wo 2013/002870 A2 || I 0FV0 000 00O 00 0 O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/002870 A2

3 January 2013 (03.01.2013) WIPOIPCT
(51) International Patent Classification: (74) Agent: LEWIS, William, E.; Ryan, Mason & Lewis, LLP,
GO6F 17/30 (2006.01) 90 Forest Avenue, Locust Valley, NY 11560 (US).
(21) International Application Number: (81) Designated States (uniess otherwise indicated, for every
PCT/US2012/032891 kind of national protection available). AE, AG, AL, AM,
(22) Imternational Filing Date: AO, AT, AU, AZ, BA, BB, BG, BI, BR, BW, BY, BZ,
g Date: . CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
10 April 2012 (10.04.2012) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
(25) Filing Language: English HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
. KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, MF,
(26) Publication Language: English MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(30) Priority Data: OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
13/169,514 27 June 2011 (27.06.2011) Us SE, 8G, SK, SL, SM, ST, SV, 8Y, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA- (84) Designated States (unless otherwise indicated, fO}" every
TION [US/US]; New Orchard Road, Armonk, NY 10504 kind of regional protection available): ARIPO (BW, GH,
(US). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,
(72) Inventor; and TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
(71) Applicant : SOMINSKY, Igor [US/US]; 376 Franklin DK, EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
Avenue, Hewlett, NY 11557 (US). LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
(72) Inventors; and SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
(75) Inventors/Applicants (for US only): CHANG, Yuan-Chi GW, ML, MR, NE, SN, TD, TG).
[US/US]; IBM T.J. Watson Research Center, 19 Skyline Published:

Drive, Hawthorne, NY 10532 (US). KOVED, Lawrence
[US/US]; IBM T.J. Watson Research Center, 19 Skyline
Drive, Hawthorne, NY 10532 (US). LANG, Christian, A.
[DE/US]; 104 S. Patterson Avenue, Apt. #202, Santa Bar-
bara, CA 93111 (US).

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: MULTI-GRANULARITY HIERARCHICAL AGGREGATE SELECTION BASED ON UPDATE, STORAGE AND
RESPONSE CONSTRAINTS

FIG.

1B

CONSTRAINTS
1 110
%ﬁfﬁg OPTIMIZED RECOMMENDED
o | AGGREGATE | AGGREGATE
SELECTION TABLES T0 BE
AGGREGATION
el SYSTE MATERIALIZED

(57) Abstract: Techniques are disclosed for multi-granularity hierarchical aggregate selection based on update, storage and response
constraints. For example, for a temporal hierarchy of aggregation statistics associated with a plurality of database records, wherein
the temporal hierarchy comprises two or more aggregation statistics levels and each level has a different temporal granularity associ-
ated therewith, a method comprises iteratively modifying the temporal hierarchy to at least one of: (a) minimize a storage usage cost
while satisfying a temporal hierarchy update constraint and a query response time constraint; (b) reduce a temporal hierarchy update
time and a query response time while satisfying a storage usage constraint; and (c) minimize a query response time for frequently ap -
plied queries that do not shift in time while satistying the storage usage constraint, wherein the resulting temporal hierarchy that
achieves at least one of (a), (b) and (c) is identitied as an optimal temporal hierarchy.

10

15

20

25

30

WO 2013/002870 PCT/US2012/032891
YOR920110001PCT

MULTI-GRANULARITY HIERARCHICAL AGGREGATE SELECTION BASED ON
UPDATE, STORAGE AND RESPONSE CONSTRAINTS

Field of the Invention

The present invention relates generally to data processing systems and, more
particularly, to improved relational data aggregate selection techniques over the time dimension

in such data processing systems.

Background of the Invention

In the application of electronic payment transaction fraud detection, it is often requested
by fraud detection software to count transaction volume or sum the total dollar amount over
multiple time periods. The intent is to establish statistics of payment history of a payment
receiver, a payment originator or a pair of originator and receiver in order to gauge the
likelihood of the current payment transaction being fraudulent. For example, a sudden surge of
high volume, small dollar amount payment transactions between a pair with no recent history
indicates either a behavior change of payment originator or a hijacked account by a third party.
The transactions in question should then be flagged for investigation.

Common fraud detection software relies on a relational database management system to
store and manage the payment transaction records. Depending on the type of electronic
payment, transaction records can be inserted into the database at any time individually or at
fixed time intervals in batches. The fraud detection software then issues queries in Structured
Query Language (SQL) to the underlying relational database to collect aggregated statistics
about parties involved in the transaction.

The aggregated statistics queries must be answered quickly so that the fraud detection
software can make a decision in a split second. In the presence of hundreds of millions of
transactions in the database, query response times in sub-seconds can only be achieved through
pre-computed results, also known as materialized tables. These materialized tables store
aggregated values such as summation and counts of the raw database transaction records based
on pre-defined queries issued by the fraud detection software. The efficiency and accuracy of

the system depend on the selection of such materialized aggregate tables.

Summary of the Invention

Principles of the invention provide techniques for multi-granularity hierarchical

aggregate selection based on update, storage and response constraints.

1

10

15

20

25

30

WO 2013/002870 PCT/US2012/032891
YOR920110001PCT

For example, in one aspect of the invention, for a temporal hierarchy of aggregation
statistics associated with a plurality of database records, wherein the temporal hierarchy
comprises two or more aggregation statistics levels and each level has a different temporal
granularity associated therewith, a method comprises iteratively modifying the temporal
hierarchy to at least one of: (a) minimize a storage usage cost while satisfying a temporal
hierarchy update constraint and a query response time constraint; (b) reduce a temporal
hierarchy update time and a query response time while satisfying a storage usage constraint;
and (c) minimize a query response time for frequently applied queries that do not shift in time
while satisfying the storage usage constraint, wherein the resulting temporal hierarchy that
achieves at least one of (a), (b) and (c) is identified as an optimal temporal hierarchy.

Advantageously, illustrative principles of the invention provide an aggregate selection
technique that creates a number of materialized relational tables in multiple time granularities to
accelerate relational database queries in the face of frequently inserted data. These materialized
relational tables store aggregated values such as summation and counts of the raw database
transaction records over a specified period of time. The aggregated values often represent basic
statistics of the data that need to be kept fresh as new transaction records are continuously
inserted.

These and other objects, features and advantages of the present invention will become
apparent from the following detailed description of illustrative embodiments thereof, which is

to be read in connection with the accompanying drawings.

Brief Description of the Drawings

FIG. 1A illustrates a block diagram of a data processing system in which one or more
illustrative embodiments of the invention are implemented.

FIG. 1B illustrates a block diagram of an optimized aggregate selection system,
according to an embodiment of the invention.

FIG. 2 illustrates a hierarchical relationship of temporal aggregates as a pyramid with finer
grained aggregates at the bottom and coarse grained aggregates at the top, according to an
embodiment of the invention.

FIG. 3 illustrates a sliding window query over time as new data records are inserted,
according to an embodiment of the invention.

FIG. 4 illustrates a scenario where aggregates are pre-computed at yearly, monthly and

daily intervals, according to an embodiment of the invention.

10

15

20

25

30

WO 2013/002870 PCT/US2012/032891
YOR920110001PCT

FIG. 5 illustrates a scenario where aggregates are pre-computed at yearly, quarterly and
weekly intervals, according to an embodiment of the invention.

FIG. 6 is a flow diagram of steps to selectively materialize some levels in the time
hierarchy to minimize extra storage space, according to an embodiment of the invention.

FIG. 7 is a flow diagram of steps to selectively materialize some levels in the time
hierarchy to minimize update and query cost, according to an embodiment of the invention.

FIG. 8 is a flow diagram of steps to selectively materialize some granules across the

time hierarchy to minimize query response time, according to an embodiment of the invention.

Detailed Description

Ilustrative embodiments of the invention will be described herein in the context of one
or more illustrative data processing systems. However, it is to be understood that principles of
the invention are not limited to any particular data processing system and may be implemented
in systems other than the illustrative ones described herein.

A key problem addressed by illustrative principles of the invention is the problem of
selecting materialized tables in a database subject to constraints on query response time, update
cost, and storage usage. More specifically, the query workload is of the nature to aggregate
transactions over specified sliding windows. For example, a workload may comprise queries to
compute transaction volumes for a given payment originator over periods of the past day, week,
month, six months, one year, and five years. It may also comprise queries to compute average
dollar amount of transactions between a pair of payment originator and receiver over periods of
the past day, week, month, and one year.

The materialized table selection problem is further complicated with periods of new
transactions insetted into the database, thereby requiring the database management system to
maintain the pre-computed results stored in the tables. More materialized tables improve query
response time. However, they also increase update cost and storage space. In accordance with
illustrative principles of the invention, we propose algorithmic ways of selectively materializing
granules of aggregated values in the temporal hierarchy.

Illustrative principles of the invention described herein provide a computer-implemented
method, a data processing system, and a computer program product for selecting materialized
tables in a relational database to accelerate temporal aggregation queries in the face of
frequently inserted records. The inventive techniques search for granules in the temporal
hierarchy to pre-compute aggregated values subject to constraints in query response time,

update cost, and storage usage. More specifically, sliding window queries, which shift query

3

10

15

20

25

30

WO 2013/002870 PCT/US2012/032891
YOR920110001PCT

predicates temporally, are satisfied with multiple granularities at selected levels in the temporal

~hierarchy. Depending on the optimization objective, being response time or storage space,

levels in the hierarchy are added or subtracted in iterations of cost estimation to meet respective
constraints. The result is an optimized set of materialized tables to accelerate queries.

With reference now to the figures and in particular with reference to FIG. 1A, a block
diagram of a data processing system is shown in which one or more illustrative embodiments of
the invention may be implemented. The system includes one or more central processing units
(CPU) 100, main memory 102 and storage devices 104. Computer-executable code or
instructions implementing the processes of the illustrative embodiments are executed by the
CPU 100 and located temporatily in the main memory 102. The storage devices 104 are used
to store the instructions as well as database records (e.g., formatted text documents) to be
processed by the system.

FIG. 1B illustrates a block diagram of an optimized aggregate selection system,
according to an embodiment of the invention. As shown, system 110 takes as input database
records, aggregation statistics and given constraints, and outputs recommended aggregate tables
to be materialized. As will be explained in detail below, one or more of the methodologies that
are described below in the context of FIGs. 6-8 may be executed by system 110 to yield the
output results. It is also to be appreciated that system 110 may implement the data processing
system architecture of FIG. 1A in order to execute the one or more methodologies.

Turning now to FIG. 2, the diagram depicts a hierarchical relationship of temporal
aggregates as a pyramid with the finer grained aggregates at the bottom and the coarse grained
aggregates at the top. At the highest level stand the pre-computed aggregates on a yearly basis
200. For example, a materialized table at this level may store the total volume of transactions by
payment originator in the years 2010, 2009, 2008, 2007, and 2006, where each year is considered a
granule. A quety to compute the total volume of transactions in the past three years from Jan 1,
2010 can be answered simply by adding the three pre-computed results from 2010, 2009, and
2008.

The next level down in the time hierarchy stores aggregates pre-computed on a quarterly
basis 202. A query to compute total transaction volume in the past three years from April 1, 2011
can be answered by adding results from Q1 of 2011, 2010, 2009 plus Q4, Q3 and Q2 of 2008.
Thus, quarters are the granules at this level.

Similarly, monthly 204, weekly 206, daily 208, and hourly 210 aggregates can be pre-
computed and stored in materialized tables (with months, weeks, days and hours being the

granules, respectively). At the bottom of the hierarchy are the raw transaction data records 212,

4

10

15

20

25

30

WO 2013/002870 PCT/US2012/032891
YOR920110001PCT

from which all the aggregates can be computed at the expense of long query response time. We
can safely assume these records always exist although preferably none or a tiny fraction is
accessed to answer a query.

It is to be appreciated that for a known query workload, not every granule at each level
needs to be pre-computed and stored. Monthly aggregates may be derived from weekly or daily
aggregates at the expense of query response time. Therefore, it is important to understand the
nature of typical queries in the context of the illustrative description of the invention given herein.

FIG. 3 depicts a sliding window query over time as new data records are inserted. On
an hourly basis, new batches of transactions are inserted as shown through 306, 308 and 310.
The time spans associated with 300, 302, and 304 suggest queries also shift the predicate on
time, often through SQL predicate on CURRENT TIMESTAMP minus a fixed period, e.g., one
year, one week or one day. As time progresses from right to left in this figure, query 300
includes transactions in 306. Query 302 includes transactions in 306 and 308. Query 304
includes transactions in 306, 308 and 310. As the sliding window queries progressively include
newly inserted data, they also progressively exclude some hourly aggregates at the beginning of
the window (i.e., see the right side of FIG. 3).

It is clear from this example that the nature of sliding window queries leads to granules
at the lower levels of the time hierarchy (hourly, daily) being materialized at the beginning and
ending parts of a query window, while granules at the higher levels of the time hierarchy
(yearly) are materialized at the middle part of a query window.

It is realized that specific query workload, update cost and storage usage decide selected
levels of materialization. FIG. 4 illustrates a scenario where aggregates are pre-computed at
yearly, monthly and daily intervals. FIG. 5 illustrates a scenario where aggregates are pre-
computed at yearly, quarterly and weekly intervals. Note that the reference numerals in FIG. 4
correspond to those used in FIG. 2 but are simply incremented by 200, while the reference
numerals in FIG. 5 correspond to those used in FIG. 2 but are simply incremented by 300.

Thus, to answer a sliding window query over the past five years, the scheme in FIG. 4
needs to store four yearly aggregates plus 12 monthly aggregates plus 30 daily aggregates. The
scheme in FIG. 5 needs to store four yearly aggregates plus four quarterly aggregates plus four
weekly aggregates. At first glance, the FIG. 5 scheme has the advantage of fewer aggregates
and lower storage usage. However, its update cost will take longer since more raw transaction
data has to be accessed to refresh the weekly aggregate of the current week. In contrast, the
FIG. 4 scheme can update the daily aggregate of the current day by accessing 1/7" of the raw

transaction data that needs to be accessed in the scheme of FIG. 5.

5

10

15

20

25

30

WO 2013/002870 PCT/US2012/032891
YOR920110001PCT

Real-world query workload issued by fraud detection software rarely has only one fixed
period as illustrated in the scenarios in FIG. 4 and FIG. 5. Instead, a workload typically
contains a mixture of queries possibly over periods of the past day, week, month, six months,
one year, or five years. Optimal materialization selection cannot be searched manually.
Illustrative principles of the invention provide three algorithmic solutions to selectively
materialize multiple granularities in the time hierarchy, subject to optimization objectives and
associated constraints. These three solutions are described below in detail in the context of
FIGs. 6, 7 and 8, respectively.

FIG. 6 shows a flow diagram of steps to selectively materialize some levels in the time
hierarchy to minimize storage space, subject to constraints on query response time and update
cost. In practical situations, this translates, e.g., to processing ten million transactions in a batch
window of ten minutes. The algorithm starts by assuming all the levels in the time hierarchy to
be materialized (step 600). It then estimates the storage usage (cost) at each level (step 602).
For example, materializing daily aggregates takes seven times more space than materializing
weekly aggregates. Step 604 sets an insert workload for the next K windows. For example, the
database administrator may choose to optimize for an insert workload for five business days
with eight batch inserts for each day. The insert workload is then characterized as 5x8 = 40
batch inserts.

Steps 606 through 614 iteratively remove temporal levels to reduce storage space
occupied by materialized tables without violating query and update constraints. For each level,
step 606 removes the level and step 608 estimates costs of the remaining materialization levels.
For example, if the monthly level is removed, its upper level quarterly aggregates can be
computed using its lower level weekly aggregates. The number of queries in the workload that
requires such runtime computation determines if the storage saving outweighs longer query
response time.

Step 610 finds the level with the most aggressive storage space reduction without
violating query and update constraints. If a solution is found (step 612), the next iteration
begins (step 614) to remove another temporal level. If no solution can be found, the algorithm
stops and recommends the current set of temporal levels to be materialized.

FIG. 7 shows a flow diagram of steps to selectively materialize some levels in the time
hierarchy to minimize update and query cost. The solution mirrors the algorithm described in
FIG. 6. This algorithm in FIG. 7 seeks to minimize query response time and update cost subject

to storage space constraint.

10

15

20

25

30

WO 2013/002870 PCT/US2012/032891
YOR920110001PCT

The algorithm starts by assuming none of the levels in the time hierarchy is materialized
(step 700). It then estimates the storage usage (cost) at each level (step 702). The insert
workload is then given at step 704.

Steps 706 through 714 iteratively add temporal levels to increase storage space occupied
by materialized tables to decrease query and update costs. For each level, step 706 first adds a
level to the set of levels already chosen. The algorithm estimates the added storage space and
the benefit of materializing the level chosen (step 708).

Step 710 finds the level with the most reduction in query and update cost without
violating storage space constraints. If a solution is found (step 712), the next iteration begins
(step 714) to add another temporal level. If no solution can be found, the algorithm stops and
recommends the current set of temporal levels to be materialized.

It is to be appreciated that the algorithms described in the context of FIGs. 6 and 7 are
more applicable to sliding window queries such as are depicted in FIG. 3. However, it is to be
further appreciated that some statistics requested by fraud detection software may not fall in the
category of sliding window queries. For example, fraud detection statistics may query
aggregated values for the same month last year. In such case, the search of optimal time
granules needs to be generalized to all possible temporal nodes. By nodes, we mean the atomic
unit represented in the time hierarchy. For example, the yearly aggregate 2010 is a node, so is
the monthly aggregate March 2011, etc.

FIG. 8 shows a flow diagram of steps to selectively materialize some granules across the
time hierarchy to minimize query response time. The optimal answer has computational
complexity equivalent to Knapsack optimization, a known NP problem. We thus apply a
greedy heuristic to search for a suitable answer.

The algorithm starts by assuming none of the nodes is materialized (step 800). It then
estimates the storage usage (cost) at each node (step 802). The insert workload is then given at
step 804.

Steps 806 through 812 iteratively add nodes to increase storage space occupied by
materialized tables while decreasing query and update costs at the same time (step 806). This
greedy heuristic looks for the node with the best cost-benefit ratio (step 808). The top nodes are
then added to the set (step 810). The heuristic stops if the storage cost constraint is violated
(step 812). Else, it continues to add more nodes to materialize in relational tables.

It is to be appreciated that while FIGs. 6, 7 and 8 illustrate methodologies that may be
executed separately and independently by an optimized aggregate selection system (110 in FIG.

1B), it is to be understood that the system could advantageously execute two or more of the

7

10

15

20

25

30

WO 2013/002870 PCT/US2012/032891
YOR920110001PCT

methodologies in combination. In this manner, multi-granularity hierarchical aggregate
selection based on update, storage and response constraints may be achieved.

As will be appreciated by one skilled in the art, aspects of the present invention may be
embodied as a system, apparatus, method or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects that may all generally be referred to
herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one or more computer readable
medium(s) having computer readable program code embodied thereon.

Any combination of one or more computer readable medium(s) may be utilized. The
computer readable medium may be a computer readable signal medium or a computer readable
storage medium. A computer readable storage medium may be, for example, but not limited to,
an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus,
or device, or any suitable combination of the foregoing. More specific examples (a non-
exhaustive list) of the computer readable storage medium would include the following: an
electrical connection having one or more wires, a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory (ROM), an erasable programmable read-
only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable
combination of the foregoing. In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus, or device.

A computer readable signal medium may include a propagated data signal with
computer readable program code embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a variety of forms, including, but not
limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable
signal medium may be any computer readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport a program for use by or in
connection with an instruction execution system, apparatus, or device.

Program code embodied on a computer readable medium may be transmitted using any
appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc.,

or any suitable combination of the foregoing.

10

15

20

25

30

WO 2013/002870 PCT/US2012/032891
YOR920110001PCT

Computer program code for carrying out operations for aspects of the present invention
may be written in any combination of one or more programming languages, including an object
oriented programming language such as Java, Smalltalk, C++ or the like and conventional
procedural programming languages, such as the “C” programming language or similar
programming languages. The program code may execute entirely on the user’s computer,
partly on the user's computer, as a stand-alone software package, partly on the uset's computer
and partly on a remote computer or entirely on the remote computer or server. In the latter
scenario, the remote computer may be connected to the user's computer through any type of
network, including a local area network (LAN) or a wide area network (WAN), or the
connection may be made to an external computer (for example, through the Internet using an
Internet Service Provider).

Aspects of the present invention are described herein with reference to flowchart
illustrations and/or block diagrams of methods, apparatus (systems) and computer program
products according to embodiments of the invention. It will be understood that each block of
the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by computer program instructions.
These computer program instructions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable data processing apparatus to
produce a machine, such that the instructions, which execute via the processor of the computer
or other programmable data processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in a computer readable
medium that can direct a computer, other programmable data processing apparatus, or other
devices to function in a particular manner, such that the instructions stored in the computer
readable medium produce an article of manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram block or blocks.

The computer program instructions may also be loaded onto a computer, other
programmable data processing apparatus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable apparatus or other devices to produce a
computer implemented process such that the instructions which execute on the computer or
other programmable apparatus provide processes for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks.

Referring again to FIGs. 1A through 8, the diagrams in the figures illustrate the

architecture, functionality, and operation of possible implementations of systems, methods and

9

10

15

20

25

30

WO 2013/002870 PCT/US2012/032891
YOR920110001PCT

computer program products according to various embodiments of the present invention. In this
regard, each block in a flowchart or a block diagram may represent a module, segment, or
portion of code, which comprises one or more executable instructions for implementing the
specified logical function(s). It should also be noted that, in some alternative implementations,
the functions noted in the block may occur out of the order noted in the figures. For example,
two blocks shown in succession may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block diagram and/or flowchart
illustration, and combinations of blocks in the block diagram and/or flowchart illustration, can
be implemented by special purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hardware and computer instructions.

Accordingly, techniques of the invention, for example, as depicted in FIGs. 1A-8, can
also include, as described herein, providing a system, wherein the system includes distinct
modules (e.g., modules comprising software, hardware or software and hardware). By way of
example only, the modules may include but are not limited to an optimized aggregate selection
module. This and other modules may be configured, for example, to perform the steps
described and illustrated in the context of FIGs. 1A-8.

One or more embodiments can make use of software running on a general purpose
computer or workstation comprising a processor, a memory, and an input/output interface
formed, for example, by a display and a keyboard. The term “processor” as used herein is
intended to include (but not be limited to) any processing device, such as, for example, one that
includes a CPU (central processing unit) and/or other forms of processing circuitry. Further,
the term “processor” may refer to more than one individual processor. The term “memory” is
intended to include (but not be limited to) memory associated with a processor or CPU, such as,
for example, RAM (random access memory), ROM (read only memory), a fixed memory
device (for example, hard drive), a removable memory device (for example, diskette), a flash
memory and the like. In addition, the phrase “input/output interface” as used herein, is intended
to include (but not be limited to) one or more mechanisms for inputting data to the processing
unit (for example, keyboard or mouse), and one or more mechanisms for providing results
associated with the processing unit (for example, display or printer).

The processor, memory, and input/output interface such as display and keyboard can be
interconnected, for example, via bus as part of a data processing unit (e.g., FIG. 1A). Suitable

interconnections, for example, via bus, can also be provided to a network interface, such as a

10

10

15

20

25

WO 2013/002870 PCT/US2012/032891
YOR920110001PCT

network card, which can be provided to interface with a computer network, and to a media
interface, such as a diskette or CD-ROM drive, which can be provided to interface with media.

A data processing system suitable for storing and/or executing program code can
include at least one processor coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory employed during actual
execution of the program code, bulk storage, and cache memories which provide temporary
storage of at least some program code in order to reduce the number of times code must be
retrieved from bulk storage during execution.

Input/output or I/O devices (including but not limited to keyboard, display, pointing
device, and the like) can be coupled to the system either directly (such as via bus) or through
intervening I/O controllers (omitted for clarity).

Network adapters such as network interface may also be coupled to the system to enable
the data processing system to become coupled to other data processing systems or remote
printers or storage devices through intervening private or public networks. Modems, cable
modem and Ethernet cards are just a few of the currently available types of network adapters.

As used herein, including the claims, a “server” includes a physical data processing
system (for example, the system as shown in FIG. 1A) running a server program. It will be
understood that such a physical server may or may not include a display and keyboard. Also,
such a computer architecture could represent an illustrative implementation of a client.

It will be appreciated and should be understood that the exemplary embodiments of the
invention described above can be implemented in a number of different fashions. Given the
teachings of the invention provided herein, one of ordinary skill in the related art will be able to
contemplate other implementations of the invention. Indeed, although illustrative embodiments
of the present invention have been described herein with reference to the accompanying
drawings, it is to be understood that the invention is not limited to those precise embodiments,
and that various other changes and modifications may be made by one skilled in the art without

departing from the scope or spirit of the invention.

11

10

15

20

25

30

WO 2013/002870 PCT/US2012/032891
YOR920110001PCT

Claims
What is claimed is:

1. A method, comprising:

for a temporal hierarchy of aggregation statistics associated with a plurality of database
records, wherein the temporal hierarchy comprises two or more aggregation statistics levels and
each level has a different temporal granularity associated therewith, iteratively modifying the
temporal hierarchy to at least one of: (a) minimize a storage usage cost while satisfying a
temporal hierarchy update constraint and a query response time constraint; (b) reduce a
temporal hierarchy update time and a query response time while satisfying a storage usage
constraint; and (c) minimize a query response time for frequently applied queries that do not
shift in time while satisfying the storage usage constraint, wherein the resulting temporal
hierarchy that achieves at least one of (a), (b) and (c) is identified as an optimal temporal
hierarchy;

wherein the temporal hierarchy is stored in a memory and the iterative modifying of the

temporal hierarchy is performed by a processor device.

2. The method of claim 1, wherein the step of iteratively modifying the temporal
hierarchy to: (a) minimize the storage usage cost while satisfying the temporal hierarchy update
constraint and the query response time constraint comprises removing one or more levels of the

temporal hierarchy.

3. The method of claim 2, wherein the one or more levels of the temporal hierarchy are
removed so as to minimize the storage usage cost subject to the query response time constraint

and the temporal hierarchy update constraint.

4, The method of claim 1, wherein the step of iteratively modifying the temporal
hierarchy to: (b) reduce the temporal hierarchy update time and the query response time while
satisfying the storage usage constraint comprises adding one or more levels to the temporal

hierarchy.

5. The method of claim 4, wherein the one or more levels of the temporal hierarchy are
added so as to minimize the query response time and the temporal hierarchy update subject to

the storage usage constraint,

12

10

15

20

25

30

WO 2013/002870 PCT/US2012/032891
YOR920110001PCT

6. The method of claim 1, wherein the step of iteratively modifying the temporal
hierarchy to: (c) minimize the query response time for frequently applied queries that do not
shift in time while satisfying the storage usage constraint comprises adding one or more nodes

to the temporal hierarchy.

7. The method of claim 6, wherein the one or more nodes of the temporal hierarchy are

added so as not to violate the storage usage constraint.

8. The method of claim 1, wherein the optimal temporal hierarchy is used to materialize
pre-computed results that are used to accelerate a response time to a query workload in the

presence of newly inserted database records.

9. The method of claim 8, wherein the newly inserted database records are inserted at

any time individually or at fixed time intervals in batches.

10. The method of claim 8, wherein the query workload requests aggregation statistics

over a specified sliding window.

11. The method of claim 1, wherein the different temporal granularities comprise one or

more of years, months, weeks, days, and hours.

12. The method of claim 1, wherein the database records correspond to payment history

records.

13. The method of claim 12, wherein the aggregation statistics correspond to payment
history of a payment receiver, a payment originator or a pair of originator and receiver in order

to determine a likelihood of a current payment transaction being fraudulent.

14. The method of claim 13, wherein the aggregation statistics correspond to

transaction volume and transaction dollar amounts.

15. An apparatus, comprising:
a memory for storing a temporal hierarchy of aggregation statistics associated with a

plurality of database records, wherein the temporal hierarchy comprises two or more

13

10

15

20

25

30

WO 2013/002870 PCT/US2012/032891
YOR920110001PCT

aggregation statistics levels and each level has a different temporal granularity associated
therewith; and

a processor device operatively coupled to the memory and configured to iteratively
modify the temporal hierarchy to at least one of: (a) minimize a storage usage cost while
satisfying a temporal hierarchy update constraint and a query response time constraint; (b)
reduce a temporal hierarchy update time and a query response time while satisfying a storage
usage constraint; and (¢) minimize a query response time for frequently applied queries that do
not shift in time while satisfying the storage usage constraint, wherein the resulting temporal
hierarchy that achieves at least one of (a), (b) and (c) is identified as an optimal temporal

hierarchy.

16. The apparatus of claim 15, wherein the iterative modification of the temporal
hierarchy to: (a) minimize the storage usage cost while satisfying the temporal hierarchy update
constraint and the query response time constraint comprises removing one or more levels of the

temporal hierarchy.

17. The apparatus of claim 15, wherein the iterative modification of the temporal
hierarchy to: (b) reduce the temporal hierarchy update time and the query response time while
satisfying the storage usage constraint comprises adding one or more levels to the temporal

hierarchy.

18. The apparatus of claim 15, wherein the iterative modification of the temporal
hierarchy to: (¢) minimize the query response time for frequently applied queries that do not
shift in time while satisfying the storage usage constraint comprises adding one or more nodes

to the temporal hierarchy.

19. The apparatus of claim 15, wherein the optimal temporal hierarchy is used to
materialize pre-computed results that are used to accelerate a response time to a query workload

in the presence of newly inserted database records.

20. The apparatus of claim 19, wherein the newly inserted database records are inserted

at any time individually or at fixed time intervals in batches.

14

10

15

20

WO 2013/002870 PCT/US2012/032891
YOR920110001PCT

21. The apparatus of claim 19, wherein the query workload requests aggregation

statistics over a specified sliding window.

22. The apparatus of claim 15, wherein the different temporal granularities comprise

one or more of years, months, weeks, days, and hours.

23. The apparatus of claim 15, wherein the database records correspond to payment

history records.

24. An article of manufacture, comprising a computer readable storage medium having
tangibly embodied thereon computer readable program code which, when executed, causes a
processor device to, for a temporal hierarchy of aggregation statistics associated with a plurality
of database records, wherein the temporal hierarchy comprises two or more aggregation
statistics levels and each level has a different temporal granularity associated therewith,
iteratively modify the temporal hierarchy to at least one of: (a) minimize a storage usage cost
while satisfying a temporal hierarchy update constraint and a query response time constraint;
(b) reduce a temporal hierarchy update time and a query response time while satisfying a
storage usage constraint; and (¢) minimize a query response time for frequently applied queries
that do not shift in time while satisfying the storage usage constraint, wherein the resulting
temporal hierarchy that achieves at least one of (a), (b) and (c) is identified as an optimal

temporal hierarchy.

15

WO 2013/002870 PCT/US2012/032891

1/8
FIG. 14
100
CPU
i 102
| MEMORY
 J
STORAGE
U104
FIG. 1B
CONSTRAINTS
l 10
%AETCAOBRADSSE OPTIMIZED RECOMMENDED
o AGGREGATE AGGREGATE
"l SELECTION | TABLES TO BE
AGGREGATION
el SYSTEM MATERIALIZED

PCT/US2012/032891

2/8

WO 2013/002870

VIVQ NOILOVSNVYL MVY§ 21T

A

SALVORIIY ATUNOH ~01C

A

SALVOIIV ATVA +~80C

A

\\n SAIVOFHIIY ADMIIM |~ 900
\\“ SILVOFHIIV ATHINON |~ ¥0C
e \“ SILVOIIV ATH3LEVND ~~707
4/1”/” —O I
T > cp?0
900¢ | L0OZ | 800C | 600 | 0102 \n 0 SILVOFHIQY ATVIA 00T

¢ 9IAd

PCT/US2012/032891

WO 2013/002870

3/8

A

A

70¢
¢0¢

\

A

00¢

Y

Y

SALVIRIIV
ATINOH

REINREL AL
AIva

SALVIRIIY
AIVa

SALVORHIIY ATHVIA

—_—

Nl

& 9I1d

SALVIRIIV
ATINOH

SN

=

AR
Q) M —

o

N

o0
M

PCT/US2012/032891

WO 2013/002870

4/8

VIVQ NOLLOVSNVYL MVY

LY

A

Sl

OH

01y

SALVO4IY ATIVa

~~ 807

A

S3l

M

~~ 907

9007

002

8007

600¢

010¢

SALVIIIIV ATHINON

—~ 70F

A

SiLy

vnd

-~ C0F

SALVIIYIIV ATHVIA

007

14

1A

PCT/US2012/032891

WO 2013/002870

5/8

9007

1002

8007

600¢

010¢

VIVQ NOLLOVSNVIL MVY 216G
Y| OH [0l
Y| Yyl 806
SALVIEIIV ATHIIM 906G

Sil NON %06

SILVOYOIV ATHILYVND |~ 206

'}
SILVIIHIIV ATHVIA 006G

G 9Id

WO 2013/002870

6/8
FIG. 6

600 -

SET ® TO MATERIALIZE ALL
LEVELS IN THE TEMPORAL
HIERATCHY FROM LEVEL
ONE TO L, @= fHy.H}

\

602 -~

ESTIMATE STORAGE COST
AT EACH LEVEL IN THE

HIERARCHY, {S(H;)...S(H.)}

\

604

SET BATCH INSERT AT TIME
(T, THAT, T+2AT,
T+3AT, ..., T+KAT)

\

606 -

FOR EACH H; IN O,
REMOVE IT FROM THE
SET TO FORM Q

\

608 -

ESTIMATE THE STORAGE,
UPDATE, AND QUERY
COSTS OF Q

\

610

FIND Q5 WHICH MINIMIZES
STORAGI-? COST SUBJECT TO
UPDATE AND QUERY COST

CONSTRAINT

612

CAN Qg BE FOUND?

614

SET @ = Q4

PCT/US2012/032891

WO 2013/002870

7/8
FIG. 7

700~

SET @ TO AN
EMPTY SET, @ = }

\

702~

ESTIMATE STORAGE COST
AT EACH LEVEL IN THE

HIERARCHY, §S(H,)...S(H)}

\

704 A

SET BATCH INSERT AT TIME
(T, THAT, T+2AT,
T43AT, ..., T+KAT)

\

706 -

FOR EACH UNASSIGNED

TEMPORAL HIERARCHICAL

LEVEL H; ADD H; T0 ®
T0 FORM ©

\

708 -

ESTIMATE THE STORAGE,
UPDATE, AND QUERY
COSTS OF Q

\

710

FIND Qg WHICH MINIMIZES
UPDATE AND QUERY COST
SUBJECT TO STORAGE COST

CONSTRAINT

2

CAN Q¢ BE FOUND?

114

SET 0= 0y

PCT/US2012/032891

WO 2013/002870 PCT/US2012/032891

8/8

FIG. 8

SET ® T AN
800 EMPTY SET, @ = §

\

ESTIMATE STORAGE COST
802 AT EACH NODE IN THE

HIERARCHY, $S(N;)...S(N}

SET BATCH INSERT AT TIME
8044 (T, T#AT, TH24T,
T43AT, ..., T+KAT)

\

ESTIMATE FOR EACH N;, THE
806 A REDUCTION OF QUERY

RESPONSE TIME IF THE
NODE IS MATERIALIZED

\

308.| CALCULATE THE BENEFIT
RATIO B(N.)/S(N:)

\

810~ ADD THE TOP N; TO @

812
NO

THE STORAGE
COST CONSTRAINT
VIOLATED?

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - claims
	Page 14 - claims
	Page 15 - claims
	Page 16 - claims
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings

