
(12) STANDARD PATENT (11) Application No. AU 2017210654 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
FABRIC NETWORK

(51) International Patent Classification(s)
HO4L 12/28 (2006.01)

(21) Application No: 2017210654 (22) Date of Filing: 2017.08.06

(43) Publication Date: 2017.08.24
(43) Publication Journal Date: 2017.08.24
(44) Accepted Journal Date: 2017.09.07

(62) Divisional of:
2016216596

(71) Applicant(s)
Google Inc.

(72) Inventor(s)
Smith, Zachary B.;Hardison, Osborne B.;Logue, Jay D.;Erickson, Grant M.;Schultz,
Richard J.;Gujjaru, Sunny P.;Neeley, Matthew G.

(74) Agent / Attorney
Pizzeys Patent and Trade Mark Attorneys Pty Ltd, PO Box 291, WODEN, ACT, 2606, AU

(56) Related Art
US 2003/0088697 Al

ABSTRACT

[00217] Systems and methods relating to communication within a fabric network are

presented. The fabric network includes one or more logical networks that enables devices

connected to the fabric to communicate with each other using various profiles known to the

devices. A device sending a message may follow a general message format to encode the

message so that other devices in the fabric may understand the message regardless of which

logical networks the devices are connected to. Within the message format, a payload of data

may be included for the receiving device to forward, store, or process the message. The format

and the contents of the payload may vary according to a header within the payload that indicates

a profile and a message type within the profile. Using the profile and message type, the

receiving devices may decode the message to process the message.

FABRIC NETWORK

BACKGROUND

[0001] This disclosure relates to a fabric network that couples electronic devices using one or

more network types.

[0002] This section is intended to introduce the reader to various aspects of art that may be

related to various aspects of the present techniques, which are described and/or claimed below.

This discussion is believed to be helpful in providing the reader with background information to

facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it

should be understood that these statements are to be read in this light, and not as admissions of

prior art.

[0003] Network-connected devices appear throughout homes. Some of these devices are

often capable of communicating with each other through a single network type (e.g., WiFi

connection) using a transfer protocol. It may be desired to use less power intensive connection

protocols for some devices that are battery powered or receive a reduced charge. However, in

some scenarios, devices connected to a lower power protocol may not be able to communicate

with devices connected to a higher power protocol (e.g., WiFi).

SUMMARY

[0004] A summary of certain embodiments disclosed herein is set forth below. It should be

understood that these aspects are presented merely to provide the reader with a brief summary of

these certain embodiments and that these aspects are not intended to limit the scope of this

1

disclosure. Indeed, this disclosure may encompass a variety of aspects that may not be set forth

below.

[0005] Embodiments of the present disclosure relate to systems and methods a fabric

network that includes one or more logical networks that enables devices connected to the fabric

to communicate with each other using a list of protocols and/or profiles known to the devices.

The communications between the devices may follow a typical message format that enables the

devices to understand communications between the devices regardless of which logical networks

the communicating devices are connected to in the fabric. Within the message format, a payload

of data may be included for the receiving device to store and/or process. The format and the

contents of the payload may vary according to a header within the payload that indicates a profile

(including one or more protocols) and/or a type of message that is being sent according to the

profile.

[0006] According to some embodiments, two or more devices in a fabric may communicate

using status reporting protocols or profiles. For example, in certain embodiments, a status

reporting protocol or schema may be included in a core profile that is available to devices

connected to the fabric. Using the status reporting protocol, devices may send or request status

information to or from other devices in the fabric.

[0007] Similarly, in certain embodiments, two or more devices in a fabric may communicate

using update software protocols or profiles. In some embodiments, the update software protocol

or schema may be included in a core profile that is available to devices connected to the fabric.

Using the update software protocol, devices may request, send, or notify the presence of updates

within the fabric.

2

[0008] In certain embodiments, two or more devices in a fabric may communicate using data

management protocols or profiles. In some embodiments, the data management protocol or

schema may be included in a core profile that is available to devices connected to the fabric.

Using the update data management protocol, devices may request, view, or track node-resident

information that is stored in other devices.

[0009] Furthermore, in certain embodiments, two or more devices in a fabric may transfer

data using bulk data transfer protocols or profiles. In some embodiments, the bulk data transfer

protocol or schema may be included in a core profile that is available to devices connected to the

fabric. Using the bulk data transfer protocol, devices may initiate, send, or receive bulk data

using any logical networks in the fabric. In certain embodiments, either a sending or a receiving

device using the bulk data transfer protocol may be able to "drive" a synchronous transfer

between the devices. In other embodiments, the bulk transfer may be performed with an

asynchronous transfer.

[0010] Various refinements of the features noted above may exist in relation to various

aspects of the present disclosure. Further features may also be incorporated in these various

aspects as well. These refinements and additional features may exist individually or in any

combination. For instance, various features discussed below in relation to one or more of the

illustrated embodiments may be incorporated into any of the above-described aspects of the

present disclosure alone or in any combination. The brief summary presented above is intended

only to familiarize the reader with certain aspects and contexts of embodiments of the present

disclosure without limitation to the claimed subject matter.

3

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Various aspects of this disclosure may be better understood upon reading the

following detailed description and upon reference to the drawings in which:

[0012] FIG. 1 is a block diagram of an electronic device having that may be interconnected

with other devices using a fabric network, in accordance with an embodiment;

[0013] FIG. 2 illustrates a block diagram of a home environment in which the general device

of FIG. 1 may communicate with other devices via the fabric network, in accordance with an

embodiment;

[0014] FIG. 3 illustrates a block diagram of an Open Systems Interconnection (OSI) model

that characterizes a communication system for the home environment of FIG. 2, in accordance

with an embodiment;

[0015] FIG. 4 illustrates the fabric network having a single logical network topology, in

accordance with an embodiment;

[0016] FIG. 5 illustrates the fabric network having a star network topology, in accordance

with an embodiment;

[0017] FIG. 6 illustrates the fabric network having an overlapping networks topology, in

accordance with an embodiment;

[0018] FIG. 7 illustrates a service communicating with one or more fabric networks, in

accordance with an embodiment;

[0019] FIG. 8 illustrates two devices in a fabric network in communicative connection, in

accordance with an embodiment;

4

[0020] FIG. 9 illustrates a unique local address format (ULA) that may be used to address

devices in a fabric network, in accordance with an embodiment;

[0021] FIG. 10 illustrates a process for proxying periphery devices on a hub network, in

accordance with an embodiment;

[0022] FIG. 11 illustrates a tag-length-value (TLV) packet that may be used to transmit data

over the fabric network, in accordance with an embodiment;

[0023] FIG. 12 illustrates a general message protocol (GMP) that may be used to transmit

data over the fabric network that may include the TLV packet of FIG. 11, in accordance with an

embodiment;

[0024] FIG. 13 illustrates a message header field of the GMP of FIG. 12, in accordance with

an embodiment;

[0025] FIG. 14 illustrates a key identifier field of the GMP of FIG. 12, in accordance with an

embodiment;

[0026] FIG. 15 illustrates an application payload field of the GMP of FIG. 12, in accordance

with an embodiment;

[0027] FIG. 16 illustrates a status reporting schema that may be used to update status

information in the fabric network, in accordance with an embodiment;

[0028] FIG. 17 illustrates a profile field of the status reporting schema of FIG. 16, in

accordance with an embodiment;

[0029] FIG. 18 illustrates a protocol sequence that may be used to perform a software update

between a client and a server, in accordance with an embodiment;

5

[0030] FIG. 19 illustrates an image query frame that may be used in the protocol sequence of

FIG. 18, in accordance with an embodiment;

[0031] FIG. 20 illustrates a frame control field of the image query frame of FIG. 19, in

accordance with an embodiment;

[0032] FIG. 21 illustrates a product specification field of the image query frame of FIG. 19,

in accordance with an embodiment;

[0033] FIG. 22 illustrates a version specification field of the image query frame of FIG. 19,

in accordance with an embodiment;

[0034] FIG. 23 illustrates a locale specification field of the image query frame of FIG. 19, in

accordance with an embodiment;

[0035] FIG. 24 illustrates an integrity types supported field of the image query frame of

FIG. 19, in accordance with an embodiment;

[0036] FIG. 25 illustrates an update schemes supported field of the image query frame of

FIG. 19, in accordance with an embodiment;

[0037] FIG. 26 illustrates an image query response frame that may be used in the protocol

sequence of FIG. 18, in accordance with an embodiment;

[0038] FIG. 27 illustrates a uniform resource identifier (URI) field of the image query

response frame of FIG. 26, in accordance with an embodiment;

[0039] FIG. 28 illustrates a integrity specification field of the image query response frame of

FIG. 26, in accordance with an embodiment;

6

[00401 FIG. 29 illustrates an update scheme field of the image query response frame of

FIG. 26, in accordance with an embodiment;

[00411 FIG. 30 illustrates a sequence used to employ a data management protocol to manage

data between devices in the fabric network, in accordance with an embodiment;

[0042] FIG. 31 illustrates a snapshot request frame that may be used in the sequence of

FIG. 30, in accordance with an embodiment;

[0043] FIG. 32 illustrates an example profile schema that may be accessed using the

snapshot request frame of FIG. 31, in accordance with an embodiment;

[0044] FIG. 33 is a binary format of a path that may indicate a path in a profile schema, in

accordance with an embodiment;

[0045] FIG. 34 illustrates a watch request frame that may be used in the sequence of FIG. 30,

in accordance with an embodiment;

[0046] FIG. 35 illustrates a periodic update request frame that may be used in the sequence

of FIG. 30, in accordance with an embodiment;

[0047] FIG. 36 illustrates a refresh request frame that may be used in the sequence of

FIG. 30, in accordance with an embodiment;

[0048] FIG. 37 illustrates a cancel view request that may be used in the sequence of FIG. 30,

in accordance with an embodiment;

[0049] FIG. 38 illustrates a view response frame that may be used in the sequence of

FIG. 30, in accordance with an embodiment;

7

[0050] FIG. 39 illustrates an explicit update request frame that may be used in the sequence

of FIG. 30, in accordance with an embodiment;

[0051] FIG. 40 illustrates a view update request frame that may be used in the sequence of

FIG. 30, in accordance with an embodiment;

[0052] FIG. 41 illustrates an update item frame that may be updated using the sequence of

FIG. 30, in accordance with an embodiment;

[0053] FIG. 42 illustrates an update response frame that may be sent as an update response

message in the sequence FIG. 30, in accordance with an embodiment;

[0054] FIG. 43 illustrates a communicative connection between a sender and a receiver in a

bulk data transfer, in accordance with an embodiment;

[0055] FIG. 44 illustrates a SendInit message that may be used to initiate the communicative

connection by the sender of FIG. 43, in accordance with an embodiment;

[0056] FIG. 45 illustrates a transfer control field of the SendInit message of FIG. 44, in

accordance with an embodiment;

[0057] FIG. 46 illustrates a range control field of the SendInit message of FIG. 45, in

accordance with an embodiment;

[0058] FIG. 47 illustrates a SendAccept message that may be used to accept a

communicative connection proposed by the SendInit message of FIG. 44 sent by the sender of

FIG. 44, in accordance with an embodiment;

8

[0059] FIG. 48 illustrates a SendReject message that may be used to reject a communicative

connection proposed by the SendInit message of FIG. 44 sent by the sender of FIG. 44, in

accordance with an embodiment; and

[0060] FIG. 49 illustrates a ReceiveAccept message that may be used to accept a

communicative connection proposed by the receiver of FIG. 44, in accordance with an

embodiment.

DETAILED DESCRIPTION

[0061] One or more specific embodiments of the present disclosure will be described below.

These described embodiments are only examples of the presently disclosed techniques.

Additionally, in an effort to provide a concise description of these embodiments, all features of

an actual implementation may not be described in the specification. It should be appreciated that

in the development of any such actual implementation, as in any engineering or design project,

numerous implementation-specific decisions must be made to achieve the developers' specific

goals, such as compliance with system-related and business-related constraints, which may vary

from one implementation to another. Moreover, it should be appreciated that such a development

effort might be complex and time consuming, but may nevertheless be a routine undertaking of

design, fabrication, and manufacture for those of ordinary skill having the benefit of this

disclosure.

[0062] When introducing elements of various embodiments of the present disclosure, the

articles "a," "an," and "the" are intended to mean that there are one or more of the elements. The

terms "comprising," "including," and "having" are intended to be inclusive and mean that there

may be additional elements other than the listed elements. Additionally, it should be understood

9

that references to "one embodiment" or "an embodiment" of the present disclosure are not

intended to be interpreted as excluding the existence of additional embodiments that also

incorporate the recited features.

[0063] Embodiments of the present disclosure relate generally to an efficient fabric network

that may be used by devices and/or services communicating with each other in a home

environment. Generally, consumers living in homes may find it useful to coordinate the

operations of various devices within their home such that all of their devices are operated

efficiently. For example, a thermostat device may be used to detect a temperature of a home and

coordinate the activity of other devices (e.g., lights) based on the detected temperature. In this

example, the thermostat device may detect a temperature that may indicate that the temperature

outside the home corresponds to daylight hours. The thermostat device may then convey to the

light device that there may be daylight available to the home and that thus the light should turn

off.

[0064] In addition to operating these devices efficiently, consumers generally prefer to use

user-friendly devices that involve a minimum amount of set up or initialization. That is,

consumers may generally prefer to purchase devices that are fully operational after performing a

few number initialization steps that may be performed by almost any individual regardless of age

or technical expertise.

[0065] With the foregoing in mind, to enable to effectively communicate data between each

other within the home environment, the devices may use a fabric network that includes one or

more logical networks to manage communication between the devices. That is, the efficient

fabric network may enable numerous devices within a home to communicate with each other

using one or more logical networks. The communication network may support Internet Protocol

10

version 6 (IPv6) communication such that each connected device may have a unique local

address (LA). Moreover, to enable each device to integrate with a home, it may be useful for

each device to communicate within the network using low amounts of power. That is, by

enabling devices to communicate using low power, the devices may be placed anywhere in a

home without being coupled to a continuous power source (e.g., battery-powered).

I. Fabric Introduction

[0066] By way of introduction, FIG. 1 illustrates an example of a general device 10 that may

that may communicate with other like devices within a home environment. In one embodiment,

the device 10 may include one or more sensors 12, a user-interface component 14, a power

supply 16 (e.g., including a power connection and/or battery), a network interface 18, a processor

20, and the like. Particular sensors 12, user-interface components 14, and power-supply

configurations may be the same or similar with each devices 10. However, it should be noted

that in some embodiments, each device 10 may include particular sensors 12, user-interface

components 14, power-supply configurations, and the like based on a device type or model.

[0067] The sensors 12, in certain embodiments, may detect various properties such as

acceleration, temperature, humidity, water, supplied power, proximity, external motion, device

motion, sound signals, ultrasound signals, light signals, fire, smoke, carbon monoxide, global

positioning-satellite (GPS) signals, radio-frequency (RF), other electromagnetic signals or fields,

or the like. As such, the sensors 12 may include temperature sensor(s), humidity sensor(s),

hazard-related sensor(s) or other environmental sensor(s), accelerometer(s), microphone(s),

optical sensors up to and including camera(s) (e.g., charged coupled-device or video cameras),

active or passive radiation sensors, GPS receiver(s) or radiofrequency identification detector(s).

While FIG. 1 illustrates an embodiment with a single sensor, many embodiments may include

11

multiple sensors. In some instances, the device 10 may includes one or more primary sensors

and one or more secondary sensors. Here, the primary sensor(s) may sense data central to the

core operation of the device (e.g., sensing a temperature in a thermostat or sensing smoke in a

smoke detector), while the secondary sensor(s) may sense other types of data (e.g., motion, light

or sound), which can be used for energy-efficiency objectives or smart-operation objectives.

[0068] One or more user-interface components 14 in the device 10 may receive input from

the user and/or present information to the user. The user-interface component 14 may also

include one or more user-input components that may receive information from the user. The

received input may be used to determine a setting. In certain embodiments, the user-input

components may include a mechanical or virtual component that responds to the user's motion.

For example, the user can mechanically move a sliding component (e.g., along a vertical or

horizontal track) or rotate a rotatable ring (e.g., along a circular track), the user's motion along a

touchpad may be detected, or motions/gestures may be detected using a contactless gesture

detection sensor (e.g., infrared sensor or camera). Such motions may correspond to a setting

adjustment, which can be determined based on an absolute position of a user-interface

component 104 or based on a displacement of a user-interface components 104 (e.g., adjusting a

setpoint temperature by 1 degree F for every 100 rotation of a rotatable-ring component).

Physically and virtually movable user-input components can allow a user to set a setting along a

portion of an apparent continuum. Thus, the user may not be confined to choose between two

discrete options (e.g., as would be the case if up and down buttons were used) but can quickly

and intuitively define a setting along a range of possible setting values. For example, a

magnitude of a movement of a user-input component may be associated with a magnitude of a

12

setting adjustment, such that a user may dramatically alter a setting with a large movement or

finely tune a setting with s small movement.

[0069] The user-interface components 14 may also include one or more buttons (e.g., up and

down buttons), a keypad, a number pad, a switch, a microphone, and/or a camera (e.g., to detect

gestures). In one embodiment, the user-input component 14 may include a click-and-rotate

annular ring component that may enable the user to interact with the component by rotating the

ring (e.g., to adjust a setting) and/or by clicking the ring inwards (e.g., to select an adjusted

setting or to select an option). In another embodiment, the user-input component 14 may include

a camera that may detect gestures (e.g., to indicate that a power or alarm state of a device is to be

changed). In some instances, the device 10 may have one primary input component, which may

be used to set various types of settings. The user-interface components 14 may also be

configured to present information to a user via, e.g., a visual display (e.g., a thin-film-transistor

display or organic light-emitting-diode display) and/or an audio speaker.

[0070] The power-supply component 16 may include a power connection and/or a local

battery. For example, the power connection may connect the device 10 to a power source such

as a line voltage source. In some instances, an AC power source can be used to repeatedly

charge a (e.g., rechargeable) local battery, such that the battery may be used later to supply

power to the device 10 when the AC power source is not available. In certain embodiments, the

power supply component 16 may include intermittent or reduced power connections that may be

less than that provided via an AC plug in the home. In certain embodiments, devices with

batteries and/or intermittent or reduced power may be operated as "sleepy devices" that alternate

between an online/awake state and an offline/sleep state to reduce power consumption.

13

[0071] The network interface 18 may include one or more components that enable the device

10 to communicate between devices using one or more logical networks within the fabric

network. In one embodiment, the network interface 18 may communicate using an efficient

network layer as part of its Open Systems Interconnection (OSI) model. In certain embodiments,

one component of the network interface 18 may communicate with one logical network (e.g.,

WiFi) and another component of the network interface may communicate with another logical

network (e.g., 802.15.4). In other words, the network interface 18 may enable the device 10 to

wirelessly communicate via multiple IPv6 networks. As such, the network interface 18 may

include a wireless card, Ethernet port, and/or other suitable transceiver connections.

[0072] The processor 20 may support one or more of a variety of different device

functionalities. As such, the processor 20 may include one or more processors configured and

programmed to carry out and/or cause to be carried out one or more of the functionalities

described herein. In one embodiment, the processor 20 may include general-purpose processors

carrying out computer code stored in local memory (e.g., flash memory, hard drive, random

access memory), special-purpose processors or application-specific integrated circuits, other

types of hardware/firmware/software processing platforms, and/or some combination thereof.

Further, the processor 20 may be implemented as localized versions or counterparts of

algorithms carried out or governed remotely by central servers or cloud-based systems, such as

by virtue of running a Java virtual machine (JVM) that executes instructions provided from a

cloud server using Asynchronous Javascript and XML (AJAX) or similar protocols. By way of

example, the processor 20 may detect when a location (e.g., a house or room) is occupied, up to

and including whether it is occupied by a specific person or is occupied by a specific number of

people (e.g., relative to one or more thresholds). In one embodiment, this detection can occur,

14

e.g., by analyzing microphone signals, detecting user movements (e.g., in front of a device),

detecting openings and closings of doors or garage doors, detecting wireless signals, detecting an

IP address of a received signal, detecting operation of one or more devices within a time

window, or the like. Moreover, the processor 20 may include image recognition technology to

identify particular occupants or objects.

[0073] In some instances, the processor 20 may predict desirable settings and/or implement

those settings. For example, based on presence detection, the processor 20 may adjust device

settings to, e.g., conserve power when nobody is home or in a particular room or to accord with

user preferences (e.g., general at-home preferences or user-specific preferences). As another

example, based on the detection of a particular person, animal or object (e.g., a child, pet or lost

object), the processor 20 may initiate an audio or visual indicator of where the person, animal or

object is or may initiate an alarm or security feature if an unrecognized person is detected under

certain conditions (e.g., at night or when lights are off).

[0074] In some instances, devices may interact with each other such that events detected by a

first device influences actions of a second device using one or more common profiles between

the devices. For example, a first device can detect that a user has pulled into a garage (e.g., by

detecting motion in the garage, detecting a change in light in the garage or detecting opening of

the garage door). The first device can transmit this information to a second device via the fabric

network, such that the second device can, e.g., adjust a home temperature setting, a light setting,

a music setting, and/or a security-alarm setting. As another example, a first device can detect a

user approaching a front door (e.g., by detecting motion or sudden light pattern changes). The

first device may cause a general audio or visual signal to be presented (e.g., such as sounding of

15

a doorbell) or cause a location-specific audio or visual signal to be presented (e.g., to announce

the visitor's presence within a room that a user is occupying).

[0075] With the foregoing in mind, FIG. 2 illustrates a block diagram of a home environment

30 in which the device 10 of FIG. 1 may communicate with other devices via the fabric network.

The depicted home environment 30 may include a structure 32 such as a house, office building,

garage, or mobile home. It will be appreciated that devices can also be integrated into a home

environment that does not include an entire structure 32, such as an apartment, condominium,

office space, or the like. Further, the home environment 30 may control and/or be coupled to

devices outside of the actual structure 32. Indeed, several devices in the home environment 30

need not physically be within the structure 32 at all. For example, a device controlling a pool

heater 34 or irrigation system 36 may be located outside of the structure 32.

[0076] The depicted structure 32 includes multiple rooms 38, separated at least partly from

each other via walls 40. The walls 40 can include interior walls or exterior walls. Each room 38

can further include a floor 42 and a ceiling 44. Devices can be mounted on, integrated with

and/or supported by the wall 40, the floor 42, or the ceiling 44.

[0077] The home environment 30 may include multiple devices, including intelligent, multi

sensing, network-connected devices that may integrate seamlessly with each other and/or with

cloud-based server systems to provide any of a variety of useful home objectives. One, more or

each of the devices illustrated in the home environment 30 may include one or more sensors 12,

a user interface 14, a power supply 16, a network interface 18, a processor 20 and the like.

[0078] Example devices 10 may include a network-connected thermostat 46 that may detect

ambient climate characteristics (e.g., temperature and/or humidity) and control a heating,

16

ventilation and air-conditioning (HVAC) system 48. Another example device 10 may include a

hazard detection unit 50 that can detect the presence of a hazardous substance and/or a hazardous

condition in the home environment 30 (e.g., smoke, fire, or carbon monoxide). Additionally,

entryway interface devices 52, which can be termed a "smart doorbell", can detect a person's

approach to or departure from a location, control audible functionality, announce a person's

approach or departure via audio or visual means, or control settings on a security system (e.g., to

activate or deactivate the security system).

[0079] In certain embodiments, the device 10 may include a light switch 54 that may detect

ambient lighting conditions, detect room-occupancy states, and control a power and/or dim state

of one or more lights. In some instances, the light switches 54 may control a power state or

speed of a fan, such as a ceiling fan.

[0080] Additionally, wall plug interfaces 56 may detect occupancy of a room or enclosure

and control supply of power to one or more wall plugs (e.g., such that power is not supplied to

the plug if nobody is at home). The device 10 within the home environment 30 may further

include an appliance 58, such as refrigerators, stoves and/or ovens, televisions, washers, dryers,

lights (inside and/or outside the structure 32), stereos, intercom systems, garage-door openers,

floor fans, ceiling fans, whole-house fans, wall air conditioners, pool heaters 34, irrigation

systems 36, security systems, and so forth. While descriptions of FIG. 2 may identify specific

sensors and functionalities associated with specific devices, it will be appreciated that any of a

variety of sensors and functionalities (such as those described throughout the specification) may

be integrated into the device 10.

[0081] In addition to containing processing and sensing capabilities, each of the example

devices described above may be capable of data communications and information sharing with

17

any other device, as well as to any cloud server or any other device that is network-connected

anywhere in the world. In one embodiment, the devices 10 may send and receive

communications via a fabric network discussed below. In one embodiment, fabric may enable

the devices 10 to communicate with each other via one or more logical networks. As such,

certain devices may serve as wireless repeaters and/or may function as bridges between devices,

services, and/or logical networks in the home environment that may not be directly connected

(i.e., one hop) to each other.

[0082] In one embodiment, a wireless router 60 may further communicate with the devices

10 in the home environment 30 via one or more logical networks (e.g., WiFi). The wireless

router 60 may then communicate with the Internet 62 or other network such that each device 10

may communicate with a remote service or a cloud-computing system 64 through the

Internet 62. The cloud-computing system 64 may be associated with a manufacturer, support

entity or service provider associated with a particular device 10. As such, in one embodiment, a

user may contact customer support using a device itself rather than using some other

communication means such as a telephone or Internet-connected computer. Further, software

updates can be automatically sent from the cloud-computing system 64 or devices in the home

environment 30 to other devices in the fabric (e.g., when available, when purchased, when

requested, or at routine intervals).

[0083] By virtue of network connectivity, one or more of the devices 10 may further allow a

user to interact with the device even if the user is not proximate to the device. For example, a

user may communicate with a device using a computer (e.g., a desktop computer, laptop

computer, or tablet) or other portable electronic device (e.g., a smartphone) 66. A webpage or

application may receive communications from the user and control the device 10 based on the

18

received communications. Moreover, the webpage or application may present information about

the device's operation to the user. For example, the user can view a current setpoint temperature

for a device and adjust it using a computer that may be connected to the Internet 62. In this

example, the thermostat 46 may receive the current setpoint temperature view request via the

fabric network via one or more underlying logical networks.

[0084] In certain embodiments, the home environment 30 may also include a variety of non

communicating legacy appliances 68, such as old conventional washer/dryers, refrigerators, and

the like which can be controlled, albeit coarsely (ON/OFF), by virtue of the wall plug

interfaces 56. The home environment 30 may further include a variety of partially

communicating legacy appliances 70, such as infra-red (IR) controlled wall air conditioners or

other IR-controlled devices, which can be controlled by IR signals provided by the hazard

detection units 50 or the light switches 54.

[0085] As mentioned above, each of the example devices 10 described above may form a

portion of a fabric network. Generally, the fabric network may be part of an Open Systems

Interconnection (OSI) model 90 as depicted in FIG. 4. The OSI model 90 illustrates functions of

a communication system with respect to abstraction layers. That is, the OSI model may specify a

networking framework or how communications between devices may be implemented. In one

embodiment, the OSI model may include six layers: a physical layer 92, a data link layer 94, a

network layer 96, a transport layer 98, a platform layer 100, and an application layer 102.

Generally, each layer in the OSI model 90 may serve the layer above it and may be served by the

layer below it.

[00861 Keeping this in mind, the physical layer 92 may provide hardware specifications for

devices that may communicate with each other. As such, the physical layer 92 may establish

19

how devices may connect to each other, assist in managing how communication resources may

be shared between devices, and the like.

[0087] The data link layer 94 may specify how data may be transferred between devices.

Generally, the data link layer 94 may provide a way in which data packets being transmitted may

be encoded and decoded into bits as part of a transmission protocol.

[0088] The network layer 96 may specify how the data being transferred to a destination

node is routed. The network layer 96 may also provide a security protocol that may maintain the

integrity of the data being transferred. The efficient network layer discussed above corresponds

to the network layer 96. In certain embodiments, the network layer 96 may be completely

independent of the platform layer 100 and include any suitable IPv6 network type (e.g., WiFi,

Ethernet, HomePlug, 802.15.4, etc).

[0089] The transport layer 98 may specify a transparent transfer of the data from a source

node to a destination node. The transport layer 98 may also control how the transparent transfer

of the data remains reliable. As such, the transport layer 98 may be used to verify that data

packets intended to transfer to the destination node indeed reached the destination node.

Example protocols that may be employed in the transport layer 98 may include Transmission

Control Protocol (TCP) and User Datagram Protocol (UDP).

[0090] The platform layer 100 includes the fabric network and establishes connections

between devices according to the protocol specified within the transport layer 98 and may be

agnostic of the network type used in the network layer 96. The platform layer 100 may also

translate the data packets into a form that the application layer 102 may use. The application

layer 102 may support a software application that may directly interface with the user. As such,

20

the application layer 102 may implement protocols defined by the software application. For

example, the software application may provide serves such as file transfers, electronic mail, and

the like.

II. Fabric Device Interconnection

[0091] As discussed above, a fabric may be implemented using one or more suitable

communications protocols, such as IPv6 protocols. In fact, the fabric may be partially or

completely agnostic to the underlying technologies (e.g., network types or communication

protocols) used to implement the fabric. Within the one or more communications protocols, the

fabric may be implemented using one or more network types used to communicatively couple

electrical devices using wireless or wired connections. For example, certain embodiments of the

fabric may include Ethernet, WiFi, 802.15.4, ZigBee*, ISA1 00.11 a, WirelessHART, MiWi TM ,

power-line networks, and/or other suitable network types. Within the fabric devices (e.g., nodes)

can exchange packets of information with other devices (e.g., nodes) in the fabric, either directly

or via intermediary nodes, such as intelligent thermostats, acting as IP routers. These nodes may

include manufacturer devices (e.g., thermostats and smoke detectors) and/or customer devices

(e.g., phones, tablets, computers, etc.). Additionally, some devices may be "always on" and

continuously powered using electrical connections. Other devices may have partially reduced

power usage (e.g., medium duty cycle) using a reduced/intermittent power connection, such as a

thermostat or doorbell power connection. Finally, some devices may have a short duty cycle and

run solely on battery power. In other words, in certain embodiments, the fabric may include

heterogeneous devices that may be connected to one or more sub-networks according to

connection type and/or desired power usage. FIGS. A-C illustrate three embodiments that may

be used to connect electrical devices via one or more sub-networks in the fabric.

21

A. Single Network Topology

[0092] FIG. 4 illustrates an embodiment of the fabric 1000 having a single network topology.

As illustrated, the fabric 1000 includes a single logical network 1002. The network 1002 could

include Ethernet, WiFi, 802.15.4, power-line networks, and/or other suitable network types in the

IPv6 protocols. In fact, in some embodiments where the network 1002 includes a WiFi or

Ethernet network, the network 1002 may span multiple WiFi and/or Ethernet segments that are

bridged at a link layer.

[0093] The network 1002 includes one or more nodes 1004, 1006, 1008, 1010, 1012, 1014,

and 1016, referred to collectively as 1004 - 1016. Although the illustrated network 1002

includes seven nodes, certain embodiments of the network 1002 may include one or more nodes

interconnected using the network 1002. Moreover, if the network 1002 is a WiFi network, each

of the nodes 1004 - 1016 may be interconnected using the node 1016 (e.g., WiFi router) and/or

paired with other nodes using WiFi Direct (i.e., WiFi P2P).

B. Star Network Topology

[0094] FIG. 5 illustrates an alternative embodiment of fabric 1000 as a fabric 1018 having a

star network topology. The fabric 1018 includes a hub network 1020 that joins together two

periphery networks 1022 and 1024. The hub network 1020 may include a home network, such

as WiFi/Ethernet network or power line network. The periphery networks 1022 and 1024 may

additional network connection types different of different types than the hub network 1020. For

example, in some embodiments, the hub network 1020 may be a WiFi/Ethernet network, the

periphery network 1022 may include an 802.15.4 network, and the periphery network 1024 may

include a power line network, a ZigBeegnetwork, a ISA100.1la network, a WirelessHART,

network, or a MiWiTM network. Moreover, although the illustrated embodiment of the

22

fabric 1018 includes three networks, certain embodiments of the fabric 1018 may include any

number of networks, such as 2, 3, 4, 5, or more networks. In fact, some embodiments of the

fabric 1018 include multiple periphery networks of the same type.

[0095] Although the illustrated fabric 1018 includes fourteen nodes, each referred to

individually by reference numbers 1024 - 1052, respectively, it should be understood that the

fabric 1018 may include any number of nodes. Communication within each

network 1020, 1022, or 1024, may occur directly between devices and/or through an access

point, such as node 1042 in a WiFi/Ethernet network. Communications between periphery

network 1022 and 1024 passes through the hub network 1020 using inter-network routing nodes.

For example, in the illustrated embodiment, nodes 1034 and 1036 are be connected to the

periphery network 1022 using a first network connection type (e.g., 802.15.4) and to the hub

network 1020 using a second network connection type (e.g., WiFi) while the node 1044 is

connected to the hub network 1020 using the second network connection type and to the

periphery network 1024 using a third network connection type (e.g., power line). For example, a

message sent from node 1026 to node 1052 may pass through nodes 1028, 1030, 1032, 1036,

1042, 1044, 1048, and 1050 in transit to node 1052.

C. Overlapping Networks Topology

[0096] FIG. 6 illustrates an alternative embodiment of the fabric 1000 as a fabric 1054

having an overlapping networks topology. The fabric 1054 includes networks 1056 and 1058.

As illustrated, each of the nodes 1062, 1064, 1066, 1068, 1070, and 1072 may be connected to

each of the networks. In other embodiments, the node 1072 may include an access point for an

Ethernet/WiFi network rather than an end point and may not be present on either the

network 1056 or network 1058, whichever is not the Ethernet/WiFi network. Accordingly, a

23

communication from node 1062 to node 1068 may be passed through network 1056,

network 1058, or some combination thereof. In the illustrated embodiment, each node can

communicate with any other node via any network using any network desired. Accordingly,

unlike the star network topology of FIG. 5, the overlapping networks topology may

communicate directly between nodes via any network without using inter-network routing.

D. Fabric Network Connection to Services

[0097] In addition to communications between devices within the home, a fabric (e.g., fabric

1000) may include services that may be located physically near other devices in the fabric or

physically remote from such devices. The fabric connects to these services through one or more

service end points. FIG. 7 illustrates an embodiment of a service 1074 communicating with

fabrics 1076, 1078, and 1080. The service 1074 may include various services that may be used

by devices in fabrics 1076, 1078, and/or 1080. For example, in some embodiments, the

service 1074 may be a time of day service that supplies a time of day to devices, a weather

service to provide various weather data (e.g., outside temperature, sunset, wind information,

weather forecast, etc.), an echo service that "pings" each device, data management services,

device management services, and/or other suitable services. As illustrated, the service 1074 may

include a server 1082 (e.g., web server) that stores/accesses relevant data and passes the

information through a service end point 1084 to one or more end points 1086 in a fabric, such as

fabric 1076. Although the illustrated embodiment only includes three fabrics with a single

server 1082, it should be appreciated that the service 1074 may connect to any number of fabrics

and may include servers in addition to the server 1082 and/or connections to additional services.

[0098] In certain embodiments, the service 1074 may also connect to a consumer

device 1088, such as a phone, tablet, and/or computer. The consumer device 1088 may be used

24

to connect to the service 1074 via a fabric, such as fabric 1076, an Internet connection, and/or

some other suitable connection method. The consumer device 1088 may be used to access data

from one or more end points (e.g., electronic devices) in a fabric either directly through the

fabric or via the service 1074. In other words, using the service 1074, the consumer device 1088

may be used to access/manage devices in a fabric remotely from the fabric.

E. Communication Between Devices in a Fabric

[0099] As discussed above, each electronic device or node may communicate with any other

node in the fabric, either directly or indirectly depending upon fabric topology and network

connection types. Additionally, some devices (e.g., remote devices) may communicate through a

service to communicate with other devices in the fabric. FIG. 8 illustrates an embodiment of a

communication 1090 between two devices 1092 and 1094. The communication 1090 may span

one or more networks either directly or indirectly through additional devices and/or services, as

described above. Additionally, the communication 1090 may occur over an appropriate

communication protocol, such as IPv6, using one or more transport protocols. For example, in

some embodiments the communication 1090 may include using the transmission control protocol

(TCP) and/or the user datagram protocol (UDP). In some embodiments, the device 1092 may

transmit a first signal 1096 to the device 1094 using a connectionless protocol (e.g., UDP). In

certain embodiments, the device 1092 may communicate with the device 1094 using a

connection-oriented protocol (e.g., TCP). Although the illustrated communication 1090 is

depicted as a bi-directional connection, in some embodiments, the communication 1090 may be

a uni-directional broadcast.

25

i. Unique Local Address

[00100] As discussed above, data transmitted within a fabric received by a node may be

redirected or passed through the node to another node depending on the desired target for the

communication. In some embodiments, the transmission of the data may be intended to be

broadcast to all devices. In such embodiments, the data may be retransmitted without further

processing to determine whether the data should be passed along to another node. However,

some data may be directed to a specific endpoint. To enable addressed messages to be

transmitted to desired endpoints, nodes may be assigned identification information.

[00101] Each node may be assigned a set of link-local addresses (LLA), one assigned to each

network interface. These LLAs may be used to communicate with other nodes on the same

network. Additionally, the LLAs may be used for various communication procedures, such as

IPv6 Neighbor Discovery Protocol. In addition to LLAs, each node is assigned a unique local

address (ULA).

[00102] FIG. 9 illustrates an embodiment of a unique local address (ULA) 1098 that may be

used to address each node in the fabric. In certain embodiments, the ULA 1098 may be

formatted as an IPv6 address format containing 128 bits divided into a global ID 1100, a subnet

ID 1102, and an interface ID 1104. The global ID 1100 includes 40 bits and the subnet ID 1102

includes 16 bits. The global ID 1100 and subnet ID 1102 together form a fabric ID 1103 for the

fabric.

[00103] The fabric ID 1103 is a unique 64-bit identifier used to identify a fabric. The fabric

ID 1103 may be generated at creation of the associated fabric using a pseudo-random algorithm.

For example, the pseudo-random algorithm may 1) obtain the current time of day in 64-bit NTP

format, 2) obtain the interface ID 1104 for the device, 3) concatenate the time of day with the

26

interface ID 1104 to create a key, 4) compute and SHA-1 digest on the key resulting in 160

bits, 5) use the least significant 40 bits as the global ID 1100, and 6) concatenate the ULA and

set the least significant bit to 1 to create the fabric ID 1103. In certain embodiments, once the

fabric ID 1103 is created with the fabric, the fabric ID 1103 remains until the fabric is dissolved.

[00104] The global ID 1100 identifies the fabric to which the node belongs. The subnet

ID 1102 identifies logical networks within the fabric. The subnet ID F3 may be assigned

monotonically starting at one with the addition of each new logical network to the fabric. For

example, a WiFi network may be identified with a hex value of OxO 1, and a later

connected 802.15.4 network may be identified with a hex value of 0x02 continuing on

incrementally upon the connection of each new network to the fabric.

[00105] Finally, the ULA 1098 includes an interface ID 1104 that includes 64 bits. The

interface ID 1104 may be assigned using a globally-unique 64-bit identifier according to the

IEEE EUI-64 standard. For example, devices with IEEE 802 network interfaces may derive the

interface ID 1104 using a burned-in MAC address for the devices "primary interface." In some

embodiments, the designation of which interface is the primary interface may be determined

arbitrarily. In other embodiments, an interface type (e.g., WiFi) may be deemed the primary

interface, when present. If the MAC address for the primary interface of a device is 48 bits

rather than 64-bit, the 48-bit MAC address may be converted to a EUI-64 value via

encapsulation (e.g., organizationally unique identifier encapsulating). In consumer devices (e.g.,

phones or computers), the interface ID 1104 may be assigned by the consumer devices' local

operating systems.

27

ii. Routing Transmissions Between Logical Networks

[00106] As discussed above in relation to a star network topology, inter-network routing may

occur in communication between two devices across logical networks. In some embodiments,

inter-network routing is based on the subnet ID 1102. Each inter-networking node (e.g.,

node 1034 of FIG. 5) may maintain a list of other routing nodes (e.g., node B 14 of FIG. 5) on

the hub network 1020 and their respective attached periphery networks (e.g., periphery

network 1024 of FIG. 5). When a packet arrives addressed to a node other than the routing node

itself, the destination address (e.g., address for node 1052 of FIG. 5) is compared to the list of

network prefixes and a routing node (e.g., node 1044) is selected that is attached to the desired

network (e.g., periphery network 1024). The packet is then forwarded to the selected routing

node. If multiple nodes (e.g., 1034 and 1036) are attached to the same periphery network,

routing nodes are selected in an alternating fashion.

[00107] Additionally, inter-network routing nodes may regularly transmit Neighbor Discovery

Protocol (NDP) router advertisement messages on the hub network to alert consumer devices to

the existence of the hub network and allow them to acquire the subnet prefix. The router

advertisements may include include one or more route information options to assist in routing

information in the fabric. For example, these route information options may inform consumer

devices of the existence of the periphery networks and how to route packets the periphery

networks.

[00108] In addition to, or in place of route information options, routing nodes may act as

proxies to provide a connection between consumer devices and devices in periphery networks,

such as the process 1105 as illustrated in FIG. 10. As illustrated, the process 1105 includes each

periphery network device being assigned a virtual address on the hub network by combining the

28

subnet ID 1102 with the interface ID 1104 for the device on the periphery network (block 1106).

To proxy using the virtual addresses, routing nodes maintain a list of all periphery nodes in the

fabric that are directly reachable via one of its interfaces (block 1108). The routing nodes listen

on the hub network for neighbor solicitation messages requesting the link address of a periphery

node using its virtual address (block 1110). Upon receiving such a message, the routing node

attempts to assign the virtual address to its hub interface after a period of time (block 1112). As

part of the assignment, the routing node performs duplicate address detection so as to block

proxying of the virtual address by more than one routing node. After the assignment, the routing

node responds to the neighbor solicitation message and receives the packet (block 1114). Upon

receiving the packet, the routing node rewrites the destination address to be the real address of

the periphery node (block 1116) and forwards the message to the appropriate interface

(block 1118).

iii. Consumer Devices Connecting to a Fabric

[00109] To join a fabric, a consumer device may discover an address of a node already in the

fabric that the consumer device wants to join. Additionally, if the consumer device has been

disconnected from a fabric for an extended period of time may need to rediscover nodes on the

network if the fabric topology/layout has changed. To aid in discovery/rediscovery, fabric

devices on the hub network may publish Domain Name System-Service Discovery (DNS-SD)

records via mDNS that advertise the presence of the fabric and provide addresses to the

consumer device

III. Data Transmitted in the Fabric

[00110] After creation of a fabric and address creation for the nodes, data may be transmitted

through the fabric. Data passed through the fabric may be arranged in a format common to all

29

messages and/or common to specific types of conversations in the fabric. In some embodiments,

the message format may enable one-to-one mapping to JavaScript Object Notation (JSON) using

a TLV serialization format discussed below. Additionally, although the following data frames

are described as including specific sizes, it should be noted that lengths of the data fields in the

data frames may be varied to other suitable bit-lengths.

[00111] It should be understood that each of the following data frames, profiles, and/or

formats discussed below may be stored in memory (e.g., memory of the device 10) prior to

and/or after transmission of a message. In other words, although the data frame, profiles, and

formats may be generally discussed as transmissions of data, they may also be physically stored

(e.g., in a buffer) before, during, and/or after transmission of the data frame, profiles, and/or

formats. Moreover, the following data frames, profiles, schemas, and/or formats may be stored

on a non-transitory, computer-readable medium that allows an electronic device to access the

data frames, profiles, schemas, and/or formats. For example, instructions for formatting the data

frames, profiles, schemas, and/or formats may be stored in any suitable computer-readable

medium, such as in memory for the device 10, memory of another device, a portable memory

device (e.g., compact disc, flash drive, etc.), or other suitable physical device suitable for storing

the data frames, profiles, schemas, and/or formats.

A. Security

[00112] Along with data intended to be transferred, the fabric may transfer the data with

additional security measures such as encryption, message integrity checks, and digital signatures.

In some embodiments, a level of security supported for a device may vary according to physical

security of the device and/or capabilities of the device. In certain embodiments, messages sent

between nodes in the fabric may be encrypted using the Advanced Encryption Standard (AES)

30

block cipher operating in counter mode (AES-CTR) with a 128-bit key. As discussed below,

each message contains a 32-bit message id. The message id may be combined with a sending

nodes id to form a nonce for the AES-CTR algorithm. The 32-bit counter enables 4 billion

messages to be encrypted and sent by each node before a new key is negotiated.

[00113] In some embodiments, the fabric may insure message integrity using a message

authentication code, such as HMAC-SHA-1, that may be included in each encrypted message.

In some embodiments, the message authentication code may be generated using a 160-bit

message integrity key that is paired one-to-one with the encryption key. Additionally, each node

may check the message id of incoming messages against a list of recently received ids

maintained on a node-by-node basis to block replay of the messages.

B. Tag Length Value (TLV) Formatting

[00114] To reduce power consumption, it is desirable to send at least a portion of the data sent

over the fabric that compactly while enabling the data containers to flexibly represents data that

accommodates skipping data that is not recognized or understood by skipping to the next

location of data that is understood within a serialization of the data. In certain embodiments, tag

length-value (TLV) formatting may be used to compactly and flexibly encode/decode data. By

storing at least a portion of the transmitted data in TLV, the data may be compactly and flexibly

stored/sent along with low encode/decode and memory overhead, as discussed below in

reference to Table 7. In certain embodiments, TLV may be used for some data as flexible,

extensible data, but other portions of data that is not extensible may be stored and sent in an

understood standard protocol data unit (PDU).

[00115] Data formatted in a TLV format may be encoded as TLV elements of various types,

such as primitive types and container types. Primitive types include data values in certain

31

formats, such as integers or strings. For example, the TLV format may encode: 1, 2, 3, 4, or 8

byte signed/unsigned integers, UTF-8 strings, byte strings, single/double-precision floating

numbers (e.g., IEEE 754-1985 format), boolean, null, and other suitable data format types.

Container types include collections of elements that are then sub-classified as container or

primitive types. Container types may be classified into various categories, such as dictionaries,

arrays, paths or other suitable types for grouping TLV elements, known as members. A

dictionary is a collection of members each having distinct definitions and unique tags within the

dictionary. An array is an ordered collection of members with implied definitions or no distinct

definitions. A path is an ordered collection of members that described how to traverse a tree of

TLV elements.

[00116] As illustrated in FIG. 11, an embodiment of a TLV packet 1120 includes three data

fields: a tag field 1122, a length field 1124, and a value field 1126. Although the illustrated

fields 1122, 1124, and 1126 are illustrated as approximately equivalent in size, the size of each

field may be variable and vary in size in relation to each other. In other embodiments, the TLV

packet 1120 may further include a control byte before the tag field 1122.

[00117] In embodiments having the control byte, the control byte may be sub-divided into an

element type field and a tag control field. In some embodiments, the element type field includes

5 lower bits of the control byte and the tag control field occupies the upper 3 bits. The element

type field indicates the TLV element's type as well as the how the length field 1124 and value

field 1126 are encoded. In certain embodiments, the element type field also encodes Boolean

values and/or null values for the TLV. For example, an embodiment of an enumeration of

element type field is provided in Table 1 below.

32

7 6 5 4 3 2 1 0
0 0 0 0 0 Signed Integer, lbyte value

0 0 0 0 1 Signed Integer, 2byte value

0 0 0 1 0 Signed Integer, 4byte value
0 0 0 1 1 Signed Integer, 8byte value

0 0 1 0 0 Unsigned Integer, lbyte value

0 0 1 0 1 Unsigned Integer, 2byte value

0 0 1 1 0 Unsigned Integer, 4byte value

0 0 1 1 1 Unsigned Integer, 8byte value
0 1 0 0 0 Boolean False

0 1 0 0 1 Boolean True
Floating Point Number, 4byte

0 1 0 1 0 value
Floating Point Number, 8byte

0 1 0 1 1 value
0 1 1 0 0 UTF8-String, lbyte length

0 1 1 0 1 UTF8-String, 2byte length

0 1 1 1 0 UTF8-String, 4byte length
0 1 1 1 1 UTF8-String, 8byte length

1 0 0 0 0 Byte String, lbyte length

1 0 0 0 1 Byte String, 2byte length

1 0 0 1 0 Byte String, 4byte length

1 0 0 1 1 Byte String, 8byte length

1 0 1 0 0 Null
1 0 1 0 1 Dictionary
1 0 1 1 0 Array

1 0 1 1 1 Path

1 1 0 0 0 End of Container
Table 1. Example element type field values.

The tag control field indicates a form of the tag in the tag field 1122 assigned to the TLV

element (including a zero-length tag). Examples, of tag control field values are provided in

Table 2 below.

7 6 5 4 3 2 1 0

0 0 0 Anonymous, 0 bytes
Context-specific Tag, 1

0 0 1 byte

0 1 0 Core Profile Tag, 2 bytes

33

0 1 1 Core Profile Tag, 4 bytes
Implicit Profile Tag, 2

1 0 0 bytes
Implicit Profile Tag, 4

1 0 1 bytes
Fully-qualified Tag, 6

1 1 0 bytes
Fully-qualified Tag, 8

1 1 1 bytes
Table 2. Example values for tag control field.

In other words, in embodiments having a control byte, the control byte may indicate a length of

the tag.

[00118] In certain embodiments, the tag field 1122 may include zero to eight bytes, such as

eight, sixteen, thirty two, or sixty four bits. In some embodiments, the tag of the tag field may be

classified as profile-specific tags or context-specific tags. Profile-specific tags identify elements

globally using a vendor Id, a profile Id, and/or tag number as discussed below. Context-specific

tags identify TLV elements within a context of a containing dictionary element and may include

a single-byte tag number. Since context-specific tags are defined in context of their containers, a

single context-specific tag may have different interpretations when included in different

containers. In some embodiments, the context may also be derived from nested containers.

[00119] In embodiments having the control byte, the tag length is encoded in the tag control

field and the tag field 1122 includes a possible three fields: a vendor Id field, a profile Id field,

and a tag number field. In the fully-qualified form, the encoded tag field 1122 includes all three

fields with the tag number field including 16 or 32 bits determined by the tag control field. In

the implicit form, the tag includes only the tag number, and the vendor Id and profile number are

inferred from the protocol context of the TLV element. The core profile form includes profile

34

specific tags, as discussed above. Context-specific tags are encoded as a single byte conveying

the tag number. Anonymous elements have zero-length tag fields 1122.

[00120] In some embodiments without a control byte, two bits may indicate a length of the tag

field 1122, two bits may indicate a length of the length field 1124, and four bits may indicate a

type of information stored in the value field 1126. An example of possible encoding for the

upper 8 bits for the tag field is illustrated below in Table 3.

Byte

0
7 6 5 4 3 2 1 0 Description
0 0 - - - - - - Tagis8bits
0 1 - - - - - - Tagis16bits
1 0 - - - - - - Tagis32bits
1 1 - - - - - - Tagis64bits
- - 0 0 - - - - Lengthis8bits
- - 0 1 - - - - Lengthis16bits
- - 1 0 - - - - Lengthis32bits
- - 1 1 - - - - Lengthis64bits
- - 0 0 0 0 Boolean
- - 0 0 0 1 Fixed 8-bit Unsigned
- - 0 0 1 0 Fixed 8-bit Signed
- - 0 0 1 1 Fixed 16-bit Unsigned
- - 0 1 0 0 Fixed 16-bit Signed
- - 0 1 0 1 Fixed 32-bit Unsigned

0 1 1 0 Fixed 32-bit Signed
- - 0 1 1 1 Fixed 64-bit Unsigned
- - 1 0 0 0 Fixed 64-bit Signed
- - 1 0 0 1 32-bit Floating Point
- - 1 0 1 0 64-bit Floating Point
- - 1 0 1 1 UTF-8 String
- - 1 1 0 0 Opaque Data
- - 1 1 0 1 Container

Table 3. Tag field of a TLV packet

As illustrated in Table 3, the upper 8 bits of the tag field 1122 may be used to encode

information about the tag field 1122, length field 1124, and the value field 1126, such that the tag

35

field 112 may be used to determine length for the tag field 122 and the length fields 1124.

Remaining bits in the tag field 1122 may be made available for user-allocated and/or user

assigned tag values.

[00121] The length field 1124 may include eight, sixteen, thirty two, or sixty four bits as

indicated by the tag field 1122 as illustrated in Table 3 or the element field as illustrated in Table

2. Moreover, the length field 1124 may include an unsigned integer that represents a length of

the encoded in the value field 1126. In some embodiments, the length may be selected by a

device sending the TLV element. The value field 1126 includes the payload data to be decoded,

but interpretation of the value field 1126 may depend upon the tag length fields, and/or control

byte. For example, a TLV packet without a control byte including an 8 bit tag is illustrated in

Table 4 below for illustration.

Tag Length Value Description

OxOd 0x24
0x09 0x04 0x42 95 00 00 74.5
0x09 0x04 0x42 98 66 66 76.2
0x09 0x04 0x42 94 99 9a 74.3

0x09 0x04 0x42 98 99 9a 76.3
0x09 0x04 0x42 95 33 33 74.6

0x09 0x04 0x42 98 33 33 76.1
Table 4. Example of a TLV packet including an 8-bit tag

As illustrated in Table 4, the first line indicates that the tag field 1122 and the length field 1124

each have a length of 8 bits. Additionally, the tag field 1122 indicates that the tag type is for the

first line is a container (e.g., the TLV packet). The tag field 1124 for lines two through six

indicate that each entry in the TLV packet has a tag field 1122 and length field 1124 consisting

of 8 bits each. Additionally, the tag field 1124 indicates that each entry in the TLV packet has a

value field 1126 that includes a 32-bit floating point. Each entry in the value field 1126

36

corresponds to a floating number that may be decoded using the corresponding tag field 1122

and length field 1124 information. As illustrated in this example, each entry in the value

field 1126 corresponds to a temperature in Fahrenheit. As can be understood, by storing data in

a TLV packet as described above, data may be transferred compactly while remaining flexible

for varying lengths and information as may be used by different devices in the fabric. Moreover,

in some embodiments, multi-byte integer fields may be transmitted in little-endian order or big

endian order.

[00122] By transmitting TLV packets in using an order protocol (e.g., little-endian) that may

be used by sending/receiving device formats (e.g., JSON), data transferred between nodes may

be transmitted in the order protocol used by at least one of the nodes (e.g., little endian). For

example, if one or more nodes include ARM or ix86 processors, transmissions between the

nodes may be transmitted using little-endian byte ordering to reduce the use of byte reordering.

By reducing the inclusion of byte reordering, the TLV format enable devices to communicate

using less power than a transmission that uses byte reordering on both ends of the transmission.

Furthermore, TLV formatting may be specified to provide a one-to-one translation between other

data storage techniques, such as JSON+ Extensible Markup Language (XML). As an example,

the TLV format may be used to represent the following XML Property List:

<?xml version=" 1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version=" 1.0">

<dict>

37

<key>OfflineMode</key>

<false!>

<key>Network</key>

<dict>

<key>IPv4</key>

<dict>

<key>Method</key>

<string>dhcp</string>

</dict>

<key>IPv6</key>

<dict>

<key>Method</key>

<string>auto</string>

</dict>

</dict>

<key>Technologies</key>

<dict>

<key>wifi</key>

38

<dict>

<key>Enabled</key>

<true/>

<key>Devices</key>

<dict>

<key>wifi_ 8b4300008b027</key>

<dict>

<key>Enabled</key>

<true/>

</dict>

</dict>

<key>Services</key>

<array>

<string>wifi_1 8b4300008b027_3939382d33204

16c70696e652054657 272616365</string>

</array>

</dict>

<key>802.15.4</key>

39

<dict>

<key>Enabled</key>

<true/>

<key>Devices</key>

<dict>

<key>802.15.4_18b43000000002fac4</key>

<dict>

<key>Enabled</key>

<true/>

</dict>

</dict>

<key>Services</key>

<array>

<string>802.15.4_1 8b43000000002fac4_3

939382d3320416c70696e6520546572</string>

</array>

</dict>

</dict>

40

<key>Services</key>

<dict>

<key>wifil 8b4300008b027_3939382d3320416c70696e6520546572

72616365</key>

<dict>

<key>Name</key>

<string>998-3 Alpine Terrace</string>

<key>SSID</key>

<data>3939382d3320416c70696e652054657272616365

</data>

<key>Frequency</key>

<integer>2462</integer>

<key>AutoConnect</key>

<true/>

<key>Favorite</key>

<true/>

<key>Error</key>

<string/>

41

<key>Network</key>

<dict>

<key>IPv4</key>

<dict>

<key>DHCP</key>

<dict>

<key>LastAddress</key>

<data>0a0200 1 e</data>

</dict>

</dict>

<key>IPv6</key>

<dict/>

</dict>

</dict>

<key>802.15.4_18b43000000002fac4_3939382d3320416c70696e

6520546572</key>

<dict>

<key>Name</key>

42

<string>998-3 Alpine Ter</string>

<key>EPANID</key>

<data>3939382d3320416c70696e6520546572</data>

<key>Frequency</key>

<integer>2412</integer>

<key>AutoConnect</key>

<true/>

<key>Favorite</key>

<true/>

<key>Error</key>

<string/>

<key>Network</key>

<dict/>

</dict>

</dict>

</dict>

listit

43

As an example, the above property list may be represented in tags of the above described TLV

format (without a control byte) according to Table 5 below.

XML Key Tag Type Tag Number

OfflineMode Boolean 1

IPv4 Container 3
IPv6 Container 4

Method String 5
Technologies Container 6

WiFi Container 7
802.15.4 Container 8
Enabled Boolean 9
Devices Container 10
ID String 11

Services Container 12
Name String 13
SSID Data 14

EPANID Data 15

Frequency 16-bit Unsigned 16
AutoConnect Boolean 17
Favorite Boolean 18
Error String 19
DHCP String 20

LastAddress Data 21

Device Container 22

Service Container 23
Table 5. Example representation of the XML Property List in TLV format

Similarly, Table 6 illustrates an example of literal tag, length, and value representations for the

example XML Property List.

Tag Length Value Description

0x40 01 OxOl 0 OfflineMode
Ox4d 02 0x14 Network

0x4d 03 0x07 Network.IPv4

0x4b 05 0x04 "dhcp" Network.IPv4.Method

0x4d 04 0x07 Network.IPv6

0x4b 05 0x04 "auto" Network.IPv6.Method

44

0x4d 06 Oxd6 Technologies

Ox4d 07 0x65 Technologies.wifi

0x40 09 OxO1 1 Technologies.wifi.Enabled

Ox4d Oa Ox5e Technologies.wifi.Devices

Ox4d 16 Ox5b Technologies.wifi.Devices.Device.[0]

Ox4b Ob 0x13 "wifi_18b43..." Technologies.wifi.Devices.Device.[0].ID

0x40 09 OxO1 1 Technologies.wifi.Devices.Device.[0].Enabled

Ox4d Oc Ox3e Technologies.wifi.Devices.Device. [0]. Services

OxOb Ox 3c "wifi_18b43..." Technologies.wifi.Devices.Device.[0].Services.[0]

0x4d 08 Ox6b Technologies.802.15.4

0x40 09 OxO1 1 Technologies.802.15.4.Enabled

Ox4d Oa 0x64 Technologies.802.15.4.Devices

Ox4d 16 0x61 Technologies.802.15.4.Devices.Device. [0]

Ox4b Ob OxIa "802.15.4_18..." Technologies.802.15.4.Devices.Device.[0].ID

0x40 09 OxO1 1 Technologies.802.15.4.Devices.Device. [0].Enabled

Ox4d Oc Ox3d Technologies.802.15.4.Devices.Device. [0].Services

OxOb Ox 3b "802.15.4 18..." Technologies.802.15.4.Devices.Device. [0].Services. [0]

Ox4d Oc Oxcb Services

Ox4d 17 0x75 Services.Service.[0]

Ox4b Ob 0x13 "wifi_18b43..." Services.Service.[0].ID

Ox4b Od 0x14 "998-3 Alp..." Services.Service.[0].Name

Ox4c Of 0x28 3939382d... Services.Service. [0]. SSID

0x45 10 0x02 2462 Services.Service.[0].Frequency

0x40 11 OxOl 1 Services.Service.[0].AutoConnect

0x40 12 OxOl 1 Services.Service.[0].Favorite

Ox4d 02 OxOd Services.Service.[0].Network

Ox4d 03 OxOa Services.Service.[0].Network.IPv4

Ox4d 14 0x07 Services. Service. [0].Network.IPv4.DHCP

0x45 15 0x04 OxOaO2001e Services. Service. [0].Network.IPv4.LastAddress

Ox4d 17 0x50 Services.Service.[1]

Ox4b Ob OxIa "802.15.4_18..." Services.Service.[1].ID

Ox4c Od Ox1O "998-3 Alp..." Services.Service.[1].Name

Ox4c Of Ox10 3939382d... Services.Service.[1] .EPANID

0x45 10 0x02 2412 Services.Service.[1] .Frequency

0x40 11 OxOl 1 Services.Service.[1].AutoConnect

0x40 12 OxO1 1 Services.Service.[1] .Favorite
Table 6. Example of literal values for tag, length, and value fields for XML Property List

45

The TLV format enables reference of properties that may also be enumerated with XML, but

does so with a smaller storage size. For example, Table 7 illustrates a comparison of data sizes

of the XML Property List, a corresponding binary property list, and the TLV format.

List Type Size in Bytes Percentage of XML Size

XML 2,199

Binary 730 -66.8%

TLV 450 -79.5%

Table 7. Comparison of the sizes of property list data sizes.

By reducing the amount of data used to transfer data, the TLV format enables the fabric 1000

transfer data to and/or from devices having short duty cycles due to limited power (e.g., battery

supplied devices). In other words, the TLV format allows flexibility of transmission while

increasing compactness of the data to be transmitted.

C. General Message Protocol

[00123] In addition to sending particular entries of varying sizes, data may be transmitted

within the fabric using a general message protocol that may incorporate TLV formatting. An

embodiment of a general message protocol (GMP) 1128 is illustrated in FIG. 12. In certain

embodiments, the general message protocol (GMP) 1128 may be used to transmit data within the

fabric. The GMP 1128 may be used to transmit data via connectionless protocols (e.g., UDP)

and/or connection-oriented protocols (e.g., TCP). Accordingly, the GMP 1128 may flexibly

accommodate information that is used in one protocol while ignoring such information when

using another protocol. Moreover, the GMP 1226 may enable omission of fields that are not

46

used in a specific transmission. Data that may be omitted from one or more GMP 1226 transfers

is generally indicated using grey borders around the data units. In some embodiments, the multi

byte integer fields may be transmitted in a little-endian order or a big-endian order.

i. Packet Length

[00124] In some embodiments, the GMP 1128 may include a Packet Length field 1130. In

some embodiments, the Packet Length field 1130 includes 2 bytes. A value in the Packet Length

field 1130 corresponds to an unsigned integer indicating an overall length of the message in

bytes, excluding the Packet Length field 1130 itself. The Packet Length field 1130 may be

present when the GMP 1128 is transmitted over a TCP connection, but when the GMP 1128 is

transmitted over a UDP connection, the message length may be equal to the payload length of

the underlying UDP packet obviating the Packet Length field 1130.

ii. Message Header

[00125] The GMP 1128 may also include a Message Header 1132 regardless of whether the

GMP 1128 is transmitted using TCP or UDP connections. In some embodiments, the Message

Header 1132 includes two bytes of data arranged in the format illustrated in FIG. 13. As

illustrated in FIG. 13, the Message Header 1132 includes a Version field 1156. The Version

field 1156 corresponds to a version of the GMP 1128 that is used to encode the message.

Accordingly, as the GMP 1128 is updated, new versions of the GMP 1128 may be created, but

each device in a fabric may be able to receive a data packet in any version of GMP 1128 known

to the device. In addition to the Version field 1156, the Message Header 1132 may include an S

Flag field 1158 and a D Flag 1160. The S Flag 1158 is a single bit that indicates whether a

Source Node Id (discussed below) field is included in the transmitted packet. Similarly, the D

47

Flag 1160 is a single bit that indicates whether a Destination Node Id (discussed below) field is

included in the transmitted packet.

[00126] The Message Header 1132 also includes an Encryption Type field 1162. The

Encryption Type field 1162 includes four bits that specify which type of encryption/integrity

checking applied to the message, if any. For example, OxO may indicate that no encryption or

message integrity checking is included, but a decimal OxI may indicate that AES-128-CTR

encryption with HMAC-SHA-1 message integrity checking is included.

[00127] Finally, the Message Header 1132 further includes a Signature Type field 1164. The

Signature Type field 1164 includes four bits that specify which type of digital signature is

applied to the message, if any. For example, OxO may indicate that no digital signature is

included in the message, but OxI may indicate that the Elliptical Curve Digital Signature

Algorithm (ECDSA) with Prime256vl elliptical curve parameters is included in the message.

iii. Message Id

[00128] Returning to FIG. 12, the GMP 1128 also includes a Message Id field 1134 that may

be included in a transmitted message regardless of whether the message is sent using TCP or

UDP. The Message Id field 1134 includes four bytes that correspond to an unsigned integer

value that uniquely identifies the message from the perspective of the sending node. In some

embodiments, nodes may assign increasing Message Id 1134 values to each message that they

send returning to zero after reaching 232 messages.

iv. Source Node Id

[00129] In certain embodiments, the GMP 1128 may also include a Source Node Id field 1136

that includes eight bytes. As discussed above, the Source Node Id field 1136 may be present in a

48

message when the single-bit S Flag 1158 in the Message Header 1132 is set to 1. In some

embodiments, the Source Node Id field 1136 may contain the Interface ID 1104 of the

ULA 1098 or the entire ULA 1098. In some embodiments, the bytes of the Source Node Id

field 1136 are transmitted in an ascending index-value order (e.g., EUI[O] then EUI[1] then

EUI[2] then EUI[3], etc.).

v. Destination Node Id

[00130] The GMP 1128 may include a Destination Node Id field 1138 that includes eight

bytes. The Destination Node Id field 1138 is similar to the Source Node Id field 1136, but the

Destination Node Id field 1138 corresponds to a destination node for the message. The

Destination Node Id field 1138 may be present in a message when the single-bit D Flag 1160 in

the Message Header 1132 is set to 1. Also similar to the Source Node Id field 1136, in some

embodiments, bytes of the Destination Node Id field 1138 may be transmitted in an ascending

index-value order (e.g., EUI[0] then EUI[1] then EUI[2] then EUI[3], etc.).

vi. Key Id

[00131] In some embodiments, the GMP 1128 may include a Key Id field 1140. In certain

embodiments, the Key Id field 1140 includes two bytes. The Key Id field 1140 includes an

unsigned integer value that identifies the encryption/message integrity keys used to encrypt the

message. The presence of the Key Id field 1140 may be determined by the value of Encryption

Type field 1162 of the Message Header 1132. For example, in some embodiments, when the

value for the Encryption Type field 1162 of the Message Header 1132 is OxO, the Key Id

field 1140 may be omitted from the message.

[00132] An embodiment of the Key Id field 1140 is presented in FIG. 14. In the illustrated

embodiment, the Key Id field 1140 includes a Key Type field 1166 and a Key Number

49

field 1168. In some embodiments, the Key Type field 1166 includes four bits. The Key Type

field 1166 corresponds to an unsigned integer value that identifies a type of encryption/message

integrity used to encrypt the message. For example, in some embodiments, if the Key Type

field 1166 is OxO, the fabric key is shared by all or most of the nodes in the fabric. However, if

the Key Type field 1166 is Ox1, the fabric key is shared by a pair of nodes in the fabric.

[00133] The Key Id field 1140 also includes a Key Number field 1168 that includes twelve

bits that correspond to an unsigned integer value that identifies a particular key used to encrypt

the message out of a set of available keys, either shared or fabric keys.

vii. Payload Length

[00134] In some embodiments, the GMP 1128 may include a Payload Length field 1142. The

Payload Length field 1142, when present, may include two bytes. The Payload Length

field 1142 corresponds to an unsigned integer value that indicates a size in bytes of the

Application Payload field. The Payload Length field 1142 may be present when the message is

encrypted using an algorithm that uses message padding, as described below in relation to the

Padding field.

viii. Initialization Vector

[00135] In some embodiments, the GMP 1128 may also include an Initialization Vector (IV)

field 1144. The IV field 1144, when present, includes a variable number of bytes of data. The

IV field 1144 contains cryptographic IV values used to encrypt the message. The IV field 1144

may be used when the message is encrypted with an algorithm that uses an IV. The length of the

IV field 1144 may be derived by the type of encryption used to encrypt the message.

50

ix. Application Payload

[00136] The GMP 1128 includes an Application Payload field 1146. The Application

Payload field 1146 includes a variable number of bytes. The Application Payload field 1146

includes application data conveyed in the message. The length of the Application Payload

field 1146 may be determined from the Payload Length field 1142, when present. If the Payload

Length field 1142 is not present, the length of the Application Payload field 1146 may be

determined by subtracting the length of all other fields from the overall length of the message

and/or data values included within the Application Payload 1146 (e.g., TLV).

[00137] An embodiment of the Application Payload field 1146 is illustrated in FIG. 15. The

Application Payload field 1146 includes an APVersion field 1170. In some embodiments, the

APVersion field 1170 includes eight bits that indicate what version of fabric software is

supported by the sending device. The Application Payload field 1146 also includes a Message

Type field 1172. The Message Type field 1172 may include eight bits that correspond to a

message operation code that indicates the type of message being sent within a profile. For

example, in a software update profile, a OxOO may indicate that the message being sent is an

image announce. The Application Payload field 1146 further includes an Exchange Id field 1174

that includes sixteen bits that corresponds to an exchange identifier that is unique to the sending

node for the transaction.

[00138] In addition, the Application Payload field 1146 includes a Profile Id field 1176. The

Profile Id 1176 indicates a "theme of discussion" used to indicate what type of communication

occurs in the message. The Profile Id 1176 may correspond to one or more profiles that a device

may be capable of communicating. For example, the Profile Id 1176 may indicate that the

message relates to a core profile, a software update profile, a status update profile, a data

51

management profile, a climate and comfort profile, a security profile, a safety profile, and/or

other suitable profile types. Each device on the fabric may include a list of profiles which are

relevant to the device and in which the device is capable of "participating in the discussion." For

example, many devices in a fabric may include the core profile, the software update profile, the

status update profile, and the data management profile, but only some devices would include the

climate and comfort profile. The APVersion field 1170, Message Type field 1172, the Exchange

Id field, the Profile Id field 1176, and the Profile-Specific Header field 1176, if present, may be

referred to in combination as the "Application Header."

[00139] In some embodiments, an indication of the Profile Id via the Profile Id field 1176 may

provide sufficient information to provide a schema for data transmitted for the profile. However,

in some embodiments, additional information may be used to determine further guidance for

decoding the Application Payload field 1146. In such embodiments, the Application Payload

field 1146 may include a Profile-Specific Header field 1178. Some profiles may not use the

Profile-Specific Header field 1178 thereby enabling the Application Payload field 1146 to omit

the Profile-Specific Header field 1178. Upon determination of a schema from the Profile Id

field 1176 and/or the Profile-Specific Header field 1178, data may be encoded/decoded in the

Application Payload sub-field 1180. The Application Payload sub-field 1180 includes the core

application data to be transmitted between devices and/or services to be stored, rebroadcast,

and/or acted upon by the receiving device/service.

x. Message Integrity Check

[00140] Returning to FIG. 12, in some embodiments, the GMP 1128 may also include a

Message Integrity Check (MIC) field 1148. The MIC field 1148, when present, includes a

variable length of bytes of data containing a MIC for the message. The length and byte order of

52

the field depends upon the integrity check algorithm in use. For example, if the message is

checked for message integrity using HMAC-SHA-1, the MIC field 1148 includes twenty bytes in

big-endian order. Furthermore, the presence of the MIC field 1148 may be determined by

whether the Encryption Type field 1162 of the Message Header 1132 includes any value other

than OxO.

xi. Padding

[00141] The GMP 1128 may also include a Padding field 1150. The Padding field 1150,

when present, includes a sequence of bytes representing a cryptographic padding added to the

message to make the encrypted portion of the message evenly divisible by the encryption block

size. The presence of the Padding field 1150 may be determined by whether the type of

encryption algorithm (e.g., block ciphers in cipher-block chaining mode) indicated by the

Encryption Type field 1162 in the Message Header 1132 uses cryptographic padding.

xii. Encryption

[00142] The Application Payload field 1146, the MIC field 1148, and the Padding field 1150

together form an Encryption block 1152. The Encryption block 1152 includes the portions of the

message that are encrypted when the the Encryption Type field 1162 in the Message

Header 1132 is any value other than OxO.

xiii. Message Signature

[00143] The GMP 1128 may also include a Message Signature field 1154. The Message

Signature field 1154, when present, includes a sequence of bytes of variable length that contains

a cryptographic signature of the message. The length and the contents of the Message Signature

field may be determined according to the type of signature algorithm in use and indicated by the

Signature Type field 1164 of the Message Header 1132. For example, if ECDSA using the

53

Prime256vl elliptical curve parameters is the algorithm in use, the Message Signature field 1154

may include two thirty-two bit integers encoded in little-endian order.

IV. Profiles and Protocols

[00144] As discussed above, one or more schemas of information may be selected upon

desired general discussion type for the message. A profile may consist of one or more schemas.

For example, one set of schemas of information may be used to encode/decode data in the

Application Payload sub-field 1180 when one profile is indicated in the Profile Id field 1176 of

the Application Payload 1146. However, a different set of schemas may be used to

encode/decode data in the Application Payload sub-field 1180 when a different profile is

indicated in the Profile Id field 1176 of the Application Payload 1146.

[00145] Additionally, in certain embodiments, each device may include a set of methods used

to process profiles. For example, a core protocol may include the following profiles:

GetProfiles, GetSchema, GetSchemas, GetProperty, GetProperties, SetProperty, SetProperties,

RemoveProperty, RemoveProperties, RequestEcho, NotifyPropertyChanged, and/or

NotifyPropertiesChanged. The Get Profiles method may return an array of profiles supported by

a queried node. The GetSchema and GetSchemas methods may respectively return one or all

schemas for a specific profile. GetProperty and GetProperties may respectively return a value or

all value pairs for a profile schema. SetProperty and SetProperties may respectively set single or

multiple values for a profile schema. RemoveProperty and RemoveProperties may respectively

attempt to remove a single or multiple values from a profile schema. RequestEcho may send an

arbitrary data payload to a specified node which the node returns unmodified.

NotifyPropertyChange and NotifyPropertiesChanged may respectively issue a notification if a

single/multiple value pairs have changed for a profile schema.

54

[00146] To aid in understanding profiles and schemas, a non-exclusive list of profiles and

schemas are provided below for illustrative purposes.

A. Status Reporting

[00147] A status reporting schema is presented as the status reporting frame 1182 in FIG. 16.

The status reporting schema may be a separate profile or may be included in one or more profiles

(e.g., a core profile). In certain embodiments, the status reporting frame 1182 includes a profile

field 1184, a status code field 1186, a next status field 1188, and may include an additional status

info field 1190.

i. Profile Field

[00148] In some embodiments, the profile field 1184 includes four bytes of data that defines

the profile under which the information in the present status report is to be interpreted. An

embodiment of the profile field 1184 is illustrated in FIG. 17 with two sub-fields. In the

illustrated embodiment, the profile field 1184 includes a profile Id sub-field 1192 that includes

sixteen bits that corresponds to a vendor-specific identifier for the profile under which the value

of the status code field 1186 is defined. The profile field 1184 may also includes a vendor Id

sub-field 1194 that includes sixteen bits that identifies a vendor providing the profile identified in

the profile Id sub-field 1192.

ii. Status Code

[00149] In certain embodiments, the status code field 1186 includes sixteen bits that encode

the status that is being reported. The values in the status code field 1186 are interpreted in

relation to values encoded in the vendor Id sub-field 1192 and the profile Id sub-field 1194

provided in the profile field 1184. Additionally, in some embodiments, the status code space

may be divided into four groups, as indicated in Table 8 below.

55

Range Name Description

Ox0000 ... Ox0010 success A request was successfully processed.

OxOO11 ... 0x0020 client error An error has or may have occurred on the client-side
of a client/server exchange. For example, the client
has made a badly-formed request.

0x0021 ... 0x0030 server error An error has or may have occurred on the server
side of a client/server exchange. For example, the
server has failed to process a client request to an
operating system error.

0x0031 ... 0x0040 continue/redirect Additional processing will be used, such as
redirection, to complete a particular exchange, but
no errors yet.

Table 8. Status Code Range Table

Although Table 8 identifies general status code ranges that may be used separately assigned and

used for each specific profile Id, in some embodiments, some status codes may be common to

each of the profiles. For example, these profiles may be identified using a common profile (e.g.,

core profile) identifier, such as OxOOOOOOOO.

iii. Next Status

[00150] In some embodiments, the next status code field 1188 includes eight bits. The next

status code field 1188 indicates whether there is following status information after the currently

reported status. If following status information is to be included, the next status code field 1188

indicates what type of status information is to be included. In some embodiments, the next status

code field 1188 may always be included, thereby potentially increasing the size of the message.

However, by providing an opportunity to chain status information together, the potential for

overall reduction of data sent may be reduced. If the next status field 1186 is OxOO, no following

56

status information field 1190 is included. However, non-zero values may indicate that data may

be included and indicate the form in which the data is included (e.g., in a TLV packet).

iv. Additional Status Info

[00151] When the next status code field 1188 is non-zero, the additional status info field 1190

is included in the message. If present, the status item field may contain status in a form that may

be determined by the value of the preceding status type field (e.g., TLV format)

B. Software Update

[00152] The software update profile or protocol is a set of schemas and a client/server

protocol that enables clients to be made aware of or seek information about the presence of

software that they may download and install. Using the software update protocol, a software

image may be provided to the profile client in a format known to the client. The subsequent

processing of the software image may be generic, device-specific, or vendor-specific and

determined by the software update protocol and the devices.

i. General Application Headers for the Application Payload

[00153] In order to be recognized and handled properly, software update profile frames may

be identified within the Application Payload field 1146 of the GMP 1128. In some

embodiments, all software update profile frames may use a common Profile Id 1176, such as

OxOOOOOOOC. Additionally, software update profile frames may include a Message Type

field 1172 that indicates additional information and may chosen according to Table 9 below and

the type of message being sent.

Type Message

Ox00 image announce

Ox0 1 image query

57

image query
0x02 response

0x03 download notify

0x04 notify response

0x05 update notify
0x06 ... Oxff reserved

Table 9. Software update profile message types

Additionally, as described below, the software update sequence may be initiated by a server

sending the update as an image announce or a client receiving the update as an image query. In

either embodiment, an Exchange Id 1174 from the initiating event is used for all messages used

in relation to the software update.

ii. Protocol Sequence

[00154] FIG. 18 illustrates an embodiment of a protocol sequence 1196 for a software update

between a software update client 1198 and a software update server 1200. In certain

embodiments, any device in the fabric may be the software update client 1198 or the software

update server 1200. Certain embodiments of the protocol sequence 1196 may include additional

steps, such as those illustrated as dashed lines that may be omitted in some software update

transmissions.

1. Service Discovery

[00155] In some embodiments, the protocol sequence 1196 begins with a software update

profile server announcing a presence of the update. However, in other embodiments, such as the

illustrated embodiment, the protocol sequence 1196 begins with a service discovery 1202, as

discussed above.

58

2. Image Announce

[00156] In some embodiments, an image announce message 1204 may be multicast or unicast

by the software update server 1200. The image announce message 1204 informs devices in the

fabric that the server 1200 has a software update to offer. If the update is applicable to the client

1198, upon receipt of the image announce message 1204, the software update client 1198

responds with an image query message 1206. In certain embodiments, the image announce

message 1204 may not be included in the protocol sequence 1196. Instead, in such

embodiments, the software update client 1198 may use a polling schedule to determine when to

send the image query message 1206.

3. Image Query

[00157] In certain embodiments, the image query message 1206 may be unicast from the

software update client 1198 either in response to an image announce message 1204 or according

to a polling schedule, as discussed above. The image query message 1206 includes information

from the client 1198 about itself. An embodiment of a frame of the image query message 1206

is illustrated in FIG. 19. As illustrated in FIG. 19, certain embodiments of the image query

message 1206 may include a frame control field 1218, a product specification field 1220, a

vendor specific data field 1222, a version specification field 1224, a locale specification

field 1226, an integrity type supported field 1228, and an update schemes supported field 1230.

a. Frame Control

[00158] The frame control field 1218 includes 1 byte and indicates various information about

the image query message 1204. An example of the frame control field 128 is illustrated in

FIG. 20. As illustrated, the frame control field 1218 may include three sub-fields: vendor

specific flag 1232, locale specification flag 1234, and a reserved field S3. The vendor specific

59

flag 1232 indicates whether the vendor specific data field 1222 is included in the message image

query message. For example, when the vendor specific flag 1232 is 0 no vendor specific data

field 1222 may be present in the image query message, but when the vendor specific flag 1232

is 1 the vendor specific data field 1222 may be present in the image query message. Similarly,

a 1 value in the locale specification flag 1234 indicates that a locale specification field 1226 is

present in the image query message, and a 0 value indicates that the locale specification

field 1226 in not present in the image query message.

b. Product Specification

[00159] The product specification field 1220 is a six byte field. An embodiment of the

product specification field 1220is illustrated in FIG. 21. As illustrated, the product specification

field 1220 may include three sub-fields: a vendor Id field 1236, a product Id field 1238, and a

product revision field 1240. The vendor Id field 1236 includes sixteen bits that indicate a vendor

for the software update client 1198. The product Id field 1238 includes sixteen bits that indicate

the device product that is sending the image query message 1206 as the software update

client 1198. The product revision field 1240 includes sixteen bits that indicate a revision

attribute of the software update client 1198.

c. Vendor Specific Data

[00160] The vendor specific data field 1222, when present in the image query message 1206,

has a length of a variable number of bytes. The presence of the vendor specific data field 1222

may be determined from the vendor specific flag 1232 of the frame control field 1218. When

present, the vendor specific data field 1222 encodes vendor specific information about the

software update client 1198 in a TLV format, as described above.

60

d. Version Specification

[00161] An embodiment of the version specification field 1224 is illustrated in FIG. 22. The

version specification field 1224 includes a variable number of bytes sub-divided into two sub

fields: a version length field 1242 and a version string field 1244. The version length field 1242

includes eight bits that indicate a length of the version string field 1244. The version string

field 1244 is variable in length and determined by the version length field 1242. In some

embodiments, the version string field 1244 may be capped at 255 UTF-8 characters in length.

The value encoded in the version string field 1244 indicates a software version attribute for the

software update client 1198.

e. Locale Specification

[00162] In certain embodiments, the locale specification field 1226 may be included in the

image query message 1206 when the locale specification flag 1234 of the frame control 1218

is 1. An embodiment of the locale specification field 1226 is illustrated in FIG. 23. The

illustrated embodiment of the locale specification field 1226 includes a variable number of bytes

divided into two sub-fields: a locale string length field 1246 and a locale string field 1248. The

locale string length field 1246 includes eight bits that indicate a length of the locale string

field 1248. The locale string field 1248 of the locale specification field 1226 may be variable in

length and contain a string of UTF-8 characters encoding a local description based on Portable

Operating System Interface (POSIX) locale codes. The standard format for POSIX locale codes

is [language[territory][.codeset][@modifier]] For example, the POSIX representation for

Australian English is enAU.UTF8.

61

f. Integrity Types Supported

[00163] An embodiment of the integrity types field 1228 is illustrated in FIG. 24. The

integrity types supported field 1228 includes two to four bytes of data divided into two sub

fields: a type list length field 1250 and an integrity type list field 1252. The type list length

field 1250 includes eight bits that indicate the length in bytes of the integrity type list field 1252.

The integrity type list field 1252 indicates the value of the software update integrity type

attribute of the software update client 1198. In some embodiments, the integrity type may be

derived from Table 10 below.

Value Integrity Type

0x00 SHA-160

Ox01 SHA-256

0x02 SHA-512

Table 10. Example integrity types

The integrity type list field 1252 may contain at least one element from Table 10 or other

additional values not included.

g. Update Schemes Supported

[00164] An embodiment of the schemes supported field 1230 is illustrated in FIG. 25. The

schemes supported field 1230 includes a variable number of bytes divided into two sub-fields: a

scheme list length field 1254 and an update scheme list field 1256. The scheme list length

field 1254 includes eight bits that indicate a length of the update scheme list field in bytes. The

update scheme list field 1256 of the update schemes supported field 1222 is variable in length

determined by the scheme list length field 1254. The update scheme list field 1256 represents an

62

update schemes attributes of the software update profile of the software update client 1198. An

embodiment of example values is shown in Table 11 below.

Value Update Scheme

0x00 HTTP

Ox01 HTTPS

0x02 SFTP

0x03 Fabric-specific File Transfer Protocol
(e.g., Bulk Data Transfer discussed
below)

Table 11. Example update schemes

Upon receiving the image query message 1206, the software update server 1200 uses the

transmitted information to determine whether the software update server 1200 has an update for

the software update client 1198 and how best to deliver the update to the software update

client 1198.

4. Image Query Response

[00165] Returning to FIG. 18, after the software update server 1200 receives the image query

message 1206 from the software update client 1198, the software update server 1200 responds

with an image query response 1208. The image query response 1208 includes either information

detailing why an update image is not available to the software update client 1198 or information

about the available image update to enable to software update client 1198 to download and

install the update.

[00166] An embodiment of a frame of the image query response 1208 is illustrated in FIG. 26.

As illustrated, the image query response 1208 includes five possible sub-fields: a query status

63

field 1258, a uniform resource identifier (URI) field 1260, an integrity specification field 1262,

an update scheme field 1264, and an update options field 1266.

a. Query Status

[00167] The query status field 1258 includes a variable number of bytes and contains status

reporting formatted data, as discussed above in reference to status reporting. For example, the

query status field 1258 may include image query response status codes, such as those illustrated

below in Table 12.

Profile Code Description

OxOOOOOOOO OxOOOO The server has processed the image query message 1206
and has an update for the software update client 1198.

OxOOOOOOOC OxOOO The server has processed the image query message 1206,
but the server does not have an update for the software
update client 1198.

OxOOOOOOOO OxOOO The server could not process the request because of
improper form for the request.

OxOOOOOOOO 0x0020 The server could not process the request due to an
internal error

Table 12. Example image query response status codes

b. URI

[00168] The URI field 1260 includes a variable number of bytes. The presence of the URI

field 1260 may be determined by the query status field 1258. If the query status field 1258

indicates that an update is available, the URI field 1260 may be included. An embodiment of the

URI field 1260 is illustrated in FIG. 27. The URI field 1260 includes two sub-fields: a URI

length field 1268 and a URI string field 1270. The URI length field 1268 includes sixteen bits

that indicates the length of the URI string field 1270 in UTF-8 characters. The URI string

field 1270 and indicates the URI attribute of the software image update being presented, such

64

that the software update client 1198 may be able to locate, download, and install a software

image update, when present.

c. Integrity Specification

[00169] The integrity specification field 1262 may variable in length and present when the

query status field 1258 indicates that an update is available from the software update server 1198

to the software update client 1198. An embodiment of the integrity specification field 1262 is

illustrated in FIG. 28. As illustrated, the integrity specification field 1262 includes two sub

fields: an integrity type field 1272 and an integrity value field 1274. The integrity type

field 1272 includes eight bits that indicates an integrity type attribute for the software image

update and may be populated using a list similar to that illustrated in Table 10 above. The

integrity value field 1274 includes the integrity value that is used to verify that the image update

message has maintained integrity during the transmission.

d. Update Scheme

[00170] The update scheme field 1264 includes eight bits and is present when the query status

field 1258 indicates that an update is available from the software update server 1198 to the

software update client 1198. If present, the update scheme field 1264 indicates a scheme

attribute for the software update image being presented to the software update server 1198.

e. Update Options

[00171] The update options field 1266 includes eight bits and is present when the query status

field 1258 indicates that an update is available from the software update server 1198 to the

software update client 1198. The update options field 1266 may be sub-divided as illustrated in

FIG. 29. As illustrated, the update options field 1266 includes four sub-fields: an update priority

field 1276, an update condition field 1278, a report status flag 1280, and a reserved field 1282.

65

In some embodiments, the update priority field 1276 includes two bits. The update priority

field 1276 indicates a priority attribute of the update and may be determined using values such as

those illustrated in Table 13 below.

Value Description

00 Normal - update during a period of low network traffic

01 Critical - update as quickly as possible

Table 13. Example update priority values

The update condition field 1278 includes three bits that may be used to determine conditional

factors to determine when or if to update. For example, values in the update condition field 1278

may be decoded using the Table 14 below.

Value Decryption

0 Update without conditions

1 Update if the version of the software running on the update
client software does not match the update version.

2 Update if the version of the software running on the update
client software is older than the update version.

3 Update if the user opts into an update with a user interface

Table 14. Example update conditions

The report status flag 1280 is a single bit that indicates whether the software update client 1198

should respond with a download notify message 1210. If the report status flag 1280 is set to 1

the software update server 1198 is requesting a download notify message 1210 to be sent after

the software update is downloaded by the software update client 1200.

66

[00172] If the image query response 1208 indicates that an update is available. The software

update client 1198 downloads 1210 the update using the information included in the image query

response 1208 at a time indicated in the image query response 1208.

5. Download Notify

[00173] After the update download 1210 is successfully completed or failed and the report

status flag 1280 value is 1, the software update client 1198 may respond with the download

notify message 1212. The download notify message 1210 may be formatted in accordance with

the status reporting format discussed above. An example of status codes used in the download

notify message 1212 is illustrated in Table 15 below.

Profile Code Description

0x00000000 0x0000 The download has been completed,
and integrity verified

OxOOOOOOOC 0x0020 The download could not be
completed due to faulty download

instructions.

OxOOOOOOOC 0x0021 The image query response
message 1208 appears proper, but

the download or integrity
verification failed.

OxOOOOOOOC 0x0022 The integrity of the download could
not be verified.

Table 15. Example download notify status codes

In addition to the status reporting described above, the download notify message 1208 may

include additional status information that may be relevant to the download and/or failure to

download.

67

6. Notify Response

[00174] The software update server 1200 may respond with a notify response message 1214

in response to the download notify message 1212 or an update notify message 1216. The notify

response message 1214 may include the status reporting format, as described above. For

example, the notify response message 1214 may include status codes as enumerated in Table 16

below.

Profile Code Description

OxOOOOOOOO 0x0030 Continue - the notification is acknowledged, but the update
has not completed, such as download notify message 1214
received but update notify message 1216 has not.

OxOOOOOOOO OxOOOO Success- the notification is acknowledged, and the update
has completed.

OxOOOOOOOC 0x0023 Abort - the notification is acknowledged, but the server
cannot continue the update.

OxOOOOOOOC 0x0031 Retry query - the notification is acknowledged, and the
software update client 1198 is directed to retry the update by
submitting another image query message 1206.

Table 16. Example notify response status codes

In addition to the status reporting described above, the notify response message 1214 may

include additional status information that may be relevant to the download, update, and/or failure

to download/update the software update.

7. Update Notify

[00175] After the update is successfully completed or failed and the report status flag 1280

value is 1, the software update client 1198 may respond with the update notify message 1216.

The update notify message 1216 may use the status reporting format described above. For

68

example, the update notify message 1216 may include status codes as enumerated in Table 17

below.

Profile Code Description

OxOOOOOOOO OxOOOO Success - the update has been completed.

OxOOOOOOOC OxOOO Client error - the update failed due to a

problem in the software update client 1198.

Table 17. Example update notify status codes

In addition to the status reporting described above, the update notify message 1216 may include

additional status information that may be relevant to the update and/or failure to update.

C. Data Management Protocol

[00176] Data management may be included in a common profile (e.g., core profile) used in

various electronic devices within the fabric or may be designated as a separate profile. In either

situation, the device management protocol (DMP) may be used for nodes to browse, share,

and/or update node-resident information. A sequence 1284 used in the DMP is illustrated in

FIG. 30. The sequence 1284 illustrates a viewing node 1286 that requests to view and/or change

resident data of a viewed node 1288. Additionally, the viewing node 1286 may request to view

the resident data using one of several viewing options, such as a snapshot request, a watching

request that the viewing persists over a period of time, or other suitable viewing type. Each

message follows the format for the Application Payload 1146 described in reference to FIG. 15.

For example, each message contains a profile Id 1176 that corresponds to the data management

profile and/or the relevant core profile, such as Ox235AOOOO. Each message also contains a

message type 1172. The message type 1172 may be used to determine various factors relating

69

the conversation, such as viewing type for the view. For example, in some embodiments, the

message type field 1172 may be encoded/decoded according to Table 18 below.

Type Message
OxOO snapshot request
OxO 1 watch request
0x02 periodic update request
0x03 refresh update
0x04 cancel view update
0x05 view response
0x06 explicit update request
0x07 view update request
Ox08 update response

Table 18. Example software update profile message types

i. View Request

[00177] Although a view request message 1290 requests to view node-resident data, the type

of request may be determined by the message type field 1172, as discussed above. Accordingly

each request type may include a different view request frame.

1. Snapshot Request

[00178] A snapshot request may be sent by the viewing node 1286 when the viewing

node 1286 desires an instantaneous view into the node-resident data on the viewed node 1288

without requesting future updates. An embodiment of a snapshot request frame 1292 is

illustrated in FIG. 31.

[00179] As illustrated in FIG. 31, the snapshot request frame 1292 may be variable in length

and include three fields: a view handle field 1294, a path length list field 1296, and a path list

field 1298. The view handle field 1294 may include two bits that provide a "handle" to identify

the requested view. In some embodiments, the view handle field 1294 is populated using a

random 16-bit number or a 16-bit sequence number along with a uniqueness check performed on

70

the viewing node 1286 when the request is formed. The path list length field 1296 includes two

bytes that indicate a length of the path list field 1298. The path list field 1298 is variable in

length and indicated by the value of the path list length field 1296. The value of the path list

field 1298 indicates a schema path for nodes.

[00180] A schema path is a compact description for a data item or container that is part of a

schema resident on the nodes. For example, FIG. 32 provides an example of a profile

schema 1300. In the illustrated profile schema 1300, a path to data item 1302 may be written as

"Foo:bicycle:mountain" in a binary format. The binary format of the path may be represented as

a profile binary format 1304, as depicted in FIG. 33. The profile binary format 1304 includes

two sub-fields: a profile identifier field 1306 and a TLV data field 1308. The profile identifier

field 1306 identifies which profile is being referenced (e.g., Foo profile). The TLV data

field 1308 path information. As previously discussed TLV data includes a tag field that includes

information about the enclosed data. Tag field values used to refer to the Foo profile of FIG. 32

may be similar to those values listed in Table 19.

Name Tag
animal 0x4301

fish 0x4302
fowl 0x4303

medium 0x4304
size 0x4305

bicycle 0x4306
road 0x4307

mountain 0x4308
track 0x4309

of gears 0x430A
weight 0x430B

Table 19. Example tag values for the Foo profile

71

Using Table 19 and the Foo profile of FIG. 32, a binary string in TLV format representing the

path "Foo:bicycle:mountain" may be represented as shown in Table 20 below.

Profile ID Tag and Length (TL) "bicycle" "mountain"

CD:AB:00:00 0D:02 06:43 08:43

Table 20. Example binary tag list for a schema path

If the viewing node 1286 desires to receive an entire data set defined in a profile schema (e.g.

Foo profile schema of FIG. 33), the view request message 1290 may request a "nil" item (e.g.,

0x0D00 TL and an empty length referring to the container.

2. Watch Request

[00181] If the viewing node 1286 desires more than a snapshot, the viewing node 1286 may

request a watch request. A watch request asks the viewed node 1288 to send updates when

changes are made to the data of interest in viewed node 1288 so that viewing node 1286 can keep

a synchronized list of the data. The watch request frame may have a different format than the

snapshot request of FIG. 31. An embodiment of a watch request frame 1310 is illustrated in

FIG. 34. The watch request frame 1310 includes four fields: a view handle field 1312, a path list

length field 1314, a path list field 1316, and a change count field 1318. The view handle

field 1312, the path list length field 1314, and the path list field may be respectively formatted

similar to the view handle field 1294, the path list length field 1296, and the path list field 1298

of the snapshot request of FIG. 31. The additional field, the change count field 1318, indicates a

threshold of a number of changes to the requested data at which an update is sent to the viewing

node 1286. In some embodiments, if the value of the change count field 1318is 0, the viewed

node 1288 may determine when to send an update on its own. If the value of the change count

72

field 1318 is nonzero then after a number of changes equal to the value, then an update is sent to

the viewing node 1286.

3. Periodic Update Request

[00182] A third type of view may also be requested by the viewing node 1286. This third type

of view is referred to as a periodic update. A periodic update includes a snapshot view as well as

periodic updates. As can be understood, a periodic update request may be similar to the snapshot

request with additional information determining the update period. For example, an embodiment

of a periodic update request frame 1320 is depicted in FIG. 35. The periodic update request

frame 1320 includes four fields: a view handle field 1322, a path list length field 1324, a path list

field 1326, and an update period field 1328. The view handle field 1322, the path list length

field 1324, and the path list field 1326 may be formatted similar to their respective fields in the

snapshot request frame 1292. The update period field 1328 is four bytes in length and contains a

value that corresponds to a period of time to lapse between updates in a relevant unit of time

(e.g., seconds).

4. Refresh Request

[00183] When the viewing node 1286 desires to receive an updated snapshot, the viewing

node 1286 may send a view request message 1290 in the form of a refresh request frame 1330 as

illustrated in FIG. 36. The refresh request frame 1330 essentially resends a snapshot view handle

field (e.g., view handle field 1294) from a previous snapshot request that the viewed node 1288

can recognize as a previous request using the view handle value in the refresh request

frame 1330.

73

5. Cancel View Request

[00184] When the viewing node 1286 desires to cancel an ongoing view (e.g., periodic update

or watch view), the viewing node 1286 may send a view request message 1290 in the form of a

cancel view request frame 1332 as illustrated in FIG. 37. The cancel view request frame 1332

essentially resends a view handle field from a previous periodic update or watch view (e.g., view

handle fields 1310, or 1322) from a previous request that the viewed node 1288 can recognize as

a previous request using the view handle value in the refresh request frame 1330 and to cancel a

currently periodic update or watch view.

ii. View Response

[00185] Returning to FIG. 30, after the viewed node 1288 receives a view request

message 1290, the viewed node 1288 responds with a view response message 1334. An example

of a view response message frame 1336 is illustrated in FIG. 38. The view response message

frame 1336 includes three fields: a view handle field 1338, a view request status field 1240, and

a data item list 1242. The view handle field 1338 may be formatted similar to any of the above

referenced view handle fields 1338. Additionally, the view handle field 1338 contains a value

that matches a respective view handle field from the view request message 1290 to which the

view response message 1334 is responding. The view request status field 1340 is a variable

length field that indicates a status of the view request and may be formatted according to the

status updating format discussed above. The data item list field 1342 is a variable length field

that is present when the view request status field 1340 indicates that the view request was

successful. When present, the data item list field 1342 contains an ordered list of requested data

corresponding to the path list of the view request message 1290. Moreover, the data in the data

item list field 1342 may be encoded in a TLV format, as discussed above.

74

iii. Update Request

[00186] As discussed above, in some embodiments, the viewed node 1288 may send updates

to the viewing node 1286. These updates may be sent as an update request message 1344. The

update request message 1344 may include a specified format dependent upon a type of update

request. For example, an update request may be an explicit update request or a view update

request field that may be identified by the Message Id 1172.

1. Explicit Update Request

[00187] An explicit update request may be transmitted at any time as a result of a desire for

information from another node in the fabric 1000. An explicit update request may be formatted

in an update request frame 1346 illustrated in FIG. 39. The illustrated update request frame 1346

includes four fields: an update handle field 1348, a path list length field 1350, a path list

field 1352, and a data item list field 1354.

[00188] The update handle field 1348 includes two bytes that may be populated with random

or sequential numbers with uniqueness checks to identify an update request or responses to the

request. The path list length field 1350 includes two bytes that indicate a length of the path list

field 1352. The path list field 1352 is a variable length field that indicates a sequence of paths,

as described above. The data item list field 1354 may be formatted similar to the data item list

field 1242.

2. View Update Request

[00189] A view update request message may be transmitted by a node that has previously

requested a view into a schema of another node or a node that has established a view into its own

data on behalf of another node. An embodiment of a view update request frame 1356 illustrated

in FIG. 40. The view update request frame 1356 includes four fields: an update handle

75

field 1358, a view handle field 1360, an update item list length field 1362, and an update item list

field 1364. The update handle field 1358 may be composed using the format discussed above in

reference to the update handle field 1348. The view handle field 1360 includes two bytes that

identify the view created by a relevant view request message 1290 having the same view handle.

The update item list length field 1362 includes two bytes and indicates the number of update

items that are included in the update item list field 1364.

[00190] The update item list field 1364 includes a variable number of bytes and lists the data

items constituting the updated values. Each updated item list may include multiple update items.

The individual update items are formatted accordingly to the update item frame 1366 illustrated

in FIG. 41. Each update item frame 1366 includes three sub-fields: an item index field 1368, an

item timestamp field 1370, and a data item field 1372. The item index field 1368 includes two

bytes that indicate the view under which the update is being requested and the index in the path

list of that view for the data item field 1372.

[00191] The item timestamp field 1370 includes four bytes and indicates the elapsed time

(e.g., in seconds) from the change until the update being communicated was made. If more than

one change has been made to the data item, the item timestamp field 1370 may indicate the most

recent or the earliest change. The data item field 1372 is a variable length field encoded in TLV

format that is to be received as the updated information.

iv. Update Response

[00192] After an update is received, a node (e.g., viewing node 1286) may send an update

response message 1374. The update response message 1374 may be encoded using an update

response frame 1376 illustrated in FIG. 42. The update response frame 1376 includes two fields:

an update handle field 1378 and an update request status field 1380. The update handle

76

field 1378 corresponds to an update handle field value of the update request message 1344 to

which the update response message 1374 is responding. The update request status field 1380

reports a status of the update in accordance with the status reporting format discussed above.

Additionally, a profile using the DMP (e.g., a core profile or a data management profile) may

include profile-specific codes, such as those enumerated in Table 21 below.

Name Value Description

success OxOOOO Request successfully processed

ill-formed request OxOOlO Received request was unparseable (e.g.,
missing fields, extra fields, etc.)

invalid path OxOO 11 A path from the path list of the view or
update request did not match a node
resident schema of the responding device.

unknown view handle 0x0012 The view handle in the update request did
not match a view on the receiving node.

illegal read request OxOO 13 The node making a request to read a
particular data item does not have
permission to do so.

illegal write request 0x0014 The node making the request to write a
particular data item does not have
permission to do so.

internal server error 0x0020 The server could not process the request
because of an internal error.

out of memory 0x0021 The update request could not executed
because it would overrun the available
memory in the receiving device.

continue 0x0030 The request was successfully handled but
more action by the requesting device may
occur.

Table 21. Example of status codes for a profile including the DMP

77

D. Bulk Transfer

[00193] In some embodiments, it may be desirable to transfer bulk data files (e.g., sensor data,

logs, or update images) between nodes/services in the fabric 1000. To enable transfer of bulk

data, a separate profile or protocol may be incorporated into one or more profiles and made

available to the nodes/services in the nodes. The bulk data transfer protocol may model data

files as collections of data with metadata attachments. In certain embodiments, the data may be

opaque, but the metadata may be used to determine whether to proceed with a requested file

transfer.

[00194] Devices participating in a bulk transfer may be generally divided according to the

bulk transfer communication and event creation. As illustrated in FIG. 43, each

communication 1400 in a bulk transfer includes a sender 1402 that is a node/service that sends

the bulk data 1404 to a receiver 1406 that is a node/service that receives the bulk data 1404. In

some embodiments, the receiver may send status information 1408 to the sender 1402 indicating

a status of the bulk transfer. Additionally, a bulk transfer event may be initiated by either the

sender 1402 (e.g., upload) or the receiver 1406 (e.g., download) as the initiator. A node/service

that responds to the initiator may be referred to as the responder in the bulk data transfer.

[00195] Bulk data transfer may occur using either synchronous or asynchronous modes. The

mode in which the data is transferred may be determined using a variety of factors, such as the

underlying protocol (e.g., UDP or TCP) on which the bulk data is sent. In connectionless

protocols (e.g., UDP), bulk data may be transferred using a synchronous mode that allows one of

the nodes/services ("the driver") to control a rate at which the transfer proceeds. In certain

embodiments, after each message in a synchronous mode bulk data transfer, an acknowledgment

may be sent before sending the next message in the bulk data transfer. The driver may be the

78

sender 1402 or the receiver 1406. In some embodiments, the driver may toggle between an

online state and an offline mode while sending messages to advance the transfer when in the

online state. In bulk data transfers using connection-oriented protocols (e.g., TCP), bulk data

may be transferred using an asynchronous mode that does not use an acknowledgment before

sending successive messages or a single driver.

[00196] Regardless of whether the bulk data transfer is performed using a synchronous or

asynchronous mode, a type of message may be determined using a Message Type 1172 in the

Application Payload 1146 according the Profile Id 1176 in the Application Payload. Table 22

includes an example of message types that may be used in relation to a bulk data transfer profile

value in the Profile Id 1176.

Message Type Message
Ox01 SendInit
0x02 SendAccept
0x03 SendReject
0x04 Receivelnit
0x05 ReceiveAccept
0x06 ReceiveReject
0x07 BlockQuery
0x08 Block
0x09 BlockEOF
OxOA Ack
OxOB Block EOF
Ox0C Error

Table 22 Examples of message types for bulk data transfer profiles

i. SendInit

[00197] An embodiment of a SendInit message 1420 is illustrated in FIG. 44. The SendInit

message 1420 may include seven fields: a transfer control field 1422, a range control field 1424,

a file designator length field 1426, a proposed max block size field 1428, a start offset field 1430,

length field 1432, and a file designator field 1434.

79

[00198] The transfer control field 1422 includes a byte of data illustrated in FIG. 45. The

transfer control field includes at least four fields: an Asynch flag 1450, an RDrive flag 1452, an

SDrive flag 1454, and a version field 1456. The Asynch flag 1450 indicates whether the

proposed transfer may be performed using a synchronous or an asynchronous mode. The RDrive

flag 1452 and the SDrive flag 1454 each respectively indicates whether the receiver 1406 is

capable of transferring data with the receiver 1402 or the sender 1408 driving a synchronous

mode transfer.

[00199] The range control field 1424 includes a byte of data such as the range control

field 1424 illustrated in FIG. 46. In the illustrated embodiment, the range control field 1424

includes at least three fields: a BigExtent flag 1470, a start offset flag 1472, and a definite length

flag 1474. The definite length flag 1474 indicates whether the transfer has a definite length. The

definite length flag 1474 indicates whether the length field 1432 is present in the SendInit

message 1420, and the BigExtent flag 1470 indicates a size for the length field 1432. For

example, in some embodiments, a value of 1 in the BigExtent flag 1470 indicates that the length

field 1432 is eight bytes. Otherwise, the length field 1432 is four bytes, when present. If the

transfer has a definite length, the start offset flag 1472 indicates whether a start offset is present.

If a start offset is present, the BigExtent flag 1470 indicates a length for the start offset

field 1430. For example, in some embodiments, a value of 1 in the BigExtent flag 1470 indicates

that the start offset field 1430 is eight bytes. Otherwise, the start offset field 1430 is four bytes,

when present.

[00200] Returning to FIG. 44, the file designator length field 1426 includes two bytes that

indicate a length of the file designator field 1434. The file designator field 1434 which is a

80

variable length field dependent upon the file designator length field 1426. The max block size

field 1428 proposes a maximum size of block that may be transferred in a single transfer.

[00201] The start offset field 1430, when present, has a length indicated by the BigExtent

flag 1470. The value of the start offset field 1430 indicates a location within the file to be

transferred from which the sender 1402 may start the transfer, essentially allowing large file

transfers to be segmented into multiple bulk transfer sessions.

[00202] The length field 1432, when present, indicates a length of the file to be transferred if

the definite length field 1474 indicates that the file has a definite length. In some embodiments,

if the receiver 1402 receives a final block before the length is achieved, the receiver may

consider the transfer failed and report an error as discussed below.

[00203] The file designator field 1434 is a variable length identifier chosen by the sender 1402

to identify the file to be sent. In some embodiments, the sender 1402 and the receiver 1406 may

negotiate the identifier for the file prior to transmittal. In other embodiments, the receiver 1406

may use metadata along with the file designator field 1434 to determine whether to accept the

transfer and how to handle the data. The length of the file designator field 1434may be

determined from the file designator length field 1426. In some embodiments, the SendInit

message 1420 may also include a metadata field 1480 of a variable length encoded in a TLV

format. The metadata field 1480 enables the initiator to send additional information, such as

application-specific information about the file to be transferred. In some embodiments, the

metadata field 1480 may be used to avoid negotiating the file designator field 1434 prior to the

bulk data transfer.

81

ii. SendAccept

[00204] A send accept message is transmitted from the responder to indicate the transfer mode

chosen for the transfer. An embodiment of a SendAccept message 1500 is presented in FIG. 47.

The SendAccept message 1500 includes a transfer control field 1502 similar to the transfer

control field 1422 of the SendInit message 1420. However, in some embodiments, only the

RDrive flag 1452 or the SDrive 1454 may have a nonzero value in the transfer control field 1502

to identify the sender 1402 or the receiver 1406 as the driver of a synchronous mode transfer.

The SendAccept message 1500 also includes a max block size field 1504 that indicates a

maximum block size for the transfer. The block size field 1504 may be equal to the value of the

max block field 1428 of the SendInit message 1420, but the value of the max block size

field 1504 may be smaller than the value proposed in the max block field 1428. Finally, the

SendAccept message 1500 may include a metadata field 1506 that indicates information that the

receiver 1506 may pass to the sender 1402 about the transfer.

iii. SendReject

[00205] When the receiver 1206 rejects a transfer after a SendInit message, the receiver 1206

may send a SendReject message that indicates that one or more issues exist regarding the bulk

data transfer between the sender 1202 and the receiver 1206. The send reject message may be

formatted according to the status reporting format described above and illustrated in FIG. 48. A

send reject frame 1520 may include a status code field 1522 that includes two bytes that indicate

a reason for rejecting the transfer. The status code field 1522 may be decoded using values

similar to those enumerated as indicated in the Table 23 below.

Status Code Description

0x0020 Transfer method not supported

82

0x0021 File designator unknown

0x0022 Start offset not supported

Ox00 11 Length required

0x0012 Length too large

OxOO2F Unknown error

Table 23 Example status codes for send reject message

In some embodiments, the send reject message 1520 may include a next status field 1524. The

next status field 1524, when present, may be formatted and encoded as discussed above in regard

to the next status field 1188 of a status report frame. In certain embodiments, the send reject

message 1520 may include an additional information field 1526. The additional information

field 1526, when present, may store information about an additional status and may be encoded

using the TLV format discussed above.

iv. Receivelnit

[00206] A Receivelnit message may be transmitted by the receiver 1206 as the initiator. The

Receivelnit message may be formatted and encoded similar to the SendInit message 1480

illustrated in FIG. 44, but the BigExtent field 1470 may be referred to as a maximum length field

that specifies the maximum file size that the receiver 1206 can handle.

v. ReceiveAccept

[00207] When the sender 1202 receives a Receivelnit message, the sender 1202 may respond

with a ReceiveAccept message. The ReceiveAccept message may be formatted and encoded as

the ReceiveAccept message 1540 illustrated in FIG. 49. The ReceiveAccept message 1540 may

include four fields: a transfer control field 1542, a range control field 1544, a max block size

field 1546, and sometimes a length field 1548. The ReceiveAccept message 1540 may be

83

formatted similar to the SendAccept message 1502 of FIG. 47 with the second byte indicating

the range control field 1544. Furthermore, the range control field 1544 may be formatted and

encoded using the same methods discussed above regarding the range control field 1424 of

FIG. 46.

vi. ReceiveReject

[00208] If the sender 1202 encounters an issue with transferring the file to the receiver 1206,

the sender 1202 may send a ReceiveReject message formatted and encoded similar to a

SendReject message 48 using the status reporting format, both discussed above. However, the

status code field 1522 may be encoded/decoded using values similar to those enumerated as

indicated in the Table 24 below.

Status Code Description

0x0020 Transfer method not supported

0x0021 File designator unknown

0x0022 Start offset not supported

0x0013 Length too short

OxOO2F Unknown error

Table 24 Example status codes for receive reject message

vii. BlockQuery

[00209] A BlockQuery message may be sent by a driving receiver 1202 in a synchronous

mode bulk data transfer to request the next block of data. A BlockQuery impliedly

acknowledges receipt of a previous block of data if not explicit Acknowledgement has been sent.

In embodiments using asynchronous transfers, a BlockQuery message may be omitted from the

transmission process.

84

viii. Block

[00210] Blocks of data transmitted in a bulk data transfer may include any length greater than

0 and less than a max block size agreed upon by the sender 1202 and the receiver 1206.

ix. BlockEOF

[00211] A final block in a data transfer may be presented as a Block end of file (BlockEOF).

The BlockEOF may have a length between 0 and the max block size. If the receiver 1206 finds a

discrepancy between a pre-negotiated file size (e.g., length field 1432) and the amount of data

actually transferred, the receiver 1206 may send an Error message indicating the failure, as

discussed below.

x. Ack

[00212] If the sender 1202 is driving a synchronous mode transfer, the sender 1202 may wait

until receiving an acknowledgment (Ack) after sending a Block before sending the next Block.

If the receiver is driving a synchronous mode transfer, the receiver 1206 may send either an

explicit Ack or a BlockQuery to acknowledge receipt of the previous block. Furthermore, in

asynchronous mode bulk transfers, the Ack message may be omitted from the transmission

process altogether.

xi. AckEOF

[00213] An acknowledgement of an end of file (AckEOF) may be sent in bulk transfers sent

in synchronous mode or asynchronous mode. Using the AckEOF the receiver 1206 indicates

that all data in the transfer has been received and signals the end of the bulk data transfer session.

85

xii. Error

[00214] In the occurrence of certain issues in the communication, the sender 1202 or the

receiver 1206 may send an error message to prematurely end the bulk data transfer session.

Error messages may be formatted and encoded according to the status reporting format discussed

above. For example, an error message may be formatted similar to the SendReject frame 1520 of

FIG. 48. However, the status codes may be encoded/decoded with values including and/or

similar to those enumerated in Table 25 below.

Status code Description

OxOOF Transfer failed unknown error

Ox00 11 Overflow error

Table 25. Example status codes for an error message in a bulk data transfer profile

[00215] The specific embodiments described above have been shown by way of example, and

it should be understood that these embodiments may be susceptible to various modifications and

alternative forms. It should be further understood that the claims are not intended to be limited

to the particular forms disclosed, but rather to cover all modifications, equivalents, and

alternatives falling within the spirit and scope of this disclosure.

[00216] The reference to any prior art in this specification is not, and should not be taken as,

an acknowledgement or any form of suggestion that the prior art forms part of the common

general knowledge in Australia.

86

CLAIMS

1. An electronic device configured to send or receive messages to other electronic devices

over a platform layer, wherein the messages to cause an operation to occur at the electronic

device or at the other electronic devices, wherein the messages comprise:

a message format comprising:

a message type field, wherein the message type field is configured to indicate a

message operation code that specifies a type of message being sent;

an exchange ID field immediately following the message type field, wherein the

exchange ID field is configured to uniquely identify a discussion in which the message occurs

for the electronic device;

a profile ID field immediately following the exchange ID field, wherein the

profile ID field indicates a profile of a plurality of profiles that enables a receiving device to

interpret the message type field and identify at least one schema of a plurality of schemas for

transmitted data, wherein each schema of the plurality of schemas indicates an encoding format

according to the profile and schema; and

an application payload field following the profile id, wherein the application

payload field comprises data associated with an application layer of the electronic device.

2. The electronic device of claim 1, comprising a profile-specific header field that

immediately follows the profile ID field and immediately precedes the application payload field,

wherein the profile-specific header is included in the message format when the profile field

indicates that a profile is included that uses additional information to process the application

payload.

87

3. The electronic device of claim 1, wherein each profile of the plurality of profiles

comprises a set of schema of the plurality of schemas.

4. The electronic device of claim 1, wherein the indicated profile comprises:

a core profile comprising a set of basic schemas available to the electronic device;

a data management profile comprising a set of data management schemas that enables the

electronic device to access data located on the other electronic devices;

a bulk data transfer profile comprising a set of bulk data transfer schemas that enables the

electronic device to transfer bulk data to the other electronic devices or from the electronic

devices;

a status reporting profile comprising a set of status reporting schemas that enables the

electronic device to send or receive status information from the other electronic devices; or

a software update profile comprising a set of software update schemas that enables the

electronic device to send or receive software update images from the other electronic devices.

5. The electronic device of claim 1, wherein the message format comprises a version field

configured to indicate a version of the message format being used to format the message,

wherein the message type field immediately follows the version field, wherein the version field

comprises 8 bits of data.

6. The electronic device of claim 1, wherein the message type field comprises 8 bits of data.

88

7. The electronic device of claim 1, wherein the exchange ID field comprises 16 bits of

data.

8. A non-transitory, computer-readable medium having stored thereon message comprising

a message format, wherein the message format causes an operation to occur at the electronic

device having the non-transitory, computer-readable medium, wherein the message format

comprises:

a message type field, wherein the message type field is configured to indicate a message

operation code that specifies a type of message being sent;

an exchange ID field immediately following the message type field, wherein the

exchange ID field is configured to uniquely identify a discussion in which the message occurs;

a profile ID field immediately following the exchange ID field, wherein the profile ID

field indicates a profile of a plurality of profiles that enables a receiving device to interpret the

message type field and identify at least one schema of a plurality of schemas for transmitted data,

wherein each schema of the plurality of schemas indicates an encoding format according to the

profile and schema; and

an application payload field following the profile id, wherein the application payload

field comprises data associated with an application layer.

9. The non-transitory, computer-readable medium of claim 8, wherein the message format

comprises a profile-specific header field, wherein the profile-specific header field is used in

identifying the schema.

89

10. The non-transitory, computer-readable medium of claim 8, wherein the profile ID field

comprises 32 bits of data.

11. The non-transitory, computer-readable medium of claim 8, wherein the application

payload field comprises a variable length of data.

12. The non-transitory, computer-readable medium of claim 8, wherein the application

payload field comprises data formatted in a tag-length-value format.

13. The non-transitory, computer-readable medium of claim 8, wherein each profile of the

plurality of profiles comprises a schema of the plurality of schemas.

14. A method for sending and receiving messages between devices in a fabric network,

wherein the messages cause an operation to occur at an electronic device of the devices, wherein

the method comprises:

sending or receiving a message using a message format, wherein the message format

comprises:

a message type field, wherein the message type field is configured to indicate a

message operation code that specifies a type of message being sent;

an exchange ID field immediately following the message type field, wherein the

exchange ID field is configured to uniquely identify a discussion in which the message occurs;

a profile ID field immediately following the exchange ID field, wherein the

profile ID field indicates a profile of a plurality of profiles that enables a receiving device to

90

interpret the message type field and identify at least one schema of a plurality of schemas for

transmitted data, wherein each schema of the plurality of schemas indicates an encoding format

according to the profile and schema; and

an application payload field following the profile id, wherein the application

payload field comprises data associated with an application layer.

15. The method of claim 14, wherein the message format comprises a profile-specific header

field that immediately follows the profile ID field and immediately precedes the application

payload field, wherein the profile-specific header is included in the message format when the

profile field indicates that a profile is included that uses additional information to process the

application payload.

16. The method of claim 14, wherein each profile of the plurality of profiles comprises a set

of schema of the plurality of schemas.

17. The method of claim 14, wherein the indicated profile comprises:

a core profile comprising a set of basic schemas available to the electronic device;

a data management profile comprising a set of data management schemas that enables the

electronic device to access data located on the other electronic devices;

a bulk data transfer profile comprising a set of bulk data transfer schemas that enables the

electronic device to transfer bulk data to the other electronic devices or from the electronic

devices;

a status reporting profile comprising a set of status reporting schemas that enables the

91

electronic device to send or receive status information from the other electronic devices; or

a software update profile comprising a set of software update schemas that enables the

electronic device to send or receive software update images from the other electronic devices.

18. The method of claim 14, wherein the message format comprises a version field

configured to indicate a version of the message format being used to format the message,

wherein the message type field immediately follows the version field, wherein the version field

comprises 8 bits of data.

19. The method of claim 14, wherein the message type field comprises 8 bits of data.

20. The method of claim 14, wherein the exchange ID field comprises 16 bits of data.

92

20
17

21
06

54

 0
6

A
ug

 2
01

7

20
17

21
06

54

 0
6

A
ug

 2
01

7

20
17

21
06

54

 0
6

A
ug

 2
01

7

20
17

21
06

54

 0
6

A
ug

 2
01

7

20
17

21
06

54

 0
6

A
ug

 2
01

7

20
17

21
06

54

 0
6

A
ug

 2
01

7

20
17

21
06

54

 0
6

A
ug

 2
01

7

20
17

21
06

54

 0
6

A
ug

 2
01

7

20
17

21
06

54

 0
6

A
ug

 2
01

7

20
17

21
06

54

 0
6

A
ug

 2
01

7

20
17

21
06

54

 0
6

A
ug

 2
01

7

20
17

21
06

54

 0
6

A
ug

 2
01

7

20
17

21
06

54

 0
6

A
ug

 2
01

7

20
17

21
06

54

 0
6

A
ug

 2
01

7

20
17

21
06

54

 0
6

A
ug

 2
01

7

20
17

21
06

54

 0
6

A
ug

 2
01

7

20
17

21
06

54

 0
6

A
ug

 2
01

7

20
17

21
06

54

 0
6

A
ug

 2
01

7

20
17

21
06

54

 0
6

A
ug

 2
01

7

20
17

21
06

54

 0
6

A
ug

 2
01

7

20
17

21
06

54

 0
6

A
ug

 2
01

7

20
17

21
06

54

 0
6

A
ug

 2
01

7

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

