source electrode and the drain electrode of the transistor 1352 becomes low; as a result, the potential of the wiring 1315 (signal 1405) gradually decreases. Thus, a relatively high potential can be read out from the wiring 1315.

10 [0467]

5

15

30

35

In contrast, when the photoelectric conversion element 1360 is irradiated with light with low intensity, the potential of the charge accumulation portion (FD), that is, the gate voltage of the transistor 1352 increases. Therefore, the current flowing between the source electrode and the drain electrode of the transistor 1352 becomes high; as a result, the potential of the wiring 1315 (signal 1405) rapidly decreases. Thus, a relatively low potential can be read out from the wiring 1315.

[0468]

This embodiment can be implemented in an appropriate combination with any of the structures described in the other embodiments and examples.

20 [0469]

(Embodiment 6)

In this embodiment, a display device including a semiconductor device of one embodiment of the present invention will be described with reference to FIGS. 37A to 37C.

[0470]

25 <6. Circuit configuration of display device>

A display device illustrated in FIG. 37A includes a region including pixels of display elements (hereinafter referred to as a pixel portion 502), a circuit portion which is provided outside the pixel portion 502 and includes a circuit for driving the pixels (hereinafter, the circuit portion is referred to as a driver circuit portion 504), circuits having a function of protecting elements (hereinafter, the circuits are referred to as protection circuits 506), and a terminal portion 507. Note that the protection circuits 506 are not necessarily provided.

Part or the whole of the driver circuit portion 504 is preferably formed over a substrate over which the pixel portion 502 is formed. Thus, the number of components and the number of terminals can be reduced. When part or the whole of the driver circuit portion 504 is not

formed over the substrate over which the pixel portion 502 is formed, the part or the whole of the driver circuit portion 504 can be mounted by COG or tape automated bonding (TAB).

[0472]

The pixel portion 502 includes a plurality of circuits for driving display elements arranged in X (X is a natural number of 2 or more) rows and Y (Y is a natural number of 2 or more) columns (hereinafter, the circuits are referred to as pixel circuits 501). The driver circuit portion 504 includes driver circuits such as a circuit for supplying a signal (scan signal) to select a pixel (hereinafter, the circuit is referred to as a gate driver 504a) and a circuit for supplying a signal (data signal) to drive a display element in a pixel (hereinafter, the circuit is referred to as a source driver 504b).

[0473]

5

10

15

25

30

35

The gate driver 504a includes a shift register or the like. The gate driver 504a receives a signal for driving the shift register through the terminal portion 507 and outputs a signal. For example, the gate driver 504a receives a start pulse signal, a clock signal, or the like and outputs a pulse signal. The gate driver 504a has a function of controlling the potentials of wirings supplied with scan signals (hereinafter referred to as scan lines GL_1 to GL_X). Note that a plurality of gate drivers 504a may be provided to control the scan lines GL_1 to GL_X separately. Alternatively, the gate driver 504a has a function of supplying an initialization signal. Without being limited thereto, another signal can be supplied from the gate driver 504a.

20 [0474]

The source driver 504b includes a shift register or the like. The source driver 504b receives a signal (image signal) from which a data signal is generated, as well as a signal for driving the shift register, through the terminal portion 507. The source driver 504b has a function of generating a data signal to be written to the pixel circuit 501 from the image signal. In addition, the source driver 504b has a function of controlling output of a data signal in response to an input pulse signal such as a start pulse signal or a clock signal. Furthermore, the source driver 504b has a function of controlling the potentials of wirings supplied with data signals (hereinafter referred to as data lines DL_1 to DL_Y). Alternatively, the source driver 504b has a function of supplying an initialization signal. Without being limited thereto, another signal can be supplied from the source driver 504b.

[0475]

The source driver 504b includes a plurality of analog switches, for example. The source driver 504b can output, as data signals, time-divided image signals obtained by sequentially turning on the plurality of analog switches. The source driver 504b may include a shift register or the like.

[0476]

A pulse signal and a data signal are input to each of the plurality of pixel circuits 501 through one of the plurality of scan lines GL supplied with scan signals and one of the plurality of data lines DL supplied with data signals, respectively. Writing and holding of the data signal in each of the plurality of pixel circuits 501 are controlled by the gate driver 504a. For example, to the pixel circuit 501 in the m-th row and the n-th column (m is a natural number of X or less, and n is a natural number of Y or less), a pulse signal is input from the gate driver 504a through the scan line GL $_m$, and a data signal is input from the source driver 504b through the data line DL $_m$ in accordance with the potential of the scan line GL $_m$.

[0477]

5

10

15

20

25

35

The protection circuit 506 in FIG. 37A is connected to, for example, the scan line GL between the gate driver 504a and the pixel circuit 501. Alternatively, the protection circuit 506 is connected to the data line DL between the source driver 504b and the pixel circuit 501. Alternatively, the protection circuit 506 can be connected to a wiring between the gate driver 504a and the terminal portion 507. Alternatively, the protection circuit 506 can be connected to a wiring between the source driver 504b and the terminal portion 507. Note that the terminal portion 507 refers to a portion having terminals for inputting power, control signals, and image signals from external circuits to the display device.

[0478]

The protection circuit 506 electrically connects a wiring connected to the protection circuit to another wiring when a potential out of a certain range is supplied to the wiring connected to the protection circuit.

[0479]

As illustrated in FIG. 37A, the protection circuits 506 provided for the pixel portion 502 and the driver circuit portion 504 can improve the resistance of the display device to overcurrent generated by electrostatic discharge (ESD) or the like. Note that the configuration of the protection circuits 506 is not limited thereto; for example, the protection circuit 506 can be connected to the gate driver 504a or the source driver 504b. Alternatively, the protection circuit 506 can be connected to the terminal portion 507.

30 [0480]

One embodiment of the present invention is not limited to the example in FIG. 37A, in which the driver circuit portion 504 includes the gate driver 504a and the source driver 504b. For example, only the gate driver 504a may be formed, and a separately prepared substrate over which a source driver circuit is formed (e.g., a driver circuit board formed using a single-crystal semiconductor film or a polycrystalline semiconductor film) may be mounted.

[0481]

Each of the plurality of pixel circuits 501 in FIG. 37A can have the configuration illustrated in FIG. 37B, for example.

[0482]

5

10

15

20

25

30

35

The pixel circuit 501 in FIG. 37B includes a liquid crystal element 570, a transistor 550, and a capacitor 560. As the transistor 550, the transistor described in the above embodiment can be used.

[0483]

The potential of one of a pair of electrodes of the liquid crystal element 570 is set as appropriate in accordance with the specifications of the pixel circuit 501. The alignment state of the liquid crystal element 570 depends on data written thereto. A common potential may be supplied to the one of the pair of electrodes of the liquid crystal element 570 included in each of the plurality of pixel circuits 501. The potential supplied to the one of the pair of electrodes of the liquid crystal element 570 in the pixel circuit 501 may differ between rows.

[0484]

Examples of a method for driving the display device including the liquid crystal element 570 include a TN mode, an STN mode, a VA mode, an axially symmetric aligned micro-cell (ASM) mode, an optically compensated birefringence (OCB) mode, a ferroelectric liquid crystal (FLC) mode, an anti-ferroelectric liquid crystal (AFLC) mode, an MVA mode, a patterned vertical alignment (PVA) mode, an IPS mode, an FFS mode, and a transverse bend alignment (TBA) mode. Other examples of the method for driving the display device include an electrically controlled birefringence (ECB) mode, a polymer-dispersed liquid crystal (PDLC) mode, a polymer network liquid crystal (PNLC) mode, and a guest-host mode. Without being limited thereto, various liquid crystal elements and driving methods can be used.

[0485]

In the pixel circuit 501 in the *m*-th row and the *n*-th column, one of a source electrode and a drain electrode of the transistor 550 is electrically connected to the data line DL_n, and the other of the source electrode and the drain electrode of the transistor 550 is electrically connected to the other of the pair of electrodes of the liquid crystal element 570. A gate electrode of the transistor 550 is electrically connected to the scan line GL_m. The transistor 550 is configured to be turned on or off to control whether a data signal is written.

[0486]

One of a pair of electrodes of the capacitor 560 is electrically connected to a wiring through which a potential is supplied (hereinafter referred to as a potential supply line VL), and the other of the pair of electrodes of the capacitor 560 is electrically connected to the other of the

pair of electrodes of the liquid crystal element 570. The potential of the potential supply line VL is set as appropriate in accordance with the specifications of the pixel circuit 501. The capacitor 560 functions as a storage capacitor for storing written data.

[0487]

5

10

20

25

30

35

For example, in the display device including the pixel circuits 501 in FIG. 37B, the gate driver 504a in FIG. 37A sequentially selects the pixel circuits 501 row by row to turn on the transistors 550, and data signals are written.

[0488]

When the transistor 550 is turned off, the pixel circuit 501 to which the data has been written is brought into a holding state. This operation is sequentially performed row by row; thus, an image can be displayed.

[0489]

Alternatively, each of the plurality of pixel circuits 501 in FIG. 37A can have the configuration illustrated in FIG. 37C, for example.

15 [0490]

The pixel circuit 501 in FIG. 37C includes transistors 552 and 554, a capacitor 562, and a light-emitting element 572. The transistor described in the above embodiment can be used as the transistor 552 and/or the transistor 554.

[0491]

One of a source electrode and a drain electrode of the transistor 552 is electrically connected to a wiring through which a data signal is supplied (hereinafter referred to as a data line DL_n). A gate electrode of the transistor 552 is electrically connected to a wiring through which a gate signal is supplied (hereinafter referred to as a scan line GL_m).

[0492]

The transistor 552 is configured to be turned on or off to control whether a data signal is written.

[0493]

One of a pair of electrodes of the capacitor 562 is electrically connected to a wiring through which a potential is supplied (hereinafter referred to as a potential supply line VL_a), and the other of the pair of electrodes of the capacitor 562 is electrically connected to the other of the source electrode and the drain electrode of the transistor 552.

[0494]

The capacitor 562 functions as a storage capacitor for storing written data.

[0495]

One of a source electrode and a drain electrode of the transistor 554 is electrically

connected to the potential supply line VL_a. A gate electrode of the transistor 554 is electrically connected to the other of the source electrode and the drain electrode of the transistor 552.

[0496]

5

10

15

20

25

30

35

One of an anode and a cathode of the light-emitting element 572 is electrically connected to a potential supply line VL_b, and the other of the anode and the cathode of the light-emitting element 572 is electrically connected to the other of the source electrode and the drain electrode of the transistor 554.

[0497]

As the light-emitting element 572, an organic electroluminescent element (also referred to as an organic EL element) can be used, for example. Note that the light-emitting element 572 is not limited thereto and may be an inorganic EL element including an inorganic material.

[0498]

A high power supply potential VDD is supplied to one of the potential supply line VL_a and the potential supply line VL_b , and a low power supply potential VSS is supplied to the other of the potential supply line VL_a and the potential supply line VL_b .

[0499]

In the display device including the pixel circuits 501 in FIG. 37C, the gate driver 504a in FIG. 37A sequentially selects the pixel circuits 501 row by row to turn on the transistors 552, and data signals are written.

[0500]

When the transistor 552 is turned off, the pixel circuit 501 to which the data has been written is brought into a holding state. Furthermore, the amount of current flowing between the source electrode and the drain electrode of the transistor 554 is controlled in accordance with the potential of the written data signal. The light-emitting element 572 emits light with a luminance corresponding to the amount of flowing current. This operation is sequentially performed row by row; thus, an image can be displayed.

[0501]

The structures described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments and examples.

[0502]

(Embodiment 7)

In this embodiment, circuit configuration examples to which the transistors described in the above embodiments can be applied will be described with reference to FIGS. 38A to 38C, FIGS. 39A to 39C, FIGS. 40A and 40B, and FIGS. 41A and 41B.

[0503]

Note that in the following description in this embodiment, the transistor including an oxide semiconductor described in the above embodiment is referred to as an OS transistor.

[0504]

5 <7. Configuration example of inverter circuit>

FIG. 38A is a circuit diagram of an inverter which can be used for a shift register, a buffer, or the like included in the driver circuit. An inverter 800 outputs a signal whose logic is inverted from the logic of a signal supplied to an input terminal IN to an output terminal OUT. The inverter 800 includes a plurality of OS transistors. A signal S_{BG} can switch electrical characteristics of the OS transistors.

[0505]

10

15

20

FIG. 38B illustrates an example of the inverter 800. The inverter 800 includes an OS transistor 810 and an OS transistor 820. The inverter 800 can be formed using only n-channel transistors; thus, the inverter 800 can be formed at lower cost than an inverter formed using a complementary metal oxide semiconductor (i.e., a CMOS inverter).

[0506]

Note that the inverter 800 including the OS transistors can be provided over a CMOS circuit including Si transistors. Since the inverter 800 can be provided so as to overlap with the CMOS circuit, no additional area is required for the inverter 800, and thus, an increase in the circuit area can be suppressed.

[0507]

Each of the OS transistors 810 and 820 includes a first gate functioning as a front gate, a second gate functioning as a back gate, a first terminal functioning as one of a source and a drain, and a second terminal functioning as the other of the source and the drain.

25 [0508]

The first gate of the OS transistor 810 is connected to its second terminal. The second gate of the OS transistor 810 is connected to a wiring that supplies the signal S_{BG} . The first terminal of the OS transistor 810 is connected to a wiring that supplies a voltage VDD. The second terminal of the OS transistor 810 is connected to the output terminal OUT.

30 [0509]

The first gate of the OS transistor 820 is connected to the input terminal IN. The second gate of the OS transistor 820 is connected to the input terminal IN. The first terminal of the OS transistor 820 is connected to the output terminal OUT. The second terminal of the OS transistor 820 is connected to a wiring that supplies a voltage VSS.

35 [0510]

FIG. 38C is a timing chart illustrating the operation of the inverter 800. The timing chart in FIG. 38C illustrates changes of a signal waveform of the input terminal IN, a signal waveform of the output terminal OUT, a signal waveform of the signal S_{BG} , and the threshold voltage of the OS transistor 810.

5 [0511]

The signal S_{BG} can be supplied to the second gate of the OS transistor 810 to control the threshold voltage of the OS transistor 810.

[0512]

The signal S_{BG} includes a voltage V_{BG_A} for shifting the threshold voltage in the negative direction and a voltage V_{BG_B} for shifting the threshold voltage in the positive direction. The threshold voltage of the OS transistor 810 can be shifted in the negative direction to be a threshold voltage V_{TH_A} when the voltage V_{BG_A} is applied to the second gate. The threshold voltage of the OS transistor 810 can be shifted in the positive direction to be a threshold voltage V_{TH_B} when the voltage V_{BG_B} is applied to the second gate.

15 [0513]

10

20

25

To visualize the above description, FIG. 39A shows an I_d – V_g curve, which is one of the electrical characteristics of a transistor.

[0514]

When a high voltage such as the voltage $V_{\rm BG_A}$ is applied to the second gate, the electrical characteristics of the OS transistor 810 can be shifted to match a curve shown by a dashed line 840 in FIG. 39A. When a low voltage such as the voltage $V_{\rm BG_B}$ is applied to the second gate, the electrical characteristics of the OS transistor 810 can be shifted to match a curve shown by a solid line 841 in FIG. 39A. As shown in FIG. 39A, switching the signal $S_{\rm BG}$ between the voltage $V_{\rm BG_A}$ and the voltage $V_{\rm BG_B}$ enables the threshold voltage of the OS transistor 810 to be shifted in the positive direction or the negative direction.

[0515]

The shift of the threshold voltage in the positive direction toward the threshold voltage $V_{\text{TH_B}}$ can make current less likely to flow in the OS transistor 810. FIG. 39B visualizes the state.

30 [0516]

As illustrated in FIG. 39B, a current $I_{\rm B}$ that flows in the OS transistor 810 can be extremely low. Thus, when a signal supplied to the input terminal IN is at a high level and the OS transistor 820 is on (ON), the voltage of the output terminal OUT can drop sharply.

[0517]

Since a state in which current is less likely to flow in the OS transistor 810 as illustrated in FIG. 39B can be obtained, a signal waveform 831 of the output terminal in the timing chart in FIG. 38C can be made steep. Shoot-through current between the wiring that supplies the voltage VDD and the wiring that supplies the voltage VSS can be low, leading to low-power operation.

[0518]

5

10

15

20

25

35

The shift of the threshold voltage in the negative direction toward the threshold voltage $V_{\rm TH_A}$ can make current flow easily in the OS transistor 810. FIG. 39C visualizes the state. As illustrated in FIG. 39C, a current $I_{\rm A}$ flowing at this time can be higher than at least the current $I_{\rm B}$. Thus, when a signal supplied to the input terminal IN is at a low level and the OS transistor 820 is off (OFF), the voltage of the output terminal OUT can be increased sharply. Since a state in which current is likely to flow in the OS transistor 810 as illustrated in FIG. 39C can be obtained, a signal waveform 832 of the output terminal in the timing chart in FIG. 38C can be made steep.

[0519]

Note that the threshold voltage of the OS transistor 810 is preferably controlled by the signal S_{BG} before the state of the OS transistor 820 is switched, i.e., before time T1 or time T2. For example, as in FIG. 38C, it is preferable that the threshold voltage of the OS transistor 810 be switched from the threshold voltage V_{TH_A} to the threshold voltage V_{TH_B} before time T1 at which the level of the signal supplied to the input terminal IN is switched to a high level. Moreover, as in FIG. 38C, it is preferable that the threshold voltage of the OS transistor 810 be switched from the threshold voltage V_{TH_B} to the threshold voltage V_{TH_A} before time T2 at which the level of the signal supplied to the input terminal IN is switched to a low level. [0520]

Although the timing chart in FIG. 38C illustrates the structure in which the level of the signal S_{BG} is switched in accordance with the signal supplied to the input terminal IN, a different structure may be employed in which voltage for controlling the threshold voltage is held by the second gate of the OS transistor 810 in a floating state, for example. FIG. 40A illustrates an example of such a circuit configuration.

30 [0521]

The circuit configuration in FIG. 40A is the same as that in FIG. 38B, except that an OS transistor 850 is added. A first terminal of the OS transistor 850 is connected to the second gate of the OS transistor 810. A second terminal of the OS transistor 850 is connected to a wiring that supplies the voltage $V_{\rm BG_B}$ (or the voltage $V_{\rm BG_A}$). A first gate of the OS transistor 850 is connected to a wiring that supplies a signal $S_{\rm F}$. A second gate of the OS transistor 850 is

WO 2017/029576 PCT/IB2016/054765

connected to the wiring that supplies the voltage V_{BG_B} (or the voltage V_{BG_A}).

[0522]

The operation with the circuit configuration in FIG. 40A will be described with reference to a timing chart in FIG. 40B.

5 [0523]

The voltage for controlling the threshold voltage of the OS transistor 810 is supplied to the second gate of the OS transistor 810 before time T3 at which the level of the signal supplied to the input terminal IN is switched to a high level. The signal S_F is set to a high level and the OS transistor 850 is turned on, so that the voltage V_{BG_B} for controlling the threshold voltage is supplied to a node N_{BG} .

[0524]

10

15

20

25

30

35

The OS transistor 850 is turned off after the voltage of the node N_{BG} becomes V_{BG_B} . Since the off-state current of the OS transistor 850 is extremely low, the voltage V_{BG_B} held by the node N_{BG} can be retained while the OS transistor 850 remains off. Therefore, the number of times the voltage V_{BG_B} is supplied to the second gate of the OS transistor 850 can be reduced and accordingly, the power consumption for rewriting the voltage V_{BG_B} can be reduced. [0525]

Although FIG. 38B and FIG. 40A each illustrate the case where the voltage is supplied to the second gate of the OS transistor 810 by control from the outside, a different structure may be employed in which voltage for controlling the threshold voltage is generated on the basis of the signal supplied to the input terminal IN and supplied to the second gate of the OS transistor 810, for example. FIG. 41A illustrates an example of such a circuit configuration.

[0526]

The circuit configuration in FIG. 41A is the same as that in FIG. 38B, except that a CMOS inverter 860 is provided between the input terminal IN and the second gate of the OS transistor 810. An input terminal of the CMOS inverter 860 is connected to the input terminal IN. An output terminal of the CMOS inverter 860 is connected to the second gate of the OS transistor 810.

[0527]

The operation with the circuit configuration in FIG. 41A is described with reference to a timing chart in FIG. 41B. The timing chart in FIG. 41B illustrates changes of a signal waveform of the input terminal IN, a signal waveform of the output terminal OUT, an output waveform IN_B of the CMOS inverter 860, and a threshold voltage of the OS transistor 810.

[0528]

The output waveform IN B which corresponds to a signal whose logic is inverted from

the logic of the signal supplied to the input terminal IN can be used as a signal that controls the threshold voltage of the OS transistor 810. Thus, the threshold voltage of the OS transistor 810 can be controlled as described with reference to FIGS. 39A to 39C. For example, the signal supplied to the input terminal IN is at a high level and the OS transistor 820 is turned on at time T4 in FIG. 41B. At this time, the output waveform IN_B is at a low level. Accordingly, current can be made less likely to flow in the OS transistor 810; thus, the voltage of the output terminal OUT can be sharply decreased.

[0529]

5

10

15

20

30

35

Moreover, the signal supplied to the input terminal IN is at a low level and the OS transistor 820 is turned off at time T5 in FIG. 41B. At this time, the output waveform IN_B is at a high level. Accordingly, current can easily flow in the OS transistor 810; thus, a rise in the voltage of the output terminal OUT can be made steep.

[0530]

As described above, in the configuration of the inverter including the OS transistor in this embodiment, the voltage of the back gate is switched in accordance with the logic of the signal supplied to the input terminal IN. In such a configuration, the threshold voltage of the OS transistor can be controlled. The control of the threshold voltage of the OS transistor by the signal supplied to the input terminal IN can cause a steep change in the voltage of the output terminal OUT. Moreover, shoot-through current between the wirings that supply power supply voltages can be reduced. Thus, power consumption can be reduced.

[0531]

The structures described in this embodiment can be used in appropriate combination with any of the structures described in the other embodiments and examples.

[0532]

25 (Embodiment 8)

In this embodiment, examples of a semiconductor device in which the transistor including an oxide semiconductor (OS transistor) described in any of the above embodiments is used in a plurality of circuits will be described with reference to FIGS. 42A to 42E, FIGS. 43A and 43B, FIGS. 44A and 44B, FIGS. 45A to 45C, FIGS. 46A and 46B, FIGS. 47A to 47C, and FIGS. 48A and 48B.

[0533]

< 8. Circuit configuration example of semiconductor device>

FIG. 42A is a block diagram of a semiconductor device 900. The semiconductor device 900 includes a power supply circuit 901, a circuit 902, a voltage generation circuit 903, a circuit 904, a voltage generation circuit 905, and a circuit 906.

[0534]

5

10

15

20

25

30

35

The power supply circuit 901 is a circuit that generates a voltage V_{ORG} used as a reference. The voltage V_{ORG} is not necessarily one voltage and can be a plurality of voltages. The voltage V_{ORG} can be generated on the basis of a voltage V_0 supplied from the outside of the semiconductor device 900. The semiconductor device 900 can generate the voltage V_{ORG} on the basis of one power supply voltage supplied from the outside. Thus, the semiconductor device 900 can operate without supply of a plurality of power supply voltages from the outside. [0535]

The circuits 902, 904, and 906 operate with different power supply voltages. For example, the power supply voltage of the circuit 902 is a voltage based on the voltage V_{ORG} and the voltage V_{SS} ($V_{ORG} > V_{SS}$), the power supply voltage of the circuit 904 is a voltage based on a voltage V_{POG} and the voltage V_{SS} ($V_{POG} > V_{ORG}$), and the power supply voltages of the circuit 906 are voltages based on the voltage V_{ORG} , the voltage V_{SS} , and a voltage V_{NEG} ($V_{ORG} > V_{SS} > V_{NEG}$). When the voltage V_{SS} is set to a ground potential (GND), the kinds of voltages generated by the power supply circuit 901 can be reduced.

The voltage generation circuit 903 is a circuit that generates the voltage V_{POG} . The voltage generation circuit 903 can generate the voltage V_{POG} on the basis of the voltage V_{ORG} supplied from the power supply circuit 901. Thus, the semiconductor device 900 including the circuit 904 can operate on the basis of one power supply voltage supplied from the outside. [0537]

The voltage generation circuit 905 is a circuit that generates the voltage V_{NEG} . The voltage generation circuit 905 can generate the voltage V_{NEG} on the basis of the voltage V_{ORG} supplied from the power supply circuit 901. Thus, the semiconductor device 900 including the circuit 906 can operate on the basis of one power supply voltage supplied from the outside. [0538]

FIG. 42B illustrates an example of the circuit 904 that operates with the voltage V_{POG} and FIG. 42C illustrates an example of a waveform of a signal for operating the circuit 904. [0539]

FIG. 42B illustrates a transistor 911. A signal supplied to a gate of the transistor 911 is generated on the basis of, for example, the voltage V_{POG} and the voltage V_{SS} . The signal is generated on the basis of the voltage V_{POG} to turn on the transistor 911 and on the basis of the voltage V_{SS} to turn off the transistor 911. As illustrated in FIG. 42C, the voltage V_{POG} is higher than the voltage V_{ORG} . Thus, a source (S) and a drain (D) of the transistor 911 can be electrically connected to each other without fail. As a result, the frequency of malfunction of

the circuit 904 can be reduced.

[0540]

FIG. 42D illustrates an example of the circuit 906 that operates with the voltage V_{NEG} and FIG. 42E illustrates an example of a waveform of a signal for operating the circuit 906.

[0541]

5

10

15

20

25

30

35

FIG. 42D illustrates a transistor 912 having a back gate. A signal supplied to a gate of the transistor 912 is generated on the basis of, for example, the voltage V_{ORG} and the voltage V_{SS} . The signal is generated on the basis of the voltage V_{ORG} to turn on the transistor 912 and on the basis of the voltage V_{SS} to turn off the transistor 912. A signal supplied to the back gate of the transistor 912 is generated on the basis of the voltage V_{NEG} . As illustrated in FIG. 42E, the voltage V_{NEG} is lower than the voltage V_{SS} (GND). Thus, the threshold voltage of the transistor 912 can be controlled to shift in the positive direction. Thus, the transistor 912 can be turned off without fail and a current flowing between a source (S) and a drain (D) can be reduced. As a result, the frequency of malfunction of the circuit 906 can be reduced and power consumption thereof can be reduced.

[0542]

The voltage V_{NEG} may be directly supplied to the back gate of the transistor 912. Alternatively, a signal supplied to the gate of the transistor 912 may be generated on the basis of the voltage V_{ORG} and the voltage V_{NEG} and the generated signal may also be supplied to the back gate of the transistor 912.

[0543]

FIGS. 43 A and 43B illustrate a modification example of FIGS. 42D and 42E. [0544]

In a circuit diagram illustrated in FIG. 43A, a transistor 922 whose on/off state can be controlled by a control circuit 921 is provided between the voltage generation circuit 905 and the circuit 906. The transistor 922 is an n-channel OS transistor. The control signal S_{BG} output from the control circuit 921 is a signal for controlling the on/off state of the transistor 922. Transistors 912A and 912B included in the circuit 906 are OS transistors like the transistor 922. [0545]

A timing chart in FIG. 43B shows changes in a potential of the control signal S_{BG} and a potential of a node N_{BG} . The potential of the node N_{BG} indicates the states of potentials of back gates of the transistors 912A and 912B. When the control signal S_{BG} is at a high level, the transistor 922 is turned on and the voltage of the node N_{BG} becomes the voltage V_{NEG} . Then, when the control signal S_{BG} is at a low level, the node N_{BG} is brought into an electrically floating state. Since the transistor 922 is an OS transistor, its off-state current is small. Accordingly,

even when the node N_{BG} is in an electrically floating state, the voltage V_{NEG} which has been supplied can be held.

[0546]

5

10

15

20

25

30

35

FIG. 44A illustrates an example of a circuit configuration applicable to the above-described voltage generation circuit 903. The voltage generation circuit 903 illustrated in FIG. 44A is a five-stage charge pump including diodes D1 to D5, capacitors C1 to C5, and an inverter INV. A clock signal CLK is supplied to the capacitors C1 to C5 directly or through the inverter INV. When a power supply voltage of the inverter INV is a voltage applied on the basis of the voltage V_{ORG} and the voltage V_{SS} , the voltage V_{POG} , which has been increased to a positive voltage having a positively quintupled value of the voltage V_{ORG} by application of the clock signal CLK, can be obtained. Note that the forward voltage of the diodes D1 to D5 is 0 V. The number of stages of the charge pump can be changed to obtain a desired voltage V_{POG} .

FIG. 44B illustrates an example of a circuit configuration applicable to the above-described voltage generation circuit 905. The voltage generation circuit 905 illustrated in FIG. 44B is a four-stage charge pump including the diodes D1 to D5, the capacitors C1 to C5, and the inverter INV. The clock signal CLK is supplied to the capacitors C1 to C5 directly or through the inverter INV. When a power supply voltage of the inverter INV is a voltage applied on the basis of the voltage V_{ORG} and the voltage V_{SS} , the voltage V_{NEG} , which has been reduced from GND (i.e., the voltage V_{SS}) to a negative voltage having a negatively quadrupled value of the voltage V_{ORG} by application of the clock signal CLK, can be obtained. Note that the forward voltage of the diodes D1 to D5 is 0 V. The number of stages of the charge pump can be changed to obtain a desired voltage V_{NEG} .

The circuit configuration of the voltage generation circuit 903 is not limited to the configuration in the circuit diagram illustrated in FIG. 44A. Modification examples of the voltage generation circuit 903 are illustrated in FIGS. 45A to 45C and FIGS. 46A and 46B. [0549]

The voltage generation circuit 903A illustrated in FIG. 45A includes transistors M1 to M10, capacitors C11 to C14, and an inverter INV1. The clock signal CLK is supplied to gates of the transistors M1 to M10 directly or through the inverter INV1. By application of the clock signal CLK, the voltage V_{POG} , which has been increased to a positive voltage having a positively quadrupled value of the voltage V_{ORG} , can be obtained. The number of stages can be changed to obtain a desired voltage V_{POG} . In the voltage generation circuit 903A in FIG. 45A, off-state current of each of the transistors M1 to M10 can be small when the transistors M1 to M10 are

OS transistors, and leakage of charge held in the capacitors C11 to C14 can be suppressed. Accordingly, the voltage V_{ORG} can be efficiently increased to the voltage V_{POG} . [0550]

The voltage generation circuit 903B illustrated in FIG. 45B includes transistors M11 to M14, capacitors C15 and C16, and an inverter INV2. The clock signal CLK is supplied to gates of the transistors M11 to M14 directly or through the inverter INV2. By application of the clock signal CLK, the voltage V_{POG}, which has been increased to a positive voltage having a positively doubled value of the voltage V_{ORG}, can be obtained. In the voltage generation circuit 903B in FIG. 45B, off-state current of each of the transistors M11 to M14 can be small when the transistors M11 to M14 are OS transistors, and leakage of charge held in the capacitors C15 and C16 can be suppressed. Accordingly, the voltage V_{ORG} can be efficiently increased to the voltage V_{POG}.

[0551]

5

10

15

20

25

30

35

A voltage generation circuit 903C illustrated in FIG. 45C includes an inductor I1, a transistor M15, a diode D6, and a capacitor C17. The on/off state of the transistor M15 is controlled by a control signal EN. Owing to the control signal EN, the voltage V_{POG} increased from the voltage V_{ORG} can be obtained. Since the voltage generation circuit 903C in FIG. 45C increases the voltage using the inductor I1, the voltage can be efficiently increased.

A voltage generation circuit 903D illustrated in FIG. 46A has a configuration in which the diodes D1 to D5 of the voltage generation circuit 903 illustrated in FIG. 44A are replaced by diode-connected transistors M16 to M20. In the voltage generation circuit 903D in FIG. 46A, off-state current of each of the transistors M16 to M20 can be small when the transistors M16 to M20 are OS transistors, and leakage of charge held in the capacitors C1 to C5 can be suppressed. Accordingly, the voltage V_{ORG} can be efficiently increased to the voltage V_{POG} .

A voltage generation circuit 903E illustrated in FIG. 46B has a configuration in which the transistors M16 to M20 of the voltage generation circuit 903D illustrated in FIG. 46A are replaced by transistors M21 to M25 including back gates. In the voltage generation circuit 903E illustrated in FIG. 46B, the back gates can be supplied with the same voltages as the respective gates; thus, the amount of current flowing in the transistor can be increased. Accordingly, the voltage V_{ORG} can be efficiently increased to the voltage V_{POG} .

Note that the modification examples of the voltage generation circuit 903 are also applicable to the voltage generation circuit 905 illustrated in FIG. 44B. FIGS. 47A to 47C and

FIGS. 48A and 48B are circuit diagrams illustrating configuration examples of such a case. In a voltage generation circuit 905A illustrated in FIG. 47A, the voltage V_{NEG} , which has been reduced from the voltage V_{SS} to a negative voltage having a negatively tripled value of the voltage V_{ORG} by application of the clock signal CLK, can be obtained. In a voltage generation circuit 905B illustrated in FIG. 47B, the voltage V_{NEG} , which has been reduced from the voltage V_{SS} to a negative voltage having a negatively doubled value of the voltage V_{ORG} by application of the clock signal CLK, can be obtained.

[0555]

5

10

Voltage generation circuits 905A to 905E illustrated in FIGS. 47A to 47C and FIGS. 48A and 48B have the same configurations as the voltage generation circuits 903A to 903E illustrated in FIGS. 45A to 45C and FIGS. 46A and 46B except for voltages applied to wirings or element arrangement. Similarly to the voltage generation circuits 903A to 903E, the voltage generation circuits 905A to 905E illustrated in FIGS. 47A to 47C and FIGS. 48A and 48B can perform efficient voltage reduction from the voltage V_{SS} to the voltage V_{NEG} .

15 [0556]

As described above, in any of the configurations of this embodiment, voltage required for circuits included in the semiconductor device can be internally generated. Thus, in the semiconductor device, the number of kinds of power supply voltages supplied from the outside can be reduced.

20 [0557]

25

30

35

The structures and the like described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments and examples.

[0558]

(Embodiment 9)

In this embodiment, an input/output device of one embodiment of the present invention will be described with reference to FIGS. 49A and 49B.

[0559]

< 9. Structure example of input/output device>

The input/output device of one embodiment of the present invention is an in-cell touch panel that has a function of displaying an image and serves as a touch sensor.

[0560]

There is no particular limitation on a display element included in the input/output device of one embodiment of the present invention. As the display element, a variety of display elements including a liquid crystal element, an optical element that utilizes micro electro mechanical systems (MEMS), a light-emitting element such as an organic electroluminescent

(EL) element or a light-emitting diode (LED), and an electrophoretic element can be used. [0561]

In this embodiment, a transmissive liquid crystal display device using a liquid crystal element in a horizontal electric field mode will be described as an example.

5 [0562]

There is no particular limitation on a sensor element included in the input/output device of one embodiment of the present invention. Note that a variety of sensors that can sense proximity or touch of a sensing target such as a finger or a stylus can be used as the sensor element.

10 [0563]

For example, a variety of types such as a capacitive type, a resistive type, a surface acoustic wave type, an infrared type, an optical type, and a pressure-sensitive type can be used for the sensor.

[0564]

15

20

25

30

35

In this embodiment, an input/output device including a capacitive sensor element will be described as an example.

[0565]

Examples of the capacitive sensor element are a surface capacitive sensor element and a projected capacitive sensor element. Examples of the projected capacitive sensor element include a self-capacitive sensor element and a mutual capacitive sensor element. The use of a mutual capacitive sensor element is preferable because multiple points can be sensed simultaneously.

[0566]

As typical examples of the in-cell touch panel, a hybrid in-cell type and a full-in-cell type can be given. The hybrid in-cell type refers to a structure in which an electrode and the like constituting a part of a sensor element are provided for only a counter substrate or both a substrate that supports a display element and the counter substrate. The full-in-cell type refers to a structure in which an electrode and the like constituting a part of a sensor element are provided for only a substrate that supports a display element. The input/output device of one embodiment of the present invention is a full-in-cell touch panel. The full-in-cell touch panel is preferable because a structure of a counter substrate can be simplified.

[0567]

The input/output device of one embodiment of the present invention is preferable because an electrode constituting a part of the display element also serves as an electrode constituting a part of the sensor element and thus the manufacturing process can be simplified

and the manufacturing cost can be reduced.

[0568]

One embodiment of the present invention can reduce the thickness or weight of the input/output device or the number of components of the input/output device as compared with a structure in which a display panel and a sensor element separately formed are attached to each other or a structure in which a sensor element is formed on the counter substrate side.

[0569]

5

10

15

20

25

30

In the input/output device of one embodiment of the present invention, both an FPC for supplying a signal for driving a pixel and an FPC for supplying a signal for driving a sensor element are on one substrate side. With this structure, the touch panel can be easily incorporated into an electronic device, and the number of components can be reduced. Note that the signal for driving a pixel and the signal for driving a sensor element may be supplied by one FPC.

[0570]

The structure of the input/output device of one embodiment of the present invention will be described below.

[0571]

[Cross-sectional structure example 1 of input/output device]

FIG. 49A is a cross-sectional view of two adjacent sub-pixels in an input/output device. The two sub-pixels illustrated in FIG. 49A are included in different pixels.

[0572]

As illustrated in FIG. 49A, the input/output device includes, over a substrate 211, a transistor 201, a transistor 203, a liquid crystal element 207a, and the like. Furthermore, insulating films such as an insulating film 212, an insulating film 213, an insulating film 215, an insulating film 217, and an insulating film 219 are provided over the substrate 211.

[0573]

For example, a subpixel exhibiting a red color, a subpixel exhibiting a green color, and a subpixel exhibiting a blue color form one pixel, and thus full-color display can be achieved in a display portion. Note that the color exhibited by subpixels is not limited to red, green, and blue. For example, a subpixel exhibiting white, yellow, magenta, cyan, or the like may be used for a

pixel.

[0574]

Note that any of the transistors described as examples in the above embodiments is applicable to the transistors 201 and 203 included in the sub-pixels.

35 [0575]

The liquid crystal element 207a is a liquid crystal element having a fringe field switching (FFS) mode. The liquid crystal element 207a includes a conductive film 251, a conductive film 252, and a liquid crystal 249. Orientation of the liquid crystal 249 can be controlled with an electric field generated between the conductive films 251 and 252. The conductive film 251 can serve as a pixel electrode. The conductive film 252 can serve as a common electrode.

[0576]

5

10

15

20

25

30

When a conductive material that transmits visible light is used for the conductive films 251 and 252, the input/output device can serve as a transmissive liquid crystal display device. When a conductive material that reflects visible light is used for the conductive film 251 and a conductive material that transmits visible light is used for the conductive film 252, the input/output device can serve as a reflective liquid crystal display device.

[0577]

For example, a material containing one of indium (In), zinc (Zn), and tin (Sn) is preferably used for the conductive material that transmits visible light. Specifically, indium oxide, indium tin oxide (ITO), indium zinc oxide, indium oxide containing tungsten oxide, indium oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide to which silicon oxide is added, zinc oxide, and zinc oxide to which gallium is added are given, for example. Note that a film including graphene can be used as well. The film including graphene can be formed, for example, by reducing a film containing graphene oxide.

[0578]

An oxide conductor film is preferably used as the conductive film 251. Furthermore, an oxide conductor film is preferably used as the conductive film 252. The oxide conductor film preferably contains one or more kinds of metal elements included in the oxide semiconductor film 223. For example, the conductor film 251 preferably contains indium, further preferably an In-M-Zn oxide (M is Al, Ga, Y, or Sn). Similarly, the conductive film 252 preferably contains indium, further preferably an In-M-Zn oxide.

[0579]

Note that at least one of the conductive films 251 and 252 may be formed using an oxide semiconductor. As described above, when two or more layers constituting a part of the input/output device are formed using oxide semiconductors containing the same metal element, the same manufacturing apparatus (e.g., deposition apparatus or processing apparatus) can be used in two or more steps and manufacturing cost can thus be reduced.

35 [0580]

For example, when a silicon nitride film containing hydrogen is used as an insulating film 253 and an oxide semiconductor is used for the conductive film 251, the conductivity of the oxide semiconductor can be increased owing to hydrogen supplied from the insulating film 253. [0581]

Examples of a conductive material that reflects visible light include aluminum, silver, and an alloy including any of these metal elements.

[0582]

The conductive film 251 functioning as a pixel electrode is electrically connected to a source or a drain of the transistor 203.

10 [0583]

5

15

20

The conductive film 252 has a comb-like top surface shape or a top surface shape provided with a slit (a top surface shape is also referred to as a planar surface shape). The insulating film 253 is provided between the conductive films 251 and 252. The conductive film 251 partly overlaps with the conductive film 252 with the insulating film 253 interposed therebetween. In a region where a coloring film 241 overlaps with the conductive film 251, there is a portion where the conductive film 252 is not provided over the conductive film 251.

A conductive film 255 is provided over the insulating film 253. The conductive film 255 is electrically connected to the conductive film 252 and can serve as an auxiliary wiring of the conductive film 252. With the auxiliary wiring electrically connected to the common electrode, voltage drop due to the resistance of the common electrode can be suppressed. In that case, a stacked-layer structure of a conductive film including a metal oxide and a conductive film including a metal is preferably used because these conductive films can be formed by a patterning technique using a half tone mask and thus the process can be simplified.

25 [0585]

The conductive film 255 can have a lower resistivity than the conductive film 252. For example, the conductive film 255 can be formed to have a single-layer structure or a stacked-layer structure using any of metal materials such as molybdenum, titanium, chromium, tantalum, tungsten, aluminum, copper, silver, neodymium, and scandium, and an alloy material containing any of these elements.

[0586]

30

To prevent the conductive film 255 from being perceived by the user of the input/output device, the conductive film 255 is preferably provided in a position overlapping with a light-shielding film 243 and the like.

35 [0587]

The coloring film 241 partly overlaps with the liquid crystal element 207a. The light-shielding film 243 partly overlaps with at least one of the transistors 201 and 203.

[0588]

The insulating film 245 preferably has a function of an overcoat preventing impurities contained in the coloring film 241, the light-shielding film 243, and the like from diffusing into the liquid crystal 249. The insulating film 245 is not necessarily provided.

[0589]

Note that an alignment film may be provided over and/or under the liquid crystal 249. The alignment film can control the alignment of the liquid crystal 249. In the structure in FIG. 49A, for example, an alignment film that covers the conductive film 252 may be provided, or an alignment film may be provided between the insulating film 245 and the liquid crystal 249. The insulating film 245 may function as both an alignment film and an overcoat.

The input/output device includes a spacer 247. The spacer 247 has a function of preventing the distance between the substrate 211 and a substrate 261 from being shorter than or equal to a certain distance.

[0591]

5

10

15

20

30

35

FIG. 49A illustrates an example in which the spacer 247 is provided over the insulating film 253 and the conductive film 252; however, one embodiment of the present invention is not limited thereto. The spacer 247 may be provided on the substrate 211 side or on the substrate 261 side. For example, the spacer 247 may be formed on the insulating film 245. Moreover, although FIG. 49A illustrates an example in which the spacer 247 is in contact with the insulating films 253 and 245, the spacer 247 is not necessarily in contact with a component provided on the substrate 211 side or on the substrate 261 side.

25 [0592]

A particulate spacer may be used as the spacer 247. Although a material such as silica can be used for the particulate spacer, an elastic material such as a resin or rubber is preferably used. In that case, the particulate spacer may be vertically crushed.

[0593]

The substrates 211 and 261 are attached to each other with an adhesive layer (not illustrated). A region surrounded by the substrate 211, the substrate 261, and the adhesive layer is filled with the liquid crystal 249.

[0594]

Note that when the input/output device serves as a transmissive liquid crystal display device, two polarizing plates are provided so that a display portion is sandwiched between the

two polarizing plates. Light from a backlight provided outside the polarizing plate enters through the polarizing plate. At this time, the alignment of the liquid crystal 249 is controlled with a voltage applied between the conductive films 251 and 252, whereby optical modulation of light can be controlled. In other words, the intensity of light emitted through the polarizing plate can be controlled. Light excluding light in a particular wavelength range is absorbed by the coloring film 241, so that red, blue, or green light is emitted.

[0595]

5

10

15

25

30

35

In addition to the polarizing plate, a circularly polarizing plate can be used, for example. As the circularly polarizing plate, for example, a stack including a linear polarizing plate and a quarter-wave retardation plate can be used. With the circularly polarizing plate, the viewing angle dependence of display of the input/output device can be reduced. [0596]

Note that the liquid crystal element 207a is an element using an FFS mode here; however, one embodiment of the present invention is not limited thereto, and a liquid crystal element using any of a variety of modes can be used. For example, a liquid crystal element using a vertical alignment (VA) mode, a twisted nematic (TN) mode, an in-plane switching (IPS) mode, an axially symmetric aligned micro-cell (ASM) mode, an optically compensated birefringence (OCB) mode, a ferroelectric liquid crystal (FLC) mode, an antiferroelectric liquid crystal (AFLC) mode, or the like can be used.

[0597] 20

> Furthermore, a normally black liquid crystal display device, for example, a transmissive liquid crystal display device using a vertical alignment (VA) mode, may be used as the input/output device. As a vertical alignment mode, a multi-domain vertical alignment (MVA) mode, a patterned vertical alignment (PVA) mode, or an ASV mode can be employed, for example.

[0598]

Note that the liquid crystal element is an element that controls transmission or non-transmission of light by utilizing optical modulation action of a liquid crystal. optical modulation action of a liquid crystal is controlled by an electric field applied to the liquid crystal (including a horizontal electric field, a vertical electric field, and an oblique electric field). As the liquid crystal used for the liquid crystal element, thermotropic liquid crystal, low-molecular liquid crystal, high-molecular liquid crystal, polymer dispersed liquid crystal (PDLC), ferroelectric liquid crystal, anti-ferroelectric liquid crystal, or the like can be used. Such a liquid crystal material exhibits a cholesteric phase, a smectic phase, a cubic phase, a chiral nematic phase, an isotropic phase, or the like depending on conditions.

[0599]

As the liquid crystal material, a positive liquid crystal or a negative liquid crystal may be used, and an appropriate liquid crystal material can be used depending on the mode and design to be used.

[0600]

5

10

15

25

35

Alternatively, in the case of employing a horizontal electric field mode, a liquid crystal exhibiting a blue phase for which an alignment film is unnecessary may be used. A blue phase is one of liquid crystal phases, which is generated just before a cholesteric phase changes into an isotropic phase while temperature of cholesteric liquid crystal is increased. Since the blue phase appears only in a narrow temperature range, a liquid crystal composition in which 5 weight% or more of a chiral material is mixed is used for the liquid crystal 249 in order to increase the temperature range. The liquid crystal composition that includes liquid crystal exhibiting a blue phase and a chiral material has a short response time and has optical isotropy. In addition, the liquid crystal composition that includes liquid crystal exhibiting a blue phase and a chiral material does not need alignment treatment and has small viewing angle dependence. In addition, since an alignment film does not need to be provided and rubbing treatment is unnecessary, electrostatic discharge damage caused by the rubbing treatment can be prevented and defects or damage of the liquid crystal display device in the manufacturing process can be reduced.

20 [0601]

A substrate with which a sensing target, such as a finger or a stylus, is to be in contact may be provided above the substrate 261. In that case, a polarizing plate or a circularly polarizing plate is preferably provided between the substrate 261 and the above substrate. In that case, a protective layer (such as a ceramic coat) is preferably provided over the above substrate. The protective layer can be formed using an inorganic insulating material such as silicon oxide, aluminum oxide, yttrium oxide, or yttria-stabilized zirconia (YSZ). Alternatively, tempered glass may be used for the substrate. The tempered glass that can be used here is one that has been subjected to physical or chemical treatment by an ion exchange method, a thermal tempering method, or the like and has a surface to which compressive stress has been applied.

30 [0602]

In the input/output device in FIG. 49A, capacitance formed between the conductive film 252 in the left subpixel and the conductive film 252 in the right subpixel is utilized to sense proximity, touch, or the like of a sensing target. That is, in the input/output device of one embodiment of the present invention, the conductive film 252 serves as a common electrode of the liquid crystal element and an electrode of the sensor element.

[0603]

As described above, an electrode constituting a part of the liquid crystal element also serves as an electrode constituting a part of the sensor element in the input/output device of one embodiment of the present invention; thus, the manufacturing process can be simplified and the manufacturing cost can be reduced. In addition, the thickness and weight of the input/output device can be reduced.

[0604]

5

10

15

20

25

30

35

The conductive film 252 is electrically connected to the conductive film 255 functioning as an auxiliary wiring. With the conductive film 255, the resistance of the electrode of the sensor element can be lowered. With the lowered resistance of the electrode of the sensor element, the time constant of the electrode of the sensor element can be small. The smaller the time constant of the electrode of the sensor element is, the higher the detection sensitivity and the detection accuracy are.

[0605]

When the capacitance between the electrode of the sensor element and a signal line is too large, the time constant of the electrode of the sensor element becomes too large in some cases. Thus, an insulating film having a planarizing function is preferably provided between the electrode of the sensor element and the transistors to reduce the capacitance between the electrode of the sensor element and the signal line. For example, in FIG. 49A, as the insulating film having a planarizing function, the insulating film 219 is provided. With the insulating film 219, the capacitance between the conductive film 252 and the signal line can be small. Accordingly, the time constant of the electrode of the sensor element can be small. As described above, the smaller the time constant of the electrode of the sensor element is, the higher the detection sensitivity and the detection accuracy are.

[0606]

For example, the time constant of the electrode of the sensor element is greater than 0 seconds and less than or equal to 1×10^{-4} seconds, preferably greater than 0 seconds and less than or equal to 5×10^{-5} seconds, further preferably greater than 0 seconds and less than or equal to 5×10^{-6} seconds, further preferably greater than 0 seconds and less than or equal to 5×10^{-7} seconds, and further preferably greater than 0 seconds and less than or equal to 5×10^{-7} seconds. In particular, when the time constant is less than or equal to 5×10^{-6} seconds, high detection sensitivity can be achieved while the influence of noise is reduced.

[0607]

[Cross-sectional structure example 2 of input/output device]

FIG. 49B is a cross-sectional view of two adjacent pixels that are different from those in

Two subpixels illustrated in FIG. 49B are included in respective pixels. FIG. 49A. [0608]

Structure example 2 illustrated in FIG. 49B differs from Structure example 1 illustrated in FIG. 49A in the stacking order of the conductive film 251, the conductive film 252, the insulating film 253, and the conductive film 255. Note that in Structure example 2, the above description can be referred to for portions similar to those in Structure example 1.

[0609]

5

10

15

20

25

Specifically, in Structure example 2, the conductive film 255 is over the insulating film 219, the conductive film 252 is over the conductive film 255, the insulating film 253 is over the conductive film 252, and the conductive film 251 is over the insulating film 253.

[0610]

As illustrated in a liquid crystal element 207b of FIG. 49B, the conductive film 251 which is provided on the upper side and whose top surface shape is a comb-like shape or has a slit may serve as a pixel electrode, and the conductive film 252 provided on the lower side may serve as a common electrode. The conductive film 251 is electrically connected to the source or the drain of the transistor 203 also in that case.

[0611]

In FIG. 49B, capacitance formed between the conductive film 252 in the left subpixel and the conductive film 252 in the right subpixel is utilized to sense proximity, touch, or the like of a sensing target. That is, in the input/output device of one embodiment of the present invention, the conductive film 252 serves as the common electrode of the liquid crystal element and the electrode of the sensor element.

[0612]

Note that in Structure example 1 (FIG. 49A), the conductive film 252 serving as the electrode of the sensor element and the common electrode is closer to the display surface side (the side near a sensing target) than the conductive film 251 serving as the pixel electrode is. Thus, in some cases, the detection sensitivity of Structure example 1 is higher than that of Structure example 2 in which the conductive film 251 is closer to the display surface side than the conductive film 252 is.

30 [0613]

> The structures described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments and examples.

[0614]

(Embodiment 10)

35 In this embodiment, a display module and electronic devices, each of which includes a semiconductor device of one embodiment of the present invention, will be described with

reference to FIG. 50, FIGS. 51A to 51G, and FIGS. 52A and 52B.

[0615]

5

10

15

25

30

35

<10-1. Display module>

In a display module 8000 illustrated in FIG. 50, a touch panel 8004 connected to an FPC 8003, a display panel 8006 connected to an FPC 8005, a backlight 8007, a frame 8009, a printed board 8010, and a battery 8011 are provided between an upper cover 8001 and a lower cover 8002.

[0616]

The semiconductor device of one embodiment of the present invention can be used for the display panel 8006, for example.

[0617]

The shapes and sizes of the upper cover 8001 and the lower cover 8002 can be changed as appropriate in accordance with the sizes of the touch panel 8004 and the display panel 8006.

[0618]

The touch panel 8004 can be a resistive touch panel or a capacitive touch panel and overlap with the display panel 8006. Alternatively, a counter substrate (sealing substrate) of the display panel 8006 can have a touch panel function. Alternatively, a photosensor may be provided in each pixel of the display panel 8006 to form an optical touch panel.

20 [0619]

The backlight 8007 includes a light source 8008. One embodiment of the present invention is not limited to the structure in FIG. 50, in which the light source 8008 is provided over the backlight 8007. For example, a structure in which the light source 8008 is provided at an end portion of the backlight 8007 and a light diffusion plate is further provided may be employed. Note that the backlight 8007 need not be provided in the case where a self-luminous light-emitting element such as an organic EL element is used or in the case where a reflective panel or the like is employed.

[0620]

The frame 8009 protects the display panel 8006 and functions as an electromagnetic shield for blocking electromagnetic waves generated by the operation of the printed board 8010. The frame 8009 may also function as a radiator plate.

[0621]

The printed board 8010 includes a power supply circuit and a signal processing circuit for outputting a video signal and a clock signal. As a power source for supplying power to the power supply circuit, an external commercial power source or the separate battery 8011 may be

used. The battery 8011 can be omitted in the case where a commercial power source is used. [0622]

The display module 8000 may be additionally provided with a member such as a polarizing plate, a retardation plate, or a prism sheet.

5 [0623]

10

15

20

25

35

<10-2. Electronic device>

FIGS. 51A to 51G illustrate electronic devices. These electronic devices can include a housing 9000, a display portion 9001, a speaker 9003, an operation key 9005 (including a power switch or an operation switch), a connection terminal 9006, a sensor 9007 (a sensor having a function of measuring force, displacement, position, speed, acceleration, angular velocity, rotational frequency, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage, electric power, radiation, flow rate, humidity, gradient, oscillation, odor, or infrared ray), a microphone 9008, and the like.

[0624]

The electronic devices in FIGS. 51A to 51G can have a variety of functions such as a function of displaying a variety of information (e.g., a still image, a moving image, and a text image) on the display portion, a touch panel function, a function of displaying a calendar, date, time, and the like, a function of controlling processing with a variety of software (programs), a wireless communication function, a function of being connected to a variety of computer networks with a wireless communication function, a function of transmitting and receiving a variety of data with a wireless communication function, and a function of reading out a program or data stored in a recording medium and displaying it on the display portion. Note that functions of the electronic devices in FIGS. 51A to 51G are not limited thereto, and the electronic devices can have a variety of functions. Although not illustrated in FIGS. 51A to 51G, the electronic devices may each have a plurality of display portions. Furthermore, the electronic devices may each be provided with a camera and the like to have a function of taking a still image, a function of taking a moving image, a function of storing the taken image in a memory medium (an external memory medium or a memory medium incorporated in the camera), a function of displaying the taken image on the display portion, or the like.

30 [0625]

The electronic devices in FIGS. 51A to 51G will be described in detail below. [0626]

FIG. 51A is a perspective view illustrating a television device 9100. The television device 9100 can include the display portion 9001 having a large screen size of, for example, 50 inches or more, or 100 inches or more.

[0627]

5

10

15

20

30

35

FIG. 51B is a perspective view of a portable information terminal 9101. The portable information terminal 9101 functions as, for example, one or more of a telephone set, a notebook, and an information browsing system. Specifically, the portable information terminal 9101 can be used as a smartphone. Note that the portable information terminal 9101 may include a speaker, a connection terminal, a sensor, or the like. The portable information terminal 9101 can display text and image information on its plurality of surfaces. For example, three operation buttons 9050 (also referred to as operation icons or simply as icons) can be displayed on one surface of the display portion 9001. Furthermore, information 9051 indicated by dashed rectangles can be displayed on another surface of the display portion 9001. Examples of the information 9051 include display indicating reception of an e-mail, a social networking service (SNS) message, or a telephone call, the title and sender of an e-mail or an SNS message, date, time, remaining battery, and reception strength of an antenna. Alternatively, the operation buttons 9050 or the like may be displayed in place of the information 9051.

[0628]

FIG. 51C is a perspective view of a portable information terminal 9102. The portable information terminal 9102 has a function of displaying information on three or more surfaces of the display portion 9001. Here, information 9052, information 9053, and information 9054 are displayed on different surfaces. For example, a user of the portable information terminal 9102 can see the display (here, the information 9053) on the portable information terminal 9102 put in a breast pocket of his/her clothes. Specifically, a caller's phone number, name, or the like of an incoming call is displayed in a position that can be seen from above the portable information terminal 9102. The user can see the display without taking out the portable information terminal 9102 from the pocket and decide whether to answer the call.

25 [0629]

FIG. 51D is a perspective view of a watch-type portable information terminal 9200. The portable information terminal 9200 is capable of executing a variety of applications such as mobile phone calls, e-mailing, reading and editing texts, music reproduction, Internet communication, and a computer game. The display surface of the display portion 9001 is curved, and display can be performed on the curved display surface. The portable information terminal 9200 can employ near field communication conformable to a communication standard. For example, hands-free calling can be achieved by mutual communication between the portable information terminal 9200 and a headset capable of wireless communication. Moreover, the portable information terminal 9200 includes the connection terminal 9006 and can perform direct data communication with another information terminal via a connector. Charging through the

connection terminal 9006 is also possible. Note that the charging operation may be performed by wireless power feeding without using the connection terminal 9006.

[0630]

FIGS. 51E, 51F, and 51G are perspective views of a foldable portable information terminal 9201 that is opened, that is shifted from the opened state to the folded state or from the folded state to the opened state, and that is folded, respectively. The portable information terminal 9201 is highly portable when folded. When the portable information terminal 9201 is opened, a seamless large display region is highly browsable. The display portion 9001 of the portable information terminal 9201 is supported by three housings 9000 joined by hinges 9055. By being folded at the hinges 9055 between the two adjacent housings 9000, the portable information terminal 9201 can be reversibly changed in shape from the opened state to the folded state. For example, the portable information terminal 9201 can be bent with a radius of curvature greater than or equal to 1 mm and less than or equal to 150 mm.

FIGS. 52A and 52B are perspective views of a display device including a plurality of display panels. Note that the plurality of display panels are wound in the perspective view in FIG. 52A and are unwound in the perspective view in FIG. 52B.

[0632]

A display device 9500 illustrated in FIGS. 52A and 52B includes a plurality of display panels 9501, a hinge 9511, and a bearing 9512. The plurality of display panels 9501 each include a display region 9502 and a light-transmitting region 9503.

Each of the plurality of display panels 9501 is flexible. Two adjacent display panels 9501 are provided so as to partly overlap with each other. For example, the light-transmitting regions 9503 of the two adjacent display panels 9501 can overlap with each other. A display device having a large screen can be obtained with the plurality of display panels 9501. The display device is highly versatile because the display panels 9501 can be wound depending on its use.

[0634]

[0633]

5

10

15

20

25

30

35

Although the display regions 9502 of the adjacent display panels 9501 are separated from each other in FIGS. 52A and 52B, without limitation to this structure, the display regions 9502 of the adjacent display panels 9501 may overlap with each other without any space so that a continuous display region 9502 is obtained, for example.

[0635]

Electronic devices described in this embodiment are characterized by having a display

portion for displaying some sort of information. Note that the semiconductor device of one embodiment of the present invention can also be used for an electronic device that does not have a display portion.

[0636]

5

10

15

The structures described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments and examples.

[0637]

(Embodiment 11)

In this embodiment, the structure of a data processor including a semiconductor device of one embodiment of the present invention will be described with reference to FIGS. 53A and 53B.

[0638]

FIG. 53A is a block diagram illustrating the structure of a data processor 600 including a semiconductor device of one embodiment of the present invention. FIG. 53B is a schematic diagram illustrating the data processor 600 in operation.

[0639]

The following describes components of the data processor 600. In some cases, the components cannot be clearly distinguished from each other and one component also serves as another component or includes part of another component.

20 [0640]

<11. Structure example of data processor>

The data processor 600 includes an arithmetic device 610 and an input/output device 620.

[0641]

25 [Arithmetic unit]

> The arithmetic device 610 includes an arithmetic portion 611, a memory portion 612, a transmission path 614, and an input/output interface 615.

[0642]

[Arithmetic portion]

The arithmetic portion 611 has a function of executing a program.

[0643]

30

35

[Memory portion]

The memory portion 612 has a function of storing a program executed by the arithmetic portion 611, initial information, setting information, an image, or the like. Specifically, a hard disk, a flash memory, a memory including a transistor formed using an oxide semiconductor, or the like can be used as the memory portion 612.

[0644]

[Program]

A program is executed by the arithmetic portion 611 through three steps described below with reference to FIG. 53B, for example.

[0645]

5

In a first step, positional data P1 is acquired.

[0646]

In a second step, a first region 681 is determined on the basis of the positional data P1.

PCT/IB2016/054765

10 [0647]

In a third step, an image (image data V1) with higher luminance than an image displayed on a region other than the first region 681 is produced as an image displayed on the first region 681.

[0648]

15

25

30

For example, the arithmetic device 610 determines the first region 681 on the basis of the positional data P1. The first region 681 can have, specifically, an elliptical shape, a circular shape, a polygonal shape, a rectangular shape, or the like. A region within a 60-cm radius, preferably within a 5–30-cm radius, from the positional data P1 is determined as the first region 681, for example.

20 [0649]

To produce an image with higher luminance than an image displayed on a region other than the first region 681 as an image displayed on the first region 681, the luminance of the image displayed on the first region 681 is increased to 110 % or more, preferably 120 % or more and 200 % or less, of the luminance of the image displayed on the region other than the first region 681. Alternatively, the average luminance of the image displayed on the first region 681 is increased to 110 % or more, preferably 120 % or more and 200 % or less, of the average luminance of the image displayed on the region other than the first region 681.

As a result of the program, the data processor 600 can generate the image data V1 with higher luminance than an image displayed on a region other than the first region 681 as an image displayed on the first region 681 on the basis of the positional data P1. Consequently, the data

processor 600 can have high convenience and can provide operators with comfortable operation.

[0651]

[0650]

[Input/output interface]

The input/output interface 615 includes a terminal or a wiring. The input/output

interface 615 has a function of supplying data and a function of receiving data. The input/output interface 615 can be electrically connected to the transmission path 614 and/or the input/output device 620, for example.

[0652]

5 [Transmission path]

The transmission path 614 includes a wiring. The transmission path 614 has a function of supplying data and a function of receiving data. The transmission path 614 can be electrically connected to the arithmetic portion 611, the memory portion 612, or the input/output interface 615, for example.

10 [0653]

[Input/output device]

The input/output device 620 includes a display portion 630, an input portion 640, a sensor portion 650, and a communication portion 690.

[0654]

15 [Display portion]

The display portion 630 includes a display panel. The display panel includes a pixel having a structure including a reflective display element and a transmissive light-emitting element. The luminance of a displayed image can be increased by increasing the reflectance of the reflective display element or the luminance of the light-emitting element with the use of the image data.

[0655]

20

25

30

35

[Input portion]

The input portion 640 includes an input panel. The input panel includes, for example, a proximity sensor. The proximity sensor has a function of sensing a pointer 682. Note that a finger, a stylus pen, or the like can be used as the pointer 682. For the stylus pen, a light-emitting element such as a light-emitting diode, a metal piece, a coil, or the like can be used.

[0656]

As the proximity sensor, a capacitive proximity sensor, an electromagnetic inductive proximity sensor, an infrared proximity sensor, a proximity sensor including a photoelectric conversion element, or the like can be used.

[0657]

The capacitive proximity sensor includes a conductive film and has a function of sensing the proximity to the conductive film. To determine positional data, for example, a plurality of conductive films are provided in different regions of the input panel and a region

where a finger or the like used as the pointer 682 approaches can be determined in accordance with a change in parasitic capacitance of the conductive films.

[0658]

The electromagnetic inductive proximity sensor includes a function of sensing the proximity of a metal piece, a coil, or the like to a sensor circuit. To determine positional data, for example, a plurality of oscillation circuits are provided in different regions of the input panel and a region where a metal piece, a coil, or the like included in a stylus pen or the like used as the pointer 682 approaches can be determined in accordance with a change in the circuit constant of the oscillation circuits.

10 [0659]

5

15

20

The proximity sensor including a photoelectric conversion element has a function of sensing the proximity of a light-emitting element. To determine positional data, for example, a plurality of photoelectric conversion elements are provided in different regions of the input panel and a region where a light-emitting element included in a stylus pen or the like used as the pointer 682 approaches can be determined in accordance with a change in the electromotive force of the photoelectric conversion elements.

[0660]

[Sensor portion]

As the sensor portion 650, an illuminance sensor that senses the environmental brightness, a human motion sensor, or the like can be used.

[0661]

[Communication portion]

The communication portion 690 has a function of supplying data to a network and acquiring data from the network.

25 [0662]

The data processor 600 described above can be used for education, or can be used for a digital signage or a smart television system, for example.

[0663]

This embodiment can be combined with any of the other embodiments and examples in this specification as appropriate.

[Example 1]

[0664]

In this example, Sample A1, Sample A2, Sample B1, Sample B2, Sample C1, and Sample C2 were fabricated and TDS analysis was performed on each sample.

35 [0665]

First, the structures of the samples will be described with reference to FIGS. 54A to 54C. FIGS. 54A to 54C are cross-sectional views illustrating the structures of samples in Examples. [0666]

5 [Sample A1]

Sample A1 includes a substrate 1102, an oxide semiconductor film 1108 over the substrate 1102, an insulating film 1110 over the oxide semiconductor film 1108, and an oxide semiconductor film 1112 over the insulating film 1110 (see FIG. 54A).

[0667]

10 [Sample A2]

Sample A2 includes the substrate 1102, the oxide semiconductor film 1108 over the substrate 1102, and the insulating film 1110 over the oxide semiconductor film 1108 (see FIG. 54C).

[0668]

15 [Sample B1]

Sample B1 includes the substrate 1102, the oxide semiconductor film 1108 over the substrate 1102, the insulating film 1110 over the oxide semiconductor film 1108, the oxide semiconductor film 1112 over the insulating film 1110, and an insulating film 1116 over the oxide semiconductor film 1112 (see FIG. 54B).

20 [0669]

[Sample B2]

Sample B2 includes the substrate 1102, the oxide semiconductor film 1108 over the substrate 1102, and the insulating film 1110 over the oxide semiconductor film 1108 (see FIG. 54C).

25 [0670]

[Sample C1]

Sample C1 includes the substrate 1102, the oxide semiconductor film 1108 over the substrate 1102, the insulating film 1110 over the oxide semiconductor film 1108, the oxide semiconductor film 1112 over the insulating film 1110, and the insulating film 1116 over the oxide semiconductor film 1112 (see FIG. 54B).

[0671]

30

[Sample C2]

Sample C2 includes the substrate 1102, the oxide semiconductor film 1108 over the substrate 1102, and the insulating film 1110 over the oxide semiconductor film 1108 (see FIG.

35 54C).

[0672]

<1-2. Methods for fabricating samples>

Next, methods for fabricating the samples will be described.

[0673]

[0674]

10

15

20

25

30

35

5 [Method for fabricating Sample A1]

First, the oxide semiconductor film 1108 was formed over the substrate 1102.

A glass substrate was used as the substrate 1102, and a 40-nm-thick In-Ga-Zn oxide was formed as the oxide semiconductor film 1108 with a sputtering apparatus. The In-Ga-Zn oxide was formed under the following conditions: the substrate temperature was 170 °C, an argon gas at a flow rate of 35 sccm and an oxygen gas at a flow rate of 15 sccm were introduced into a chamber, the pressure was 0.2 Pa, and AC power of 1500 W was supplied to a metal oxide target (In:Ga:Zn = 4:2:4.1 [atomic ratio]) placed in the sputtering apparatus.

[0675]

Next, the insulating film 1110 was formed over the oxide semiconductor film 1108. [0676]

For the insulating film 1110, a 30-nm-thick first silicon oxynitride film, a 50-nm-thick second silicon oxynitride film, and a 20-nm-thick third silicon oxynitride film were formed with a plasma CVD apparatus. The first silicon oxynitride film was formed under the following conditions: the substrate temperature was 350 °C, a silane gas at a flow rate of 20 sccm and a dinitrogen monoxide gas at a flow rate of 3000 sccm were introduced into a chamber, the pressure was 200 Pa, and RF power of 100 W was supplied between parallel-plate electrodes provided in the plasma CVD apparatus. The second silicon oxynitride film was formed under the following conditions: the substrate temperature was 220 °C, a silane gas at a flow rate of 160 sccm and a dinitrogen monoxide gas at a flow rate of 4000 sccm were introduced into the chamber, the pressure was 200 Pa, and RF power of 1500 W was supplied between the parallel-plate electrodes provided in the plasma CVD apparatus. The third silicon oxynitride film was formed under the same conditions as the first silicon oxynitride film.

[0677]

Then, the oxide semiconductor film 1112 was formed over the insulating film 1110. [0678]

For the oxide semiconductor film 1112, a 10-nm-thick first In-Ga-Zn oxide and a 90-nm-thick second In-Ga-Zn oxide were formed with a sputtering apparatus. The first In-Ga-Zn oxide was formed under the following conditions: the substrate temperature was 170 °C, an oxygen gas at a flow rate of 200 sccm was introduced into a chamber, the pressure was

0.6 Pa, and AC power of 1500 W was supplied to a metal oxide target (In:Ga:Zn = 4:2:4.1 [atomic ratio]) placed in the sputtering apparatus. The second In-Ga-Zn oxide was formed under the following conditions: the substrate temperature was 170 °C, an argon gas at a flow rate of 180 sccm and an oxygen gas at a flow rate of 20 sccm were introduced into the chamber, the pressure was 0.6 Pa, and AC power of 1500 W was supplied to the metal oxide target (In:Ga:Zn = 4:2:4.1 [atomic ratio]) placed in the sputtering apparatus.

[0679]

5

Through the above steps, Sample A1 of this example was fabricated.

[0680]

10 [Method for fabricating Sample A2]

To fabricate Sample A2, first, the oxide semiconductor film 1108, the insulating film 1110, and the oxide semiconductor film 1112 were formed over the substrate 1102 under the same conditions as in the case of Sample A1.

[0681]

15

Next, the oxide semiconductor film 1112 was removed so as to expose a surface of the insulating film 1110. Note that a wet etching method was employed to remove the oxide semiconductor film 1112.

[0682]

Through the above steps, Sample A2 of this example was fabricated.

20 [0683]

[Method for fabricating Sample B1]

To fabricate Sample B1, first, the oxide semiconductor film 1108, the insulating film 1110, and the oxide semiconductor film 1112 were formed over the substrate 1102 under the same conditions as in the case of Sample A1.

25 [0684]

30

35

Next, the insulating film 1116 was formed over the oxide semiconductor film 1112. [0685]

As the insulating film 1116, a 100-nm-thick silicon nitride film was formed with a plasma CVD apparatus. The silicon nitride film was formed under the following conditions: the substrate temperature was 350 °C; a silane gas at a flow rate of 50 sccm, a nitrogen gas at a flow rate of 5000 sccm, and an ammonia gas at a flow rate of 100 sccm were introduced into a chamber; the pressure was 100 Pa; and RF power of 1000 W was supplied between parallel-plate electrodes provided in the plasma CVD apparatus.

[0686]

Through the above steps, Sample B1 of this example was fabricated.

[0687]

[Method for fabricating Sample B2]

To fabricate Sample B2, first, the oxide semiconductor film 1108, the insulating film 1110, the oxide semiconductor film 1112, and the insulating film 1116 were formed over the substrate 1102 under the same conditions as in the case of Sample B1.

[0688]

5

15

20

25

30

35

Next, the insulating film 1116 and the oxide semiconductor film 1112 were removed so as to expose a surface of the insulating film 1110. Note that a wet etching method was employed to remove the insulating film 1116 and the oxide semiconductor film 1112.

10 [0689]

Through the above steps, Sample B2 of this example was fabricated.

[0690]

[Method for fabricating Sample C1]

To fabricate Sample C1, first, the oxide semiconductor film 1108, the insulating film 1110, and the oxide semiconductor film 1112 were formed over the substrate 1102 under the same conditions as in the case of Sample A1.

[0691]

Next, the insulating film 1116 was formed over the oxide semiconductor film 1112. [0692]

As the insulating film 1116, a 100-nm-thick silicon nitride film was formed with a plasma CVD apparatus. The silicon nitride film was formed under the following conditions: the substrate temperature was 220 °C; a silane gas at a flow rate of 50 sccm, a nitrogen gas at a flow rate of 5000 sccm, and an ammonia gas at a flow rate of 100 sccm were introduced into a chamber; the pressure was 100 Pa; and RF power of 1000 W was supplied between parallel-plate electrodes provided in the plasma CVD apparatus.

[0693]

Through the above steps, Sample C1 of this example was fabricated.

[0694]

[Method for fabricating Sample C2]

To fabricate Sample C2, first, the oxide semiconductor film 1108, the insulating film 1110, the oxide semiconductor film 1112, and the insulating film 1116 were formed over the substrate 1102 under the same conditions as in the case of Sample C1.

[0695]

Next, the insulating film 1116 and the oxide semiconductor film 1112 were removed so as to expose a surface of the insulating film 1110. Note that a wet etching method was

employed to remove the insulating film 1116 and the oxide semiconductor film 1112.

[0696]

Through the above steps, Sample C2 of this example was fabricated.

[0697]

5 <1-3. TDS measurement results of samples>

FIGS. 55A to 55C show the TDS measurement results of Samples A1, A2, B1, B2, C1, and C2. Note that FIG. 55A shows the results of Samples A1 and A2, FIG. 55B shows the results of Samples B1 and B2, and FIG. 55C shows the results of Samples C1 and C2. The temperature range for the TDS analysis was from 80 °C to 630 °C.

10 [0698]

15

20

25

Note that FIGS. 55A to 55C show the TDS measurement results of a released amount of gas with a mass-to-charge ratio m/z of 32, which corresponds to an oxygen molecule.

[0699]

The results in FIGS. 55A to 55C indicate that a small number of oxygen molecules is released from Samples A1, B1, and C1 because the oxide semiconductor film 1112 and/or the insulating film 1116 are/is formed over the insulating film 1110. The results also indicate that excess oxygen contained in the insulating film 1110 of Samples A2, B2, and C2 is released to the outside because the insulating film 1110 is exposed.

[0700]

The comparison between the results of Sample B2 and Sample C2 in FIGS. 55B and 55C indicates that Sample C2 releases a greater number of oxygen molecules. The difference between Sample B2 and Sample C2 is only the substrate temperature during the formation of the insulating film 1116. The substrate temperature during the formation of the insulating film 1116 in Sample B2 was 350 °C while the substrate temperature during the formation of the insulating film 1116 in Sample C2 was 220 °C.

[0701]

The amounts of excess oxygen released from Samples A2, B2, and C2 shown in FIGS. 55A to 55C were quantified. The quantification results are shown in FIG. 56. FIG. 56 shows the amounts of oxygen released from Samples A2, B2, and C2.

30 [0702]

According to the results in FIG. 56, the number of oxygen molecules (m/z = 32) released from Sample A2 is 1.38×10^{15} [molec./cm²], the number of oxygen molecules (m/z = 32) released from Sample B2 is 8.00×10^{14} [molec./cm²], and the number of oxygen molecules (m/z = 32) released from Sample C2 is 1.39×10^{15} [molec./cm²].

The above results indicate that the insulating film 1110 formed under the insulating film 1116 contains a large amount of excess oxygen when the substrate temperature during the formation of the insulating film 1116 is low, specifically, lower than 300 °C. In other words, the results suggest that excess oxygen contained in the insulating film 1110 can be prevented from being released to the outside when the substrate temperature during the formation of the insulating film 1116 is low.

[0704]

5

15

20

25

35

The structure described in this example can be combined as appropriate with any of the structures described in another example and the above embodiments.

10 [Example 2]

[0705]

In this example, a transistor corresponding to the transistor 100A illustrated in FIGS. 4A to 4C was fabricated, and the drain current—gate voltage characteristics (I_d – V_g characteristics) of the transistor were evaluated and reliability tests were performed on the transistor. In this example, Sample D1 described below was fabricated for the evaluation. Note that Sample D1 included a transistor of one embodiment of the present invention. Sample D1 included 20 transistors each of which had a channel length L of 3 μ m and a channel width W of 3 μ m.

Sample D1 fabricated in this example will be described below. Note that the reference numerals used for the transistor 100A in FIGS. 4A to 4C are used in the following description.

[0707]

<2-1. Method for fabricating Sample D1>

First, the conductive film 106 was formed over the substrate 102. A glass substrate was used as the substrate 102. For the conductive film 106, a 10-nm-thick tantalum nitride film and a 100-nm-thick copper film were formed with a sputtering apparatus.

[0708]

Next, the insulating film 104 was formed over the substrate 102 and the conductive film 106. For the insulating film 104, a 400-nm-thick silicon nitride film and a 50-nm-thick silicon oxynitride film were formed with a plasma CVD apparatus.

30 [0709]

The insulating film 104 was formed as follows. First, a 50-nm-thick silicon nitride film was formed under the following conditions: the substrate temperature was 350 °C; a silane gas at a flow rate of 200 sccm, a nitrogen gas at a flow rate of 2000 sccm, and an ammonia gas at a flow rate of 100 sccm were introduced into a chamber; the pressure was 100 Pa; and RF power of 2000 W was supplied between parallel-plate electrodes provided in the plasma CVD apparatus.

Then, the flow rate of the ammonia gas was changed to 2000 sccm to form a 300-nm-thick silicon nitride film. Finally, the flow rate of the ammonia gas was changed to 100 sccm to form a 50-nm-thick silicon nitride film. After that, the 50-nm-thick silicon oxynitride film was formed under the following conditions: the substrate temperature was 350 °C, a silane gas at a flow rate of 20 sccm and a dinitrogen monoxide gas at a flow rate of 3000 sccm were introduced into the chamber, the pressure was 40 Pa, and RF power of 100 W was supplied between the parallel-plate electrodes provided in the plasma CVD apparatus.

[0710]

5

10

15

25

30

35

Then, the oxide semiconductor film 107 was formed over the insulating film 104. The oxide semiconductor film 107 was formed with a sputtering apparatus.

[0711]

As the oxide semiconductor film 107, a 40-nm-thick IGZO film was formed under the following conditions: the substrate temperature was 170 °C, an argon gas at a flow rate of 35 sccm and an oxygen gas at a flow rate of 15 sccm were introduced into a chamber, the pressure was 0.2 Pa, and AC power of 1500 W was supplied to the metal oxide target (In:Ga:Zn = 4:2:4.1 [atomic ratio]) placed in the sputtering apparatus.

[0712]

After that, the insulating film 110 was formed over the insulating film 104 and the oxide semiconductor film 107.

20 [0713]

For the insulating film 1110, a 30-nm-thick first silicon oxynitride film, a 100-nm-thick second silicon oxynitride film, and a 20-nm-thick third silicon oxynitride film were formed with a plasma CVD apparatus. The first silicon oxynitride film was formed under the following conditions: the substrate temperature was 350 °C, a silane gas at a flow rate of 20 sccm and a dinitrogen monoxide gas at a flow rate of 3000 sccm were introduced into a chamber, the pressure was 200 Pa, and RF power of 100 W was supplied between parallel-plate electrodes provided in the plasma CVD apparatus. The second silicon oxynitride film was formed under the following conditions: the substrate temperature was 220 °C, a silane gas at a flow rate of 160 sccm and a dinitrogen monoxide gas at a flow rate of 4000 sccm were introduced into the chamber, the pressure was 200 Pa, and RF power of 1500 W was supplied between the parallel-plate electrodes provided in the plasma CVD apparatus. The third silicon oxynitride film was formed under the same conditions as the first silicon oxynitride film.

[0714]

Next, the insulating films 110 and 104 in a desired region were removed to form the opening 143 that reaches the conductive film 106.

[0715]

5

10

15

25

35

Subsequently, the conductive film 112 was formed over the insulating film 110 so as to cover the opening 143. For the conductive film 112, a 10-nm-thick first In-Ga-Zn oxide and a 90-nm-thick second In-Ga-Zn oxide were formed with a sputtering apparatus. The first In-Ga-Zn oxide was formed under the following conditions: the substrate temperature was 170 °C, an oxygen gas at a flow rate of 200 sccm was introduced into a chamber, the pressure was 0.6 Pa, and AC power of 2500 W was supplied to a metal oxide target (In:Ga:Zn = 5:1:7 [atomic ratio]) placed in the sputtering apparatus. The second In-Ga-Zn oxide was formed under the following conditions: the substrate temperature was 170 °C, an argon gas at a flow rate of 180 sccm and an oxygen gas at a flow rate of 20 sccm were introduced into the chamber, the pressure was 0.6 Pa, and AC power of 2500 W was supplied to the metal oxide target (In:Ga:Zn = 5:1:7 [atomic ratio]) placed in the sputtering apparatus.

After that, the insulating film 110 and the conductive film 112 were processed into island shapes with a dry etching apparatus and a surface of the oxide semiconductor film 108 was partly exposed.

[0717]

[0716]

Then, the insulating film 116 was formed over the insulating film 104, the oxide semiconductor film 108, and the conductive film 112.

20 [0718]

The insulating film 116 was formed through two steps: plasma treatment and deposition treatment. The plasma treatment was performed under the following conditions: the substrate temperature was 220 °C, an argon gas at a flow rate of 100 sccm was introduced into a chamber, the pressure was 40 Pa, and RF power of 1000 W was supplied between parallel-plate electrodes provided in a plasma CVD apparatus. Subsequently, a silicon nitride film was formed under the following conditions: the substrate temperature was 220 °C; a silane gas at a flow rate of 50 sccm, a nitrogen gas at a flow rate of 5000 sccm, and an ammonia gas at a flow rate of 100 sccm were introduced into the chamber; the pressure was 100 Pa; and RF power of 1000 W was supplied between the parallel-plate electrodes provided in the plasma CVD apparatus.

30 [0719]

Next, the insulating film 118 was formed over the insulating film 116. [0720]

The insulating film 118 was formed under the following conditions: the substrate temperature was 220 °C, a silane gas at a flow rate of 160 sccm and a dinitrogen monoxide gas at a flow rate of 4000 sccm were introduced into the chamber, the pressure was 200 Pa, and RF

power of 1500 W was supplied between the parallel-plate electrodes provided in the plasma CVD apparatus.

[0721]

Next, the insulating films 116 and 118 in desired regions were removed to form the openings 141a and 141b that reach the oxide semiconductor film 108.

[0722]

5

10

15

20

25

35

The openings 141a and 141b were formed by a dry etching method.

[0723]

Then, a conductive film was formed over the insulating film 118 so as to cover the openings 141a and 141b and the conductive film was processed into an island shape, whereby the conductive films 120a and 120b functioning as the source and drain electrodes were formed.

[0724]

For the conductive films 120a and 120b, a 50-nm-thick Cu-Mn alloy film and a 100-nm-thick copper film were formed with a sputtering apparatus. Note that a wet etching apparatus was used for processing into the conductive films 120a and 120b.

[0725]

Next, heat treatment was performed at a substrate temperature of 250 $^{\circ}\text{C}$ in a nitrogen atmosphere for one hour.

[0726]

Through the above steps, Sample D1 of this example was fabricated. Note that the highest temperature in the fabrication process of Sample D1 was 350 °C.

[0727]

<2-2. I_d – V_g characteristics>

Next, the $I_{\rm d}$ – $V_{\rm g}$ characteristics of Sample D1 were measured. In measuring the $I_{\rm d}$ – $V_{\rm g}$ characteristics, a voltage ($V_{\rm g}$, $V_{\rm bg}$) applied to the conductive film 106 and the conductive film 112 that respectively function as the first gate electrode and the second gate electrode of the transistor 100A was changed from –15 V to +20 V in increments of 0.25 V. A voltage ($V_{\rm s}$) applied to the conductive film 120a functioning as the source electrode was 0 V (comm), and a voltage ($V_{\rm d}$) applied to the conductive film 120b functioning as the drain electrode was 0.1 V and 20 V.

30 [0728]

FIG. 57 shows the I_d – V_g characteristics of Sample D1. In FIG. 57, the first vertical axis represents I_d (A), the second vertical axis represents μ FE (cm²/Vs), and the horizontal axis represents V_g (V). FIG. 57 shows superimposed I_d – V_g characteristics of 20 transistors.

The results of FIG. 57 show that Sample D1 fabricated in this example includes a

transistor which exhibits high field-effect mobility and little variation in electrical characteristics. [0730]

<2-3. Bias-temperature stress test (GBT test)>

Next, the reliability of Sample D1 was evaluated. As the reliability evaluation, GBT tests were performed.

[0731]

5

10

20

25

35

The GBT tests in this example were performed under the conditions where the gate voltage (V_g) was ± 30 V; the drain voltage (V_d) and the source voltage (V_s) were 0 V (comm); the stress temperature was 60 °C; the time for stress application was one hour; and two kinds of measurement environments, a dark environment and a photo environment (irradiation with light having approximately 10000 lx with a white LED), were employed. In other words, the source electrode and the drain electrode of the transistor were set at the same potential, and a potential different from that of the source and drain electrodes was applied to the gate electrode for a certain time (one hour, here).

15 [0732]

A case where the potential applied to the gate electrode is higher than that of the source and drain electrodes is called positive stress, and a case where the potential applied to the gate electrode is lower than that of the source and drain electrodes is called negative stress. Thus, the reliability evaluation was performed under four conditions in total, i.e., positive GBT (Dark), negative GBT (Dark), positive GBT (Light irradiation), and negative GBT (Light irradiation). [0733]

Note that positive GBT (Dark) can be referred to as positive bias temperature stress (PBTS), negative GBT (Dark) as negative bias temperature stress (NBTS), positive GBT (Light irradiation) as positive bias illumination temperature stress (PBITS), and negative GBT (Light irradiation) as negative bias illumination temperature stress (NBITS).

[0734]

FIG. 58 shows the GBT test results of Sample D1. In FIG. 58, the vertical axis represents the amount of change in the threshold voltage (ΔV_{th}) of the transistors and the horizontal axis represents the stress conditions.

30 [0735]

The results in FIG. 58 indicate that the amount of change in the threshold voltage (ΔV_{th}) of the transistors included in Sample D1 fabricated in this example is within ± 2 V in the GBT tests. Thus, it is confirmed that the transistors included in Sample D1 have high reliability. [0736]

The structure described in this example can be combined as appropriate with any of the

structures described in the above embodiments and another example.

[Example 3]

[0737]

In this example, Sample E1, Sample E2, Sample E3, and Sample E4 were fabricated and 5 ESR measurement was performed on each sample.

[0738]

<3-1. Structures of samples>

First, the structures of the samples will be described with reference to FIGS. 54A to 54C. FIGS. 54A to 54C are cross-sectional views illustrating the structures of samples in Examples.

10 [0739]

[Sample E1]

Sample E1 includes the substrate 1102, the oxide semiconductor film 1108 over the substrate 1102, and the insulating film 1110 over the oxide semiconductor film 1108 (see FIG. 54C).

15 [0740]

[Sample E2]

Sample E2 includes the substrate 1102, the oxide semiconductor film 1108 over the substrate 1102, the insulating film 1110 over the oxide semiconductor film 1108, and the oxide semiconductor film 1112 over the insulating film 1110 (see FIG. 54A).

[0741] 20

[Sample E3]

Sample E3 includes the substrate 1102, the oxide semiconductor film 1108 over the substrate 1102, the insulating film 1110 over the oxide semiconductor film 1108, the oxide semiconductor film 1112 over the insulating film 1110, and the insulating film 1116 over the oxide semiconductor film 1112 (see FIG. 54B).

[0742]

25

30

[Sample E4]

Sample E4 includes the substrate 1102, the oxide semiconductor film 1108 over the substrate 1102, the insulating film 1110 over the oxide semiconductor film 1108, the oxide semiconductor film 1112 over the insulating film 1110, and the insulating film 1116 over the oxide semiconductor film 1112 (see FIG. 54B).

[0743]

<3-2. Methods for fabricating samples>

Next, methods for fabricating the samples will be described.

[0744] 35

[Method for fabricating Sample E1]

First, the oxide semiconductor film 1108 was formed over the substrate 1102. [0745]

A quartz substrate was used as the substrate 1102, and a 40-nm-thick In-Ga-Zn oxide was formed as the oxide semiconductor film 1108 with a sputtering apparatus. The In-Ga-Zn oxide was formed under the following conditions: the substrate temperature was 170 °C, an argon gas at a flow rate of 35 sccm and an oxygen gas at a flow rate of 15 sccm were introduced into a chamber, the pressure was 0.2 Pa, and AC power of 1500 W was supplied to a metal oxide target (In:Ga:Zn = 4:2:4.1 [atomic ratio]) placed in the sputtering apparatus.

10 [0746]

5

15

20

Next, the insulating film 1110 was formed over the oxide semiconductor film 1108. [0747]

For the insulating film 1110, a 30-nm-thick first silicon oxynitride film, a 50-nm-thick second silicon oxynitride film, and a 20-nm-thick third silicon oxynitride film were formed with a plasma CVD apparatus. The first silicon oxynitride film was formed under the following conditions: the substrate temperature was 350 °C, a silane gas at a flow rate of 20 sccm and a dinitrogen monoxide gas at a flow rate of 3000 sccm were introduced into a chamber, the pressure was 200 Pa, and RF power of 100 W was supplied between parallel-plate electrodes provided in the plasma CVD apparatus. The second silicon oxynitride film was formed under the following conditions: the substrate temperature was 220 °C, a silane gas at a flow rate of 160 sccm and a dinitrogen monoxide gas at a flow rate of 4000 sccm were introduced into the chamber, the pressure was 200 Pa, and RF power of 1500 W was supplied between the parallel-plate electrodes provided in the plasma CVD apparatus. The third silicon oxynitride film was formed under the same conditions as the first silicon oxynitride film.

25 [0748]

Next, first heat treatment was performed at 350 $^{\circ}\text{C}$ in a nitrogen atmosphere for one hour.

[0749]

Through the above steps, Sample E1 of this example was fabricated.

30 [0750]

[Method for fabricating Sample E2]

To fabricate Sample E2, first, the oxide semiconductor film 1108 and the insulating film 1110 were formed over the substrate 1102 under the same conditions as in the case of Sample E1, and then first heat treatment was performed.

Then, the oxide semiconductor film 1112 was formed over the insulating film 1110. [0752]

For the oxide semiconductor film 1112, a 10-nm-thick first In-Ga-Zn oxide and a 90-nm-thick second In-Ga-Zn oxide were formed with a sputtering apparatus. The first In-Ga-Zn oxide was formed under the following conditions: the substrate temperature was 170 °C, an oxygen gas at a flow rate of 200 sccm was introduced into a chamber, the pressure was 0.6 Pa, and AC power of 1500 W was supplied to a metal oxide target (In:Ga:Zn = 4:2:4.1 [atomic ratio]) placed in the sputtering apparatus. The second In-Ga-Zn oxide was formed under the following conditions: the substrate temperature was 170 °C, an argon gas at a flow rate of 180 sccm and an oxygen gas at a flow rate of 20 sccm were introduced into the chamber, the pressure was 0.6 Pa, and AC power of 1500 W was supplied to the metal oxide target (In:Ga:Zn = 4:2:4.1 [atomic ratio]) placed in the sputtering apparatus.

Through the above steps, Sample E2 of this example was fabricated. Note that Sample E2 had a structure in which the oxide semiconductor film 1112 was formed over Sample E1.

[0754]

[Method for fabricating Sample E3]

To fabricate Sample E3, first, the oxide semiconductor film 1108 and the insulating film 1110 were formed over the substrate 1102 under the same conditions as in the case of Sample E2, and then first heat treatment was performed. After the first heat treatment, the oxide semiconductor film 1112 was formed over the insulating film 1110 under the same conditions as in the case of Sample E2.

[0755]

Next, the insulating film 1116 was formed over the oxide semiconductor film 1112.

25 [0756]

5

10

15

20

30

As the insulating film 1116, a 100-nm-thick silicon nitride film was formed with a plasma CVD apparatus. The silicon nitride film was formed under the following conditions: the substrate temperature was 350 °C; a silane gas at a flow rate of 50 sccm, a nitrogen gas at a flow rate of 5000 sccm, and an ammonia gas at a flow rate of 100 sccm were introduced into a chamber; the pressure was 100 Pa; and RF power of 1000 W was supplied between parallel-plate electrodes provided in the plasma CVD apparatus.

[0757]

Through the above steps, Sample E3 of this example was fabricated. Note that Sample E3 had a structure in which the insulating film 1116 was formed over Sample E2.

[Method for fabricating Sample E4]

To fabricate Sample E4, first, the oxide semiconductor film 1108 and the insulating film 1110 were formed over the substrate 1102 under the same conditions as in the case of Sample E2, and then first heat treatment was performed. After the first heat treatment, the oxide semiconductor film 1112 was formed over the insulating film 1110 under the same conditions as in the case of Sample E2.

[0759]

5

10

15

Next, the insulating film 1116 was formed over the oxide semiconductor film 1112. [0760]

As the insulating film 1116, a 100-nm-thick silicon nitride film was formed with a plasma CVD apparatus. The silicon nitride film was formed under the following conditions: the substrate temperature was 220 °C; a silane gas at a flow rate of 50 sccm, a nitrogen gas at a flow rate of 5000 sccm, and an ammonia gas at a flow rate of 100 sccm were introduced into a chamber; the pressure was 100 Pa; and RF power of 1000 W was supplied between parallel-plate electrodes provided in the plasma CVD apparatus.

[0761]

Through the above steps, Sample E4 of this example was fabricated. Note that Sample E4 had a structure in which the insulating film 1116 was formed over Sample E2.

[0762]

20 <3-3. ESR measurement on samples>

ESR measurement was performed on Samples E1 to E4 fabricated in the above-described manner. In the ESR measurement, the spin density of a signal due to nitrogen dioxide (NO₂) contained in the insulating film 1110 (i.e., a silicon oxynitride film) included in Samples E1 to E4 was measured.

25 [0763]

In the ESR measurement performed at a predetermined temperature, a value of a magnetic field (H_0) where a microwave is absorbed is used for an equation $g = h \nu \beta H_0$, and a parameter "g-factor" can be obtained. Note that ν represents the frequency of the microwave. Note that h and β represent the Planck constant and the Bohr magneton, respectively, and are both constants.

[0764]

30

35

The ESR measurement was performed under the following conditions.

[0765]

The measurement temperature was 85 K, the high-frequency power (power of microwaves) of 9.2 GHz was 10 mW, and the direction of a magnetic field was parallel to a film

surface of each specimen. Note that the detection limit of the spin density of a signal due to nitrogen dioxide (NO₂) contained in the silicon oxynitride film was 1.0×10^{16} spins/cm³. [0766]

FIGS. 59A to 59D and FIG. 60 show the ESR measurement results of Samples E1 to E4. [0767]

FIG. 59A is an ESR spectrum of Sample E1 obtained by the ESR measurement. FIG. 59B is an ESR spectrum of Sample E2 obtained by the ESR measurement. FIG. 59C is an ESR spectrum of Sample E3 obtained by the ESR measurement. FIG. 59D is an ESR spectrum of Sample E4 obtained by the ESR measurement. FIG. 60 shows the spin density of a signal due to nitrogen dioxide (NO₂) contained in the silicon oxynitride film of each sample, which is obtained from the ESR spectra.

[0768]

5

10

15

20

25

30

35

According to the results in FIG. 60, the spin density of a signal due to nitrogen dioxide (NO₂) is 2.1×10^{17} spins/cm³ in Sample E1, 1.5×10^{18} spins/cm³ in Sample E2, 3.8×10^{18} spins/cm³ in Sample E3, and 1.7×10^{18} spins/cm³ in Sample E4.

[0769]

A comparison of the results of Sample E1 and Sample E2 indicates that Sample E2 has higher spin density. This suggests that the spin density of a signal due to nitrogen dioxide (NO₂) is increased because oxygen contained in the oxide semiconductor film 1112 and nitrogen contained in the insulating film 1110 react with each other in the case where the oxide semiconductor film 1112 is formed over the insulating film 1110.

[0770]

A comparison of the results of Sample E2 and Sample E3 indicates that Sample E3 has higher spin density. This suggests that the spin density of a signal due to nitrogen dioxide (NO₂) is increased because nitrogen contained in the insulating film 1110 reacts with oxygen contained in the insulating film 1110 or oxygen contained in the oxide semiconductor film 1108 when temperature at the same level as the substrate temperature during the formation of the insulating film 1116 (here, 350 °C) is applied to the insulating film 1110.

[0771]

A comparison of the results of Sample E3 and Sample E4 indicates that Sample E4 has lower spin density. This suggests that a reaction of nitrogen contained in the insulating film 1110 with oxygen contained in the insulating film 1110 or oxygen contained in the oxide semiconductor film 1108 is less likely to occur in Sample E4 because the substrate temperature during the formation of the insulating film 1116 in Sample E4 (here, 220 °C) is lower.

It is confirmed that the formation temperature of the insulating film 1116 within a range of 220 °C to 350 °C as described above can decrease the spin density of a signal due to nitrogen dioxide (NO₂) that might be generated in the insulating film 1110 under the insulating film 1116. [0773]

The structure described in this example can be combined as appropriate with any of the structures described in the above embodiments and another example.

[Example 4]

[0774]

5

10

15

20

25

35

In this example, transistors having structures different from those of the transistors in Example 2 were fabricated, and the I_d – V_g characteristics of the transistors were measured and GBT tests of the transistors were performed.

[0775]

A sample (Sample F1) including transistors each corresponding to a transistor 100L illustrated in FIGS. 61A and 61B was fabricated, and the I_d – V_g characteristics of the transistors were measured. Furthermore, a sample (Sample F2) including a transistor corresponding to the transistor 100A illustrated in FIGS. 4A to 4C was fabricated, and the GBT tests were performed on the sample. Note that a top view of the transistor 100L illustrated in FIGS. 61A and 61B is similar to that of the transistor 100A illustrated in FIGS. 4A to 4C and thus is not described here. [0776]

Sample F1 included three transistors each of which had a channel length L of 3 μ m and a channel width W of 3 μ m. Sample F2 included a transistor having a channel length L of 3 μ m and a channel width W of 3 μ m.

[0777]

<4-1. Method for fabricating Sample F1>

Sample F1 was fabricated by the same method as Sample D1 described in Example 2 except for the following steps.

[0778]

After the conductive film 106 and the insulating film 104 were formed over the substrate 102, heat treatment was performed at 450 °C in a nitrogen atmosphere for one hour.

30 [0779]

Subsequently, the oxide semiconductor film 108 and the insulating film 110 were formed over the insulating film 104, and the opening 143 was formed. Then, the conductive film 112 was formed.

[0780]

For the conductive film 112 of Sample F1, a 10-nm-thick first In-Ga-Zn oxide and a

90-nm-thick second In-Ga-Zn oxide were formed with a sputtering apparatus. The first In-Ga-Zn oxide was formed under the following conditions: the substrate temperature was 170 °C, an oxygen gas at a flow rate of 200 sccm was introduced into a chamber, the pressure was 0.6 Pa, and AC power of 500 W was supplied to a metal oxide target (In:Ga:Zn = 4:2:4.1 [atomic ratio]) placed in the sputtering apparatus. The second In-Ga-Zn oxide was formed under the following conditions: the substrate temperature was 170 °C, an argon gas at a flow rate of 180 sccm and an oxygen gas at a flow rate of 20 sccm were introduced into the chamber, the pressure was 0.6 Pa, and AC power of 500 W was supplied to the metal oxide target (In:Ga:Zn = 4:2:4.1 [atomic ratio]) placed in the sputtering apparatus.

10 [0781]

5

15

20

25

30

35

After that, the insulating film 116, the insulating film 118, and the openings 141a and 141b were formed, and then the conductive films 120a and 120b were formed.

[0782]

For the conductive films 120a and 120b of Sample F1, a 10-nm-thick titanium film and a 100-nm-thick copper film were formed with a sputtering apparatus. Note that a wet etching apparatus and a dry etching apparatus were used for processing into the conductive films 120a and 120b.

[0783]

Next, an insulating film 124 was formed so as to cover the insulating film 118 and the conductive films 120a and 120b.

[0784]

As the insulating film 124, a 100-nm-thick silicon nitride film was formed under the following conditions: the substrate temperature was 220 °C; a silane gas at a flow rate of 50 sccm, a nitrogen gas at a flow rate of 5000 sccm, and an ammonia gas at a flow rate of 100 sccm were introduced into a chamber; the pressure was 100 Pa; and RF power of 1000 W was supplied between parallel-plate electrodes provided in a plasma CVD apparatus.

[0785]

[0786]

Next, an insulating film 126 was formed over the insulating film 124.

As the insulating film 126, a 2- μ m-thick acrylic resin film was formed in the following manner: an acrylic solution was applied with a spin coat apparatus and then heat treatment at 250 °C was performed. Note that the insulating film 126 was formed to have an opening that reaches the insulating film 124 in a desired region.

[0787]

Then, an opening 144 was formed in a region of the insulating film 124 where the

insulating film 124 was not covered with the insulating film 126.

[0788]

The opening 144 was formed with a dry etching apparatus.

[0789]

5

10

15

20

25

35

Next, a conductive film was formed over the insulating film 126 so as to cover the opening 144 and a desired region of the conductive film was processed, whereby a conductive film 128 was formed.

[0790]

As the conductive film 128, a 100-nm-thick ITSO film was formed with a sputtering apparatus. In a sputtering target used for forming the ITSO film, In₂O₃:SnO₂:SiO₂ was 85:10:5 [weight%]. Note that processing into the conductive film 128 was performed with a wet etching apparatus.

[0791]

After that, an insulating film 130 was formed over the insulating film 126 and the conductive film 128.

[0792]

As the insulating film 130, a 300-nm-thick silicon nitride film was formed under the following conditions: the substrate temperature was 220 °C; a silane gas at a flow rate of 50 sccm, a nitrogen gas at a flow rate of 5000 sccm, and an ammonia gas at a flow rate of 100 sccm were introduced into a chamber; the pressure was 200 Pa; and RF power of 1000 W was supplied between parallel-plate electrodes provided in a plasma CVD apparatus.

[0793]

[0794]

Subsequently, a conductive film 132 was formed over the insulating film 130.

As the conductive film 132, a 100-nm-thick ITSO film was formed with a sputtering apparatus. Note that a sputtering target used for forming the ITSO film was the same as that for the conductive film 128.

[0795]

Then, a conductive film 134 was formed over the conductive film 132.

30 [0796]

As the conductive film 134, a 100-nm-thick silver alloy film (alloy film of silver, palladium, and copper) was formed with a sputtering apparatus.

[0797]

Next, heat treatment was performed at a substrate temperature of 250 °C in a nitrogen atmosphere for one hour.

[0798]

Through the above steps, Sample F1 of this example was fabricated.

[0799]

5

10

15

20

25

35

Sample F1 includes a transistor having a structure for a display device. The insulating film 124 functions as a protective insulating film of the transistor, and the insulating film 126 functions as a planarization insulating film. The conductive film 128 functions as a pixel electrode, the insulating film 130 functions as an interlayer insulating film, the conductive film 132 functions as a common electrode, and the conductive film 134 functions as an auxiliary wiring. A region where the conductive film 128 and the conductive film 132 overlap with each other with the insulating film 130 positioned therebetween functions as a capacitor of the display device.

[0800]

Sample F1 can be a display device including a liquid crystal element if a liquid crystal layer is formed over the conductive film 132 and the conductive film 134. The liquid crystal element can be driven by a transverse electric field mode (e.g., an FFS mode). In the case where an FFS mode is employed, the conductive film 132 can have a comb-like shape as illustrated in FIGS. 61A and 61B.

[0801]

<4-2. Method for fabricating Sample F2>

Sample F2 was fabricated by the same method as Sample D1 described in Example 2 except for the following steps.

[0802]

Sample F2 is the same as Sample D1 except for the conductive films 120a and 120b. For the conductive films 120a and 120b in Sample F2, a 10-nm-thick titanium film and a 100-nm-thick copper film were formed with a sputtering apparatus. Note that a wet etching apparatus and a dry etching apparatus were used for processing into the conductive films 120a and 120b.

[0803]

Through the above steps, Sample F2 of this example was fabricated.

30 [0804]

<4-3. I_d-V_g characteristics>

Next, the I_d – V_g characteristics of Sample F1 were measured. In measuring the I_d – V_g characteristics, a voltage (V_g , V_{bg}) applied to the conductive film 106 and the conductive film 112 that respectively function as the first gate electrode and the second gate electrode of the transistor 100L was changed from –15 V to +20 V in increments of 0.25 V. A voltage (V_s) applied to the

145

conductive film 120a functioning as the source electrode was 0 V (comm), and a voltage (V_d) applied to the conductive film 120b functioning as the drain electrode was 0.1 V and 20 V. [0805]

FIG. 62 shows the I_d – V_g characteristics of Sample F1. In FIG. 62, the first vertical axis represents I_d (A), the second vertical axis represents μ FE (cm²/Vs), and the horizontal axis represents V_g (V). FIG. 62 shows superimposed I_d – V_g characteristics of 3 transistors.

The results of FIG. 62 show that Sample F1 fabricated in this example includes a transistor which exhibits high field-effect mobility and little variation in electrical characteristics.

[0807]

<4-4. Bias-temperature stress test (GBT test)>

Next, the reliability of Sample F2 was evaluated. As the reliability evaluation, GBT tests were performed.

[0808]

5

10

20

30

35

In this example, the GBT tests were performed under the same conditions as in the case of Example 2.

[0809]

FIG. 63 shows the GBT test results of Sample F2. In FIG. 63, the vertical axis represents the amount of change in the threshold voltage (ΔV_{th}) of the transistors and the horizontal axis represents the stress conditions.

[0810]

The results in FIG. 63 indicate that the amount of change in the threshold voltage (ΔV_{th}) of the transistors included in Sample F2 fabricated in this example is within ± 2 V in the GBT tests. Thus, it is confirmed that the transistors included in Sample F2 have high reliability.

25 [0811]

The structure described in this example can be combined as appropriate with any of the structures described in the above embodiments and another example.

[Example 5]

[0812]

In this example, transistors having structures different from those of the transistors in Example 2 and Example 4 were fabricated, and the $I_{\rm d}$ - $V_{\rm g}$ characteristics of the transistors were measured and GBT tests of the transistors were performed.

[0813]

In this example, Samples G1 to G4 each including a transistor corresponding to the transistor 100L illustrated in FIGS. 61A and 61B were fabricated. Note that Samples G1 to G4

fabricated in this example did not include the insulating film 124, the conductive film 128, the insulating film 130, the conductive film 132, the conductive film 134, and the opening 144 illustrated in FIGS. 61A and 61B.

[0814]

5

The size and the formation position of the transistors are different between Samples G1 to G4. Table 1 shows the details of Samples G1 to G4.

[0815]

[Table 1]

	Transistor size	Formation position of transistors
Sample G1	$L/W = 3/3 \mu m$	Center
Sample G2	$L/W = 3/50 \mu\text{m}$	Center
Sample G3	$L/W = 3/3 \mu m$	Edge
Sample G4	$L/W = 3/50 \; \mu \text{m}$	Edge

10 [0816]

In Table 1, L represents a channel length, W represents a channel width, and "Formation position of transistors" is a position on a mother glass with a size of 600 mm \times 720 mm. Note that the transistor with L/W of 3/3 μ m corresponds to a pixel transistor of a display device and the transistor with L/W of 3/50 μ m corresponds to a driving transistor of the display device.

15 [0817]

20

25

Each of Samples G1 to G4 included 20 transistors with the above transistor size. [0818]

<5-1. Methods for fabricating Samples G1 to G4>

First, the conductive film 106 was formed over the substrate 102. A glass substrate with a size of $600 \text{ mm} \times 720 \text{ mm}$ was used as the substrate 102. For the conductive film 106, a 10-nm-thick titanium film and a 100-nm-thick copper film were formed with a sputtering apparatus.

[0819]

Next, the insulating film 104 was formed over the substrate 102 and the conductive film 106. For the insulating film 104, a 400-nm-thick silicon nitride film and a 50-nm-thick silicon oxynitride film were formed with a plasma CVD apparatus. The insulating film 104 was formed under the same conditions as in the case of Example 2.

[0820]

Then, the oxide semiconductor film 107 was formed over the insulating film 104. The

oxide semiconductor film 107 was formed with a sputtering apparatus. The insulating film 107 was formed under the same conditions as in the case of Example 2.

[0821]

After that, the insulating film 110 was formed over the insulating film 104 and the oxide semiconductor film 107. The insulating film 110 was formed under the same conditions as in the case of Example 2.

[0822]

Next, first heat treatment was performed at 350 °C in a nitrogen atmosphere for one hour.

10 [0823]

5

15

20

25

30

Then, the insulating films 110 and 104 in a desired region were removed to form the opening 143 that reaches the conductive film 106.

[0824]

Subsequently, the conductive film 112 was formed over the insulating film 110 so as to cover the opening 143. For the conductive film 112, a 10-nm-thick In-Ga-Zn oxide film, a 50-nm-thick titanium nitride film, and a 100-nm-thick titanium film were formed with a sputtering apparatus. The In-Ga-Zn oxide film was formed under the following conditions: the substrate temperature was 170 °C, an oxygen gas at a flow rate of 200 sccm was introduced into a chamber, the pressure was 0.6 Pa, and AC power of 2500 W was supplied to a metal oxide target (In:Ga:Zn = 4:2:4.1 [atomic ratio]) placed in the sputtering apparatus. The titanium nitride film was formed under the following conditions: the substrate temperature was 150 °C, a nitrogen gas at a flow rate of 210 sccm was introduced into the chamber, the pressure was 0.4 Pa, and DC power of 40 kW was supplied to a titanium target placed in the sputtering apparatus.

After that, the insulating film 110 and the conductive film 112 were processed into island shapes with a dry etching apparatus and a surface of the oxide semiconductor film 108 was partly exposed.

[0826]

Then, the insulating film 116 was formed over the insulating film 104, the oxide semiconductor film 108, and the conductive film 112. The insulating film 116 was formed under the same conditions as in the case of Example 2.

[0827]

Next, the insulating film 118 was formed over the insulating film 116. The insulating film 118 was formed under the same conditions as in the case of Example 2.

Subsequently, the insulating films 116 and 118 in desired regions were removed to form the openings 141a and 141b that reach the oxide semiconductor film 108.

[0829]

The openings 141a and 141b were formed by a dry etching method.

5 [0830]

10

15

25

30

35

Then, a conductive film was formed over the insulating film 118 so as to cover the openings 141a and 141b and the conductive film was processed into an island shape, whereby the conductive films 120a and 120b functioning as the source and drain electrodes were formed. [0831]

For the conductive films 120a and 120b, a 10-nm-thick titanium film and a 100-nm-thick copper film were formed with a sputtering apparatus. Note that a wet etching apparatus and a dry etching apparatus were used for processing into the conductive films 120a and 120b.

[0832]

After that, the insulating film 126 was formed over the conductive films 120a and 120b. The insulating film 126 was formed under the same conditions as in the case of Example 4.

[0833]

Next, heat treatment was performed at a substrate temperature of 250 °C in a nitrogen atmosphere for one hour.

20 [0834]

[0835]

Through the above steps, Samples G1 to G4 of this example were fabricated. Note that the highest temperature in the fabrication process of Samples G1 to G4 was $350\,^{\circ}$ C.

<5-2. $I_{\rm d}$ – $V_{\rm g}$ characteristics>

Next, the $I_{\rm d}$ – $V_{\rm g}$ characteristics of Sample G1 were measured. In measuring the $I_{\rm d}$ – $V_{\rm g}$ characteristics, a voltage ($V_{\rm g}$, $V_{\rm bg}$) applied to the conductive film 106 and the conductive film 112 that respectively function as the first gate electrode and the second gate electrode of the transistor 100L was changed from –15 V to +20 V in increments of 0.25 V. A voltage ($V_{\rm s}$) applied to the conductive film 120a functioning as the source electrode was 0 V (comm), and a voltage ($V_{\rm d}$) applied to the conductive film 120b functioning as the drain electrode was 0.1 V and 20 V. [0836]

FIG. 64 shows the I_d – V_g characteristics of Sample G1. In FIG. 64, the first vertical axis represents I_d (A), the second vertical axis represents μ FE (cm²/Vs), and the horizontal axis represents V_g (V). FIG. 64 shows the I_d – V_g characteristics of one transistor randomly selected from the 20 transistors formed in Sample G1.

[0837]

The results in FIG. 64 indicate that Sample G1 fabricated in this example includes a normally-off transistor having high field-effect mobility at a maximum of 30 cm²/Vs or more. [0838]

FIG. 65 and FIG. 66 show the I_d – V_g characteristics of the transistors in Sample G1 and Sample G2. FIG. 65 shows the results of Sample G1 and FIG. 66 shows the results of Sample G2. FIG. 65 and FIG. 66 show superimposed results of the transistors (20 transistors each) in Sample G1 and Sample G2.

[0839]

5

10

15

25

30

35

The results in FIG. 65 and FIG. 66 indicate that Sample G1 and Sample G2 fabricated in this example include transistors with small variation. FIG. 67 is the plot of probability and statistics of the threshold voltages ($V_{\rm th}$) of the transistors extracted from the $I_{\rm d}$ – $V_{\rm g}$ characteristics of the transistors shown in FIG. 65 and FIG. 66. The results in FIG. 67 indicate that Sample G1 and Sample G2 fabricated in this example include transistors with small variation in the threshold voltage ($V_{\rm th}$).

[0840]

<5-3. Bias-temperature stress test (GBT test)>

Next, the reliability of Samples G1 to G4 was evaluated. As the reliability evaluation, GBT tests were performed.

20 [0841]

In this example, the GBT tests were performed under the same conditions as in the cases of Example 2 and Example 4.

[0842]

FIG. 68 shows the GBT test results of Samples G1 to G4. In FIG. 68, the vertical axis represents the amount of change in the threshold voltage (ΔV_{th}) of the transistors and the horizontal axis indicates the conditions and the like for the samples.

[0843]

The results in FIG. 68 indicate that the amounts of change in the threshold voltage (ΔV_{th}) of the transistors included in Samples G1 to G4 fabricated in this example are within ± 2 V in the GBT tests. The results also indicate that variation is hardly affected by the size and the formation position of the transistors. Thus, it is confirmed that the transistors included in Samples G1 to G4 have high reliability.

[0844]

The structure described in this example can be combined as appropriate with any of the structures described in the above embodiments and another example.

EXPLANATION OF REFERENCE

[0845]

5

10

15

20

25

30

35

100: transistor, 100A: transistor, 100B: transistor, 100C: transistor, 100D: transistor, 100E: transistor, 100F: transistor, 100G: transistor, 100H: transistor, 100J: transistor, 100K: transistor, 100L: transistor, 102: substrate, 104: insulating film, 106: conductive film, 107: oxide semiconductor film, 108: oxide semiconductor film, 108 1: oxide semiconductor film, 108 2: oxide semiconductor film, 108 3: oxide semiconductor film, 108d: drain region, 108f: region, 108i: channel region, 108s: source region, 110: insulating film, 110 0: insulating film, 112: conductive film, 112 0: conductive film, 116: insulating film, 118: insulating film, 120a: conductive film, 120b: conductive film, 122: insulating film, 124: insulating film, 126: insulating film, 128: conductive film, 130: insulating film, 132: conductive film, 134: conductive film, 140: mask, 141a: opening, 141b: opening, 143: opening, 144: opening, 201: transistor, 203: transistor, 207a: liquid crystal element, 207b: liquid crystal element, 211: substrate, 212: insulating film, 213: insulating film, 215: insulating film, 217: insulating film, 219: insulating film, 223: oxide semiconductor film, 241: coloring film, 243: light shielding film, 245: insulating film, 247: spacer, 249: liquid crystal, 251: conductive film, 252: conductive film, 253: insulating film, 255: conductive film, 261: substrate, 300A: transistor, 300B: transistor, 300C: transistor, 300D: transistor, 300E: transistor, 300F: transistor, 302: substrate, 304: conductive film, 306: insulating film, 307: insulating film, 308: oxide semiconductor film, 308 1: oxide semiconductor film, 308 2: oxide semiconductor film, 308 3: oxide semiconductor film, 312a: conductive film, 312b: conductive film, 314: insulating film, 316: insulating film, 318: insulating film, 320a: conductive film, 320b: conductive film, 341a: opening, 341b: opening, 342a: opening, 342b: opening, 342c: opening, 501: pixel circuit, 502: pixel portion, 504: driver circuit portion, 504a: gate driver, 504b: source driver, 506: protection circuit, 507: terminal portion, 550: transistor, 552: transistor, 554: transistor, 560: capacitor, 562: capacitor, 570: liquid crystal element, 572: light-emitting element, 600: data processor, 610: arithmetic unit, 611: arithmetic portion, 612: memory portion, 614: transmission path, 615: input/output interface, 620: input/output device, 630: display portion, 640: input portion, 650: sensor portion, 681: region, 682: pointer, 690: communication portion, 700: display device, 701: substrate, 702: pixel portion, 704: source driver circuit portion, 705: substrate, 706: gate driver circuit portion, 708: FPC terminal portion, 710: signal line, 711: wiring portion, 712: sealant, 716: FPC, 730: insulating film, 732: sealing film, 734: insulating film, 736: coloring film, 738: light shielding film, 750: transistor, 752: transistor, 760: connection electrode, 770: planarization insulating film, 772: conductive film, 773: insulating film, 774: conductive film, 775: liquid crystal element, 776: liquid crystal layer,

WO 2017/029576 PCT/IB2016/054765

5

10

15

20

25

30

778: structure, 780: anisotropic conductive film, 782: light-emitting element, 784: conductive film, 786: EL layer, 788: conductive film, 790: capacitor, 800: inverter, 810: OS transistor, 820: OS transistor, 831: signal waveform, 832: signal waveform, 840: dashed line, 841: solid line, 850: OS transistor, 860: CMOS inverter, 900: semiconductor device, 901: power supply circuit, 902: circuit, 903: voltage generation circuit, 903A: voltage generation circuit, 903B: voltage generation circuit, 903C: voltage generation circuit, 903D: voltage generation circuit, 903E: voltage generation circuit, 904: circuit, 905: voltage generation circuit, 905A: voltage generation circuit, 905E: voltage generation circuit, 906: circuit, 911: transistor, 912: transistor, 912A: transistor, 912B: transistor, 921: control circuit, 922: transistor, 1102: substrate, 1108: oxide semiconductor film, 1110: insulating film, 1112: oxide semiconductor film, 1116: insulating film, 1280a: p-channel transistor, 1280b: n-channel transistor, 1280c: n-channel transistor, 1281: capacitor, 1282: transistor, 1311: wiring, 1312: wiring, 1313: wiring, 1314: wiring, 1315: wiring, 1316: wiring, 1317: wiring, 1351: transistor, 1352: transistor, 1353: transistor, 1354: transistor, 1360: photoelectric conversion element, 1401: signal, 1402: signal, 1403: signal, 1404: signal, 1405: signal, 8000: display module, 8001: upper cover, 8002: lower cover, 8003: FPC, 8004: touch panel, 8005: FPC, 8006: display panel, 8007: backlight, 8008: light source, 8009: frame, 8010: printed board, 8011: battery, 9000: housing, 9001: display portion, 9003: speaker, 9005: operation key, 9006: connection terminal, 9007: sensor, 9008: microphone, 9050: operation button, 9051: information, 9052: information, 9053: information, 9054: information, 9055: hinge, 9100: television device, 9101: portable information terminal, 9102: portable information terminal, 9200: portable information terminal, 9201: portable information terminal, 9500: display device, 9501: display panel, 9502: display region, 9503: region, 9511: hinge, and 9512: bearing.

This application is based on Japanese Patent Application serial no. 2015-161583 filed with Japan Patent Office on August 19, 2015, Japanese Patent Application serial no. 2015-167792 filed with Japan Patent Office on August 27, 2015, Japanese Patent Application serial no. 2015-195546 filed with Japan Patent Office on October 1, 2015, and Japanese Patent Application serial no. 2016-120042 filed with Japan Patent Office on June 16, 2016, the entire contents of which are hereby incorporated by reference.

CLAIMS

1. A method for manufacturing a semiconductor device, comprising the steps of:

forming an oxide semiconductor film;

5

10

15

20

25

forming a gate insulating film over the oxide semiconductor film;

forming a gate electrode over the gate insulating film;

performing plasma treatment on the oxide semiconductor film;

forming a nitride insulating film over the oxide semiconductor film and the gate electrode;

forming an oxide insulating film over the nitride insulating film;

forming an opening in the nitride insulating film and the oxide insulating film; and

forming a source electrode and a drain electrode over the oxide insulating film so as to cover the opening,

wherein the plasma treatment and deposition treatment of the nitride insulating film are each performed at a temperature higher than or equal to 150 °C and lower than 300 °C,

wherein the plasma treatment is performed in an argon gas atmosphere, and

wherein the deposition treatment is performed using a silane gas, a nitrogen gas, and an ammonia gas.

- 2. The method for manufacturing a semiconductor device, according to claim 1, wherein the gate electrode is formed using an oxide semiconductor film.
 - 3. The method for manufacturing a semiconductor device, according to claim 1, wherein the gate electrode is formed using an oxide conductor film.
 - 4. The method for manufacturing a semiconductor device, according to claim 1, wherein the nitride insulating film is formed with a plasma CVD apparatus.
 - 5. A method for manufacturing a semiconductor device, comprising the steps of:

forming an oxide semiconductor film;

forming a gate insulating film over the oxide semiconductor film;

forming a gate electrode over the gate insulating film;

forming a nitride insulating film over the oxide semiconductor film and the gate electrode;

forming an oxide insulating film over the nitride insulating film;

forming an opening in the nitride insulating film and the oxide insulating film; and forming a source electrode and a drain electrode over the oxide insulating film so as to cover the opening,

wherein the nitride insulating film is formed through two steps of plasma treatment and deposition treatment, and

5

15

20

25

30

35

wherein the two steps are each performed at a temperature higher than or equal to 150 $^{\circ}$ C and lower than 300 $^{\circ}$ C.

- 6. The method for manufacturing a semiconductor device, according to claim 5, wherein the gate electrode is formed using an oxide semiconductor film.
 - 7. The method for manufacturing a semiconductor device, according to claim 5, wherein the gate electrode is formed using an oxide conductor film.
 - 8. The method for manufacturing a semiconductor device, according to claim 5, wherein the plasma treatment is performed in an argon gas atmosphere.
 - 9. The method for manufacturing a semiconductor device, according to claim 5, wherein the deposition treatment is performed using a silane gas, a nitrogen gas, and an ammonia gas.
 - 10. The method for manufacturing a semiconductor device, according to claim 5, wherein the nitride insulating film is formed with a plasma CVD apparatus.
 - 11. A method for manufacturing a semiconductor device, comprising the steps of: forming a first gate electrode;

forming a first gate insulating film over the first gate electrode;

forming an oxide semiconductor film over the first gate insulating film;

forming a second gate insulating film over the oxide semiconductor film;

forming a second gate electrode over the second gate insulating film;

forming a nitride insulating film over the oxide semiconductor film and the second gate electrode;

forming an oxide insulating film over the nitride insulating film;

forming a first opening in the nitride insulating film and the oxide insulating film; and forming a source electrode and a drain electrode over the oxide insulating film so as to cover the first opening,

wherein the nitride insulating film is formed through two steps of plasma treatment and deposition treatment, and

wherein the two steps are each performed at a temperature higher than or equal to 150 $^{\circ}$ C and lower than 300 $^{\circ}$ C.

5

10

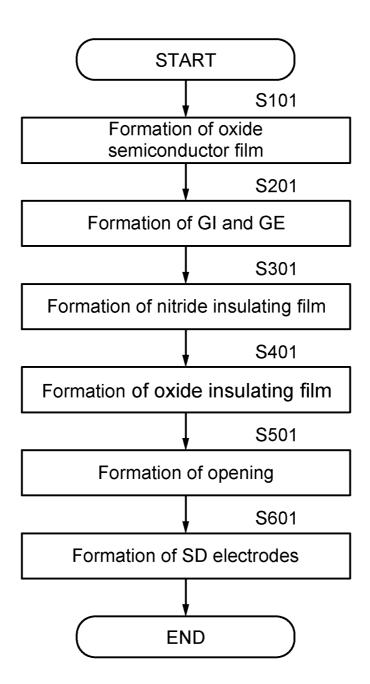
15

12. The method for manufacturing a semiconductor device, according to claim 11, further comprising the step of forming a second opening in the first gate insulating film and the second gate insulating film,

wherein the second gate electrode is connected to the first gate electrode through the second opening.

- 13. The method for manufacturing a semiconductor device, according to claim 11, wherein the second gate electrode is formed using an oxide semiconductor.
- 14. The method for manufacturing a semiconductor device, according to claim 11, wherein the second gate electrode is formed using an oxide conductor film.
 - 15. The method for manufacturing a semiconductor device, according to claim 11, wherein the plasma treatment is performed in an argon gas atmosphere.

20


16. The method for manufacturing a semiconductor device, according to claim 11, wherein the deposition treatment is performed using a silane gas, a nitrogen gas, and an ammonia gas.

25

17. The method for manufacturing a semiconductor device, according to claim 11, wherein the nitride insulating film is formed with a plasma CVD apparatus.

WO 2017/029576 PCT/IB2016/054765

FIG. 1

PCT/IB2016/054765

FIG. 2

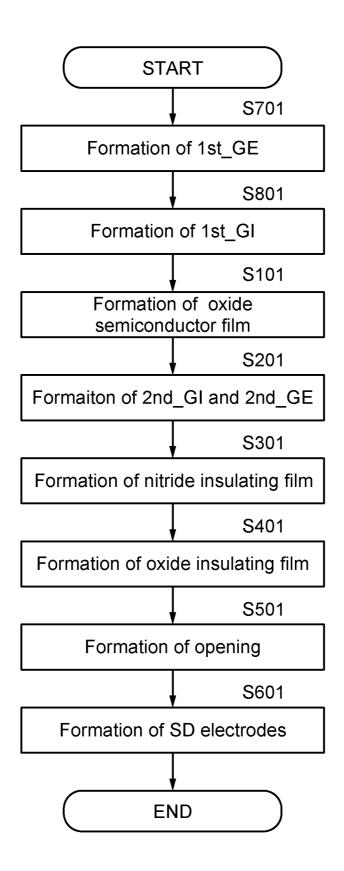


FIG. 3A

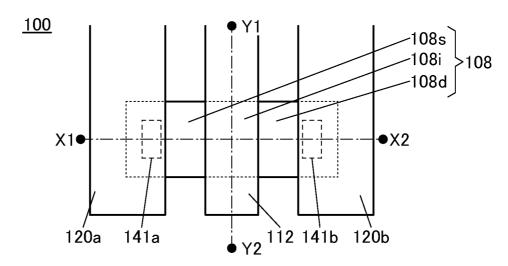


FIG. 3B

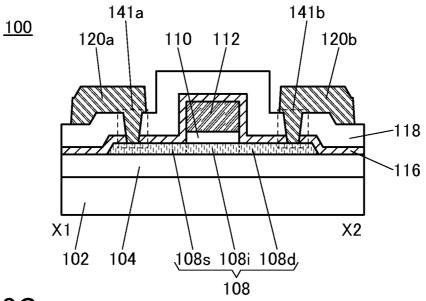


FIG. 3C

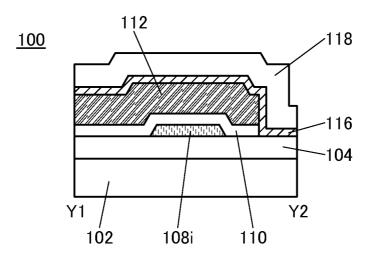


FIG. 4A

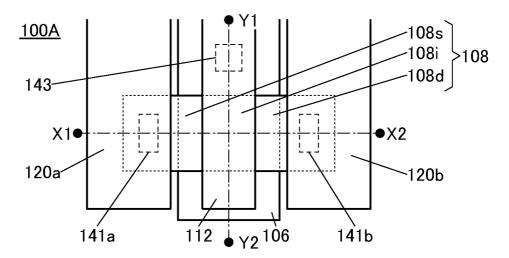


FIG. 4B

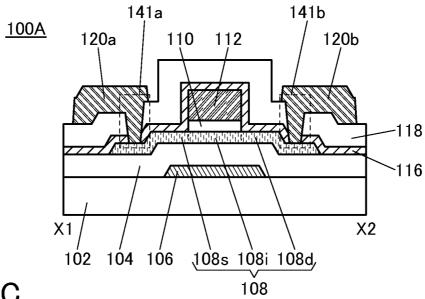


FIG. 4C

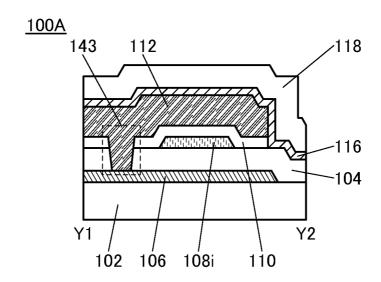


FIG. 5A

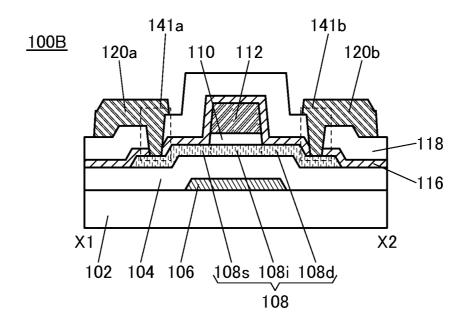


FIG. 5B

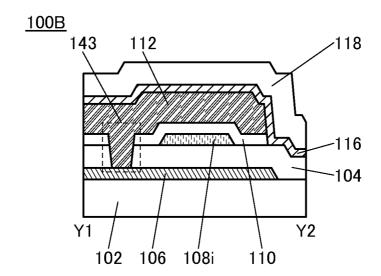


FIG. 6A

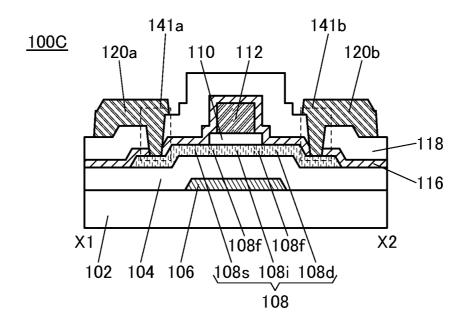


FIG. 6B

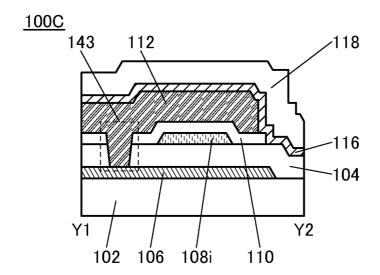


FIG. 7A

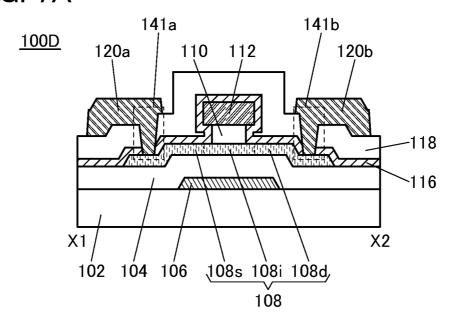


FIG. 7B

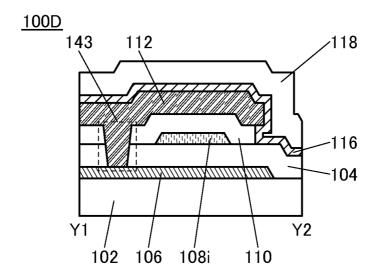


FIG. 8A

<u>100E</u>

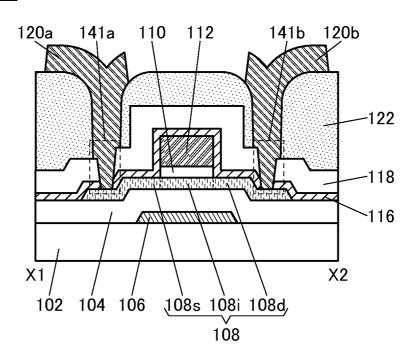


FIG. 8B

<u>100E</u>

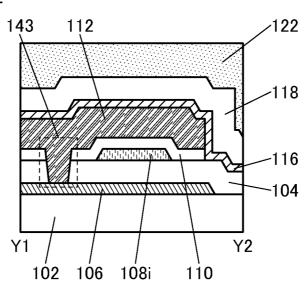


FIG. 9A

<u>100F</u>

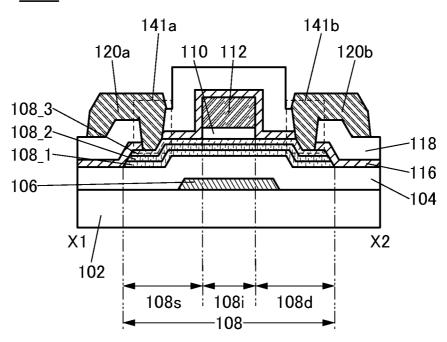


FIG. 9B

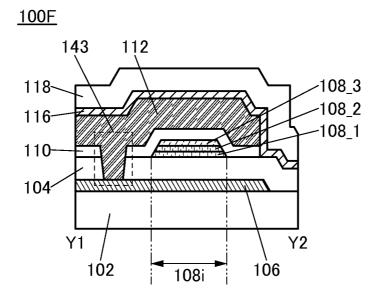


FIG. 10A

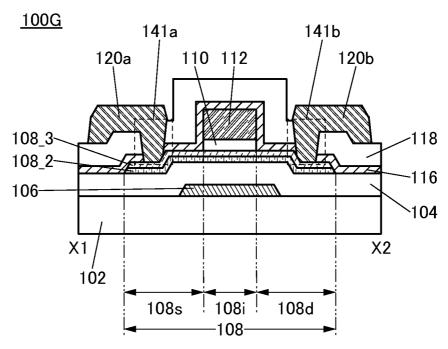


FIG. 10B

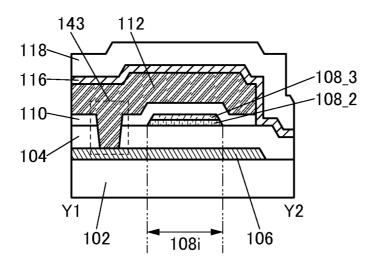


FIG. 11A

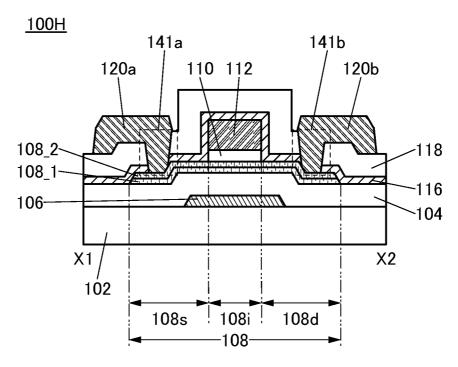


FIG. 11B

<u>100H</u>

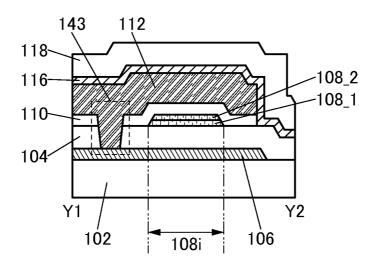


FIG. 12A

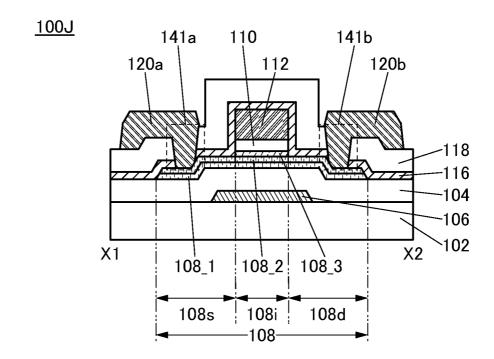


FIG. 12B

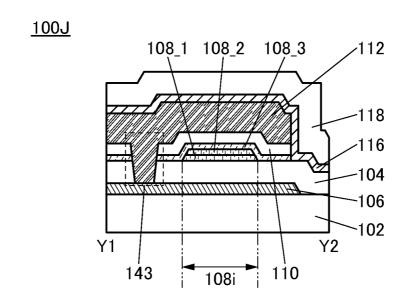


FIG. 13A

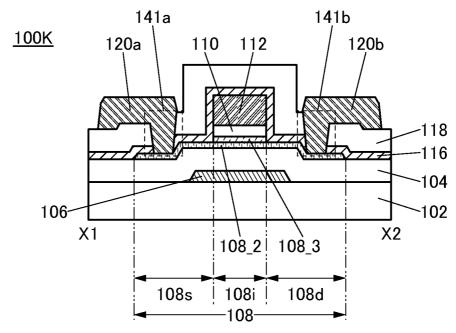


FIG. 13B

<u>100K</u>

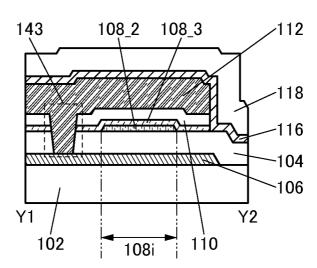


FIG. 14A

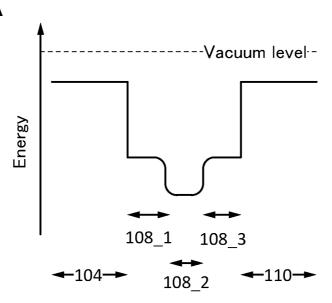


FIG. 14B

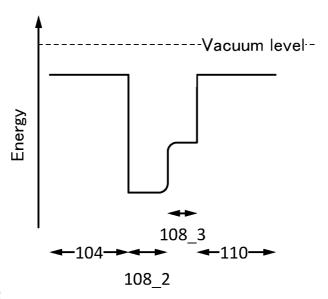


FIG. 14C

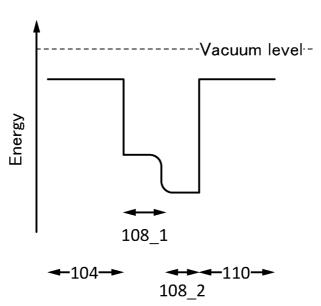


FIG. 15A

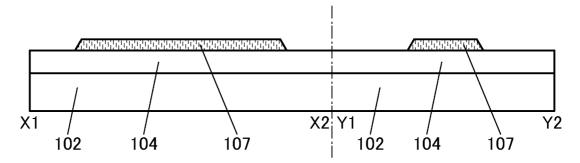


FIG. 15B

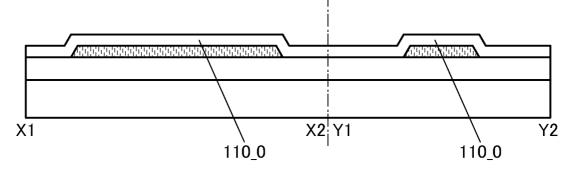


FIG. 15C

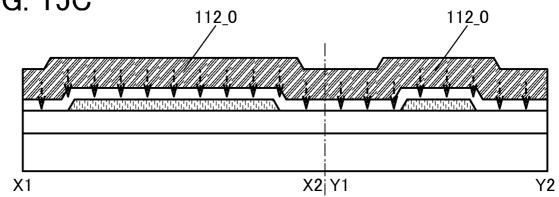


FIG. 15D

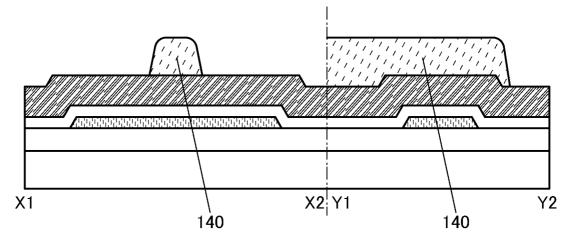


FIG. 16A

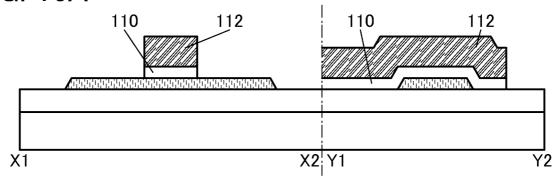


FIG. 16B

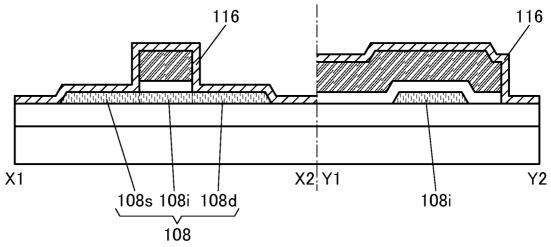
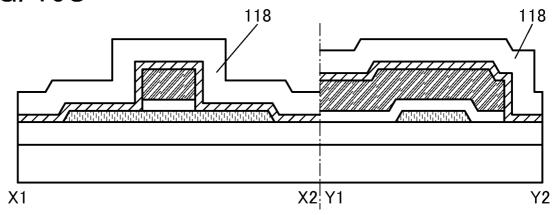
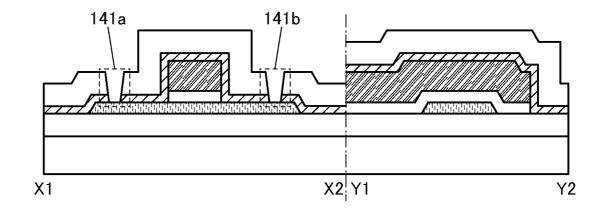




FIG. 16C

FIG. 17A

FIG. 17B

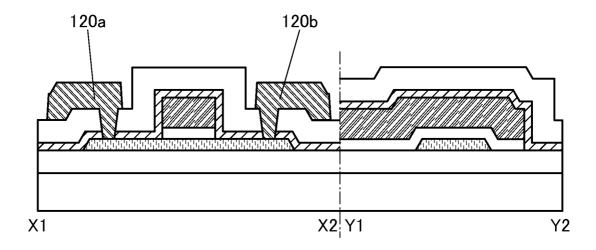


FIG. 18A

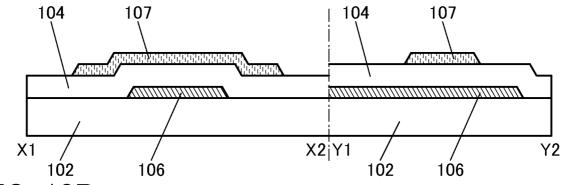


FIG. 18B

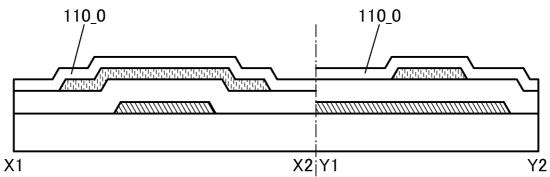


FIG. 18C

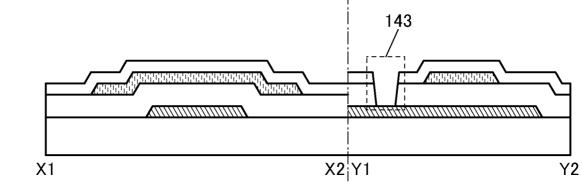


FIG. 18D

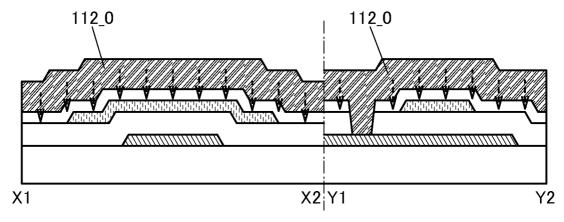


FIG. 19A

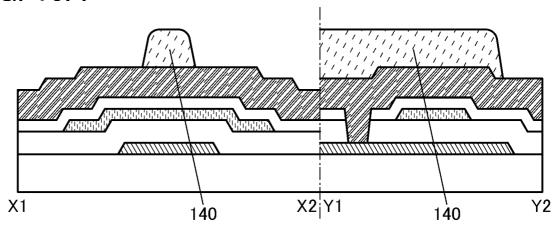


FIG. 19B

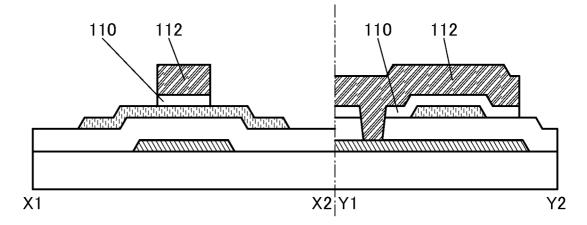


FIG. 19C

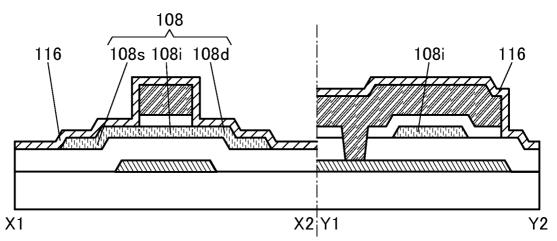


FIG. 20A

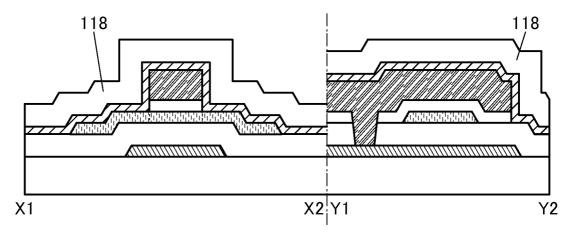


FIG. 20B

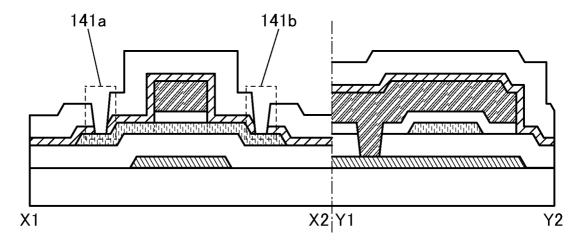


FIG. 20C

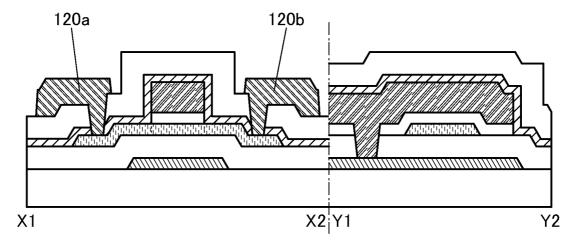


FIG. 21A

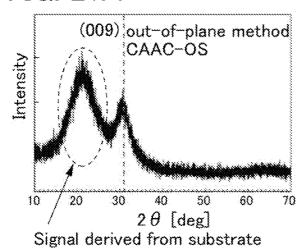


FIG. 21B

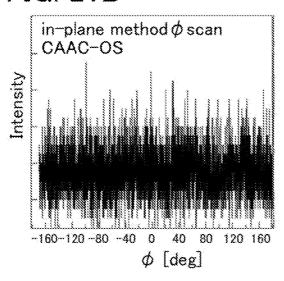


FIG. 21C

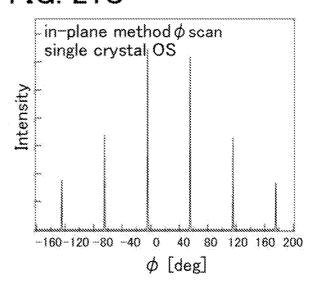


FIG. 21D

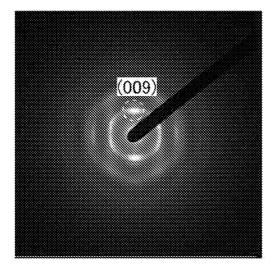


FIG. 21E

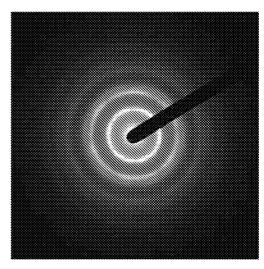


FIG. 22A

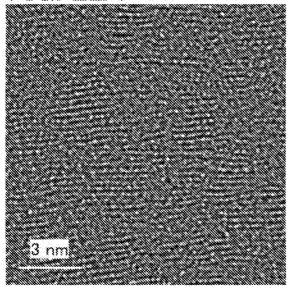


FIG. 22B

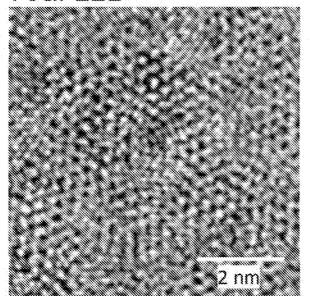


FIG. 22D

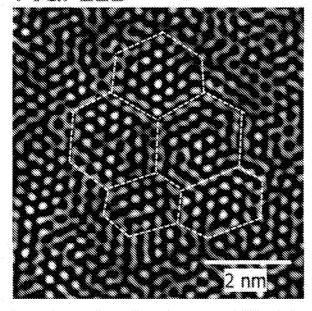


FIG. 22C

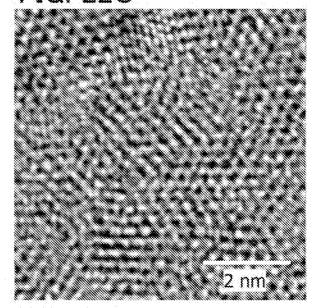


FIG. 22E

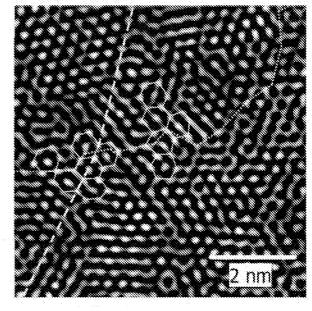


FIG. 23A

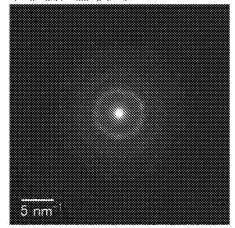


FIG. 23C

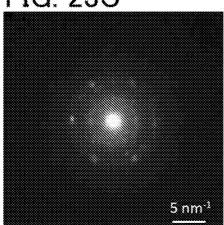


FIG. 23D

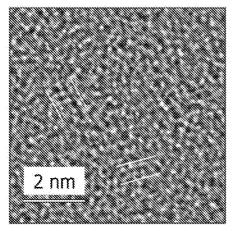


FIG. 23B

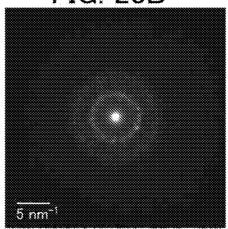


FIG. 24A

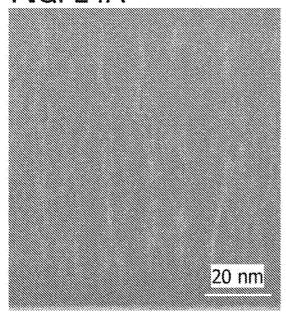


FIG. 24B

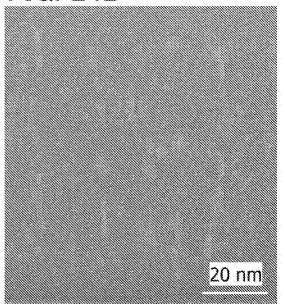


FIG. 25

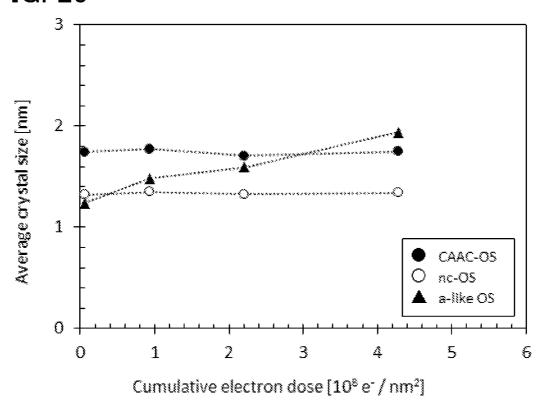
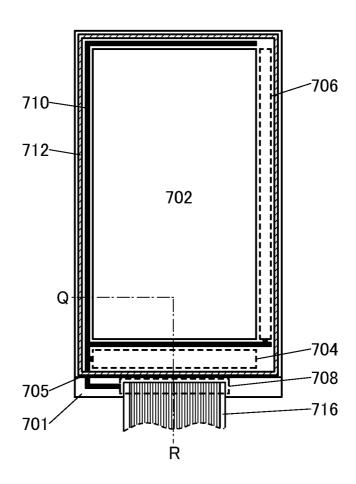
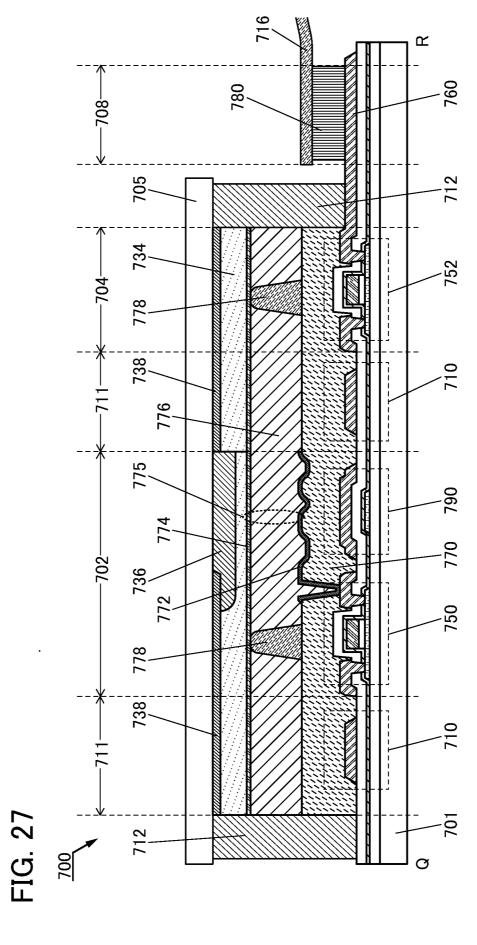
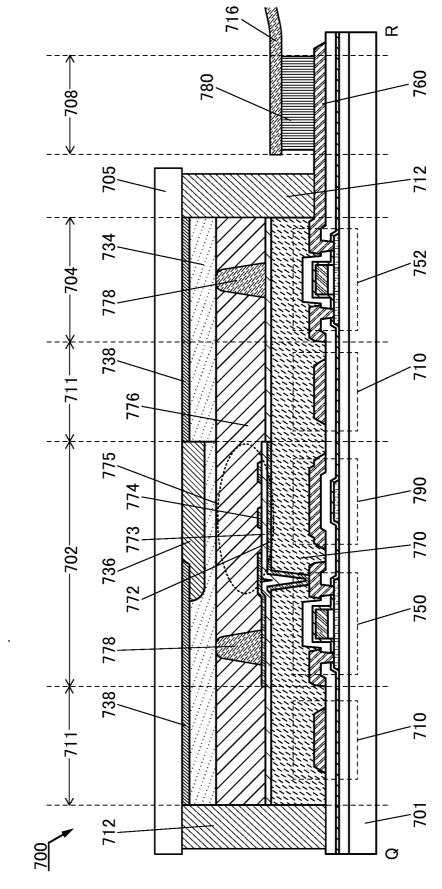




FIG. 26

PCT/IB2016/054765


 α

99/

752 790 786 770 782 788 784

780

FIG. 29

PCT/IB2016/054765

FIG. 30A

300A

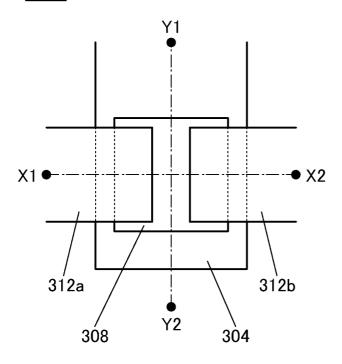


FIG. 30B

300A

FIG. 30C

300A

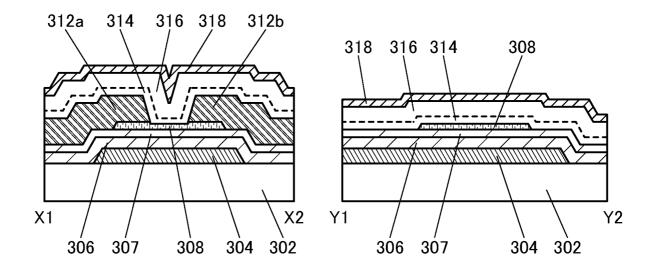


FIG. 31A

<u>300B</u>

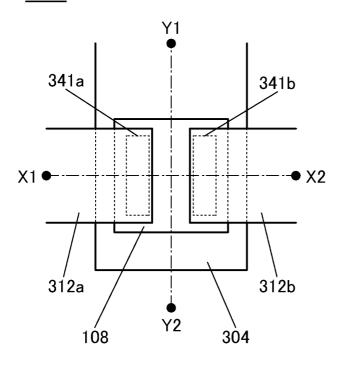


FIG. 31B

300B

FIG. 31C

300B

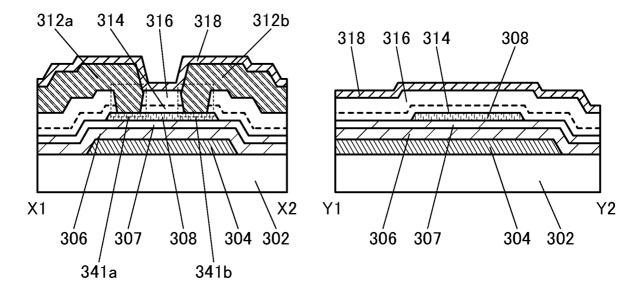


FIG. 32A

300C

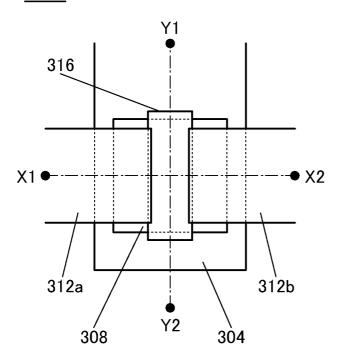


FIG. 32B

300C

FIG. 32C

300C

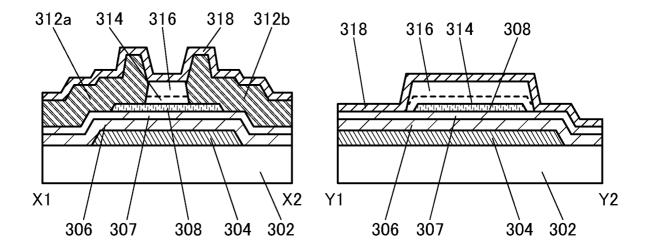


FIG. 33A

300D

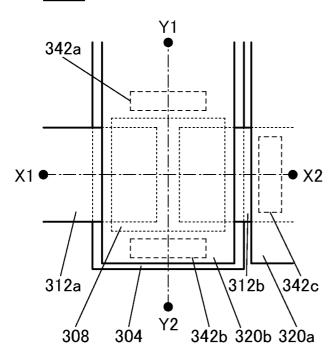


FIG. 33B

FIG. 33C

300D

300D

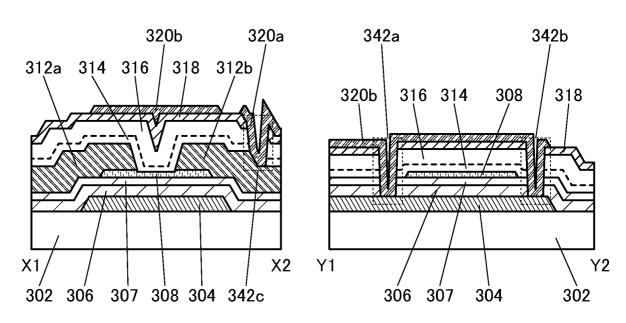
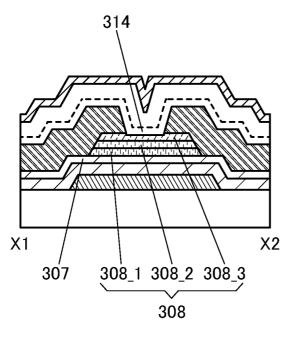



FIG. 34A

<u>300E</u>

FIG. 34B

<u>300E</u>

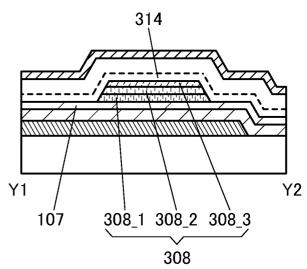
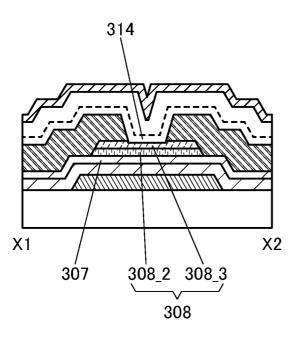



FIG. 34C

<u>300F</u>

FIG. 34D

<u>300F</u>

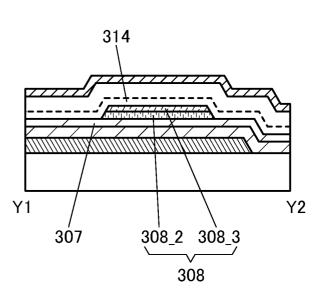


FIG. 35

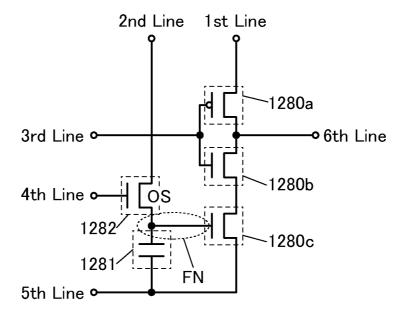


FIG. 36A

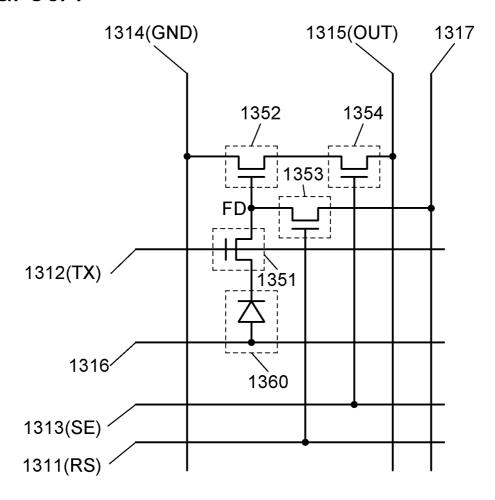


FIG. 36B

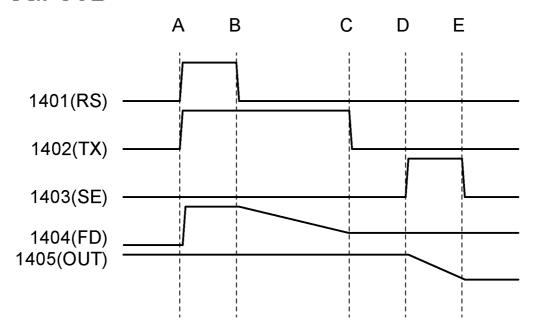


FIG. 37A

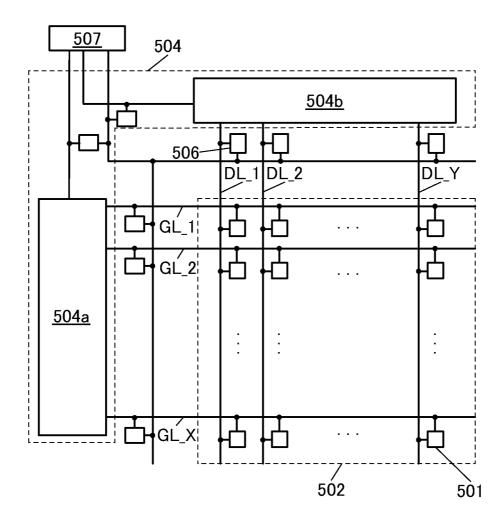


FIG. 37B

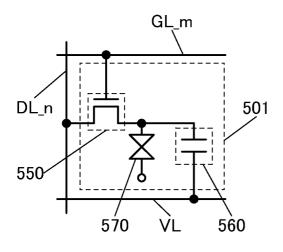


FIG. 37C

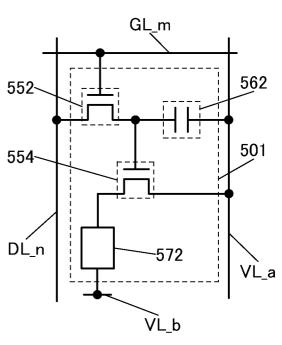


FIG. 38A

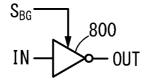


FIG. 38B

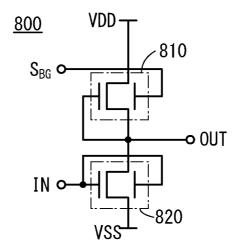


FIG. 38C

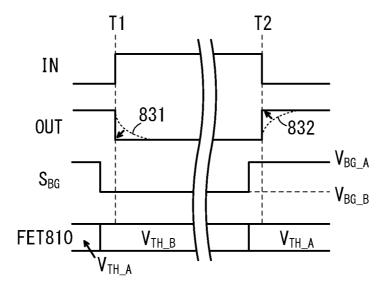
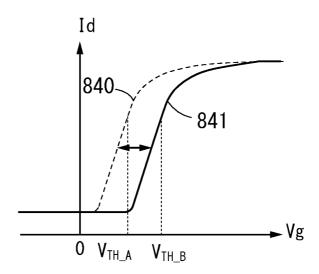



FIG. 39A

39/71

FIG. 39B

 $V_{\text{BG_B}}$

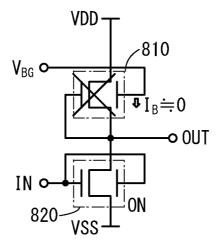


FIG. 39C

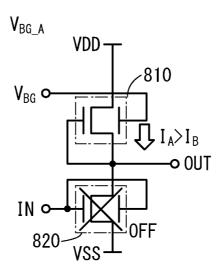


FIG. 40A

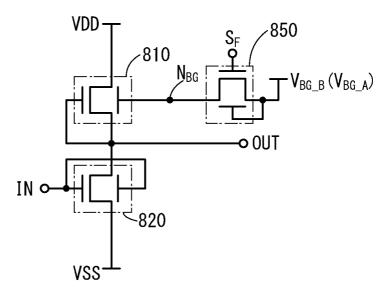


FIG. 40B

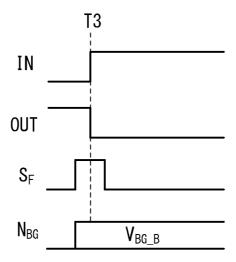


FIG. 41A

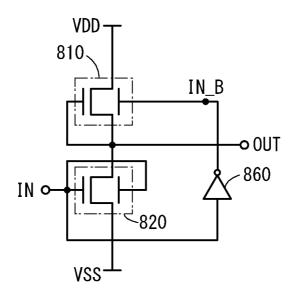


FIG. 41B

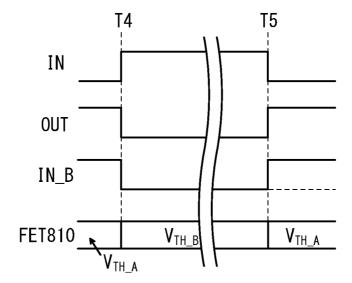


FIG. 42A

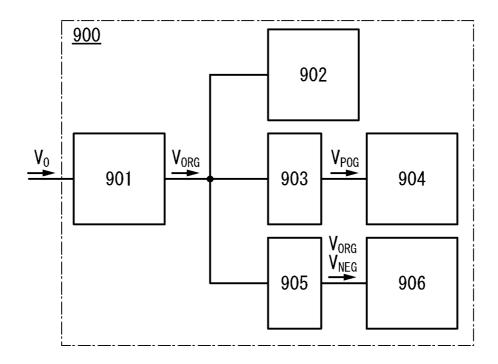


FIG. 42B

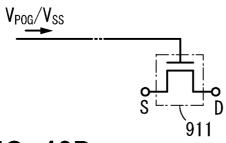


FIG. 42C

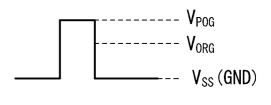


FIG. 42D

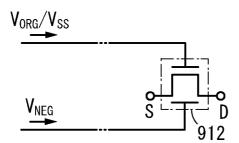


FIG. 42E

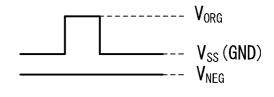


FIG. 43A

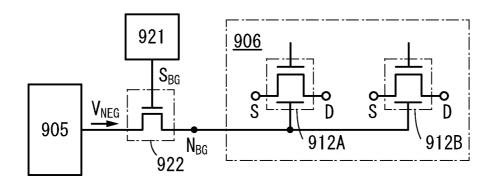


FIG. 43B

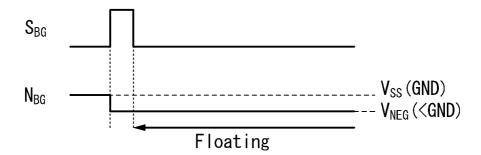
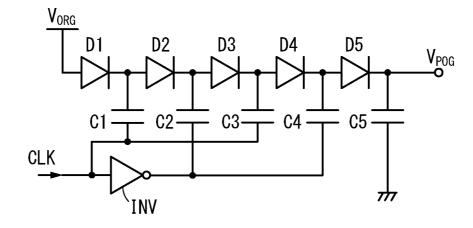
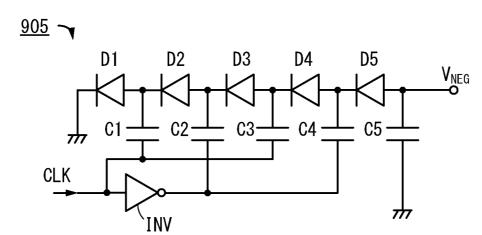
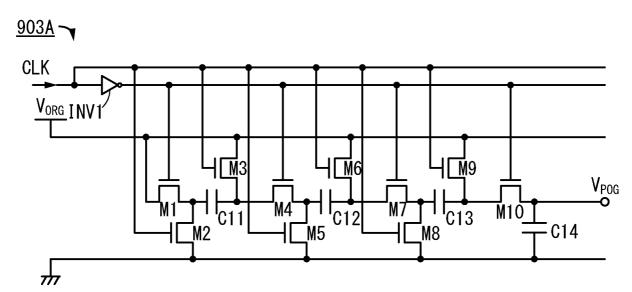


FIG. 44A

903

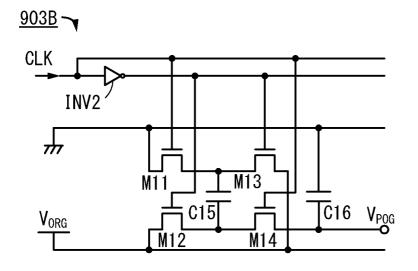

FIG. 44B

FIG. 45A

FIG. 45B

FIG. 45C

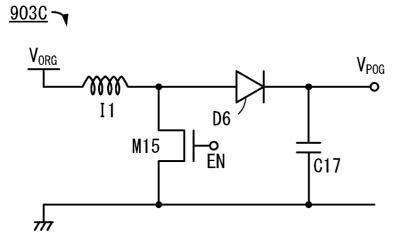


FIG. 46A

903D ~

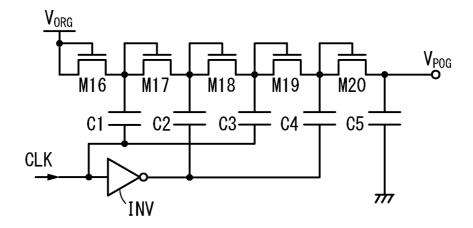


FIG. 46B

<u>903E</u> →

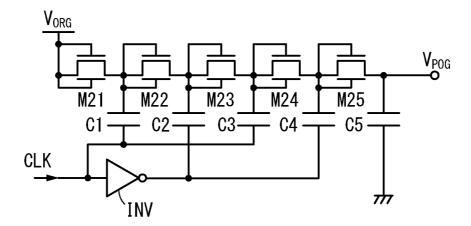


FIG. 47A

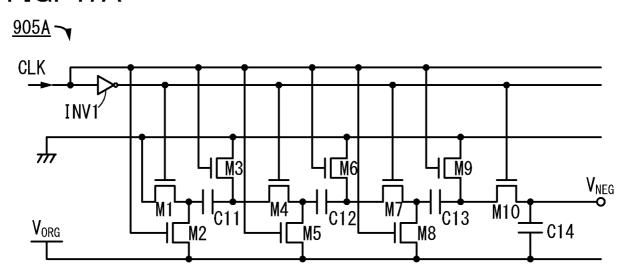


FIG. 47B

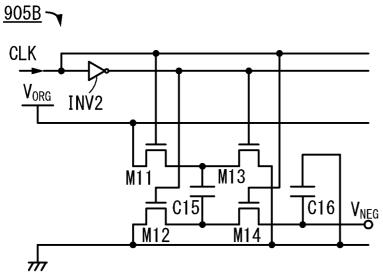


FIG. 47C

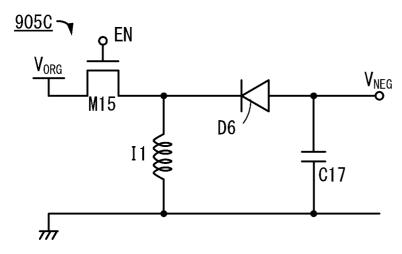


FIG. 48A

905D ~

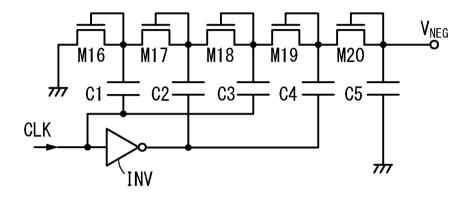
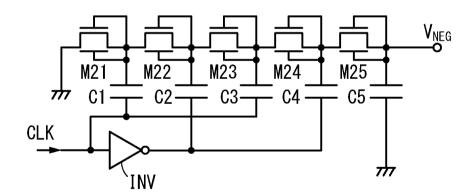



FIG. 48B

<u>905E</u> →

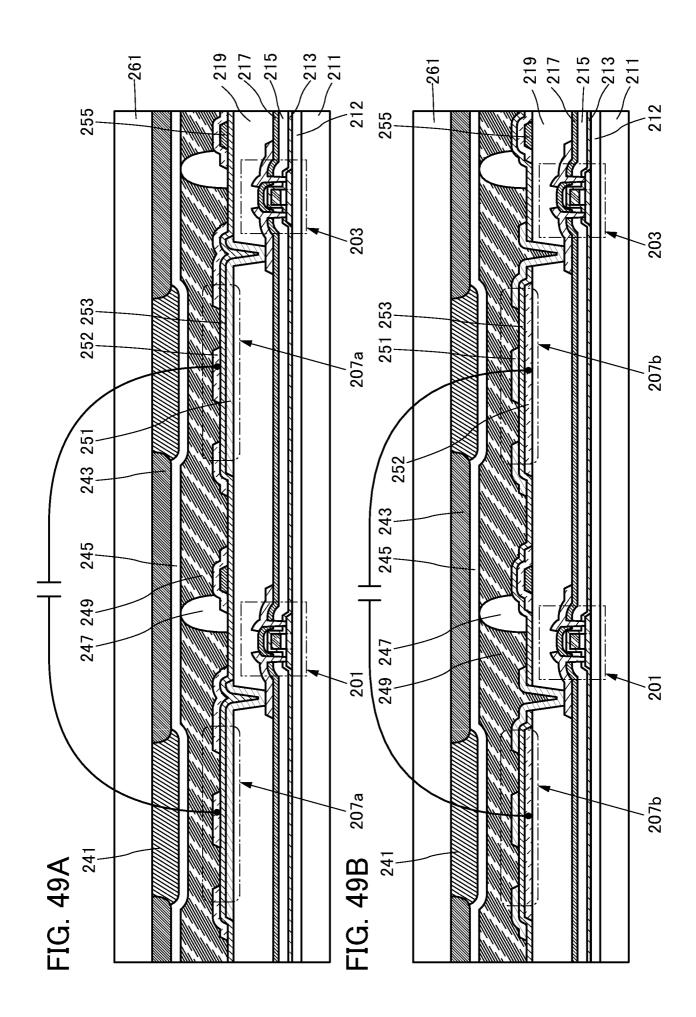
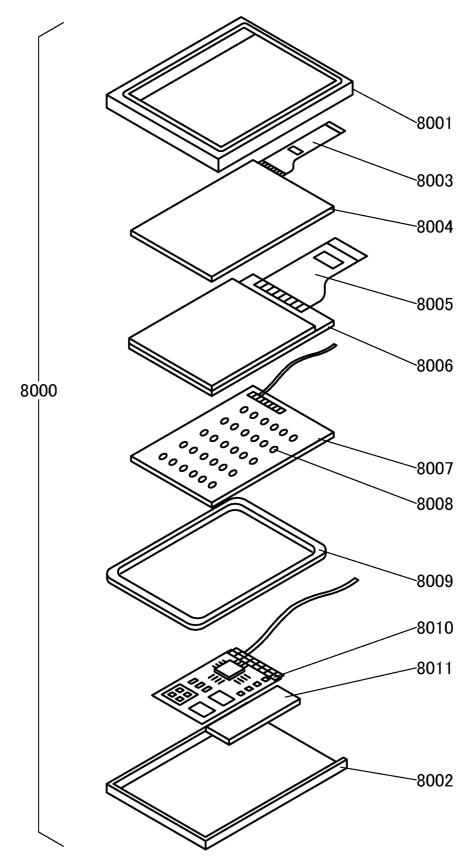



FIG. 50

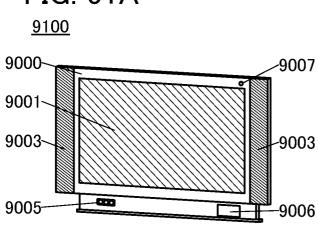


FIG. 51D

9200

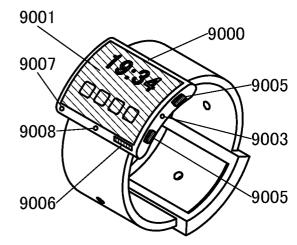


FIG. 51B

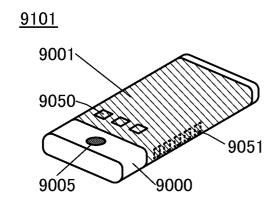


FIG. 51E

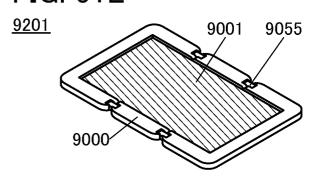


FIG. 51C

<u>9102</u>

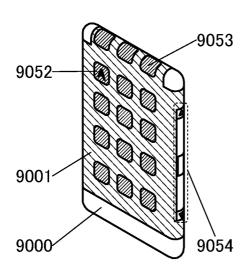


FIG. 51F
9201
9000
9000

FIG. 51G

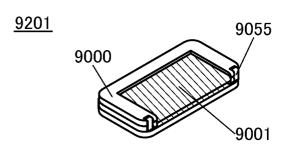


FIG. 52A

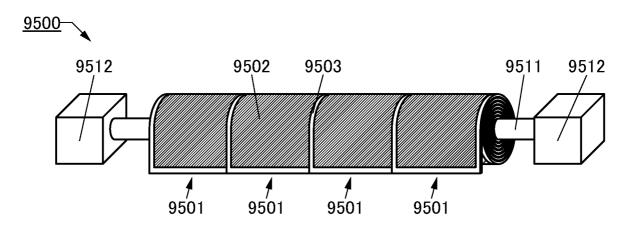
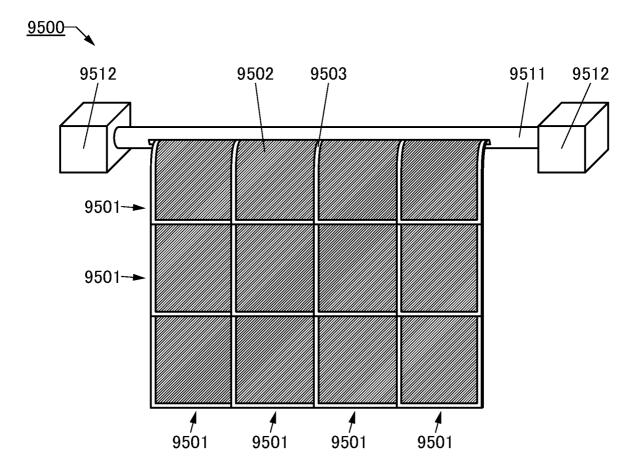



FIG. 52B

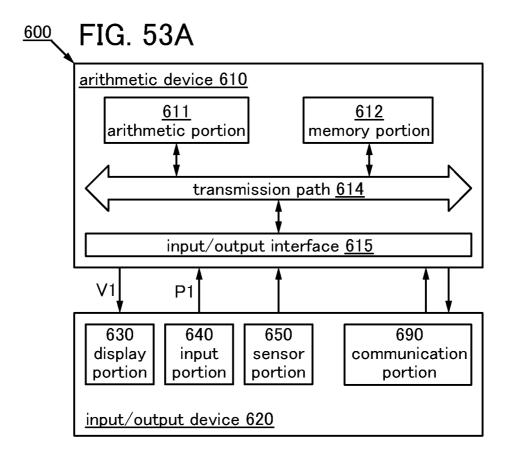


FIG. 53B

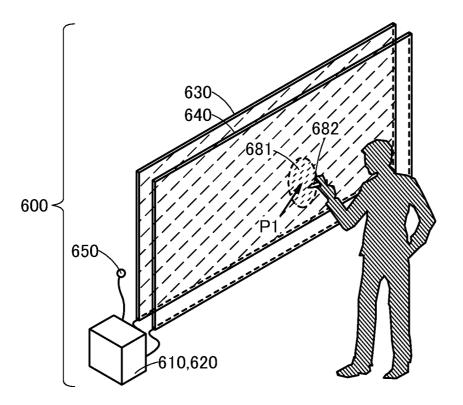


FIG. 54A

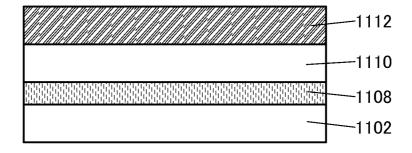


FIG. 54B

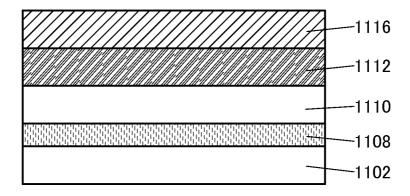


FIG. 54C

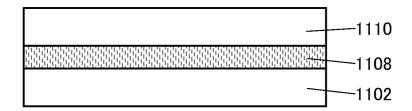


FIG. 55A

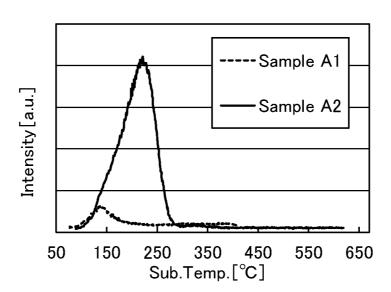


FIG. 55B

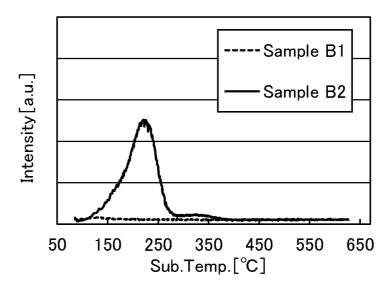


FIG. 55C

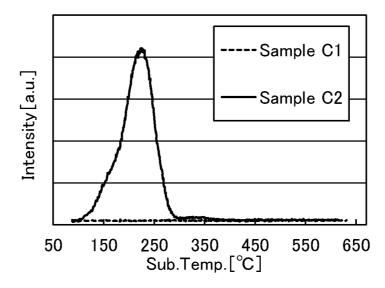


FIG. 56

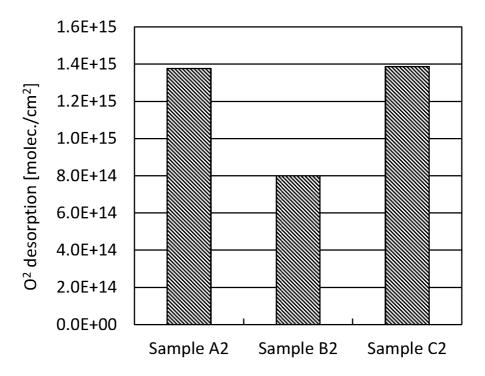


FIG. 57

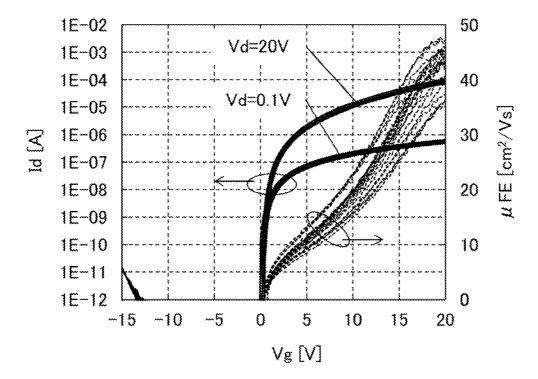


FIG. 58

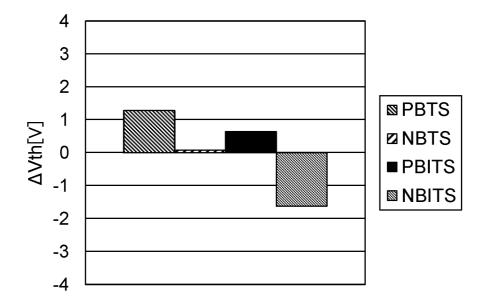


FIG. 59A

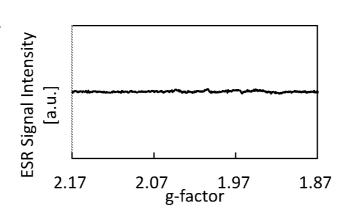


FIG. 59B

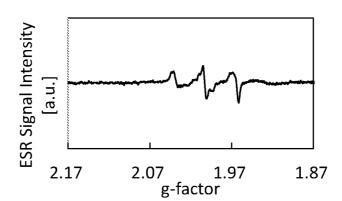


FIG. 59C

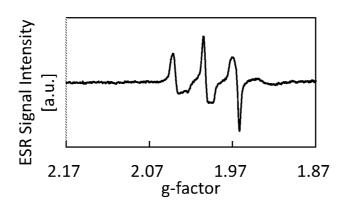


FIG. 59D

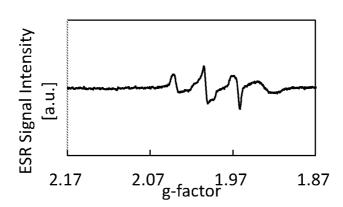


FIG. 60

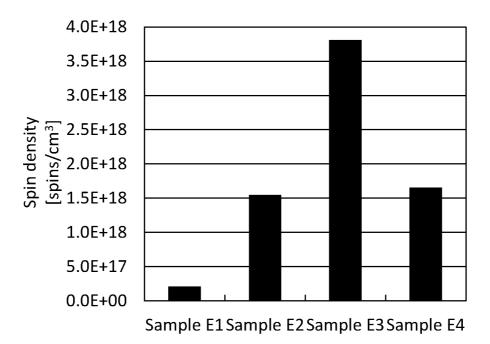


FIG. 61A

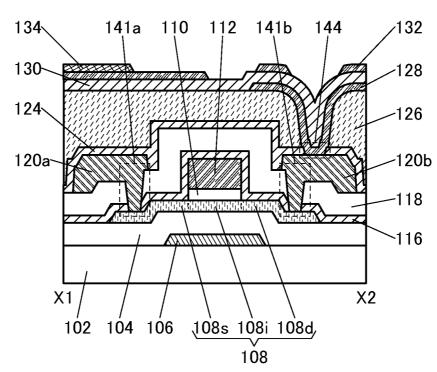


FIG. 61B

100L

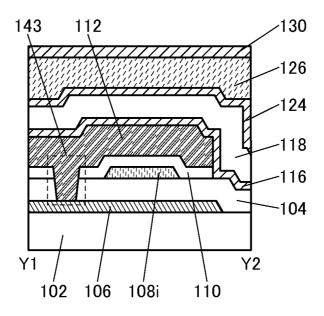


FIG. 62

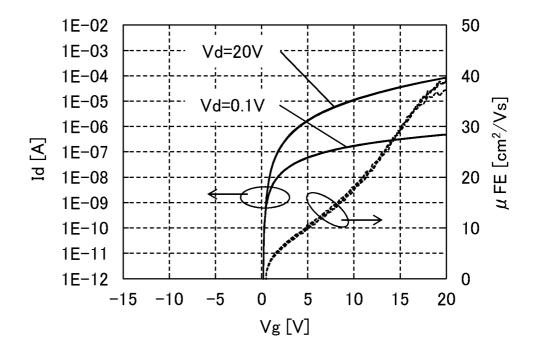


FIG. 63

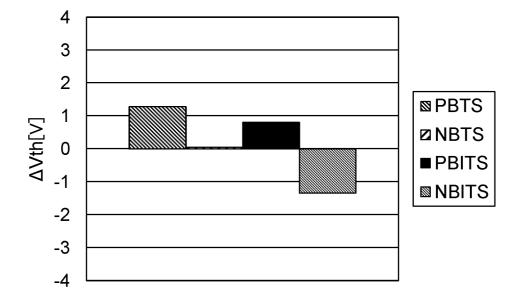


FIG. 64

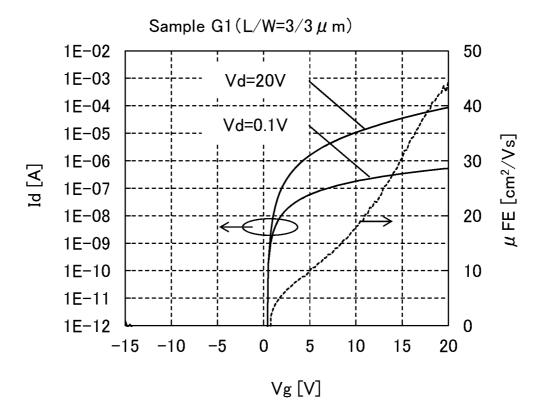


FIG. 65

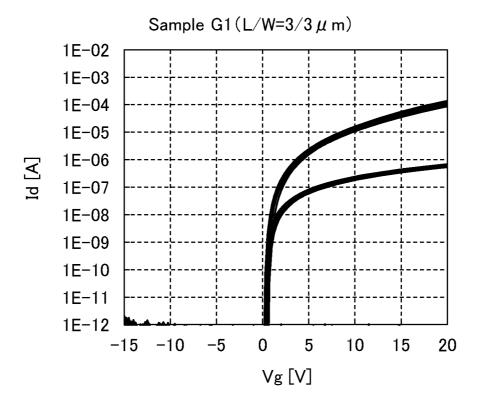


FIG. 66

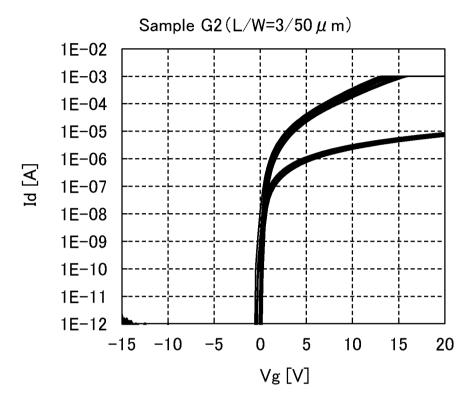


FIG. 67

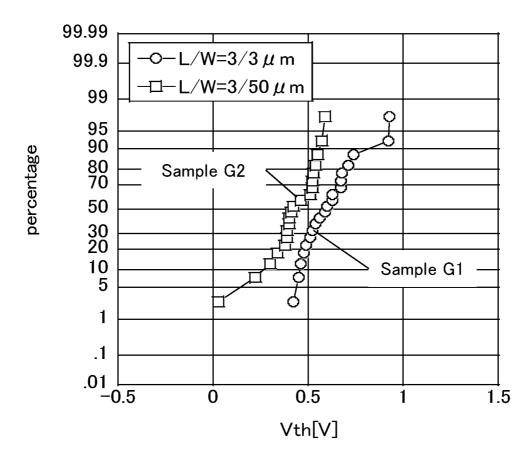
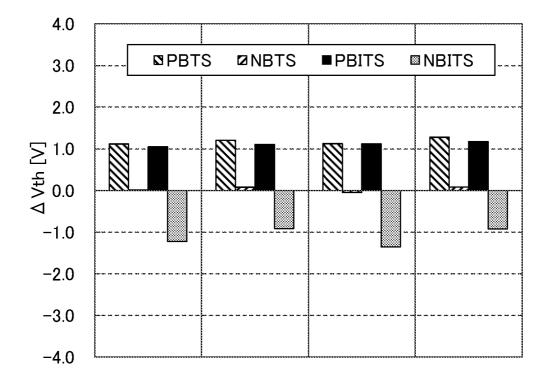
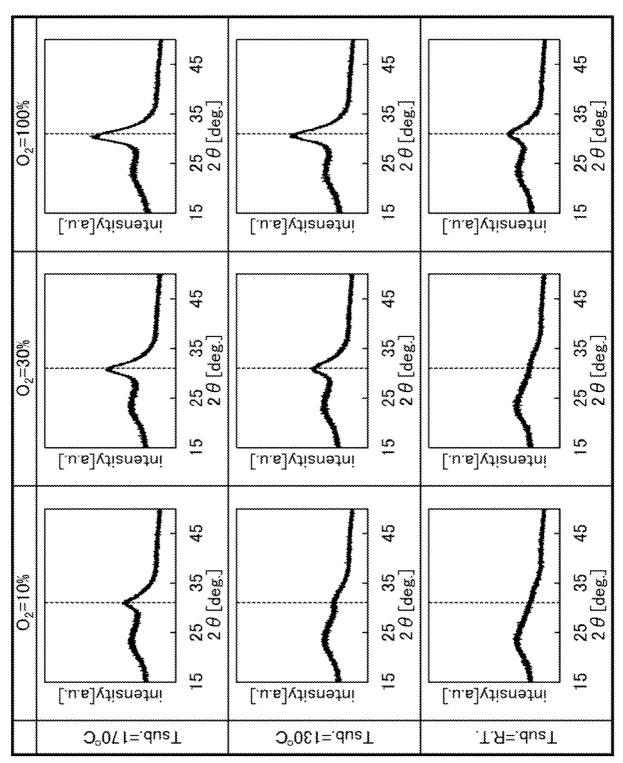




FIG. 68

	Sample G1	Sample G2	Sample G3	Sample G4
	Center		Edge	
L/W	$3/3\mu$ m	$3/50\mu$ m	$3/3\mu$ m	$3/50\mu$ m
	Pixel FET size	Driver FET size	Pixel FET size	Driver FET size

FIG. 69

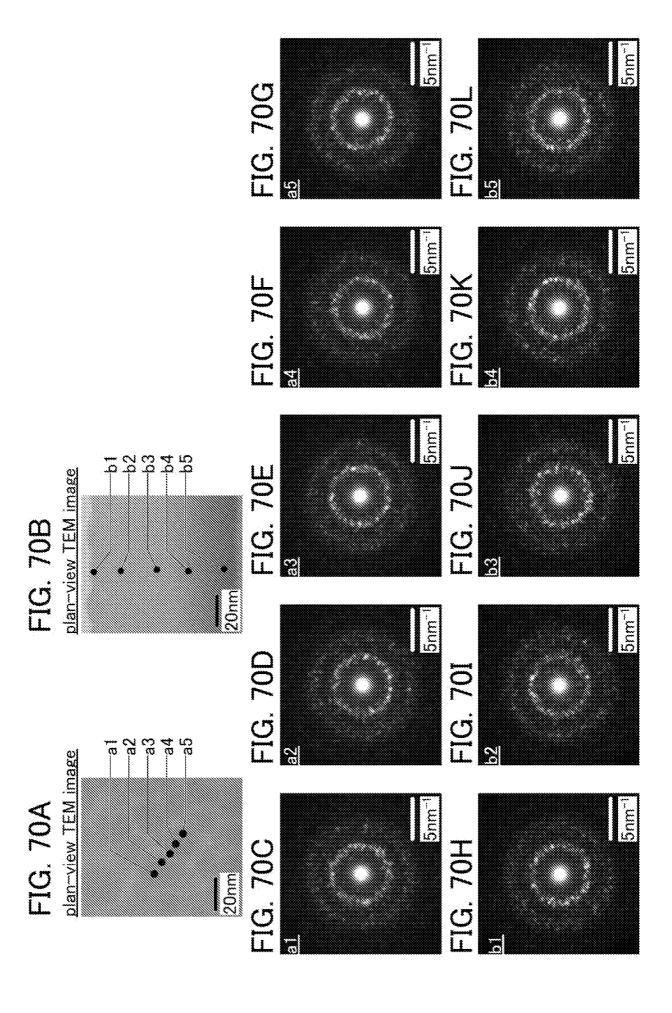


FIG. 71A

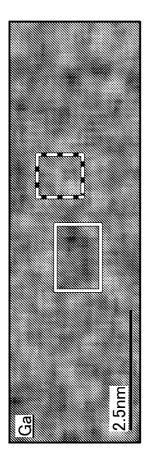


FIG. 71B

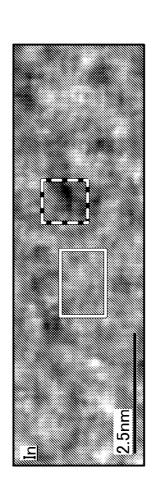
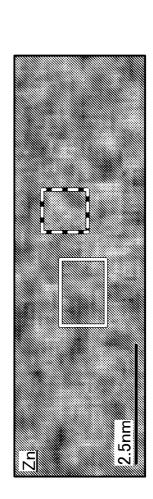



FIG. 71C

International application No. PCT/IB2016/054765

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl. See extra sheet

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl. See extra sheet

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Published examined utility model applications of Japan 1922-1996
Published unexamined utility model applications of Japan 1971-2016
Registered utility model specifications of Japan 1996-2016
Published registered utility model applications of Japan 1994-2016

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 2013/0244374 A1 (OKAZAKI, Kenichi et al.) 2013.09.19, pars. [0069]-[0136], [0385]-[0397], figs. 5-7 & JP 2013-219336 A, pars. [0036]-[0103], [0354]-[0367]	1-17
Y	US 2014/0001468 A1 (YAMAZAKI, Shunpei et al.) 2014.01.02, pars. [0052]-[0171], [0290]-[0304], figs. 1-2 & JP 2014-30000 A, pars. [0032]-[0151], [0270]-[0284], figs. 1-2 & KR 10-2014-0002500 A & TW 201419549 A	1-17

3.4.:		•	See patent raining amien.		
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means			T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention		
		" X "	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone		
		"Y"	Y" document of particular relevance; the claimed invention cam be considered to involve an inventive step when the document combined with one or more other such documents, su combination being obvious to a person skilled in the art		
"P" document publis than the priority of	hed prior to the international filing date but late late claimed	"&"	document member of the same patent family	i iii tiic ait	
Date of the actual completion of the international search		Dat	Date of mailing of the international search report		
	14.11.2016		22.11.2016		
Name and mailing ac	ldress of the ISA/JP	Au	horized officer	5F 4054	
Japan Patent Office		TA	TAKEGUCHI, Yasuhiro		
3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan		Telephone No. +81-3-3581-1101 Ext. 3516			

See patent family annex.

Further documents are listed in the continuation of Box C.

International application No.
PCT/IB2016/054765

	(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
Y	US 2012/0032173 A1 (SATO, Ayumu et al.) 2012.02.09, pars. [0024]-[0068], figs. 1, 8 & JP 2012-33836 A, pars. [0015]-[0057], figs. 1, 8	1-17			
Y	US 2010/0244022 A1 (TAKAHASHI, Kenji; HAYASHI, Ryo) 2010.09.30, pars. [0127]-[0150], figs. 8-10 & JP 2009-176865 A, pars. [0099]-[0114], figs. 8-10 & WO 2009/093722 A1 & TW 201001710 A1	1-17			

International application No. PCT/IB2016/054765

CLASSIFICATION OF SUBJECT MATTER H01L21/336(2006.01)i, C01B21/082(2006.01)i, C23C16/34(2006.01)i, G02F1/1368(2006.01)i, G09F9/00(2006.01)i, H01L21/28(2006.01)i, H01L21/318(2006.01)i, H01L21/8234(2006.01)i, H01L27/06(2006.01)i, H01L27/08(2006.01)i, H01L27/088(2006.01)i, H01L27/146(2006.01)i, H01L29/786(2006.01)i, H01L51/50(2006.01)i, H05B33/14(2006.01)i	

International application No. PCT/IB2016/054765

H01L21/336, C01B21/082, C23C16/34, G02F1/1368, G09F9/00, H01L21/28, H01L21/318, H01L21/8234, H01L27/06, H01L27/08, H01L27/088, H01L27/146, H01L29/786, H01L51/50, H05B33/14