A system is provided for enabling personal editorial and advertising content delivery. The system has a publication server which receives information regarding interests of a user and selects editorial content in accordance with the information. The publication server also receives information regarding a locality and demographic of the user and selects advertising content in accordance with the information and the published editorial content. Further, the publication server publishes a personalised publication with the selected editorial and advertising content.
FIG. 1
FIG. 2
FIG. 3

NETPAGE PAGE SERVER

CONTENT OBJECT

GRAPHIC ELEMENT

INTERACTIVE ELEMENT

DOCUMENT DESCRIPTION

PAGE DESCRIPTION

FIELD VALUE

DOCUMENT INSTANCE

PAGE INSTANCE

FIELD VALUE

NETPAGE DOCUMENT

NETPAGE

VISIBLE GRAPHIC DATA

INVISIBLE CODED DATA

INVISIBLE TAG

PAGE ID

PAGE ID

PHYSICAL WORLD
SYSTEM FOR PERSONAL EDITORIAL AND ADVERTISING CONTENT DELIVERY

CROSS REFERENCE TO RELATED APPLICATIONS

CO-PENDING APPLICATIONS

[0002] Various methods, systems and apparatus relating to the present invention are disclosed in the following co-pending applications/granted patents filed by the applicant or assignee of the present invention:

7,190,474 7,110,126 6,813,558 6,965,454 6,847,883 7,131,058
7,553,031 6,982,798 6,474,888 6,627,870 6,724,374 7,369,265
6,454,482 6,808,330 6,527,565 6,474,773 6,350,957

[0003] The disclosures of these co-pending applications are incorporated herein by cross-reference.

[0004] Various methods, systems and apparatus relating to the present invention are disclosed in the following co-pending applications/granted patents filed by the applicant or assignee of the present invention on Sep. 15, 2000:

6,679,420 6,963,845 6,995,859 6,720,985

[0005] The disclosures of these co-pending applications are incorporated herein by cross-reference.

[0006] Various methods, systems and apparatus relating to the present invention are disclosed in the following co-pending applications/granted patents filed by the applicant or assignee of the present invention on Jun. 30, 2000:

6,824,044 6,678,499 6,976,220 6,976,035 6,766,942 7,286,113
6,922,779 6,978,019 7,406,445 6,959,208 6,973,450 7,150,404
6,955,882 7,253,924 7,007,851 6,957,921 6,457,883 6,831,682
6,977,751 6,398,332 6,394,573 6,622,023

[0007] The disclosures of these co-pending applications are incorporated herein by cross-reference.

[0008] Various methods, systems and apparatus relating to the present invention are disclosed in the following co-pending applications/granted patents filed by the applicant or assignee of the present invention on 23 May 2000:

6,428,133 6,526,658 6,315,399 6,338,548 6,540,319 6,328,431
6,328,425 6,991,230 6,385,833 6,404,332 6,390,591 7,018,016
6,328,417 7,721,948 7,079,712 6,980,318 6,825,945 7,330,974

[0009] The disclosures of these co-pending applications are incorporated herein by cross-reference.

FIELD OF INVENTION

[0010] The present invention relates generally to electronically delivered printed documents and, more particularly, to a method and system for the automatic placement of advertising in otherwise empty space in such printed documents.

BACKGROUND

[0011] Advertising has traditionally been distributed in printed publications, and typically placed to exploit the editorial context, the locality of the publication’s distribution, and the demographic of its readership.

[0012] In more recent times advertising has been distributed as part of Web pages. The Web page advertising space is typically specifically allocated for, and dedicated to, advertising. Advertisements typically are often customised and targeted based on the page being viewed or the search being carried out by the user. If the user is registered with the site the advertising may be targeted to the user’s demographic based on the user’s known profile.

SUMMARY OF INVENTION

[0013] It is an object of the present invention to provide a new method and system for advertising.

[0014] In a first aspect, the present invention provides a method of producing a document by formatting user requested information in the document so as to include one user interactive element, to allow the user to effect a response to the information, using a sensing device for transmitting response data back to a computer system, including:

[0015] identifying an advertising space, outside an area of the document to be occupied by the information; and

[0016] printing the document with advertising material in the space.

[0017] Preferably, the advertising space is determined to be on a reverse side of the document relative to the user requested information.

[0018] Preferably also, the information is formatted at a publication server of the computer system and the method includes the publication server monitoring the said area and, once the space is identified, receiving the advertising material from an advertising server, for inclusion in the document.

[0019] Preferably also, the document is printed with coded data, for sensing by the sensing device, indicative of an identity of the document and of the at least one interactive element. Preferably also, the document is printed on a surface defining structure at the same time as the coded data is printed on the surfaces. Preferably also, the method includes includ-
ing retaining a retrievable record of the printed document, the document being retrievable using the identity data as contained in the coded data.

[0020] Preferably also, wherein the sensing device includes an identification code specific to a particular user and the method includes monitoring use of the sensing device in the computer system.

[0021] In a second aspect, the present invention provides a system for producing a document, including:

[0022] a computer system for formatting user requested information in the document so as to include at least one user interactive element, to allow the user to effect a response to the information, using a sensing device for transmitting response data back to the computer system, wherein the computer system is arranged to identify an advertising space, outside an area of the document to be occupied by the information and to effect printing of the document with advertising material in said space.

[0023] Preferably, the system includes a printer adapted to print on both sides of the document, in order to print the advertising material on a reverse side of the document, relative to the user requested information.

[0024] Preferably also, the computer system includes a publication server for formatting the document and an advertising server for providing the advertising material, wherein the publication server monitors said area and receives advertising material from the advertising server, for inclusion in the document.

[0025] Preferably also, the document includes coded data indicative of an identity of the document and of at least one interactive element. Preferably also, the printer is arranged to print the coded data at the same time as printing the document on a surface defining structure. Preferably also, wherein the coded data is substantially invisible in the visible spectrum. Preferably also, the system includes a database for keeping a retrievable record of each document generated, each document being retrievable by using its identity, as included in the coded data.

[0026] Accordingly, the present invention provides a method and system which utilizes one or more forms capable of interacting with a computer system. Whilst the novel method and system of the present invention may be used in conjunction with a single computer system, in a particularly preferred form it is designed to operate over a computer network, such as the Internet.

BRIEF DESCRIPTION OF DRAWINGS

[0027] Preferred and other embodiments of the invention will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:

[0028] FIG. 1 is a schematic of the relationship between a sample printed netpage and its online page description;

[0029] FIG. 2 is a schematic view of an interaction between a netpage, a netpage printer, a netpage page server, and a netpage application server;

[0030] FIG. 3 is a schematic view of a high-level structure of a printed netpage and its online page description;

[0031] FIG. 4A is a plan view showing a structure of a netpage tag;

[0032] FIG. 4B is a plan view showing a relationship between a set of the tags shown in FIG. 4A and a field of view of a netpage sensing device in the form of a netpage pen;

[0033] FIG. 5A is a plan view showing an alternative structure of a netpage tag;

[0034] FIG. 5B is a plan view showing a relationship between a set of the tags shown in FIG. 5A and a field of view of a netpage sensing device in the form of a netpage pen;

[0035] FIG. 5C is a plan view showing an arrangement of nine of the tags shown in FIG. 5A where targets are shared between adjacent tags;

[0036] FIG. 5D is a plan view showing the interleaving and rotation of the symbols of the four codewords of the tag shown in FIG. 5A;

[0037] FIG. 6 is a plan view showing the netpage system, a set of the tags shown in FIG. 5A being used to place an advertisement within a page;

[0038] FIG. 7 is a plan view showing an advertisement placed on the reverse-side of a page.

DETAILED DESCRIPTION OF PREFERRED AND OTHER EMBODIMENTS

[0039] Note: Memjet™ is a trademark of Silverbrook Research Pty Ltd, Australia.

[0040] In the preferred embodiment, the invention is configured to work with the netpage networked computer system, a summary of which is given below and a detailed description of which is given in our earlier applications, including in particular applications U.S. Pat. No. 7,233,320, U.S. Pat. No. 6,870,966, U.S. Pat. No. 6,727,996, U.S. Ser. No. 09/575,195 and U.S. Pat. No. 6,428,133. It will be appreciated that not every implementation will necessarily embody all or even most of the specific details and extensions described in these applications in relation to the basic system. However, the system is described in its complete form to assist in understanding the context in which the preferred embodiments and aspects of the present invention operate.

[0041] In brief summary, the preferred form of the netpage system employs a computer interface in the form of a mapped surface, that is, a physical surface which contains references to a map of the surface maintained in a computer system. The map references can be queried by an appropriate sensing device. Depending upon the specific implementation, the map references may be encoded visibly or invisibly, and defined in such a way that a local query on the mapped surface yields an unambiguous map reference both within the map and among different maps. The computer system can contain information about features on the mapped surface, and such information can be retrieved based on map references supplied by a sensing device used with the mapped surface. The information thus retrieved can take the form of actions which are initiated by the computer system on behalf of the operator in response to the operator's interaction with the surface features.

[0042] In its preferred form, the netpage system relies on the production of, and human interaction with, netpages. These are pages of text, graphics and images printed on ordinary paper or other media, but which work like interactive web pages. Information is encoded on each page using ink which is substantially invisible to the unaided human eye. The ink, however, and thereby the coded data, can be sensed by an optically imaging pen and transmitted to the netpage system.

[0043] In the preferred form, active buttons and hyperlinks on each page can be clicked with the pen to request information from the network or to signal preferences to a network server. In one embodiment, text written by hand on a netpage is automatically recognized and converted to computer text in the netpage system, allowing forms to be filled in. In other
embodiments, signatures recorded on a netpage are automatically verified, allowing e-commerce transactions to be securely authorized.

[0044] As illustrated in FIG. 1, a printed netpage 1 can represent an interactive form which can be filled in by the user both physically, on the printed page, and "electronically", via communication between the pen and the netpage system. The example shows a "Request" form containing name and address fields and a submit button. The netpage consists of graphic data 2 printed using visible ink, and coded data 3 printed as a collection of tags 4 using invisible ink. The corresponding page description 5, stored on the netpage network, describes the individual elements of the netpage. In particular it describes the type and spatial extent (zone) of each interactive element (i.e. text field or button in the example), to allow the netpage system to correctly interpret input via the netpage. The submit button 6, for example, has a zone 7 which corresponds to the spatial extent of the corresponding graphic 8.

[0045] As illustrated in FIG. 2, the netpage pen 101, a preferred form of which is described in our earlier application U.S. Ser. No. 09/575,174, works in conjunction with a netpage printer 601, an Internet-connected printing appliance for home, office or mobile use. The pen is wireless and communicates securely with the netpage printer via a short-range radio link 9.

[0046] The netpage printer 601, preferred forms of which are described in our earlier application U.S. Pat. No. 6,727,996 and our co-filed application U.S. Ser. No. 09/693,514, is able to deliver, periodically or on demand, personalized newspapers, magazines, catalogs, brochures and other publications, all printed at high quality as interactive netpages. Unlike a personal computer, the netpage printer is an appliance which can be, for example, wall-mounted adjacent to an area where the morning news is first consumed, such as in a user's kitchen, near a breakfast table, or near the household's point of departure for the day. It also comes in tabletop, desktop, portable and miniature versions.

[0047] Netpages printed at their point of consumption combine the ease-of-use of paper with the timeliness and interactivity of an interactive medium.

[0048] As shown in FIG. 2, the netpage pen 101 interacts with the coded data on a printed netpage 1 and communicates, via a short-range radio link 9, to a netpage printer. The printer 601 sends the interaction to the relevant netpage page server 10 for interpretation. In appropriate circumstances, the page server sends a corresponding message to application computer software running on a netpage application server 13. The application server may in turn send a response which is printed on the originating printer.

[0049] The netpage system is made considerably more convenient in the preferred embodiment by being used in conjunction with high-speed microelectromechanical system (MEMS) based inkjet (Memjet™) printers, described in our earlier application U.S. Pat. No. 6,428,133. In the preferred form of this technology, relatively high-speed and high-quality printing is made more affordable to consumers. In its preferred form, a netpage publication has the physical characteristics of a traditional news magazine, such as a set of letter-size glossy pages printed in full color on both sides, bound together for easy navigation and comfortable handling.

[0050] The netpage printer exploits the growing availability of broadband Internet access. The netpage printer can also operate with slower connections, but with longer delivery times and lower image quality. The netpage system can also be enabled using existing consumer inkjet and laser printers, although the system will operate more slowly and will therefore be less acceptable from a consumer's point of view. In other embodiments, the netpage system is hosted on a private intranet. In still other embodiments, the netpage system is hosted on a single computer or computer-enabled device, such as a printer.

[0051] Netpage publication servers 14 on the netpage network are configured to deliver print-quality publications to netpage printers. Periodical publications are delivered automatically to subscribing netpage printers via pointcasting and multicasting Internet protocols. Personalized publications are filtered and formatted according to individual user profiles.

[0052] A netpage printer can be configured to support any number of pens, and a pen can work with any number of netpage printers. In the preferred implementation, each netpage pen has a unique identifier. A household may have a collection of colored netpage pens, one assigned to each member of the family. This allows each user to maintain a distinct profile with respect to a netpage publication server or application server.

[0053] A netpage pen can also be registered with a netpage registration server 11 and linked to one or more payment card accounts. This allows e-commerce payments to be securely authorized using the netpage pen. The netpage registration server compares the signature captured by the netpage pen with a previously registered signature, allowing it to authenticate the user's identity to an e-commerce server. Other biometrics can also be used to verify identity. A version of the netpage pen includes fingerprint scanning, verified in a similar way by the netpage registration server.

[0054] Although a netpage printer may deliver periodicals such as the morning newspaper without user intervention, it can be configured never to deliver unsolicited junk mail. In its preferred form, it only delivers periodicals from subscribed or otherwise authorized sources. In this respect, the netpage printer is unlike a fax machine or e-mail account which is visible to any junk mailer who knows the telephone number or e-mail address.

[0055] Each object model in the system is described using a Unified Modeling Language (UML) class diagram. A class diagram consists of a set of object classes connected by relationships, and two kinds of relationships are of interest here: associations and generalizations. An association represents some kind of relationship between objects, i.e. between instances of classes. A generalization relates actual classes, and can be understood in the following way: if a class is thought of as the set of all objects of that class, and class A is a generalization of class B, then B is simply a subset of A. Each class is drawn as a rectangle labelled with the name of the class. It contains a list of the attributes of the class, separated from the name by a horizontal line, and a list of the operations of the class, separated from the attribute list by a horizontal line. In the class diagrams which follow, however, operations are never modelled. An association is drawn as a line joining two classes, optionally labelled at either end with the multiplicity of the association. The default multiplicity is one. An asterisk (*) indicates a multiplicity of "many", i.e. zero or more. Each association is optionally labelled with its name, and is also optionally labelled at either end with the role of the corresponding class. An open diamond indicates an aggregation association ("is-part-of"), and is drawn at the aggregator end of the association line. A generalization rela-
relationship ("is-a") is drawn as a solid line joining two classes, with an arrow (in the form of an open triangle) at the generalization end. When a class diagram is broken up into multiple diagrams, any class which is duplicated is shown with a dashed outline in all but the main diagram which defines it. It is shown with attributes only where it is defined.

Netpages are the foundation on which a netpage network is built. They provide a paper-based user interface to published information and interactive services. A netpage consists of a printed page (or other surface region) invisibly tagged with references to an online description of the page. The online page description is maintained persistently by a netpage page server. The page description describes the visible layout and content of the page, including text, graphics and images. It also describes the input elements on the page, including buttons, hyperlinks, and input fields. A netpage allows markings made with a netpage pen on its surface to be simultaneously captured and processed by the netpage system.

Multiple netpages can share the same page description. However, to allow input through otherwise identical pages to be distinguished, each netpage is assigned a unique page identifier. This page ID has sufficient precision to distinguish between a very large number of netpages.

Each reference to the page description is encoded in a printed tag. The tag identifies the unique page on which it appears, and thereby indirectly identifies the page description. The tag also identifies its own position on the page. Characteristics of the tags are described in more detail below.

Tags are printed in infrared-absorptive ink on any substrate which is infrared-reflective, such as ordinary paper. Near-infrared wavelengths are invisible to the human eye but are easily sensed by a solid-state image sensor with an appropriate filter.

A tag is sensed by an area image sensor in the netpage pen, and the tag data is transmitted to the netpage system via the nearest netpage printer. The pen is wireless and communicates with the netpage printer via a short-range radio link. Tags are sufficiently small and densely arranged that the pen can reliably image at least one tag even on a single click on the page. It is important that the pen recognize the page ID and position on every interaction with the page, since the interaction is stateless.

In a preferred embodiment, each tag contains an easily recognized invariant structure which aids initial detection, and which assists in minimizing the effect of any warp induced by the surface or by the sensing process. The tags preferably tile the entire page, and are sufficiently small and densely arranged that the pen can reliably image at least one tag even on a single click on the page. It is important that the pen recognize the page ID and position on every interaction with the page, since the interaction is stateless.

In a preferred embodiment, the region to which a tag refers coincides with an entire page, and the region ID encoded in the tag is therefore synonymous with the page ID of the page on which the tag appears. In other embodiments, the region to which a tag refers can be an arbitrary subregion of a page or other surface. For example, it can coincide with the zone of an interactive element, in which case the region ID can directly identify the interactive element.

Each tag contains typically contains 16 bits of tag ID, at least 90 bits of region ID, and a number of flag bits. Assuming a maximum tag density of 16 per square inch, a 16-bit tag ID supports a region size of up to 1024 square inches. Larger regions can be mapped continuously without increasing the tag ID precision simply by using subsetting regions and maps. The distinction between a region ID and a tag ID is mostly one of convenience. For most purposes the concatenation of the two can be considered as a globally unique tag ID. Conversely, it may also be convenient to introduce structure into the tag ID, for example to define the x and y coordinates of the tag. A 90-bit region ID allows $2^{90} \approx 10^{27}$ or a thousand trillion trillion different regions to be uniquely identified. Tags may also contain type information, and a region may be tagged with a mixture of tag types. For example, a region may be tagged with one set of tags encoding x coordinates and another set, interleaved with the first, encoding y coordinates.

In one embodiment, 120 bits of tag data are redundantly encoded using a (15, 5) Reed-Solomon code. This yields 360 encoded bits consisting of 6 codewords of 15 4-bit symbols each. The (15, 5) code allows up to 5 symbol errors to be corrected per codeword, i.e. it is tolerant of a symbol error rate of up to 33% per codeword. Each 4-bit symbol is represented in a spatially coherent way in the tag, and the symbols of the six codewords are interleaved spatially within the tag. This ensures that a burst error (an error affecting multiple spatially adjacent bits) damages a minimum number of symbols overall and a minimum number of symbols in any one codeword, thus maximising the likelihood that the burst error can be fully corrected.

Any suitable error-correcting code can be used in place of a (15, 5) Reed-Solomon code, for example a Reed-Solomon code with more or less redundancy, with the same or different symbol and codeword sizes; another block code; or a different kind of code, such as a convolutional code (see, for example, Stephen B. Wicker, Error Control Systems for Digital Communication and Storage, Prentice-Hall 1995, the contents of which are herein incorporated by cross-reference).

One embodiment of the physical representation of the tag, shown in FIG. 3, and described in our earlier application U.S. Ser. No. 09/575,851, includes fixed target structures 15, 16, 17 and variable data areas 18. The fixed target structures allow a sensing device such as the netpage pen to detect the tag and infer its three-dimensional orientation relative to the sensor. The data areas contain representations of the individual bits of the encoded tag data. To maximise its
In order to support "single-click" interaction with a tagged region via a sensing device, the sensing device must be able to see at least one entire tag in its field of view no matter where in the region or at what orientation it is positioned. The required diameter of the field of view of the sensing device is therefore a function of the size and spacing of the tags. Assuming a circular tag shape, the minimum diameter of the sensor field of view 193 is obtained when the tags are tiled on an equilateral triangular grid, as shown in FIG. 4a.

The tag structure just described is designed to allow both regular tilings of planar surfaces and irregular tilings of non-planar surfaces. Regular tilings are not, in general, possible on non-planar surfaces. In the more usual case of planar surfaces where regular tilings of tags are possible, i.e., surfaces such as sheets of paper and the like, more efficient tag structure can be used which exploit the regular nature of the tiling.

An alternative tag structure more suited to a regular tiling is shown in FIG. 5a. The tag 4 is square and has four perspective targets 17. It is similar in structure to tags described by Bennett et al. in U.S. Pat. No. 5,051,746. The tag represents sixty 4-bit Reed-Solomon symbols 47, for a total of 240 bits. The tag represents each one bit as a dot 48, and each zero bit by the absence of the corresponding dot. The perspective targets are designed to be shared between adjacent tags, as shown in FIGS. 5b and 5c. FIG. 5b shows a square tiling of 16 tags and the corresponding minimum field of view 193, which must span the diagonals of two tags. FIG. 5c shows a square tiling of nine tags, containing all one bits for illustration purposes.

Using a (15, 7) Reed-Solomon code, 112 bits of tag data are redundantly encoded to produce 240 encoded bits. The four codewords are interleaved spatially within the tag to maximize resilience to burst errors. Assuming a 16-bit tag ID as before, this allows a region ID of up to 92 bits. The data-bearing dots 48 of the tag are designed to not overlap their neighbors, so that groups of tags cannot produce structures which resemble targets. This also saves ink. The perspective targets therefore allow detection of the tag, so further targets are not required.

Although the tag may contain an orientation feature to allow disambiguation of the four possible orientations of the tag relative to the sensor, it is also possible to embed orientation data in the tag data. For example, the four codewords can be arranged so that each tag orientation contains one codeword placed at that orientation, as shown in FIG. 5d, where each symbol is labeled with the number of its codeword (1-4) and the position of the symbol within the code-word (A-O). Tag decoding then consists of decoding one codeword at each orientation. Each codeword can either contain a single bit indicating whether it is the first codeword, or two bits indicating which codeword it is. The latter approach has the advantage that if, say, the data content of only one codeword is required, then at most two codewords need to be decoded to obtain the desired data. This may be the case if the region ID is not expected to change within a stroke and is thus only decoded at the start of a stroke. Within a stroke only the codeword containing the tag ID is then desired. Furthermore, since the rotation of the sensing device changes slowly and predictably within a stroke, only one codeword typically needs to be decoded per frame.

It is possible to dispense with perspective targets altogether and instead rely on the data representation being self-registering. In this case each bit value (or multi-bit value) is typically represented by an explicit glyph, i.e., no bit value is represented by the absence of a glyph. This ensures that the data grid is well-populated, and thus allows the grid to be reliably identified and its perspective distortion detected and subsequently corrected during data sampling. To allow tag boundaries to be detected, each tag data must contain a marker pattern, and these must be redundantly encoded to allow reliable detection. The overhead of such marker patterns is similar to the overhead of explicit perspective targets. One such scheme uses dots positioned at various points relative to grid vertices to represent different glyphs and hence different multi-bit values (see Anoto Technology Description, Anoto April 2000).

Decoding a tag results in a region ID, a tag ID, and a tag-relative pen transform. Before the tag ID and the tag-relative pen location can be translated into an absolute location within the tagged region, the location of the tag within the region must be known. This is given by a tag map, a function which maps each tag ID in a tagged region to a corresponding location. A tag map reflects the scheme used to tile the surface region with tags, and this can vary according to surface type. When multiple tagged regions share the same tiling scheme and the same tag numbering scheme, they can also share the same tag map. The tag map for a region must be retrievable via the region ID. Thus, given a region ID, a tag ID and a pen transform, the tag map can be retrieved, the tag ID can be translated into an absolute tag location within the region, and the tag-relative pen location can be added to the tag location to yield an absolute pen location within the region.

The tag ID may have a structure which assists translation through the tag map. It may, for example, encoded cartesian coordinates or polar coordinates, depending on the surface type on which it appears. The tag ID structure is dictated by and known to the tag map, and tag IDs associated with different tag maps may therefore have different structures.

Two distinct surface coding schemes are of interest, both of which use the tag structure described earlier in this section. The preferred coding scheme uses "location-indicating" tags as already discussed. An alternative coding scheme uses "object-indicating" (or "function-indicating") tags.

A location-indicating tag contains a tag ID which, when translated through the tag map associated with the tagged region, yields a unique tag location within the region. The tag-relative location of the pen is added to this tag location to yield the location of the pen within the region. This in turn is used to determine the location of the pen relative to a user interface element in the page description associated with the region. Not only is the user interface element itself identified, but a location relative to the user interface element is identified. Location-indicating tags therefore trivially sup-
port the capture of an absolute pen path in the zone of a particular user interface element.

[0080] An object-indicating (or function-indicating) tag contains a tag ID which directly identifies a user interface element in the page description associated with the region (or equivalently, a function). All the tags in the zone of the user interface element identify the user interface element, making them all identical and therefore indistinguishable. Object-indicating tags do not, therefore, support the capture of an absolute pen path. They do, however, support the capture of a relative pen path. So long as the position sampling frequency exceeds twice the encountered tag frequency, the displacement from one sampled pen position to the next within a stroke can be unambiguously determined. As an alternative, the netpage pen **101** can contain a pair or motion-sensing accelerometers, as described in our earlier application U.S. Ser. No. 09/575,174.

[0081] With either tagging scheme, the tags function in cooperation with associated visual elements on the netpage as user interface elements in that a user can interact with the printed page using an appropriate sensing device in order for tag data to be read by the sensing device and for an appropriate response to be generated in the netpage system.

Personalized Publication Model

[0082] In the following description, news is used as a canonical publication example to illustrate personalization mechanisms in the netpage system. Although news is often used in the limited sense of newspaper and news magazine news, the intended scope in the present context is wider.

[0083] In the netpage system, the editorial content and the advertising content of a news publication are personalized using different mechanisms. The editorial content is personalized according to the reader’s explicitly stated and implicitly captured interest profile. The advertising content is personalized according to the reader’s locality and demographic.

Editorial Personalization

[0084] A subscriber can draw on two kinds of news sources: those that deliver news publications, and those that deliver news streams. While news publications are aggregated and edited by the publisher, news streams are aggregated and edited by central news publishers, or by a specialized news aggregator. News publications typically correspond to traditional newspapers and news magazines, while news streams can be many and varied: a “raw” news feed from a news service, a cartoon strip, a freelance writer’s column, a friend’s bulletin board, or the reader’s own e-mail.

[0085] The netpage publication server supports the publication of edited news publications as well as the aggregation of multiple news streams. By handling the aggregation and hence the formatting of news streams selected directly by the reader, the server is able to place advertising on pages over which it otherwise has no editorial control.

[0086] The subscriber builds a daily newspaper by selecting one or more contributing news publications, and creating a personalized version of each. The resulting daily editions are printed and bound together into a single newspaper. The various members of a household typically express their different interests and tastes by selecting different daily publications and then customizing them.

[0087] For each publication, the reader optionally selects specific sections. Some sections appear daily, while others appear weekly. The daily sections available from The New York Times online, for example, include “Page One Plus”, “National”, “International”, “Opinion”, “Business”, “Arts/Living”, “Technology”, and “Sports”. The set of available sections is specific to a publication, as is the default subset.

[0088] The reader can extend the daily newspaper by creating custom sections, each one drawing on any number of news streams. Custom sections might be created for e-mail and friends’ announcements (“Personal”), or for monitoring news feeds for specific topics (“Alerts” or “Clippings”).

[0089] For each section, the reader optionally specifies its size, either qualitatively (e.g. short, medium, or long), or numerically (i.e. as a limit on its number of pages), and the desired proportion of advertising, either qualitatively (e.g. high, normal, low, none), or numerically (i.e. as a percentage).

[0090] The reader also optionally expresses a preference for a large number of shorter articles or a small number of longer articles. Each article is ideally written (or edited) in both short and long forms to support this preference.

[0091] An article may also be written (or edited) in different versions to match the expected sophistication of the reader, for example to provide children’s and adults’ versions. The appropriate version is selected according to the reader’s age. The reader can specify a “reading age” which takes precedence over their biological age.

[0092] The articles which make up each section are selected and prioritized by the editors, and each is assigned a useful lifetime. By default they are delivered to all relevant subscribers, in priority order, subject to space constraints in the subscribers’ editions.

[0093] In sections where it is appropriate, the reader may optionally enable collaborative filtering. This is then applied to articles which have a sufficiently long lifetime. Each article which qualifies for collaborative filtering is printed with rating buttons at the end of the article. The buttons can provide an easy choice (e.g. “liked” and “disliked”), making it more likely that readers will bother to rate the article.

[0094] Articles with high priorities and short lifetimes are therefore effectively considered essential reading by the editors and are delivered to most relevant subscribers.

[0095] The reader optionally specifies a serendipity factor, either qualitatively (e.g. do or don’t surprise me), or numerically. A high serendipity factor lowers the threshold used for matching during collaborative filtering. A high factor makes it more likely that the corresponding section will be filled to the reader’s specified capacity. A different serendipity factor can be specified for different days of the week.

[0096] The reader also optionally specifies topics of particular interest within a section, and this modifies the priorities assigned by the editors.

[0097] The speed of the reader’s Internet connection affects the quality at which images can be delivered. The reader optionally specifies a preference for fewer images or smaller images or both. If the number or size of images is not reduced, then images may be delivered at lower quality (i.e. at lower resolution or with greater compression).

[0098] At a global level, the reader specifies how quantities, dates, times and monetary values are localized. This involves specifying whether units are imperial or metric, a local timezone and time format, and a local currency, and whether the localization consists of situ translation or annotation. These preferences are derived from the reader’s locality by default.

[0099] To reduce reading difficulties caused by poor eyesight, the reader optionally specifies a global preference for a
larger presentation. Both text and images are scaled accordingly, and less information is accommodated on each page.

[0100] The language in which a news publication is published, and its corresponding text encoding, is a property of the publication and not a preference expressed by the user. However, the netpage system can be configured to provide automatic translation services in various guises.

Advertising Localization and Targeting

[0101] The personalization of the editorial content directly affects the advertising content, because advertising is typically placed to exploit the editorial context. Travel ads, for example, are more likely to appear in a travel section than elsewhere. The value of the editorial content to an advertiser (and therefore to the publisher) lies in its ability to attract large numbers of readers with the right demographics.

[0102] Effective advertising is placed on the basis of locality and demographics. Locality determines proximity to particular services, retailers etc., and particular interests and concerns associated with the local community and environment. Demographics determine general interests and predicaments as well as likely spending patterns.

[0103] A news publisher’s most profitable product is advertising “space”, a multi-dimensional entity determined by the publication’s geographic coverage, the size of its readership, its readership demographics, and the page area available for advertising.

[0104] In the netpage system, the netpage publication server computes the approximate multi-dimensional size of a publication’s saleable advertising space on a per-section basis, taking into account the publication’s geographic coverage, the section’s readership, the size of each reader’s section, the section’s advertising, and each reader’s advertising proportion, and each reader’s demographic.

[0105] In comparison with other media, the netpage system allows the advertising space to be defined in greater detail, and allows smaller pieces of it to be sold separately. It therefore allows it to be sold at closer to its true value.

[0106] For example, the same advertising “slot” can be sold in varying proportions to several advertisers, with individual readers’ pages randomly receiving the advertisement of one advertiser or another, overall preserving the proportion of space sold to each advertiser.

[0107] The netpage system allows advertising to be linked directly to detailed product information and online purchasing. It therefore raises the intrinsic value of the advertising space.

[0108] Because personalization and localization are handled automatically by netpage publication servers, an advertising aggregator can provide arbitrarily broad coverage of both geography and demographics. The subsequent disaggregation is efficient because it is automatic. This makes it more cost-effective for publishers to deal with advertising aggregators than to directly capture advertising. Even though the advertising aggregator is taking a proportion of advertising revenue, publishers may find the change profit-neutral because of the greater efficiency of aggregation. The advertising aggregator acts as an intermediary between advertisers and publishers, and may place the same advertisement in multiple publications.

[0109] It is worth noting that ad placement in a netpage publication can be more complex than ad placement in the publication’s traditional counterpart, because the publication’s advertising space is more complex. While ignoring the full complexities of negotiations between advertisers, advertising aggregators and publishers, the preferred form of the netpage system provides some automated support for these negotiations, including support for automated auctions of advertising space. Automation is particularly desirable for the placement of advertisements which generate small amounts of income, such as small or highly localized advertisements.

[0110] Once placement has been negotiated, the aggregator captures and edits the advertisement and records it on a netpage ad server. Correspondingly, the publisher records the ad placement on the relevant netpage publication server. When the netpage publication server lays out each user’s personalized publication, it picks the relevant advertisements from the netpage ad server.

Interstitial Advertising

[0111] The netpage system provides a mechanism whereby advertising can be placed automatically in otherwise empty space in a document. A typical netpage interaction sequence is likely to print many single pages where the reverse side of the page is empty.

[0112] Advertising can be placed in space within a document, particularly the reverse side of a netpage sheet where the reverse side is otherwise empty. The advertising is non-intrusive, and although it may not be seen immediately, it persists on the page and may be seen later.

[0113] With reference to FIG. 6, a document page 500 may have page content 501 at the top of the page and empty space at the bottom of the page. FIG. 6 illustrates an example of the placement of an advertisement 502 in empty space on the same page of the document.

[0114] With reference to FIG. 7, a document page 503 may have page content 504 filling the front page, and may be blank on the reverse side 505 of the page. FIG. 7 illustrates an example of the placement of an advertisement 506 on the otherwise empty reverse side of a document.

[0115] The advertising can be placed in personalized publications, or any netpage document, as long as there is space available. However, as usual, this advertising is the most effective when targeted to the user, i.e. demographically based.

[0116] Ownership of this “interstitial” advertising space can lie with the application provider that provides the document content, or with the infrastructure provider involved in document delivery, such as the printer provider. In any case the advertising can be chosen in various ways to relate to the content of the page or document.

CONCLUSION

[0117] The present invention has been described with reference to a preferred embodiment and number of specific alternative embodiments. However, it will be appreciated by those skilled in the relevant fields that a number of other embodiments, differing from those specifically described, will also fall within the spirit and scope of the present invention. Accordingly, it will be understood that the invention is not intended to be limited to the specific embodiments described in the present specification, including documents incorporated by cross-reference as appropriate. The scope of the invention is only limited by the attached claims.

1. A system for enabling personal editorial and advertising content delivery, the system comprising a publication server configured to:
receive first information regarding interests of a user and select editorial content in accordance with the first information; receive second information regarding a locality and demographic of the user and select advertising content in accordance with the second information and the published editorial content; and publish a personalised publication with the selected editorial and advertising content.

2. A system according to claim 1, wherein the publication server publishes the personalised publication so that related editorial and advertising content are placed in proximity.

3. A system according to claim 1, wherein in the second information, the locality determines proximity to particular services and retailers, and particular interests and concerns associated with the local community and environment, and the demographic determines general interests, preoccupations and likely spending patterns.

4. A system according to claim 1, wherein the publication server computes the approximate multi-dimensional size of saleable advertising space in the personalized publication in accordance with the size of the editorial and advertising content, geographic coverage, readership and the demographic.

5. A system according to claim 1, further comprising an advertising server configured to send the advertising content to the publication server.