SN L

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : (11) International Publication Number: WO 95/16950
F Al

GOGF 3/06 (43) International Publication Date: 22 June 1995 (22.06.95)

(21) International Application Number: PCT/US94/14111 | (81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH,

(22) International Filing Date: 7 December 1994 (07.12.94)

(30) Priority Data:

08/167,410 14 December 1993 (14.12.93) US

(71) Applicant: APPLE COMPUTER, INC. [US/US]; M/S 38-PAT,
1 Infinite Loop, Cupertino, CA 95014 (US).

(72) Inventors: SMITH, R., Steven; 13531 Old Oak Way, Saratoga,
CA 95070 (US). NELSON, Matthew, R.; 956 Kintyre Way,
Sunnyvale, CA 94087 (US).

(74) Agents: HICKMAN, Paul, L. et al;; P.0. Box 61059, Palo Alto,
CA 94306 (US).

T.
VN, European patent (AT, BE, CH, DE, D
GR, [E, IT, LU, MC, NL, PT, SE), OAPI

Q
b
Q
8
2
@]
=2
2
g
B
#
W
E:
g
o
3

ARIPO patent (KE, MW, SD, SZ).

Published

With international search report.

Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: METHOD AND APPARATUS FOR TRANSFERRING DATA BETWEEN A COMPUTER AND A PERIPHERAL STORAGE

DEVICE
(57) Abstract

A method for transferring data between a host computer
(46) and peripheral storage (10) including the steps of: (a)
receiving (116) data from the host; (b) determining (122) if
an escape command is present in the data; (c) writing (120)
the data to a peripheral storage medium if an escape command
is not present in the data; and (d) performing (126) at least
one command relative to the peripheral storage if an escape
command is present in the data. Also disclosed is a method
for controlling a disk drive unit including the steps of: (a)
determining on a host computer (46) a current action to be
performed with a disk drive unit; (b) formatting a track (18)
of a disk (10) engaged with a disk drive unit (58) based upon
output data provided by the host computer if the current action
is a formatting action; (c) writing a sector (20) on the disk
based upon the output data provided by the host computer
if the current action is a writing action; and (d) reading a
sector of the disk and transferring input information to the host
computer if the action is a reading action. Escape codes ($99)
are used to distinguish "normal" data from "special” data. A
disk drive controller (56') of the present invention includes
digital logic (84) responsive to a data bus (92) of the host
computer (46) and operative to develop a datatype bus (100)
based on the data bus, where the datatype bus is operative to
specify one of a plurality of data types, and a converter (88)
responsive to the data bus and the datatype bus and operative
to provide serial data (102) to a disk drive unit mechanism.

106
~a 108
110
Read Register L~
i 112
Format Action? read
114 Sector Write Sector 144

s Sector. " 42 P

Find Index Find Sector Transfer Data
Mark Hoader to DMA 128
l Channel _
Disable
N Escape
y 136
116 -

Read Byte | _~ Set Bit 8 of Enable P 134
From DMA Holding [® Holding .

Channel Register Register $OF Shut Off D140

l Transfer
1v1s 122 124 504 oo
Escape \"" Escape? Read Byto
Erabled (599) /-t From DMA Case Command }— 126
o Channels
No
$99 7 sa sc2
4
Write To Disk Enable 128 Enablo 130
Holding }~ Holding |~
\ Register Register
120
\
Set Bit 9 of 132
Holding

Register

applications under the PCT.
AT Austria

AU Australia

BB Barbados

BE Belgium

BF Burkina Faso
BG Bulgria

BJ Benin

BR Brazil

BY Belarus

CA Canada

CF Central African Republic
CG Congo

CH Switzerland

CI Céte d’Ivoire
M Cameroon

CN China

cs Czechoslovakia
CZ Czech Republic
DE Germany

DK Denmark

ES Spain

FI Finland

FR France

GA Gabon

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

GB
GE
GN
GR

SEERAEE

SEEE8<ERERE

United Kingdom
Georgia

Guinca

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

MR
MW
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SI
SK
SN
TD
G

bl

TT
UA
us
Uz
VN

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

£y

WO 95/16950 PCT/US94/14111

10

15

20

25

30

35

METHOD AND APPARATUS FOR TRANSFERRING DATA BETWEEN
A COMPUTER AND A PERIPHERAL STORAGE DEVICE

Description

Technical Field

This invention relates generally to computer peripherals and more particularly to
disk drive controllers. ‘

Background Art

General purpose digital computers are typically provided with some form of
peripheral storage. A common form of peripheral storage is the "floppy" disk drive
unit. A floppy disk drive unit is receptive to a flexible or "floppy" disk which is coated
with a ferromagnetic material. The disk drive unit includes a motor to spin the floppy
disk and a read/write (R/W) head which can magnetically encode data in the
ferromagnetic material of the floppy disk, and which can subsequently read back the
magnetically encoded data.

A floppy disk 10 in accordance with the prior art is illustrated in Fig. 1. Here,
the floppy disk is shown without a protective casing, which is typically provided to
protect the delicate floppy disk element. A floppy disk 10 is typically annular in shape
and includes a non-conductive, flexible substrate 12 typically made from a material
such as MYLAR™. A ferromagnetic material such as iron oxide is typically coated on
both sides of the MYLAR substrate 12 to provide a magnetic recording medium. A
central hole 14 is provided for engagement with a spindle of the disk drive unit motor,
and an index mark or hole 16 is formed through the substrate 12 to provide positional
information to the disk drive unit.

Data is typically encoded on both sides of the floppy disk 10 along a number of
concentric tracks 18. On a standard 3-1/2 inch floppy disk, there are 80 tracks 18.
Each of the tracks 18 encode data in a number of sequential sectors, such as the sector
20 illustrated in Fig. 1A. Each sector 20 is separated from adjacent sector by a region
22 commonly known as "GAP1" in the industry. These regions 22 are typically
provided with a pattern of bytes, such as a series of $4E bytes, where the dollar sign
"$" signifies hexadecimal notation. A byte of information for most floppy disk
applications is eight bits in length.

WO 95/16950 PCT/US94/14111

10

15

20

25

30

35

With continuing reference to Fig. 1A, a sector 20 includes an address header
24, a data header 26, a data field 28, and a trailer 30. The address header 24 typically
includes a few bytes of information for synchronization and positional data. For
example, address header 24 will typically include the number of the sector, the side of
the disk that the sector is on, and the sector's track number. Other data, such as a
format number, which represents the numbers of bytes per sector, are also included in
address header 24.

The data header 26 has a primary purpose of separating the address header 24
from the data field 28. It typically does not include data, and may only be 4 bytes or so
in length.

The data field 28 is used to store user or system data for subsequent retrieval.
The data field 28 is typically 512 bytes in length. If a user or the system wishes is to
store less than 512 bytes of information, the remaining bytes are simply unused or
include "garbage" data. If the user or system wishes to store more than 512 bytes of
data, the additional data can be stored in another sector on the floppy disk.

The trailer 30 is often referred to as the Cyclical Redundancy Check ("CRC")
region, and is primarily used for error tracking. The CRC region typically includes a
two bytes of checksum information which is used to ensure the integrity of the data
field.

The prior art teaches several methods for writing and reading data on a floppy
disk. In a first method, the central processing unit (CPU) of a "host" computer system
does most of the work. In a second method, a dedicated disk controller is used to
handle most of the burden of operating the disk drive unit.

In Fig 2, a system 32 illustrates a first method for controlling a disk drive unit.
In system 32, a CPU 34 is coupled to a disk drive unit 36 by a number of buses 38
including an 8-bit data bus 40, a 3-bit address bus 42, and a 3-bit control bus 44. In
this system 32, CPU 34 does virtually all the work and the disk drive unit 36 is
relatively unintelligent. The disk drive unit 36 includes a number of registers which can
be addressed by the address bus 42. The data on data bus 40 is handled by the disk
drive unit 36 in different ways depending upon which register is addressed. For
example, in the SWIM™ floppy disk controller of Apple Computer, Inc. of Cupertino,
California, a total of 8 registers are provided. Register O is for normal data, while
registers 1 and 2 are for "special” data. Registers 3-7 are used for other purposes. A
data transfer into data register O will result in data from that register being written to a
floppy disk engaged with disk drive unit 36. Data written to register 1 causes "special”

WO 95/16930 PCT/US94/14111

10

15

20

25

30

35

features to applied to the data in register 1, and data written to register 2 is ignored and
will cause the disk drive unit 36 to generate an internally generated data value.

The advantage of the system 32 of Fig. 2 is its simplicity. The disk drive unit
36 is relatively simple, and few or no external integrated circuit chips are required to
connect the CPU 34 to the disk drive unit. The disadvantage of the system 32 of Fig 2.
is that it places a considerable burden on CPU 34. Since CPU 34 handles all data
transfers to and from the disk drive unit 36, a great many CPU cycles are required
simply to control the disk drive unit. Furthermore, CPU 34 must calculate and provide
all special control and format characters for the disk drive unit 36. This overhead
burden on the CPU 34 can significantly degrade system performance during heavy
usage of the disk drive unit 36.

A method for controlling a disk drive unit is implemented in a system 46 as seen
in Fig. 3. System 46 includes a CPU 48, random access memory (RAM) 50, a direct
memory access (DMA) device 52, a multiplexer (MUX) 54, a floppy disk controller
56, and a disk drive unit 58. The RAM 50 is sometimes referred to as "scratch-pad
memory", although other memory storage types can also be used as temporary or
scratch-pad memory. The floppy disk controller 56 can access data stored in RAM 50
via DMA 52 without having to pass the data through CPU 48. This permits very rapid
access to the contents of RAM 50 by the floppy disk controller 56. The MUX 54,
permits the disk controller to read data from either RAM 50 or data provided by the
CPU 48.

In addition to being able directly access the random access memory 50, the
floppy disk controller is capable of producing the special codes required for the address
header 24, the data header 26, and the trailer 30 (see Fig. 1A). The only data required
from the CPU 48 or RAM 50 is the actual data for data field 28 of a sector 20. The
disk controller 56 therefore relieves the CPU 48 of the large burden of directly
controlling the disk drive unit 58 and producing the special disk drive unit codes. This
can greatly enhance system performance, particularly during heavy disk drive unit
usage. However, this increase in performance comes at a cost, namely the additional
hardware involved with the floppy disk controller 56. The floppy disk controller 56
can add substantially to the cost of the system 46, and can occupy substantial silicon or
PC board real-estate, thereby increasing the size and power requirements of the
system..

An example of disk controller 56 is a number 765 floppy disk controller sold by
Western Digital Corporation. Data is placed in RAM 50 by the CPU 48 and is
transferred under the guidance of the DMA controller 52 to the Western Digital 765

WO 95/16950 PCT/US94/14111

10

15

20

25

30

35

floppy disk controller when it is required. Only "normal" data bytes need to be
transferred in this way since the Western Digital 765 floppy disk controller is aware of
when the "special” bytes are required and generates them internally.

n While prior art floppy disk controllers perform their functions admirably, they
do so at a considerable cost, both in complexity and price. For example, the Western
Digital 765 floppy disk controller includes an embedded microprocessor to generate the
"special" bytes and to control other operations of the controller. Prior art floppy disk
controllers therefore tend to include a great number of gates, which increases their cost
and size. While cost is always a negative factor, the very size of the floppy disk
controller can also be a problem if is desired to embed the floppy disk controller
functionality on a larger integrated circuit die including, for example, a microprocessor
function and random access memory (RAM).

The operation of a typical floppy disk controller 56, such as the aforementioned
Western Digital 765 floppy disk controller, is illustrated in Fig. 4. The process 60 is,
essentially, a computer implemented process operating on a microprocessor which
forms a part of the floppy disk controller 56. The process 60 begins at 62 and, in a
step 64, the registers are read. Next, a step 66 determines whether an action is to be
performed based upon the data read from the registers and, if not, process control
returns to step 64 to await new information. If step 66 determines that an action is
required, process control branches depending upon the desired action. For example, if
the action requested by the data stored in the registers is a "FORMAT TRACK" action,
a step 68 finds the index mark (such as index mark 16 of Fig. 1) on the floppy disk 10.
Next, a step 70 calculates the address header, data header, and trailer (CRC) and a step
72 causes these headers to be written to disk. Process control then returns to step 64.
If the action required is "READ SECTOR", data from the floppy disk is transferred to
the DMA channel in a step 74. If the action is required is "WRITE SECTOR", the
sector header is found in a step 76, and the data header is calculated and written to disk
in a step 78. Next, in a step 80, a fixed 512 bytes of data are written into the data field
28, and the CRC trailer is calculated and written in a step 82. Process control then
returns to step 64.

The prior art has addressed the problem of floppy disk control in one of two
extreme fashions. At one extreme the CPU is responsible for virtually all data transfer,
which places a large burden on the functionality of the system. At the other extreme, a
complex floppy disk controller is responsible for most of the control functions of the
disk drive unit, but at the cost of increased system complexity, cost , and size. The
problem that the prior art has not addressed, therefore, is how to simultaneously

WO 95/16950 PCT/US94/14111

10

15

20

25

30

35

minimize CPU burden, hardware comp]exity, and system size while maintaining full
system functionality and compatibility with existing standards.

Disclosure of the Invention

The present invention charts a middle course between the two extremes of the
prior art by providing a floppy disk controller which is small and relatively
uncomplicated in design, yet which relieves the CPU of a host computer system from
most disk drive unit control tasks. Computer systems implementing the present
invention therefore have high system performance, are economical to build, and (in
some implementations) are more compact in size.

In a broad sense, a method in accordance with the present invention for
transferring data between a host and peripheral stofage device includes the steps of: (a)
receiving data from host: (b) determining if an escape command is present in the data;
(c) writing the data to a peripheral storage medium if an a escape command is not
pfesent in the data; and (d) performing at least one command relative to the peripheral
storage if an escape command is present in the data. Preferably, the step of determining
whether an escape command is present in the data includes the steps of determining that
a escape command is not present in the data if "escape" is disabled, and determining
that an escape command is present in the data if "escape" is enabled and if the data
includes a predetermined escape code. The step of performing a command preferably
comprises the steps of receiving additional data from the host, and executing at least
one command speciﬁed by the additional data.

More specifically, a method for controlling a disk drive unit in accordance in the
present invention includes the steps of: (a) determining on a host computer a current
action to be performed with a disk drive unit; (b) formatting a track of a disk engaged
with the disk drive unit based upon output data provided by the host computer if the
current action is a formatting action; (c) writing a sector on the disk based upon output
data provided by the host computer if the current action is a writing action; and (d)
reading a sector of the disk and transferring input data to the host computer if the action
datais a reading action. In both the "formatting a track" and "writing a sector" steps the
data includes at least one command code preceded by a escape code. More specifically,
the step of writing a sector on the disk in both the formatting action and writing action
includes the steps of: (a) reading a first byte of data from a direct memory access
(DMA) channel of the host computer; (b) examining the first byte to determine if it is a
escape code: (c) writing the first byte to disk if the first byte is not an escape code; and
(d) reading a second byte of data and executing a command specified by the second

WO 95/16950 PCT/US94/14111

10

15

20

25

30

I oD

byte if the first byte was a escape code. Preferably, the step of writing a sector further
includes the steps of determining whether an escape is enabled prior to examining the
first byte to determine if the first byte is an escape code, and writing the first byte to
disk if an escape is not enabled.

A disk drive controller in accordance with the present invention includes digital
logic coupled to a data bus of a host computer and operative develop a "datatype" bus
based upon data on the data bus , where the datatype bus is operative to specify one of
a plurality of data types, and a converter responsive to the data bus and the datatype bus
and operative to produce serial data for a disk drive unit mechanism. Preferably, the
digital logic is implemented as a simple state machine rather than as a complex
microprocessor. The disk drive controller also preferably includes a combining device
("holding register") for combining the data bus and the datatype bus as an expanded
bus, where the converter is responsive to the expanded bus. The digital logic detects
whether an escape code is present in the data on the data bus, and performs one of a
number of commands in respond to the detection of an escape code.

The process of the present invention is implemented on a relatively simple state
machine which allows the floppy disk controller to perform most of the functions of
controlling the disk drive unit. The result is a simplified hardware implementation
which still relieves the CPU from the majority of the work involved in controlling a
disk drive unit. Since the floppy disk controller can be implemented in relative few
gates (e.g. 5000-6000 gates) it can be integrated on the same silicon as other system
components, therefore allowing an higher level of integration and smaller size than
systems of the prior art. The method and apparatus of the present invention therefore
provides a lower cost and more compact computer system which is still capable of high
system performance even during heavy disk drive unit usage.

These and other advantages of the present invention will become apparent upon
reading the following detailed descriptions and studying the various figures of the
drawings.

Brief Description of the Drawings

Fig. 11is a top plan view of a floppy disk of the prior art without its jacket;
Fig. 1a illustrates the format of a single sector of the floppy disk of Fig. 1,

Fig 2 is a block diagram of a first prior art system for controlling a disk drive
unit;

WO 95/16950 PCT/US94/14111

10

15

20

25

30

Fig. 3 is a block diagram of a second prior art system for controlling a disk
drive unit;

Fig. 4 illustrates a process implemented by the prior art disk drive controller 56
of Fig. 3;

Fig 5 illustrates a floppy disk controller in accordance with the present
invention;

Fig. 5a illustrates an expanded data structure used in accordance with a
preferred embodiment of the present invention;

Fig 6 illustrates a process implemented by the disk drive controller of the
present invention for transferring data between a host computer and a peripheral storage
device;

Fig. 7 illustrates a process implemented by the host computer to transfer data
with the peripheral storage device; and

Fig. 8 illustrates the "CALCULATE AND STORE TO RAM SECTOR(j)" step
of Fig. 7 in greater detail.

Best Modes for Carrying out the Invention

Figs. 1-4 illustrate prior art concepts relevant to the present invention. Fig. 5 is
a block diagram of a floppy disk controller 56’ in accordance with the present
invention. This floppy disk controller 56’ can be implemented in the system 46
illustrated in Fig. 3 by replacing the prior art floppy disk controller 56 with the floppy
disk controller of the present invention.

In Fig. 5, the ﬂoppy disk controller of the present invention includes a state
machine 84, a holding register 86, an MFM converter 88. As is well known to those
skilled in the art, a state machine such as state machine 84 is a digital logic device
including fairly large numbers of interconnected digital gates which, under the
operation of a clock, will perform a sequence of steps based upon its current state and
upon its inputs. These inputs include a DMA request line 90, a RAM data bus 92, a
control bus 94, and an address bus 96. The DMA request line 90 couples the floppy
disk controller 56’ to a DMA device, such as DMA device 52 of Fig. 3. The data bus
92 couples the state machine 84 to the system data bus, preferably via a multiplexer
such as MUX 54 of system 46 as illustrated in Fig. 3. Buses 94 and 96 are the control
bus and address bus, respectively, of the computer system.

WO 95/16950 PCT/US94/14111

10

15

20

25

30

35

The state machine 84 has on output on an enable line 98 and a 2-bit datatype bus
100. Enable line 98, datatype bus 100, and the data bus 92 all serve as inputs to the
holding ("combining") register 86. Holding register 86 is essentially a 10-bit latch
register which latches in data from datatype bus 100 and data bus 92 when enabled by
enable line 98. The output of the holding register 86 is produced on an expanded 10-bit
bus 102.

Converter 88 is preferably an MFM converter of a type well known to those
skilled in the art. The converter 88 can also be a GCR converter, or a combination
MFM/GCR converter. “MFM” stands for "Modified Frequency Modulation", and is an
industry standard commonly used on both IBM-compatible and Apple Macintosh
computers. “GCR” stands for "Group Code Recording", and is a standard used on
Apple-II and Macintosh computers from Apple Computer, Inc. of Cupertino,
California. The MFM format supports higher storage densities, and is currently the
preferred floppy disk storage format. The output of the converter 88 includes serial
data on a line 102 which is used by a disk drive unit to magnetically encode a floppy
disk medium.

Fig. 5a illustrates the contents of the holding register 86 and, therefore, the data
on bus 102 of Fig. 5. The data structure 104 is preferably a 10-bit byte include 8 bits
of data and 2 bits of datatype. The 8 bits of data are stored in locations 0-7, and the
two bits of datatype are stored in locations 8 and 9. When bits 8 and 9 store the values
“00”, the data in bits 0-7 are considered to be “normal”. When bits 8 and 9 are “01”,
the data in bits 0-7 are considered to be “mark” data. Mark data is a special code
written at the start of the address and data fields to provide positional information on a
subsequent read of those fields. When bits 8 and 9 have the value “10”, the data in bits
0-7 are considered to be CRC data, and values of “11” in bits 8 and 9 would indicate an
indeterminate state. In the current implementation, the value in bits 8 and 9 would
never be “11” because the state machine 84 would never produce a datatype “11” on
bus 100.

Fig. 6 illustrates the process implemented by the floppy disk controller 56 of
Fig. 5. The process 106 begins at 108 and, in a step 110, state machine 84 reads a
register associated with the state machine which holds possible actions to be taken by
the state machine. Next, in a step 112, it is determined whether an action is required
based upon the content of the register. If not, process control returns to step 110 to
await new data to be entered into the register.

There are three basic functions performed by the floppy disk controller 56°,
namely, “FORMAT SECTOR”, “WRITE SECTOR?”, and “READ SECTOR”. If the

WO 95/16950 PCT/US94/14111

10

15

20

25

30

35

action detected by step 112 is “FORMAT SECTOR”, a step 114 finds the index mark
on the floppy disk, such as the index mark 16 on the floppy disk 10 of Fig. 1. Next, in
astep 116, a byte of data is read from the DMA channel, i.e., is read from the data bus
92 of Fig. 5. Next, in a step 118, it is determined whether the escape is enabled. If
not, the byte that was read from the DMA channel in step 116 is written to disk in a step
120. Process control then returns to step 110.

If step 118 determines that the escape is enabled, it is determined in a step 122
whether the byte read from the DMA channel in step 116 is an escape code. As used
herein, an escape “code” is a predetermined value or bit-pattern which signifies that the
next successive byte will be a command code. As also used herein, the term "escape
command” includes the combination of steps 118 and 122, i.e. an escape command is
only detected if "escape" is enabled and if an escape code is detected.

In the present invention, the escape code is $99, where the $ signifies that the
value 99 is in base 16 (hexadecimal). In other words, the bit-pattern indicated by $99
is 10011001. This escape code is somewhat arbitrary, although it is preferred not to
use a numeric value for an escape code which would commonly show up in data, such
as $00 or $01.

If an escape code is detected by step 122, a byte of data is read from the DMA
channel in a step 124. At this point, state machine 84 of controller 56’ enters a “case
command" state 126. The case command branches the process dependent upon the
second byte which was read from the DMA channel. In other words, if an escape code
is found in a first byte by step 122, the case command step 126 examines a second byte
read by step 124 to determine the appropriate command to execute.

If step 126 detects a $99 in the second byte read by step 124, the holding
register 86 is enabled in step 128 and process control returns to step 120. The
command $99 indicates that the first byte which was read in step 116 was not actually
an escape command but was a byte of data to be written to disk which just happened to
have the same value as the escape code. Therefore, this value (which in this case is
$99) is simply written to disk as data. If step 126 detects a $A1 or a $C2, the holding
register 86 is enabled in a step 130, and bit 8 of the holding register is set in a step 132.
This step 132 is implemented by placing a datatype “01” on datatype bus 100 of Fig. 5.
By setting bit 9, the floppy disk controller 56’ is causing a “mark” byte to be written to
the disk medium. In the present embodiment, the mark byte is either an $A1 byte or a
$C2 byte. The purpose and functionality of the $A1 mark byte and the $C2 mark byte,
as is well known to those skilled in the art, is to identify the start of the address and
data fields.

WO 95/16950 PCT/US94/14111

10

15

20

25

30

35

10

If the step 126 detects a $04 command code, the holding register 86 is enabled
in a step 134 and, in a step 136, bit 8 of the holding register is set to indicate that the
CRC bytes are to be written to disk. Bit 8 of holding register 86 is set by placing the
data “10” on the datatype line 100 prior to the enabling step 134. Process control is
then returned to step 116 to read the CRC bytes from the DMA channel.

The holding register, after being enabled by steps 128, 130, or 134, is disabled
by step 122. However, the holding register is enabled most of the time because the
detection of an escape code by step 122 is a relatively rare occurrence. The bits 8 and 9
that were set in steps 136 and 132, respectively, are cleared when any non-special data
is moved into the holding register. The CRC bytes are computed by the state machine
84 upon the detection of a command stored in RAM by the CPU.

If step 126 detects a $0F command code, the escape is disabled in a step 138
and process control is returned to step 116. In the present implementation, a $OF
command code will disable escape for the next 512 bytes. Therefore, the $0F code is
typically the last byte of the data header 26 and prevents the process 106 from
examining the next 512 bytes of data in data field 28 where (supposedly) no escape
code should ever be present. This can be easily accomplished by setting a disable
register to the value 512, and decrementing this value by one after each write to the disk
step 120 until it reaches the value 0, at which time the escape is once again enabled.

Finally, if step 126 detects the command code $08, data transfer is terminated in
a step 140 and process control is returned to step 110. When the $08 command code
has been detected, a complete sector 20 has been written to disk. Therefore, the last
command code in the CRC trailer region 30 is typically the $08 command code.

If the action detected by step 112 is “WRITE SECTOR”, a step 142 finds the
appropriate sector header, and then process control is turned over to step 116 to
implement the process as previously described with regard to the “FORMAT SECTOR”
action. Finally, if the action detected by step 112 is “READ SECTOR”, data is
transferred to the DMA channel in a step 144, and process control is returned to step
110. The “READ SECTOR” action is fairly standard, and its implementation is well
known to those skilled in the art.

In Fig. 7, a computer implemented process 146 designed to operate on a digital
processor such as CPU 48 of Fig. 3 is illustrated in flow diagram form. The prbcess
146 begins at 148 and, in a step 150, it is determined whether a disk command is
present. If not, the step 150 goes into a "wait state" by looping back on itself until a
disk command is detected. If a “FORMAT” disk command is detected by step 150, an

WO 95/16950 PCT/US94/14111

10

15

20

25

30

35

11

iterative loop step 152 initializes a counter i to 0, and compares the counter i to the
number of tracks NTRACKS of the floppy disk to be formatted. As described
previously, for a 3-1/2 inch floppy disk the number of tracks NTRACKS is 80. If the
variable i is less than NTRACKS, an iterative loop step 154 initializes a second counter
j to 0, and compares the counter j to the number of sectors NSECTORS in the ith
sector. If j is less than NSECTORS(i), a step 156 calculates and stores to RAM
SECTOR(j) of TRACK(i). Process control then returns to iterative loop step 154 to
increment the counter j.

When the counter j is greater than or equal to NSECTORS(), a step 158
enables the controller to write TRACK(i) from the RAM. The process control is then
return to step 152 to iterate counter i. The loop of steps 152-158 is repeated until the
counter i is greater than or equal to NTRACKS, at which time process control returns
to step 150 to await another disk command.

If step 150 detects a “WRITE” command, a step 160 calculates and stores the
data header to RAM including the mark bytes $99A1, and $99C2. A $99$0F is also
stored in RAM to turn off escape. Next, in a step 162, 512 bytes of data are received
from an application program, utility, or other system function and, in a step 164, the
512 bytes of data are stored to RAM. Next, in a step 166, the CRC checksum data is
stored to RAM including $9904 command. Finally, a step in 168 , the controller is
enabled to write a sector from RAM to the magnetic disk medium. Process control then
returns to step 150.

If step 150 detects a “READ” command, the controller 56' is enabled to cause a
transfer of a sector of data from the disk drive unit 58 to the RAM 50. This is
accomplished by searching the disk until the desired sector is found, and then
transferring it by way of the DMA channel. Next, process 146 reads the sector of data
from RAM in a step 172 for use by an application program, utility, or other system
function.

In Fig. 8, step 156 of Fig. 7 is discussed in greater detail. Process 156 begins
at 174 and, in a step 176, the address header is calculated and stored to RAM. In a step
178, the data header is calculated and stored to RAM including the mark bytes $99A1
and $99C2. Next, in a step 180, 512 bytes of dummy data are stored to RAM.
Typically, the dummy data comprises an arbitrary hexadecimal number such as $96. In
the present invention, 512 bytes of data are stored in step 180 because this is the
standard number of bytes stored in a sector on a 3-1/2 inch floppy disk. Alternatively,
for other disk formats, a different number of bytes of dummy data can be stored to
RAM in step 180. Next, in a step 182, the CRC bytes including the $99$04 command

WO 95/16950 PCT/US94/14111

10

12

are stored to RAM and, in a step 184, the GAPI data is stored to RAM. Typically, the
GAP1 data is dummy data such as an arbitrary hexadecimal number $4E. The process
156 is then completed at 186.

While this invention has been described in terms of several preferred
embodiments, there are alterations, permutations, and equivalents which fall within the
scope of this invention. It should also be noted that there are may alternative ways of
implementing both the process and apparatus of the present invention. It is therefore
intended that the following appended claims be interpreted as including all such
alterations, permutations, and equivalents as fall within the true spirit and scope of the

present invention.

WO 95/16950 PCT/US94/14111

10

15

20

25

13

Claims

1. A method for transferring data between a host and peripheral storage
comprising the steps of:

receiving (116) data from a host (46);
determining (122) if an escape command is present in said data;

writing (120) said data to a peripheral storage medium if an escape command is
not present in said data; and

performing (126) at least one command relative to said peripheral storage if an
escape command is present in said data.

2. A method for transferring data as recited in claim 1 wherein said host
comprises memory (50) and a direct memory access (DMA) channel (52) coupled to
said memory, and wherein said data comprises a byte of data received from said DMA
channel.

3. A method for transferring data as recited in claim 1 wherein said step of
determining whether an escape command is present in said data comprises the steps of:

determining (118) that an escape command is not present in said data if escape
is disabled; and '

determining (118,122) that an escape command is present in said data if escape
is enabled and if said data includes a predetermined escape code.

4. A method for transferring data as recited in claim 1 wherein said step of
writing said data comprises writing said data to a magnetic peripheral storage medium
(10).

WO 95/16950 PCT/US94/14111

14

5. A method for transferring data as recited in claim 4 wherein said
magnetic peripheral storage medium comprises a magnetic disk.

6. A method for transferring data as recited in claim 1 wherein said step of
5 performing a command comprises the steps of:

receiving (124) additional data from said host; and

executing at least one command specified by said additional data.

7. A method for transferring data as recited in claim 6 wherein said step of
10 executing a command comprises the steps of:

parsing said additional data into one command of a plurality of commands; and

executing said one command.

8. A method for transferring data as recited in claim as recited in claim 7
15 wherein said plurality of commands include:

a transfer data command;
a write mark command; and

a write trailer command.

20 9. A method for transferring data as recited in claim 8 wherein said
plurality of commands further include: '

an escape disabling command; and

an end data command.

25 10. A method for controlling a disk drive unit comprising the steps of:

WO 95/16950 PCT/US94/14111

10

15

20

25

15

(a) determining on a host computer (46) a current action to be performed with a
disk drive unit (58);

(b) formatting a track (18) of a disk (10) engaged with said disk drive unit
based upon output data provided by said host computer if said current action is a
formatting action, said step of formatting a track including the step of writing a sector
on said disk, where said output data includes at least one command code preceded by
an escape code;

(c) writing a sector on said disk based upon output data provided by said host
computer if said current action is a writing action, where said output data includes at
least one command code preceded by an escape code; and

(d) reading a sector of said disk and transferring input data to said host
computer if said action is a reading action.

| 11. A method for controlling a disk drive unit as recited in claim 10 wherein
said step of writing a sector on said disk in both said formatting action and said writing
action comprises the steps of:

(a) reading (116) a first byte of data from a direct memory access (DMA)
channe] of said host cbmputer;

(b) examining (122) said first byte to determine if it is an escape code;

(c) writing (120) said first byte to disk if said first byte is not an escape code;
and

(d) reading (124) a second byte of data and executing a command specified by
said second byte if said first byte was an escape code.

12. A method for controlling a disk drive unit as recited in claim 11 wherein
said step of writing a sector further includes the steps of determining (118) whether
escape is enabled prior to examining said first byte to determine if said first byte is an
escape code, and writing said first byte to disk if escape is not enabled.

WO 95/16950 PCT/US94/14111

10

15

20

25

16

13. A method for controlling a disk drive unit as recited in claim 11 wherein
said second byte includes a selected command code of a plurality of command codes.

14. A method for controlling a disk drive unit as recited in claim 13 wherein
if said selected command code is the same as said escape code, said selected command
code is written to disk.

15. A method for controlling a disk drive unit as recited in claim 13 wherein
said plurality of command codes include commands to write marks and trailers.

16. A method for controlling a disk drive unit as recited in claim 13 wherein
said plurality of command codes include commands to disable escape and to end data
transfer.

17. A method for controlling a disk drive unit as recited in claim 13 wherein
said escape code is $99.

18. A method for controlling a disk drive unit as recited in claim 17 wherein
said plurality of command codes include the following commands:

Command Code Command Description
$99 Transfer data $99 (null command)
$A1 | Write an $A1 mark byte
$C2 Write a $C2 mark byte
$04 | Write both CRC (trailer) bytes
$OF Turn off escaping for 512 bytes

$08 End data (terminate DMA transfer)

WO 95/16950 . PCT/US94/14111

10

15

20

25

17

19. A disk drive controller (56') comprising:

digital logic (84) responsive to a data bus (92) of a host computer (46) and
operative to develop a datatype bus (100) based upon data on said data bus, where said
datatype bus is operative to specify one of a plurality of data types; and

converter (88) responsive to said data bus and said datatype bus and operative
to provide serial data to a disk drive unit mechanism.

20. A disk drive controller as recited in claim 19 wherein said digital logic
comprises a state machine.

21. A disk drive controller as recited in claim 19 further comprising a
combiner (86) for combining said data bus and said datatype bus into an expanded bus
(102), and wherein said converter is responsive to said expanded bus.

22. A disk drive controller as recited in claim 21 wherein said converter
comprises an MEM converter.

23. A disk drive controller as recited in claim 19 wherein said digital logic
includes: '

means for detecting (122) whether an escape code is present in said data on said
data bus; and

means for performing (126) one of a plurality of commands in response to the
detection of an escape code.

24. A disk drive controller as recited in claim 23 wherein at least one of said
commands controls the data present on said datatype bus.

WO 95/16950 1 8 PCT/US94/14111

25. A disk drive controller as recited in claim 23 wherein said data types
include Normal, Mark, and CRC data types. '

26. A disk drive controller as recited in claim 25 wherein said data types
5 include the following:

Data Type Code Date Type Description
00 Normal Data
01 Mark Data
10 CRC Data
10 11 Indeterminate

27. A disk drive controller as recited in claim 23 wherein said plurality of

commands comprises:
a transfer data command;
15 a write a mark byte command; and

a write a trailer byte (CRC) command.

28. A disk drive controller as recited in claim 27 wherein said plurality of
commands further comprise:

20 an escape disabling command; and

an end data command.

29. Adisk drive controller as recited in claim 23 wherein said escape code is
$99.

25

WO 95/16950 PCT/US94/14111

10

15

20

25

19

30. A disk drive controller as recited in claim 29 wherein said plurality of
command codes include the following commands:

Command Code Command Description
$99 Transfer data $99 (null command)
$A1 Write an $A1 mark byte
$C2 Write a $C2 mark byte
$04 Write both CRC (trailer)bytes
$OF Turn off escaping for 512 bytes
$08 End data (terminate DMA transfer)

31. A computer system (46) with peripheral storage comprising:
a digital processor (48);
scratch-pad memory (50) coupled to said digital processor;

peripheral storage control (56) coupled to said scratch-pad memory, said
peripheral storage control being responsive to real data and special data;

peripheral storage (58) coupled to said peripheral storage control such that data
can be transferred between said scratch-pad memory and said peripheral storage; and

a process controller (146) operating on said digital processor for storing data in
said scratch-pad memory, wherein said data includes both said real data and said special
data, said special data being preceded by at least one escape code, wherein data derived
from said real data may be written to said peripheral storage by said peripheral storage
control, and wherein data derived from said special data may also be written to said
peripheral storage by said peripheral storage control.

32. A computer system with peripheral storage as recited in claim 31
wherein said peripheral storage comprises a magnetic storage unit including a magnetic
storage media, and wherein said process controller is operative to store data in said

WO 95/16950 PCT/US94/14111

10

15

20

25

30

20

scratch-pad memory including special data for said peripheral storage control to cause
said peripheral storage control to format said magnetic media.

33. A computer system with peripheral storage as recited in claim 32
wherein data is stored on said magnetic media in a plurality of tracks (18), each of
which is comprised of a plurality of sectors (20), and wherein said process controller is
operative during formatting to store sufficient data in said scratch pad memory to allow
said peripheral storage control to format a track of said magnetic media.

34. A computer system with peripheral storage as recited in claim 33
wherein said process controller is further operative to read data from said scratch pad

memory which had been previously stored in said peripheral storage.

35. A process for transferring data between a host computer (46) and a
magnetic disk medium (10) comprising the steps of:

detecting the existence of a disk command originated by said host computer;

upon the detection of a format disk command, calculating and storing format
data to scratch-pad memory (50) and subsequently using said format data to format a
track (18) on said disk;

upon the detection of a write disk command, calculating and storing write data
to said scratch pad memory comprising a data header information (26), a number of
bytes of real data (28), and trailer information (30), and subsequently using the write
data stored in said scratch pad memory to write a sector (20) on said disk; and

upon the detection of a read disk command, transferring a sector of read data
from said disk to said scratch pad memory.

36. A process for transferring data as recited in claim 35 wherein said
calculation and storage of format data and said calculation and storage of write data
includes the storage of special data preceded by an escape code.

WO 95/16950 PCT/US94/14111

22 26 20 22
) T /
- Address [7
% Herilder % D'A\‘TA (\:RC %
\ \ \
T 24 T 28 30 T
D
?2?"1 Heg?er . ?22111
(Gap 2) _
,‘Fy]‘ 1a
(Prior Art)

SUBSTITUTE SHEET {RULE 26) -

PCT/US94/14111

WO 95/16950

2/7

(1115 L01T)

¢y

nun eAuqQ
¥sig Addoj4

e
8§

ssalippy
[e3}11]s}g]
& H eleq b
y ¥Y__ VY __sseippy Y v v
viNG
_ —
18jjojuon
¢ P ysig Addog [€—» XN ving Wvd Ndo
Epe—_
S ¢S jouo)n
e vs A vina — —
98 ﬁ ﬂ ﬂ 0S st
. Isenbay ya |
eled VNG
P d
o9t
8¢
g€ ve
\\ 147 /A \
/ lojuog
(1115 10147) nwun | 7>
eALQ disiq [« A N
VA .%Nm&.. Addoly | #*d 78 oy
- . \ ssal 7
LA
2¢ \ 4 4

SUBSTITUTE SHEET (RULE 26)

WO 95/16950 » PCT/US94/14111

62
60

, 64
Read Registers
Format Track Read Sector Write Sector
. Transfer Data to Find The Sector | 76
Find Index Mark DMA Chariel ~ Header
N N
68 74
Calculate Address Calculate and 78
Header, Data [~70 Write Data P~
Header, and CRC Header
trailer l
l Write a Fixed
512 Bytes of P 80
72 : Data
Write to Disk [~
Calculate and 82
Wirite CRC L~
Trailer
Y A 4
Fig. 4
(Prior Art)

SUBSTITUTE SHEET (RULE 26)

PCT/US94/14111

WO 95/16950

4/7

adA] ereq eleq
|] |
1 .&M&. 6 | 8 | £ | 9| s | v |[e| e+] o
l]
“\
ajeujuelepu] = €0 v0l
odO =¢0
e = 10
[BULION = 00
96
\
ssalppy
¢6
m ¢%NMNM \ jouo)n Wm
». A .
eleq ‘g v v
2ol 201 6 adAL 26
no lou8Auo) 19)sibay %
A.Vﬂv W4 A._u\lv BuipjoH Mo aulyoep \ >
IBHeS 0t bl ey eq
¢ [eiqeus
7 7 86 /
88 98 v8
el ‘

Isenbay yng

SUBSTITUTE SHEET (RULE 26)

PCT/US94/14111

Fig. 6

SUBSTITUTE SHEET (RULE 26)

WO 95/16950
5/7
106 ~
110
Read Register L~
No 112
Action?
Format Read
114 Sector Write) Sector saa
e Sector , /
Find index Find Sector Transfer Data
Mark Header to DMA 138 g
l Channel _
Disable
116 T L~ 138
Read Byte Ve Set Bit 8 of Enable 134
From DMA Holding [®—— Holding [~ o
Channel Register Register $OF Shut Off D;140
i Transfer
118 122 $04
124 $08
Escape? Read Byte
($99) From DMA Case Command 126
' Channels
No No
$99 7 g1 $c2
Write To Disk Enable 128 Enable 130
€¢—— Holding }~ Holding |}~
\ Register Register
120 l
Set Bit 9 of 132
Holding }~
Register

WO 95/16950 PCT/US94/14111

6/7

\
‘—_—_—-»

Disk Command?

Format
152
[&
i =0 . Enable Read
T2 | i<NTracks Controlier to Sector of
Transfera [—% Data
A Sector From From
Disk to RAM RAM
Ye 170 4 172 / 160
154 / v
£ Calculate and
o No Store Data Header
_']T':TT J<NSectors (i) to RAM Including
=] Mark Bytes
'y $99A1; $99C2
and $99$0F to
Yes 156 Turn Off Escape
Z
l 162
Calculate and Store To RAM /
Sector (j) of Track (i) Receive 512 Bytes of
Data To Be Stored
l 164
Z
158 Store 512 Bytes of Data
/ To RAM
Enable Controller To 166
Write Tracks (i) From s
RAM
Store CRC Including
$9904 To RAM
l 168
Z
¢ 7 .| Enable Controller To
ﬁﬂ . Write A Sector From
RAM

SUBSTITUTE SHEET (RULE 26)

WO 95/16950 PCT/US94/14111

717

Calculate Address 176
Header And Store To

I

Calculate Data
178
Header and Store To |~
RAM Including Mark

;

Store 512 Bytes Of | 180
Dummy Data $96 To

l

Store CRC $99$04 To | - 182
RAM

156

A 4

Store Gap1 With - 184
Dummy Data $4E To

Fig. 8

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

‘national Application No

PCT/US 94/14111

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 GO6F3/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 6 GO6F G11B

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US,A,4 852 045 (KRAUL ET AL.,) 25 July 1,3,6-9
1989
Y see figures 1,2A,2B 10,11,
13,16,
19,23,
24,28,
31-36
see column 2, line 22 - column 3, line 58
see column 4, Tine 18 - column 5, line 32
Y US,A,4 262 322 (BASS ET AL.,) 14 April 10,11,
1981 13,16
see figures 1,2,4,5
see abstract
see column 7, line 38 - line 47
see column 8, Tine 52 - column 9, line 13
- / f—

m Further documents are listed in the continuation of box C.

m Patent family members are listed in annex.

° Special categories of cited documents :

“A" document defining the general state of the art which is not
considered to be of particular relevance

*E" earlier document but published on or after the international
filing date

‘L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

“0" document referring to an oral disclosure, use, exhibition or
other means

“P* document published prior to the internationa filing date but
later than the priority date claimed

“T* later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X* document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y® document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to 2 person skilled
in the art.

“&" document member of the same patent family

Date of the actual completion of the international search

28 April 1995

Date of mailing of the international search report

16,059

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+ 31-70) 340-3016

Authorized officer

Weiss, P

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT national Application No
PCT/US 94/14111

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X EP,A,0 565 856 (HEWLETT-PACKARD COMPANY) 19-21
20 October 1993
Y see the whole document 19,23,
24,28,

31-36

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT r

“ _national Application No

PCT/US 94/14111

Patent document Publication Patent family Publication
cited in search report date member(s) date
US-A-4852045 25-07-89 Us-A- 4926448 15-05-90
US-A-4262322 14-04-81 DE-A- 2827023 03-01-80

EP-A,B 0007433 06-02-80

JP-C- 1506615 13-07-89

JP-A- 55004993 14-01-80

JP-B- 63046568 16-09-88

EP-A-0565856 20-10-93 Us-A- 5276564 04-01-94
‘ 28-01-94

JP-A- 6020393

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

