The invention relates to the sodium salt of (R,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide in hydrated or anhydrous crystallized enantiomeric form and in particular in the novel crystallized polymorphic and pseudopolymorphic forms "A", "B", "D" and "E" defined in the application, as well as the method of preparation. The compound of the invention can be used as a medicament, in particular a beta-lactamase inhibitor.
POLYMORPHIC AND PSEUDOPOLYMORPHIC FORMS OF A PHARMACEUTICAL COMPOUND

The present invention relates to the sodium salt of (IR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide in crystallized enantiomeric form and new polymorphic and pseudopolymorphic forms of this salt ("crystalline forms"), processes for the preparation of said crystalline forms, pharmaceutical compositions comprising the crystalline forms alone or in combination with an antibacterial agent (e.g. ceftazidime, ceftaroline fosamil), use of said crystalline forms in combination with an antibacterial agent (e.g. ceftazidime, ceftaroline fosamil) to treat bacterial infections and methods of treating bacterial infections by administering the crystalline forms in combination with an antibacterial agent (e.g. ceftazidime, ceftaroline fosamil).

Application WO 02/10172 describes the production of azabicyclic compounds and salts thereof with acids and bases, and in particular trans-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide and its pyridinium, tetrabutylammonium and sodium salts. Application WO 03/063864 describes the use of compounds including trans-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide sodium salt, as β-lactamase inhibitors, and the use of said β-lactamase inhibitors in combination with β-lactamine antibiotics such as ceftazidime.

In WO 02/10172 the preparation of the racemic sodium salt of trans-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide is described, it being obtained indirectly from a compound described in Example 33b of WO 02/10172, by exchange of the tetrabutylammonium counter-ion with sodium, eluting an aqueous solution of the salt on ion exchange resin, treated beforehand with sodium hydroxide.

The sodium salt is obtained in solid form, after elimination of the water. The racemic product crystallizes as mentioned in Example 33c of WO 02/10172 and has been characterized by X-ray powder diffraction (XRPD) analysis of a sample prepared hereafter in the experimental section (see Example 7 and Figure 6).

It was found that only one enantiomer was active and therefore there was a need to use just the active enantiomer which is the sodium salt of (IR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide, (also known as NXL104). Concentration to dryness is carried out in the laboratory by evaporation. In practice, the water is removed
by lyophilization to obtain a homogeneous solid form. However it was found that the
amorphous form of NXL104 was not very stable in the presence of water and is
hygroscopic and of low density, which makes it difficult to handle and store, and
consequently makes it difficult to scale up its method of preparation to an industrial level.

In itself, lyophilization carried out in the laboratory is already a technique that is difficult
to scale up to the industrial level. Moreover, the method of ion exchange on resin as
described for the preparation of the starting material for the racemate and as described in
Example 10 is expensive and of low productivity on account of the large amounts of resin,
dilution with water that is necessary for quantitative ion exchange, the very long
duration of the operation and the high energy costs required, and for these reasons as well,
the method would be difficult to use on an industrial scale.

The sodium salt of (lR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-
carboxamide is a beta-lactamase inhibitor, which reacts with a protein, forming a covalent
bond. This reactive inhibitor, a consequence of the internal strain of the N-oxosulfoxoyreua
ring, is intrinsically sensitive to moisture and to heat, just like the β-lactams, although it is
not a β-lactam. The main manner of degradation of the sodium salt of (lR,2S,5R)-7-oxo-6-
sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide is by hydrolysis of the N-
oxosulfoxoyreua ring. To minimize degradation, it is advantageous to isolate this molecule
at room temperature or at low temperature and minimize the duration of exposure in
aqueous solution. These conditions are fulfilled during crystallization or lyophilization but
are difficult to fulfil during concentration of an aqueous solution to dryness, as described in
Application WO 02/10172. In practice, the aqueous solution containing the sodium salt of
(lR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide can only be
concentrated by lyophilization, in order to obtain the product cleanly in the amorphous
form.

The present invention relates to novel crystalline forms of the sodium salt of
(lR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide, (also known
as NXL104), of formula (I)
The present invention relates to four novel crystalline forms of NXL104, namely "A", "B", "D" and "E", which forms are either anhydrous as are "B" and "D" or are hydrates as are "A" and "E".

A fifth form of NXL104, "Form C" is also described herein but has been observed only as a mixture with form A.

The present invention further relates to novel and improved methods of preparation of the sodium salt of the \((\text{IR,2S,5R})-7\text{-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide}\) enantiomer making it possible to obtain said salt in perfectly crystallized and stable forms, without having recourse to the ion exchange technique nor to lyophilization under the non-industrial conditions described above. The methods according to the invention therefore offer the dual advantages of simplifying the techniques and permitting their scale up to the industrial level, while supplying in a reproducible way crystallized forms that are stable, easy to isolate, handle, store and formulate.

According to one aspect of the present invention there is provided the sodium salt of formula (I) in crystallized enantiomeric form, characterized in that it is a hydrate, and more particularly a monohydrate or a dihydrate.

According to another aspect of the present invention there is provided a crystallized monohydrated sodium salt of formula (I), characterised in that it is in a pseudopolymorphic form, "Form A", wherein said Form A has an X-ray powder diffraction pattern with at least one characteristic peak at about 8.5 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized monohydrated sodium salt of formula (I), characterised in that it is in a pseudopolymorphic
form, "Form A", wherein said Form A has an X-ray powder diffraction pattern with at least
one characteristic peak at about 15.3 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized monohydrated sodium salt of formula (I), characterised in that it is in a pseudopolymorphic form, "Form A", wherein said Form A has an X-ray powder diffraction pattern with at least
one characteristic peak at about 16.4 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized monohydrated sodium salt of formula (I), characterised in that it is in a pseudopolymorphic form, "Form A", wherein said Form A has an X-ray powder diffraction pattern with at least
one characteristic peak at about 17.0 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized monohydrated sodium salt of formula (I), characterised in that it is in a pseudopolymorphic form, "Form A", wherein said Form A has an X-ray powder diffraction pattern with at least
two characteristic peaks at about 8.5 +/- 0.5 degrees 2Θ and at about 15.3 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized monohydrated sodium salt of formula (I), characterised in that it is in a pseudopolymorphic form, "Form A", wherein said Form A has an X-ray powder diffraction pattern with at least
three characteristic peaks at about 8.5 +/- 0.5 degrees 2Θ at about 15.3 +/- 0.5 degrees 2Θ and at about 16.4 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized monohydrated sodium salt of formula (I), characterised in that it is in a pseudopolymorphic form, "Form A", wherein said Form A has an X-ray powder diffraction pattern with at least
four characteristic peaks at about 8.5 +/- 0.5 degrees 2Θ at about 15.3 +/- 0.5 degrees 2Θ, at about 16.4 +/- 0.5 degrees 2Θ and at about 17.0 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized monohydrated sodium salt of formula (I), characterised in that it is in a pseudopolymorphic
form, "Form A", wherein said Form A has an X-ray powder diffraction pattern with at least five characteristic peaks at about 8.5 +/- 0.5 degrees 2Θ, at about 15.3 +/- 0.5 degrees 2Θ, at about 16.4 +/- 0.5 degrees 2Θ, at about 17.0 +/- 0.5 degrees 2Θ and at about 24.3 +/- 0.5 degrees 2Θ.

The invention relates more particularly to the crystallized monohydrated sodium salt of formula (I), characterized in that it is in its pseudopolymorphic form called "A", having an X-ray powder diffraction pattern with five characteristic lines at 2Θ(± 0.5°) 8.48, 15.34, 16.38, 17.04, 24.28 and a specific line at 8.48.

The invention relates more particularly to the crystallized monohydrated sodium salt of formula (I), characterized in that it is in its pseudopolymorphic form called "A", having an X-ray powder diffraction pattern with five characteristic lines at 2Θ(± 0.1°) 8.48, 15.34, 16.38, 17.04, 24.28 and a specific line at 8.48.

According to another aspect of the present invention there is provided a crystallized monohydrated sodium salt of formula (I), characterised in that it is in a pseudopolymorphic form, "Form A", wherein said Form A has an X-ray powder diffraction pattern comprising a characteristic peak at about 8.5; about 15.3; about 16.4; about 17.0; or about 24.3 or a combination thereof wherein each value may be +/-0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized dihydrated sodium salt of formula (I), characterised in that it is in a pseudopolymorphic form, "Form E", wherein said Form E has an X-ray powder diffraction pattern with at least one characteristic peak at about 13.7 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized dihydrated sodium salt of formula (I), characterised in that it is in a pseudopolymorphic form, "Form E", wherein said Form E has an X-ray powder diffraction pattern with at least one characteristic peak at about 15.0 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized dihydrated sodium salt of formula (I), characterised in that it is in a pseudopolymorphic form, "Form E", wherein said Form E has an X-ray powder diffraction pattern with at least one characteristic peak at about 15.4 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized dihydrated sodium salt of formula (I), characterised in that it is in a pseudopolymorphic
form, "Form E", wherein said Form E has an X-ray powder diffraction pattern with at least one characteristic peak at about 15.7 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized dihydrated sodium salt of formula (I), characterised in that it is in a pseudopolymorphic form, "Form E", wherein said Form E has an X-ray powder diffraction pattern with at least one characteristic peak at about 19.4 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized dihydrated sodium salt of formula (I), characterised in that it is in a pseudopolymorphic form, "Form E", wherein said Form E has an X-ray powder diffraction pattern with at least one specific peak at about 24.6 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized dihydrated sodium salt of formula (I), characterised in that it is in a pseudopolymorphic form, "Form E", wherein said Form E has an X-ray powder diffraction pattern with at least two specific peaks at about 15.0 +/- 0.5 degrees 2Θ and 24.6 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized dihydrated sodium salt of formula (I), characterised in that it is in a pseudopolymorphic form, "Form E", wherein said Form E has an X-ray powder diffraction pattern with at least two characteristic peaks at about 13.7 +/- 0.5 degrees 2Θ and at about 15.0 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized dihydrated sodium salt of formula (I), characterised in that it is in a pseudopolymorphic form, "Form E", wherein said Form E has an X-ray powder diffraction pattern with at least three characteristic peaks at about 13.7 +/- 0.5 degrees 2Θ, at about 15.0 +/- 0.5 degrees 2Θ and at about 15.4 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized dihydrated sodium salt of formula (I), characterised in that it is in a pseudopolymorphic form, "Form E", wherein said Form E has an X-ray powder diffraction pattern with at least four characteristic peaks at about 13.7 +/- 0.5 degrees 2Θ, at about 15.0 +/- 0.5 degrees 2Θ, at about 15.4 +/- 0.5 degrees 2Θ and at about 15.7 +/- 0.5 degrees 2Θ.
form, "Form E", wherein said Form E has an X-ray powder diffraction pattern with at least five characteristic peaks at about 13.7 +/- 0.5 degrees 2Θ, at about 15.0 +/- 0.5 degrees 2Θ, at about 15.4 +/- 0.5 degrees 2Θ, at about 15.7 +/- 0.5 degrees 2Θ and at about 19.4 +/- 0.5 degrees 2Θ.

The invention also relates more particularly to the crystallized dihydrated sodium salt of formula (I), characterised in that it is in its pseudopolymorphic form called "E", having an X-ray powder diffraction pattern with five characteristic lines at 2Θ(± 0.5°) 13.65, 15.01, 15.38, 15.72, 19.42 and two specific lines at 15.01 and 24.57.

According to another aspect of the present invention there is provided a crystallized dihydrated sodium salt of formula (I), characterised in that it is in a pseudopolymorphic form, "Form E", wherein said Form E has an X-ray powder diffraction pattern comprising a characteristic peak at about 13.7; about 15.0; about 15.4; about 15.7; or about 19.4; a combination thereof wherein each value may be +/-0.5 degrees 2Θ.

According to one aspect of the present invention there is provided the sodium salt of formula (I) in crystallized enantiomeric form, characterised in that it is an anhydrous compound.

According to another aspect of the present invention there is provided a crystallized anhydrous sodium salt of formula (I), characterised in that it is in a polymorphic form, "Form B", wherein said Form B has an X-ray powder diffraction pattern with at least one characteristic peak at about 13.0 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized anhydrous sodium salt of formula (I), characterised in that it is in a polymorphic form, "Form B", wherein said Form B has an X-ray powder diffraction pattern with at least one characteristic peak at about 16.5 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized anhydrous sodium salt of formula (I), characterised in that it is in a polymorphic form,
"Form B", wherein said Form B has an X-ray powder diffraction pattern with at least one characteristic peak at about 17.2 +/- 0.5 degrees 2Θ

According to another aspect of the present invention there is provided a crystallized anhydrous sodium salt of formula (I), characterised in that it is in a polymorphic form,

"Form B", wherein said Form B has an X-ray powder diffraction pattern with at least one characteristic peak at about 17.5 +/- 0.5 degrees 2Θ

According to another aspect of the present invention there is provided a crystallized anhydrous sodium salt of formula (I), characterised in that it is in a polymorphic form,

"Form B", wherein said Form B has an X-ray powder diffraction pattern with at least one specific peak at about 10.4 +/- 0.5 degrees 2Θ and at about 13.0 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized anhydrous sodium salt of formula (I), characterised in that it is in a polymorphic form,

"Form B", wherein said Form B has an X-ray powder diffraction pattern with at least two specific peaks at about 10.4 +/- 0.5 degrees 2Θ and at about 13.0 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized anhydrous sodium salt of formula (I), characterised in that it is in a polymorphic form,

"Form B", wherein said Form B has an X-ray powder diffraction pattern with at least two characteristic peaks at about 13.0 +/- 0.5 degrees 2Θ and at about 16.5 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized anhydrous sodium salt of formula (I), characterised in that it is in a polymorphic form,

"Form B", wherein said Form B has an X-ray powder diffraction pattern with at least three characteristic peaks at about 13.0 +/- 0.5 degrees 2Θ, at about 16.5 +/- 0.5 degrees 2Θ and at about 17.2 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized anhydrous sodium salt of formula (I), characterised in that it is in a polymorphic form,

"Form B", wherein said Form B has an X-ray powder diffraction pattern with at least four
characteristic peaks at about 13.0 +/- 0.5 degrees 2Θ, at about 16.5 +/- 0.5 degrees 2Θ, at about 17.2 +/- 0.5 degrees 2Θ and at about 17.5 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized anhydrous sodium salt of formula (I), characterised in that it is in a polymorphic form, "Form B", wherein said Form B has an X-ray powder diffraction pattern with at least five characteristic peaks at about 13.0 +/- 0.5 degrees 2Θ, at about 16.5 +/- 0.5 degrees 2Θ, at about 17.2 +/- 0.5 degrees 2Θ, at about 17.5 +/- 0.5 degrees 2Θ and at about 22.3 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized anhydrous sodium salt of formula (I), characterised in that it is in a polymorphic form, "Form B", wherein said Form B has an X-ray powder diffraction pattern with at least five characteristic peaks at about 13.0 +/- 0.5 degrees 2Θ, at about 16.5 +/- 0.5 degrees 2Θ, at about 17.2 +/- 0.5 degrees 2Θ, at about 17.5 +/- 0.5 degrees 2Θ and at about 22.3 +/- 0.5 degrees 2Θ.

The invention relates more particularly to the crystallized anhydrous sodium salt of formula (I), characterized in that it is in its polymorphic form called "B", having an X-ray powder diffraction pattern with five characteristic lines at 2Θ(± 0.5°) 12.97, 16.45, 17.24, 17.45, 22.29 and two specific lines at 10.36 and 12.97.

The invention relates more particularly to the crystallized anhydrous sodium salt of formula (I), characterized in that it is in its polymorphic form called "B", having an X-ray powder diffraction pattern with five characteristic lines at 2Θ(± 0.1°) 12.97, 16.45, 17.24, 17.45, 22.29 and two specific lines at 10.36 and 12.97.

According to another aspect of the present invention there is provided a crystallized anhydrous sodium salt of formula (I), characterised in that it is in a polymorphic form, "Form B", wherein said Form B has an X-ray powder diffraction pattern comprising a characteristic peak at about 13.0; about 16.5; about 17.2; about 17.5; or about 22.3 or a combination thereof wherein each value may be +/-0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized anhydrous sodium salt of formula (I), characterised in that it is in a polymorphic form,
"Form D", wherein said Form D has an X-ray powder diffraction pattern with at least one characteristic peak at about 16.2 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized anhydrous sodium salt of formula (I), characterised in that it is in a polymorphic form,

"Form D", wherein said Form D has an X-ray powder diffraction pattern with at least one characteristic peak at about 17.4 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized anhydrous sodium salt of formula (I), characterised in that it is in a polymorphic form,

"Form D", wherein said Form D has an X-ray powder diffraction pattern with at least one characteristic peak at about 17.8 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized anhydrous sodium salt of formula (I), characterised in that it is in a polymorphic form,

"Form D", wherein said Form D has an X-ray powder diffraction pattern with at least one characteristic peak at about 18.5 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized anhydrous sodium salt of formula (I), characterised in that it is in a polymorphic form,

"Form D", wherein said Form D has an X-ray powder diffraction pattern with at least one characteristic peak at about 22.2 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized anhydrous sodium salt of formula (I), characterised in that it is in a polymorphic form,

"Form D", wherein said Form D has an X-ray powder diffraction pattern with at least one specific peak at about 12.4 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized anhydrous sodium salt of formula (I), characterised in that it is in a polymorphic form,

"Form D", wherein said Form D has an X-ray powder diffraction pattern with at least two characteristic peaks at about 16.2 +/- 0.5 degrees 2Θ and at about 17.4 +/- 0.5 degrees 2Θ.

According to another aspect of the present invention there is provided a crystallized anhydrous sodium salt of formula (I), characterised in that it is in a polymorphic form,

"Form D", wherein said Form D has an X-ray powder diffraction pattern with at least three
characteristic peaks at about 16.2 +/- 0.5 degrees 2\(\Theta \), at about 17.4 +/- 0.5 degrees 2\(\Theta \) and
at about 17.8 +/- 0.5 degrees 2\(\Theta \).

According to another aspect of the present invention there is provided a crystallized anhydrous sodium salt of formula (I), characterised in that it is in a polymorphic form, "Form D", wherein said Form D has an X-ray powder diffraction pattern with at least four characteristic peaks at about 16.2 +/- 0.5 degrees 2\(\Theta \), at about 17.4 +/- 0.5 degrees 2\(\Theta \), at
about 17.8 +/- 0.5 degrees 2\(\Theta \) and at about 18.5 +/- 0.5 degrees 2\(\Theta \).

According to another aspect of the present invention there is provided a crystallized anhydrous sodium salt of formula (I), characterised in that it is in a polymorphic form, "Form D", wherein said Form D has an X-ray powder diffraction pattern with at least five characteristic peaks at about 16.2 +/- 0.5 degrees 2\(\Theta \), at about 17.4 +/- 0.5 degrees 2\(\Theta \), at
about 17.8 +/- 0.5 degrees 2\(\Theta \), at about 18.5 +/- 0.5 degrees 2\(\Theta \) and at about 22.2 +/- 0.5
degrees 2\(\Theta \).

According to another aspect of the present invention there is provided a crystallized anhydrous sodium salt of formula (I), characterised in that it is in a polymorphic form, "Form D", wherein said Form D has an X-ray powder diffraction pattern with at least five characteristic peaks at about 16.2 +/- 0.5 degrees 2\(\Theta \), at about 17.4 +/- 0.5 degrees 2\(\Theta \), at
about 17.8 +/- 0.5 degrees 2\(\Theta \), at about 18.5 +/- 0.5 degrees 2\(\Theta \), at about 22.2 +/- 0.5
degrees 2\(\Theta \) and one specific peak at about 12.4 +/- 0.5 degrees 2\(\Theta \).

The invention also relates more particularly to the crystallized anhydrous sodium salt of formula (I), characterized in that it is in its polymorphic form called "D", having an X-ray powder diffraction pattern with five characteristic lines at 2\(\Theta (\pm 0.5^\circ) \) 16.23, 17.44, 17.75, 18.53, 22.22 and a specific line at 12.43.

The invention also relates more particularly to the crystallized anhydrous sodium salt of formula (I), characterized in that it is in its polymorphic form called "D", having an X-ray powder diffraction pattern with five characteristic lines at 2\(\Theta (\pm 0.1^\circ) \) 16.23, 17.44, 17.75, 18.53, 22.22 and a specific line at 12.43.

According to another aspect of the present invention there is provided a crystallized anhydrous sodium salt of formula (I), characterised in that it is in a polymorphic form, "Form D", wherein said Form D has an X-ray powder diffraction pattern comprising a
characteristic peak at about 12.4; about 16.2; about 17.4; about 17.8; about 18.5; or about 22.2; or a combination thereof wherein each value may be +/-0.5 degrees 2θ.

According to another aspect of the present invention there is provided a crystallized sodium salt of formula (I), characterised in that it is in a form, "Form C", wherein said Form C is not isolated as a pure form but is obtained in a mixture with one or more other forms, in particular Form A. An X-ray powder diffraction pattern was obtained for the mixture of forms including Form C and is shown in Figure 13. It has characteristic peaks at about 6.5; about 8.5; about 13.4; about 14.4; about 15.4; about 15.5; about 16.4; about 17.1; about 18.0; about 19.3; about 19.5; about 21.0; about 22.9; about 24.3; about 27.3 or about 31.9 +/- 0.5 degrees 2θ or a combination thereof.

In some embodiments, the Form C mixture is characterized by an X-Ray powder diffraction pattern comprising a characteristic peak at about 6.5 +/- 0.5 degrees 2θ. In other embodiments, the Form C mixture is characterized by an X-Ray powder diffraction pattern comprising a characteristic peak at about 18.0 +/- 0.5 degrees 2θ. In still other embodiments, the Form C mixture is characterized by an X-Ray powder diffraction pattern comprising a characteristic peak at about 19.3 +/- 0.5 degrees 2θ. The Form C mixture may be further characterized by an X-Ray powder diffraction pattern comprising a characteristic peak at about 14.4; about 15.5; about 16.4; about 17.1 or about 19.5 +/- 0.5 degrees 2θ or a combination thereof. In still other embodiments, the Form C mixture may be further characterized by an X-Ray powder diffraction pattern comprising a characteristic peak at about 8.5; about 13.4; about 15.4; about 21.0; about 22.9; about 24.3; about 27.3 or about 31.9 +/- 0.5 degrees 2θ or a combination thereof.

In exemplary embodiments, the Form C mixture is characterized by an X-Ray powder diffraction pattern comprising characteristic peaks at about 6.5; about 8.5; about 13.4; about 14.4; about 15.4; about 15.5; about 16.4; about 17.1; about 18.0; about 19.3; about 19.5; about 21.0; about 22.9; about 24.3; about 27.3 and about 31.9 +/- 0.5 degrees 2θ.

The invention also relates to a method for the preparation of the sodium salt of the (IR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide enantiomer of formula (I):
as defined above, characterized in that the tetrabutylammonium salt of (lR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide is treated in a (1-6 C) alkanol containing between 0 and 50% water, with a sodium salt that is soluble in the reaction mixture, and then the crystals obtained are isolated.

The sodium salt used is in particular an acetate, a butyrate, a hexanoate, an ethylhexanoate or a dodecysulfate, and very preferably 2-ethyl-hexanoate.

The process of the reaction is an equilibrium that is displaced by the crystallization of the sodium salt, which can be applied advantageously on an industrial scale, making the method particularly useful.

Either the alcoholic solution of sodium 2-ethylhexanoate is added to the alcoholic solution of the tetrabutylammonium salt, or vice versa.

The (1-6 C) alkanol used in the method according to the invention is preferably ethanol, propanol or linear or branched butanol, and very preferably ethanol. The operation is carried out in the presence of 0 to 10% water, at a temperature between 15 and 40°C.

The invention in particular relates to a method as defined above, for the preparation of the sodium salt of formula (I), in the anhydrous polymorphic form, "Form B", as described herein, characterized in that a solution of sodium 2-ethylhexanoate in pure ethanol is added to a solution of the tetrabutylammonium salt of (lR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide in an ethanol/water mixture in such a way that the final proportion of water is from 0 to 5 wt.% of the solvent, operating at a temperature from 10 to 40°C, in the presence of seed crystals of the polymorphic "Form B" or of the pseudopolymorphic "Form A" as described herein.

The parameters, such as the proportion of water in the reaction mixture, the duration of addition, the temperature and the concentration are all relevant in determining the
crystalline form that is obtained. In order to obtain the pure B form, it is preferable to operate in the presence of seed crystals of the polymorphic "Form B" and of a final proportion of water less than 2%, introducing the solution of sodium 2-ethylhexanoate over a period of 1 to 7 hours and operating at a temperature from 10 to 40°C, and very preferably 30 to 35°C.

The invention also in particular relates to a method as defined above, for the preparation of the sodium salt of formula (I), in the anhydrous polymorphic "Form B", characterized in that an ethanolic solution of the tetrabutylammonium salt of (IR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide is added to an ethanol/water mixture of sodium 2-ethylhexanoate, moreover operating under the same conditions of solvent and temperatures as those described above.

The invention also in particular relates to a method as defined above, for the preparation of the sodium salt of formula (I), in its monohydrated pseudopolymorphic form "Form A" as described herein, characterized in that a solution of sodium 2-ethylhexanoate in pure ethanol is added to a solution of the tetrabutylammonium salt of (IR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide in an ethanol/water mixture in such a way that the final proportion of water is from 3 to 10 wt.% of the solvent, operating at a temperature from 10 to 40°C. Crystallization is carried out in the absence of seed crystals or by adding seed crystals of the pseudopolymorphic "Form A".

The parameters, such as the proportion of water in the reaction mixture, the duration of addition, the temperature and the concentration act interdependently on the crystalline form. In order to obtain the pure A form, it is preferable to operate at a temperature from 20 to 35°C and very preferably at room temperature, in the presence of seed crystals of the pseudopolymorphic "Form A", a final proportion of water greater than 5 wt.% of the solvent, and introducing the solution of sodium 2-ethylhexanoate over a period of 30 minutes to 2 hours.

The invention also in particular relates to a method as defined above, for the preparation of the sodium salt of formula (I), in the monohydrated pseudopolymorphic "Form A", characterized in that an ethanolic solution of the tetrabutylammonium salt of (IR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide is added to an ethanol/water mixture of sodium 2-ethylhexanoate, operating under the same conditions of solvent and temperatures as those described above.
The invention also in particular relates to a method as defined above, for the preparation of the sodium salt of formula (I), in its anhydrous polymorphic form "Form D" as described herein, characterized in that an ethanolic solution of sodium 2-ethylhexanoate is added to an ethanolic solution of the tetrabutylammonium salt of (IR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide, operating at room temperature. Crystallization is carried out in the absence of seed crystals or by adding seed crystals of the polymorphic "Form D" or optionally of the pseudopolymorphic "Form A".

The parameters such as the proportion of water in the reaction mixture, the duration of addition, the temperature and the concentration act interdependently on the crystalline form. In order to obtain the pure D form, it is preferable to operate in the absence of seed crystals, introducing the solution of sodium 2-ethylhexanoate over a period of 30 minutes or less, and operating at room temperature.

The invention also in particular relates to a method as defined above, for the preparation of the sodium salt of formula (I), in its polymorphic "Form D", characterized in that an ethanolic solution of the tetrabutylammonium salt of (IR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide is added to an ethanolic solution of sodium 2-ethylhexanoate, operating under the same conditions of solvent and temperature as those described above.

Another dihydrated pseudopolymorphic form called "Form E" as described herein was obtained by a method that is characterized in that crystals of "Form A" are suspended in water, and the suspension is then left to evaporate slowly in a humid atmosphere. Crystals have also been obtained by trituration of crystals of "Form A" in water or in an alkanol-water mixture, or by conversion, in a humid atmosphere, of the anhydrous "Form B" and "Form D" to the monohydrated "Form A" and then to the dihydrated "Form E". This "Form E" is particularly stable at higher humidities above 70% Relative Humidity. Form C is anhydrous and highly hygroscopic since it converts to monohydrated "Form A" at Relative Humidity as low as 5%.

In one embodiment of the present invention forms "A", "B", "D" and "E" are all preferred over "Form C".

In one embodiment of the present invention forms "A" and "B" are preferred over forms "D" and "E".
In one embodiment of the present invention "Form B" is preferred over "Form A". In one embodiment of the present invention "Form B" is the most preferred.

The polymorphic and pseudopolymorphic forms "A", "B", "D" and "E" have never been observed during the preparation of the sodium salt of the racemic compound trans-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide described in Application WO 02/10172. Analysis of the monocrystal of this material, as prepared and described in Example 8 below, shows the presence of both enantiomers and two molecules of water within the unit cell, characteristic of a dihydrated racemic compound. The higher water solubility of the enantiomer compared with the racemate makes it highly unlikely that any of the enantiomeric forms could ever be obtained by concentration and crystallisation from water. Nor can they be prepared on an industrial scale under the conditions described in Application WO 02/10172, as the excessively dilute aqueous solutions resulting from ion exchange and the stability of the sodium salt of (IR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide do not permit their concentration and their crystallization by evaporation of the water.

Seed crystals of the pseudopolymorphic "Form A" were obtained by adding, over forty-five minutes, 19 volumes of ethanol to a solution of the amorphous sodium salt of (IR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide in one volume of water, cooling to 5°C in one hour and then holding at this temperature, filtration and finally drying.

Seed crystals of the polymorphic "Form B" were obtained by dissolving the amorphous salt in 33 volumes of methanol, adding 10 volumes of ethanol at 60°C, concentration of the solution to about 10 volumes at room temperature and then distillation of the methanol to constant volume, still at room temperature, with ethanol (25 volumes are added). The polymorphic "Form B" thus obtained was filtered and then dried.

The polymorphic and pseudopolymorphic forms "A", "B", "D" and "E" are stable and homogeneous, which is particularly important for their preparation on an industrial scale, as well as for their storage and their utilization in the formulation process.

It has been found that Form D crystals are very small making filtration difficult and slow and hence making it difficult to prepare Form D.
It has also been found that Form E is somewhat less stable because it tends to lose water and hydrolyse; during long storage and at higher temperature.

If the relative humidity is controlled between 0-70% Relative Humidity and in the absence of gas flow Form A is a stable form.

In anhydrous conditions or low relative humidity below 60% Relative Humidity then Form B is a stable form.

Thus Form B is the most preferred form.

However Form B is not easy to prepare because in the absence of seed, if water is merely excluded, or under rapid crystallisation then kinetic Form D may be produced rather than Form B, for example see Example 5 hereinafter.

Surprisingly we have found that it is better to use some water in the method for preparing the anhydrous Form B. If too much water is used then Form A will be produced, such as in Examples 3 and 4. The range of water that produces Form B is relatively narrow.

In general, the obvious way to 'direct' crystallization to a particular form is to seed it with that form, however we have found that seeding with form A can generate forms B, D and E, see Examples 2, 5, and 6. Thus very unusually in this case, seeding alone is not sufficient to achieve a particular crystalline form.

Surprisingly therefore of the crystalline forms "A", "B", "D" and "E" (which are all more stable than the amorphous form of NXL104), Form B is the most preferred form. Form B is anhydrous but again surprisingly the present invention describes a robust reproducible process for the preparation of Form B, that can be scaled up to an industrial level, and yet rather than being completely anhydrous said process uses some water or long addition time to minimise risk of obtaining non desirable form D.

The pseudopolymorphic "Form A" is a monohydrate (theoretical water content 5.90% by weight) and the pseudopolymorphic "Form E" is a dihydrate. By coupling thermogravimetric analysis (TGA) with differential thermal analysis (SDTA) at 10°C/min, the pseudopolymorphic "Form A" displays a weight loss of 5.7% at approximately 110°C, corresponding to the dehydration of the salt, followed by a decomposition exotherm with weight loss between 220 and 240°C. By the same technique, the pseudopolymorphic "Form E" displays a first weight loss of 5% at approximately 60°C and then a second weight loss of 5% at approximately 100°C before decomposition between 220 and 240°C.
This loss of water in 2 stages corresponds to a dihydrated form with two non-equivalent molecules of water in the crystal lattice.

The polymorphic forms "B" and "D" are anhydrous, a maximum amount of water from 0 to 0.6% having been detected by Karl Fischer analysis in a product of "Form B" prepared as described later in the experimental section. The polymorphic forms "B" and "D" display an exothermic decomposition peak between 220 and 240°C measured by DSC (Differential Scanning Calorimetry).

The polymorphic and pseudopolymorphic forms "A", "B", "D" and "E" according to the invention are moreover characterized by the X-ray spectra ("XRPD diffraction pattern") as presented below and quite particularly by specific characteristic lines shown in the tables hereinafter.

The experimental powder diffraction patterns were obtained by diffraction of X-rays on powder in an X'pert Pro Philips instrument with the Ka radiation of copper (λ=1.5406Å). The samples, without grinding, are put on a glass plate and are analyzed at ambient temperature and humidity with an angle 2Θ from 5 to 50°. The characteristic peaks of each form were determined from the five lines that are generally the most intense. The specific peaks of each form were only detected in the polymorphic forms according to the invention. The mean value of each peak and its standard deviation were calculated from the experimental values of representative samples of each form.

The crystal structures of the monocrystals of the E and racemic dihydrate forms were obtained at 296K on a Rigaku Rapid R axis diffractometer equipped with a rotating copper anode (1=1.5406Å). The crystals structures of monocrystal of the A form were obtained at 233K on a Bruker Nonius diffractometer with the Ka radiation of molybdenum (1=0.7093Å). Powder diffraction patterns are normally measured using copper Ka radiation. For comparison with the experimental powder patterns, the theoretical powder diffraction patterns for the pseudopolymorphic forms A and E and of the racemic dihydrate were calculated from the corresponding crystal structure data using the appropriate value for copper Ka radiation (1.5406Å).

In the attached drawings, Figures 1 to 5 show the experimental XRPD diffraction patterns of the polymorphic and pseudopolymorphic forms A, B, D and E, as well as the specific lines of these forms.
Figure 6 shows the XRPD diffraction pattern of the racemic compound described in Application WO 02/10172.

Figure 7 shows the theoretical XRPD diffraction pattern of the dihydrated form of the racemic compound (monocystal prepared below in Example 8).

Figure 8 shows a comparison of the XRPD diffraction patterns of the racemic form versus the crystalline forms A, B, D, E.

Figures 9 and 10 show a comparison of the XRPD diffraction patterns of the racemic form versus the dihydrated form of the racemic compound (monocystal prepared below in Example 8).

Figure 11 shows a representation of the crystal lattice of the monocystal of the dihydrate racemate.

Figure 12 shows a comparison of the XRPD diffraction patterns of the dihydrated form of the racemic compound (monocystal prepared below in Example 8) versus the crystalline forms A, B, D, E.

Figure 13 shows the XRPD diffraction pattern of Form C.

The characteristic data of these diffraction patterns are as follows.

The characteristic peaks (or lines) are generally those of the highest intensity. The specific peaks (or lines) are specific to that particular polymorphic or pseudopolymorphic form.

<table>
<thead>
<tr>
<th>Form A (theoretical XRPD at 233K)</th>
<th>2 Theta (experimental XRPD at 293 K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic peaks</td>
<td>Interplanar spacing (Å)</td>
</tr>
<tr>
<td>1</td>
<td>10.39</td>
</tr>
<tr>
<td>2</td>
<td>5.76</td>
</tr>
<tr>
<td>3</td>
<td>5.40</td>
</tr>
<tr>
<td>4</td>
<td>5.19</td>
</tr>
<tr>
<td>5</td>
<td>3.66</td>
</tr>
<tr>
<td>Specific peak</td>
<td>10.39</td>
</tr>
</tbody>
</table>
Form B

<table>
<thead>
<tr>
<th>Characteristic peaks</th>
<th>Interplanar spacing (Å)</th>
<th>2 Theta (experimental XRPD at 293 K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.83</td>
<td>12.97 ± 0.02</td>
</tr>
<tr>
<td>2</td>
<td>5.39</td>
<td>16.45 ± 0.02</td>
</tr>
<tr>
<td>3</td>
<td>5.14</td>
<td>17.24 ± 0.01</td>
</tr>
<tr>
<td>4</td>
<td>5.08</td>
<td>17.45 ± 0.02</td>
</tr>
<tr>
<td>5</td>
<td>3.99</td>
<td>22.29 ± 0.02</td>
</tr>
</tbody>
</table>

Specific peaks

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.54</td>
<td>10.36 ± 0.01</td>
</tr>
<tr>
<td>2</td>
<td>6.83</td>
<td>12.97 ± 0.02</td>
</tr>
</tbody>
</table>

Form D

<table>
<thead>
<tr>
<th>Characteristic peaks</th>
<th>Interplanar spacing (Å)</th>
<th>2 Theta (experimental XRPD at 293 K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.46</td>
<td>16.23 ± 0.02</td>
</tr>
<tr>
<td>2</td>
<td>5.09</td>
<td>17.44 ± 0.01</td>
</tr>
<tr>
<td>3</td>
<td>5.00</td>
<td>17.75 ± 0.01</td>
</tr>
<tr>
<td>4</td>
<td>4.79</td>
<td>18.53 ± 0.01</td>
</tr>
<tr>
<td>5</td>
<td>4.00</td>
<td>22.22 ± 0.01</td>
</tr>
</tbody>
</table>

Specific peak

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.12</td>
<td>12.43 ± 0.01</td>
</tr>
</tbody>
</table>
Form E (theoretical XRPD at 296K)

<table>
<thead>
<tr>
<th>Characteristic peaks</th>
<th>Interplanar spacing (Å)</th>
<th>2 Theta (experimental XRPD at 293 K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.48</td>
<td>13.65</td>
</tr>
<tr>
<td>2</td>
<td>5.90</td>
<td>15.01</td>
</tr>
<tr>
<td>3</td>
<td>5.76</td>
<td>15.38</td>
</tr>
<tr>
<td>4</td>
<td>5.63</td>
<td>15.72</td>
</tr>
<tr>
<td>5</td>
<td>4.57</td>
<td>19.42</td>
</tr>
</tbody>
</table>

Specific peaks

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>2 Theta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific peak; 5</td>
<td>(at 293K)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5.90</td>
<td>15.01</td>
</tr>
<tr>
<td>2</td>
<td>3.62</td>
<td>24.57</td>
</tr>
</tbody>
</table>

Specific peak; 5 (at 293K)

<table>
<thead>
<tr>
<th>Form</th>
<th>Interplanar spacing (Å)</th>
<th>2 Theta</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10.42</td>
<td>8.48</td>
</tr>
<tr>
<td>B</td>
<td>8.54</td>
<td>10.36 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>6.83</td>
<td>12.97 ± 0.02</td>
</tr>
<tr>
<td>D</td>
<td>7.12</td>
<td>12.43 ± 0.01</td>
</tr>
<tr>
<td>E</td>
<td>5.90</td>
<td>15.01</td>
</tr>
<tr>
<td></td>
<td>3.62</td>
<td>24.57</td>
</tr>
</tbody>
</table>
As mentioned above, the azabicyclic compounds as described in Applications WO 02/10172 and WO 03/063864 are very useful in antibacterial therapeutics. This is in particular the case with the sodium salt of 7-oxo-6-sulfooxy-l,6-diazabicyclo[3.2.1]octane-2-carboxamide described in these applications, because of its remarkable inhibitory action on beta-lactamases in pathogenic bacteria.

Owing to their intrinsic properties, the sodium salt of (IR,2S,5R)-7-oxo-6-sulfooxy-l,6-diazabicyclo[3.2.1]octane-2-carboxamide according to the invention, and in particular the polymorphic and pseudopolymorphic crystalline forms "A", "B", "D" and "E", are particularly suitable for use in antibacterial therapeutics.

The invention thus also relates to said sodium salt and said polymorphic and pseudopolymorphic crystalline forms "A", "B", "D" and "E" for their use as medicaments, and in particular medicaments that are inhibitors of beta-lactamases.

According to another aspect of the present invention there is provided the use of the polymorphic and pseudopolymorphic crystalline forms "A", "B", "D" and "E" of the sodium salt of (IR,2S,5R)-7-oxo-6-sulfooxy-l,6-diazabicyclo[3.2.1]octane-2-carboxamide as described herein in combination with an antibacterial agent to treat bacterial infections.

According to another aspect of the present invention there is provided the use of the polymorphic form "Form B", of the sodium salt of (IR,2S,5R)-7-oxo-6-sulfooxy-l,6-diazabicyclo[3.2.1]octane-2-carboxamide as described herein in combination with an antibacterial agent to treat bacterial infections.

<table>
<thead>
<tr>
<th>Characteristic peaks</th>
<th>Interplanar spacing (Å)</th>
<th>2 Theta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.92</td>
<td>6.34</td>
</tr>
<tr>
<td>2</td>
<td>5.48</td>
<td>16.15</td>
</tr>
<tr>
<td>3</td>
<td>5.30</td>
<td>16.70</td>
</tr>
<tr>
<td>4</td>
<td>4.92</td>
<td>18.01</td>
</tr>
<tr>
<td>5</td>
<td>3.31</td>
<td>26.90(^{10})</td>
</tr>
</tbody>
</table>
According to another aspect of the present invention there is provided the use of the pseudopolymorphic form "Form A", of the sodium salt of (IR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide as described herein in combination with an antibacterial agent to treat bacterial infections.

Antibacterial agents for use in combination with the polymorphic and pseudopolymorphic crystalline forms "A", "B", "D" and "E" of the sodium salt of (IR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide are preferably antibiotics of the β-lactamine type. Antibiotics of the β-lactamine type include penams, penems, cephems, carbacephems, oxacephems, cephamycins, also penicillins such as amoxicillin, ampicillin, azlocillin, mezlocillin, apalcillin, hetacillin, bacampicillin, carbenicillin, sulbenicillin, ticarcillin, piperacillin, meccillinam, pivmecillinam, methicillin, ciclacillin, talampicillin, aspoxicillin, oxacillin, cloxacillin, dicloxacillin, flucloxacinill, nafcillin or pivampicillin, also cephalosporins such as cephalothin, cephaloridine, cefaclor, cefadroxil, cefamandole, cefazolin, cephalaxin, cephradin, ceftizoxime, cefoxitin, cephacetrile, cefotiam, cefotaxime, cefsulodin, cefoperazone, ceftizoxime, cefmenoxime, cefmetazole, cephaloglycin, cefonicid, cefodizime, cepirome, ceftazidime, ceftaroline or a prodrug thereof such as ceftaroline fosamil, ceftriaxone, cefpiramide, cefbuperazone, cefozopran, cefepime, cefoselis, cefluprenam, cefuzonam, cefpimizole, cefclidin, cefixime, cefditiben, cefdinir, cefpodoxime axetil, cefpodoxime proxetil, cefteram pivoxil, cefetamet pivoxil, cefcapene pivoxil, or cefditoren, pivoxil, cefuroxime, cefuroxime axetil, loracarbagef or latamoxef, also carbapenems such as imipenem, meropenem, biapenem or panipenem and also monobactams such as aztreonam and carumonam, as well as their salts.

A particular antibacterial agent is ceftazidime.

According to another aspect of the present invention there is provided the use of the polymorphic form "Form B", of the sodium salt of (IR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide as described herein, in combination with ceftazidime to treat bacterial infections.

According to another aspect of the present invention there is provided the use of the pseudopolymorphic form "Form A", of the sodium salt of (IR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide as described herein, in combination with ceftazidime to treat bacterial infections.
A particular antibacterial agent is ceftaroline fosamil.

According to another aspect of the present invention there is provided the use of the polymorphic form "Form B", of the sodium salt of (1R,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide as described herein, in combination with ceftaroline fosamil to treat bacterial infections.

According to another aspect of the present invention there is provided the use of the pseudopolymorphic form "Form A", of the sodium salt of (1R,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide as described herein, in combination with ceftaroline fosamil to treat bacterial infections.

Ceftaroline is a novel parenteral cephalosporin with a broad spectrum of activity against clinically important community-acquired and hospital-acquired Gram-negative and Gram-positive pathogens including methicillin-resistant *Staphylococcus aureus* and multidrug-resistant *Streptococcus pneumoniae*.

U.S. Patent No. 6,417,175 discloses compounds having excellent antibacterial activities for a broad range of Gram-positive and Gram-negative bacteria. These compounds are represented by the general formula:

![Chemical structure](image)

wherein **R1**-**R4**, **Q**, **X**, **Y** and **n** are as defined therein.

U.S. Patent No. 6,417,175 discloses methods for preparing the compounds, and generically discloses formulations of the compounds, such as aqueous and saline solutions for injection. One such compound is 7P-[2(Z)-ethoxyimino-2-(5-phosphonoamino-1,2,4-thiadiazole-3-yl)acetamido]-3-[4-(1-methyl-4-pyridinio)-2-thiazolythio]-3-cephem-4-carboxylate.

U.S. Patent No. 6,906,055 discloses a chemical genus which includes compounds of formula:
Ceftaroline fosamil is a sterile, synthetic, parenteral prodrug cephalosporin antibiotic. The N-phosphonoamino water-soluble prodrug is rapidly converted into the bioactive ceftaroline, which has been demonstrated to exhibit antibacterial activity.

Ceftaroline fosamil is known as (6R,7R)-7-{(2Z)-2-(ethoxyimino)-2-[5-(phosphonoamino)-1,2,4-thiadiazol-3-yl]acetamido}-3-\{[4-(1-methylpyridin-1-ium-4-yl)-1,3-thiazol-2-yl]sulfanyl\}-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate. Ceftaroline fosamil may be an acetic acid hydrous form.

U.S. Patent No. 7,419,973 discloses compositions comprising ceftaroline fosamil and a pH adjuster, such as, L-arginine.

U.S. Patent Nos. 6,417,175 and 6,906,055 and 7,419,973 are incorporated herein by reference, in their entirety.

In one aspect, the present invention provides methods of treating bacterial infections comprising administering to a patient in need thereof, a therapeutically effective amount of a polymorphic or pseudopolymorphic crystalline form "A", "B", "D" or "E" of the sodium salt of (IR,2S,5R)-7-oxo-6-sulfoxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide as described herein, in combination with an antibacterial agent, such as, ceftazidime.

In one aspect, the present invention provides methods of treating bacterial infections comprising administering to a patient in need thereof, a therapeutically effective amount of a polymorphic or pseudopolymorphic crystalline form "A", "B", "D" or "E" of
the sodium salt of (lR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide as described herein, in combination with an antibacterial agent, such as, ceftaroline or a prodrug of ceftaroline such as ceftaroline fosamil.

In one aspect, the present invention provides methods of treating bacterial infections comprising administering to a patient in need thereof, a therapeutically effective amount of a polymorphic crystalline form, "Form B" of the sodium salt of (lR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide as described herein, in combination with an antibacterial agent, such as, ceftazidime.

In one aspect, the present invention provides methods of treating bacterial infections comprising administering to a patient in need thereof, a therapeutically effective amount of a pseudopolymorphic crystalline form, "Form A" of the sodium salt of (lR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide as described herein, in combination with an antibacterial agent, such as, ceftazidime.

The bacterial infections include, but are not limited to complicated skin and structure infection and community acquired pneumonia. In some embodiments, the community acquired pneumonia may be due to a microorganism, such as, Strepococcus, Staphylococcus, Haemophilus, Klebsiella, Escherichia and Moraxella. In further embodiments, the community acquired bacterial pneumonia may be due to a microorganism, including, but not limited to, Streptococcus pneumoniae, Staphylococcus
aureus, Haemophilus influenzae, Haemophilus parainfluenzae, Klebsiella pneumoniae, Escherichia coli and Moraxella catarrhalis. In other embodiments, the community acquired pneumonia may be due to Enterobacter, Proteus or Serratia. In further embodiments, the community acquired bacterial pneumonia may be due to Enterobacter aerogenes, Proteus mirabilis or Serratia marcescens.

In exemplary embodiments, the microorganism may be Streptococcus pneumoniae. The strain of Streptococcus pneumoniae may be penicillin-susceptible, penicillin-resistant or multidrug resistant. In exemplary embodiments, the microorganism may be Streptococcus pneumoniae serotype 19A. In some embodiments, the community acquired pneumonia may be associated with concurrent bacteremia. In other exemplary embodiments, the microorganism may be Staphylococcus aureus. The strain or isolate of Staphylococcus aureus may be methicillin-susceptible or methicillin-resistant. In still other exemplary embodiments, the microorganism may be Haemophilus influenzae, Klebsiella pneumoniae or Escherichia coli. In exemplary embodiments, the microorganism may be a β-lactamase-nonproducing ampicillin-resistant (BLNAR) strain of Haemophilus influenzae.

The medicaments as defined above are utilized in the form of pharmaceutical compositions, if necessary mixed with a pharmaceutically acceptable organic or mineral excipient, suitable for the sought method of administration, and the invention also relates to said pharmaceutical compositions.

The crystalline forms "A", "B", "D" and "E" of the present invention can be presented for administration to patients alone or in combination with an antibacterial agent, such as, for example, ceftazidime, ceftaroline or a prodrug of ceftaroline such as ceftaroline fosamil. The present invention includes pharmaceutical compositions comprising the crystalline forms of the invention alone or in combination with an antibacterial agent, such as, for example, ceftazidime, ceftaroline or a prodrug of ceftaroline such as ceftaroline fosamil. The compositions may further comprise one or more pharmaceutically acceptable carriers.
These compositions can be solid or liquid and are presented in the pharmaceutical forms commonly used in human medicine such as, for example, plain or coated tablets, capsules, granules, suppositories, injectable preparations, ointments, creams, gels; they are prepared by the usual methods. The active ingredient or ingredients can be incorporated in them with excipients usually utilized in these pharmaceutical compositions, such as talc, gum arabic, lactose, starch, magnesium stearate, cocoa butter, aqueous or non-aqueous vehicles, fats of animal or vegetable origin, paraffin derivatives, glycols, various wetting agents, dispersants or emulsifiers and preservatives.

These compositions can also be in the form of sodium salt according to the invention, and in particular one or other of the polymorphic or pseudopolymorphic forms "A" or "B" or "D" or "E" as such, intended to be dissolved extemporaneously in a suitable vehicle, for example a pyrogenic sterile water.

The invention finally relates to the pharmaceutical compositions as defined above, characterized in that they further contain, as ingredient, an antibacterial medicament of the beta-lactam type.

The crystalline forms of the present invention can be used to treat a patient at the same time as the dose of an antibacterial agent, or separately. In exemplary embodiments, the crystalline form may be used in combination with the antibacterial agent, e.g. ceftazidime or ceftaroline fosamil in one composition. In other embodiments, a composition comprising the crystalline form may be used to treat a patient concurrently with a composition comprising the antibacterial agent (e.g. ceftazidime or ceftaroline fosamil).

The dose of the crystalline forms "A", "B", "D" and "E" may vary according to several factors, including, but not limited to the type of bacterial infection and the microorganism causing the infection.

In some embodiments, the daily dose of the crystalline form may range from about 0.1 to approximately about 10 g. In specific embodiments, the daily dose of the crystalline form may be about 100 mg to 10 g. In other embodiments, the daily dose of the crystalline form may be about 200 mg to 5 g. In still other embodiments, the daily dose of the crystalline form may be about 200 mg to 2000 mg. In exemplary embodiments, the daily dose of the crystalline form may be about 200 mg, about 300 mg, about 400 mg, about 500 mg, about 600 mg, about 700 mg, about 800 mg, about 900 mg, about 1000 mg, about
1100 mg, about 1200 mg, about 1300 mg, about 1400 mg, about 1500 mg, about 1600 mg, about 1700 mg, about 1800 mg, about 1900 mg and about 2000 mg. In some exemplary embodiments, the daily dose is 800 mg. In other exemplary embodiments, the daily dose is 1200 mg. In some exemplary embodiments, the daily dose is 800 mg. In other exemplary embodiments, the daily dose is 500 mg.

In some embodiments, the methods comprise administering the crystalline form in combination with between about 100 mg and about 2400 mg of ceftazidime. In further embodiments, ceftazidime may be administered in an amount between about 100 mg and about 1200 mg. In some embodiments, ceftazidime may be administered in an amount between about 200 mg and 1000 mg. In exemplary embodiments, the amount may be about 100 mg, 200 mg, 300 mg, 400 mg, 500 mg, 600 mg, 700 mg, 800 mg, 900 mg, 1000 mg, 1100 mg or 1200 mg. In certain embodiments, the amount may be about 400 mg. In other embodiments, the amount may be about 600 mg. In still other embodiments, the amount may be about 800 mg. In certain embodiments, the amount may be about 1200 mg. In certain embodiments, the amount of ceftazidime may be about 2000 mg.

In some embodiments, the methods comprise administering the crystalline form in combination with between about 100 mg and about 2400 mg of ceftaroline or a prodrug thereof (e.g. ceftaroline fosamil). In further embodiments, ceftaroline or a prodrug thereof may be administered in an amount between about 100 mg and about 1200 mg. In some embodiments, ceftaroline or a prodrug thereof may be administered in an amount between about 200 mg and 1000 mg. In exemplary embodiments, the amount may be about 100 mg, 200 mg, 300 mg, 400 mg, 500 mg, 600 mg, 700 mg, 800 mg, 900 mg, 1000 mg, 1100 mg or 1200 mg. In certain embodiments, the amount may be about 400 mg. In other embodiments, the amount may be about 600 mg. In still other embodiments, the amount may be about 800 mg. In certain embodiments, the amount of ceftaroline fosamil may be about 1200 mg.

The amount of the crystalline form and antibacterial agent may be used to provide a single dose or multiple divided doses per day. For example, the amount may be used as a single daily dose. In exemplary embodiments, about 800 mg of one of the crystalline forms "A", "B", "D" and "E" may be administered daily with about 800 mg of ceftaroline or a prodrug thereof (e.g., ceftaroline fosamil). In other exemplary embodiments, about 1200 mg of one of the crystalline forms "A", "B", "D" and "E" may be administered daily
with about 1200 mg of ceftaroline or a prodrug (e.g., ceftaroline fosamil) thereof. In some embodiments, the amount may be administered in two to eight doses per day. For example, about 400 mg of the crystalline form and about 400 mg of ceftaroline or a prodrug thereof (e.g., ceftaroline fosamil) may be administered every 12 hours (i.e., twice a day). In some examples, about 600 mg of the crystalline form and about 600 mg of ceftaroline or a prodrug thereof (e.g., ceftaroline fosamil) may be administered every 12 hours (i.e., twice a day).

In some embodiments, the ratio of the crystalline form to the antibacterial agent may range from about 1:20 to about 10:1. The ratio may vary according to the type of infection and the antibacterial agent. In exemplary embodiments, the ratio of crystalline form to antibacterial agent may be between about 1:10 to 5:1.

In specific embodiments, the methods comprise administering the crystalline form in combination with ceftaroline or a prodrug of ceftaroline, such as, ceftaroline fosamil. In exemplary embodiments, the methods include administering the crystalline form and ceftaroline fosamil in a ratio of about 1:1 to 5:1, such as, for example, 1:1, 2:1, 3:1, 4:1, 5:1. In exemplary embodiments, the methods comprise administering one of the crystalline forms "A", "B", "D" and "E" and ceftaroline fosamil in a ratio of 1:1. For example, about 400 mg of Form I may be administered in combination with about 400 mg of ceftaroline fosamil. In some embodiments, about 600 mg of Form I may be administered with about 600 mg of ceftaroline fosamil.

In exemplary embodiments, the crystalline form and ceftaroline or a prodrug thereof may be administered parenterally. Suitable methods for parenteral administration include, but are not limited to, administering a sterile aqueous preparation of the crystalline form alone or in combination with an antibacterial agent, which preferably is isotonic with the blood of the recipient (e.g., physiological saline solution). Such preparations may include suspending agents and thickening agents and liposomes or other microparticulate systems, which are designed to target the compound to blood components or one or more organs. The preparation may be presented in a unit-dose or multi-dose form.

Unless defined otherwise, all technical and scientific terms used herein generally have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
The term "prodrug" means a compound that is a drug precursor, which upon administration to a subject undergoes chemical conversion by metabolic or chemical processes to yield a compound, which is an active moiety. Suitable prodrugs of ceftaroline include, but are not limited to, phosphonocephem derivatives, such as, e.g. 7β-[2(Z)-ethoxyimino-2-(5-phosphonoamo-no-1,2,4-thiadiazol-3-yl)acetamido]-3-[4-(1-methyl-4-pyridinio)-2-thiazolythio]-3-cephem-4-carboxylate.

The term "about" or "approximately" means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, i.e., the limitations of the measurement system. For example, "about" can mean within 1 or more than 1 standard deviation, per practice in the art. Alternatively, "about" with respect to the compositions can mean plus or minus a range of up to 20%, preferably up to 10%, more preferably up to 5%. Alternatively, particularly with respect to biological systems or processes, the term can mean within an order of magnitude, preferably within 5-fold, and more preferably within 2-fold, of a value. Where particular values are described in the application and claims, unless otherwise stated the term "about" means within an acceptable error range for the particular value. For example, when referring to a period of time, e.g., hours, the present values (± 20%) are more applicable. Thus, 6 hours can be, e.g., 4.8 hours, 5.5 hours, 6.5 hours, 7.2 hours, as well as the usual 6 hours.

The terms "treat," "treatment," and "treating" refer to one or more of the following: relieving or alleviating at least one symptom of a bacterial infection in a subject; relieving or alleviating the intensity and/or duration of a manifestation of bacterial infection experienced by a subject; and arresting, delaying the onset (i.e., the period prior to clinical manifestation of infection) and/or reducing the risk of developing or worsening a bacterial infection.

The term "community acquired pneumonia" as used herein is equivalent and has been used interchangeably with the term "community acquired bacterial pneumonia."

The term "therapeutically effective" applied to dose or amount refers to that quantity of a compound or pharmaceutical composition that is sufficient to result in a desired activity upon administration to a mammal in need thereof. An "effective amount" means the amount of a compound according to the invention that, when administered to a patient for treating an infection or disease is sufficient to effect such treatment. The
"effective amount" will vary depending on the active ingredient, the state of infection, disease or condition to be treated and its severity, and the age, weight, physical condition and responsiveness of the mammal to be treated.

It is known that an X-ray powder diffraction pattern may be obtained which has one or more measurement errors depending on measurement conditions (such as equipment or machine used). In particular, it is generally known that intensities in an X-ray powder diffraction pattern may fluctuate depending on measurement conditions. Therefore it should be understood that the crystalline forms A, B, D, E of the present invention are not limited to the crystals that provide X-ray powder diffraction patterns identical to the X-ray powder diffraction patterns shown in Figures 1, 2, 3 and 4, and any crystals providing X-ray powder diffraction patterns substantially the same as those shown in Figures 1, 2, 3 and 4 fall within the scope of the present invention. A person skilled in the art of X-ray powder diffraction is able to judge the substantial identity of X-ray powder diffraction patterns.

Persons skilled in the art of X-ray powder diffraction will realise that the relative intensity of peaks can be affected by, for example, grains above 30 microns in size and non-unitary aspect ratios, which may affect analysis of samples. The skilled person will also realise that the position of reflections can be affected by the precise height at which the sample sits in the diffractometer and the zero calibration of the diffractometer. The surface planarity of the sample may also have a small effect. Hence the diffraction pattern data presented are not to be taken as absolute values. (Jenkins, R & Snyder, R.L. 'Introduction to X-Ray Powder Diffraction' John Wiley & Sons 1996; Bunn, C.W. (1948), Chemical Crystallography, Clarendon Press, London; Klug, H. P. & Alexander, L. E. (1974), X-Ray Diffraction Procedures).

Generally, a measurement error of a diffraction angle in an X-ray powder diffractogram is about 5% or less, in particular plus or minus 0.5° 2-theta, and such degree of a measurement error should be taken into account when considering the X-ray powder diffraction patterns in Figures 1 to 10, 12 and 13. Furthermore, it should be understood that intensities may fluctuate depending on experimental conditions and sample preparation (preferred orientation).
The invention is illustrated by the following examples:

**Example 1: Sodium salt of the (R)-2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide enantiomer - polymorphic form "B"

A solution of sodium 2-ethylhexanoate (13.12 g, 79 mmol) in ethanol (126 mL) is added over five hours to a solution of sulfaturamide (20 g, 39.5 mmol) in ethanol (126 mL) stirred at 30°C and seeded with a few crystals of polymorphic form "B". The suspension is stirred overnight. The suspension is cooled to 0-5°C for 1 to 2 hours, filtered and then washed with ethanol at 5°C (3x40 mL). The crystals are dried under reduced pressure of 20 mbar at 20°C. The polymorphic form "B" is obtained (10.79 g, 37.5 mmol, yield 95.1%).

An X-ray spectrum ("XRPD diffraction pattern") was recorded and is shown in Figure 2.

**Example 2: Sodium salt of the (R)-2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide enantiomer - polymorphic form "B"

The X-ray spectrum was recorded and is shown in Figure 2.
A solution of sulfaturamide (10 g, 19.7 mmol) in ethanol (100 ml) is added over forty-five minutes to a solution of sodium 2-ethylhexanoate (3.80 g, 22.9 mmol) in ethanol (95 ml) and water (5 ml; 3.1% of the total weight of the solvent), stirred at room temperature and seeded with a few crystals of pseudopolymorphic form "A". The suspension is stirred overnight. The suspension is cooled down to 0-5°C for 1 to 2 hours, filtered and then washed with ethanol at 5°C (3x30 ml). The crystals are dried under reduced pressure of 20 mbar at 20°C. The polymorphic form "B" is obtained (4.277 g, 14.9 mmol, yield 75.4%).

Water (Karl Fischer): 0.2%
DSC: Exothermic peak at 221.9°C
The XRPD spectrum obtained corresponds to form B

Example 3: Sodium salt of the flR-,2S,5R)-7-oxo-6-fsulfooxy)-1,6-diazabicvclo[3.2.1]octane-2-carboxamide enantiomer, monohydrate - pseudopolymorphic form "A"

A solution of sodium 2-ethylhexanoate (6.56 g, 39.4 mmol) in ethanol (70 mL) is added over forty-five minutes to a solution of sulfaturamide (10 g, 19.7 mmol) in a mixture of ethanol (63 mL) and water (7 mL, 6.23% of the total weight of the solvent), stirred at 20°C and seeded with the pseudopolymorphic form "A". The suspension is stirred overnight. The suspension is cooled down to 0-5°C for 1 to 2 hours, filtered and then washed with aqueous ethanol (5%) cooled down to 5°C (3x20 mL). The crystals are dried under reduced pressure of 20 mbar at 20°C. The pseudopolymorphic form A is obtained (5.35 g, 17.5 mmol, yield 88.8%).
An X-ray spectrum ("XRPD diffraction pattern") was recorded and is shown in Figure 1.

Example 4: Sodium salt of the (R,2S,5R)-7-oxo-6-sulfooxy)-1, 6-
diazabicyclo[3.2.1]octane-2-carboxamide enantiomer, monohydrate -
pseudopolymorphic form "A"

A solution of sulfaturamide (1 g, 1.97 mmol) in ethanol (9.5 ml) and water (0.5 ml) is added over thirty minutes to a solution of sodium 2-ethylhexanoate (0.506 g, 3.04 mmol) in ethanol (9.5 ml) and water (0.5 ml). It is stirred at room temperature. The solution (6.23% of the total weight of water) is seeded with a few crystals of pseudopolymorphic form "A" to produce a suspension, which is stirred overnight. The suspension is cooled down to 0-5°C for 1 to 2 hours, filtered and then washed with ethanol at 5°C (3x6 ml). The crystals are dried under reduced pressure of 20 mbar at 20°C. The pseudopolymorphic form "A" is obtained (0.378 g, 1.24 mmol, yield 62.7%).

Water (Karl Fischer): 5.72% (theoretical 5.9%)
DSC: Exothermic peak at 238.9°C
The XRPD spectrum obtained corresponds to form A
Example 5: Sodium salt of the (R-,2S,5R)-7-oxo-6-sulfooxy-1,6-
diazabicyclo[3.2.1]octane-2-carboxamide enantiomer - polymorphic form "D"

A solution of sodium 2-ethylhexanoate (3.28 g, 19.7 mmol) in ethanol (25 ml) is added over thirty minutes to a solution of sulfaturamide (4 g, 9.87 mmol) in ethanol (25 ml), stirred at 20°C and seeded with the polymorphic form "A". The suspension is stirred overnight. The suspension is filtered and then washed with ethanol at 5°C (3x10 ml). The solid is dried under reduced pressure of 20 mbar at 20°C. The polymorphic form "D" is obtained (2.50 g, 8.70 mmol, yield 88.2%).

An X-ray spectrum ("XRPD diffraction pattern") was recorded and is shown in Figure 3.

Example 6: Sodium salt of the (R-,2S,5R)-7-oxo-6-sulfooxy-1,6-
diazabicyclo[3.2.1]octane-2-carboxamide enantiomer, dihydrate -
pseudopolymorphic form "E"

A sample of sodium salt of the (IR,2S,5R)-7-oxo-6-(sulfooxy)-1,6-
diazabicyclo[3.2.1]octane-2-carboxamide enantiomer, monohydrate - pseudopolymorphic form "A" (1 g) is suspended in water (2 ml). The suspension, unstirred, is left to evaporate slowly at ambient temperature, pressure and humidity. The crystallized solid is recovered after complete evaporation. The pseudopolymorphic form "E" is obtained (1.056 g).

An X-ray spectrum ("XRPD diffraction pattern") was recorded and is shown in Figure 4.
Example 7: Sodium salt of racemic trans-7-oxo-6-(sulfooxy)-L,6-diazabicyclo[3.2.1]octane-2-carboxamide

A solution, in a water-acetone mixture (1-1), of the sodium salt of the racemic trans-7-oxo-6-(sulfooxy)-1,6-diazabicyclo[3.2.1]octane-2-carboxamide described in Example 33c of Application WO 02/10172 is evaporated under reduced pressure, under the conditions of concentration described in said example. The salt is indeed obtained in crystallized form as stated in the application.

An X-ray spectrum ("XRPD diffraction pattern") was recorded and is shown in Figure 6.

The X-ray spectra ("XRPD diffraction patterns") of the polymorphic and pseudopolymorphic forms A, B, D and E of the enantiomer were compared. The diffraction pattern of the racemic form obtained according to the prior art is different from each of those of the polymorphic and pseudopolymorphic crystallized forms of the enantiomer according to the invention, as is clearly apparent in Figure 8 in the attached drawings. The characteristic lines of the polymorphic and pseudopolymorphic forms "A", "B", "D" or "E" do not occur in the XRPD diffraction pattern of the racemic compound of the prior art.

The diffraction pattern of the racemic form obtained by the prior art is a mixture of several forms including the dihydrate racemic form.

Figs. 9 and 10 in the attached drawings show the XRPD diffraction patterns of the racemic compound.

Example 8: Preparation of a monocrystal of sodium salt of racemic trans-7-oxo-6-(sulfooxy)-L,6-diazabicyclo[3.2.1]octane-2-carboxamide for structural analysis

A solution of the sodium salt of the racemic trans-7-oxo-6-(sulfooxy)-1,6-diazabicyclo[3.2.1]octane-2-carboxamide described in Example 33c of Application WO 02/10172 and obtained in Example 7 above (50 mg) in a mixture of water (0.5 mL, 10 volumes) and acetone (0.5 mL, 10 volumes) is deposited on a watch glass under an
inverted open beaker. After slow evaporation, the crystals are partially dissolved in a mixture of water (1 mL, 20 volumes) and acetone (1 mL, 20 volumes). After the second evaporation, a monocrystal of sufficient size is obtained for structural analysis.

Analysis of the monocrystal of this material, as presented in Figure 11, shows the presence of both enantiomers and two molecules of water within the unit cell, characteristic of a dihydrated racemic compound.

A theoretical XRPD spectrum was calculated on the basis of the monocrystal and is shown in Figure 7. The X-ray spectra ("XRPD diffraction patterns") of the monocrystal and of the polymorphic and pseudopolymorphic forms A, B, D and E of the enantiomer were compared. The diffraction pattern of the monocrystal of the racemic salt is different from each of those of the polymorphic and pseudopolymorphic crystallized forms of the enantiomer according to the invention, as is clearly apparent in Figure 12. The characteristic lines of the polymorphic and pseudopolymorphic forms "A", "B", "D" or "E" do not occur in the XRPD diffraction pattern of the racemic dihydrate compound.

Example 9: Preparation of "Sulfaturamide" or tetrabutylammonium salt of ((R,2S,5R)-7-oxo-6-sulfooxy)-1,6-diazabicyclo[3.2.1]octane-2-carboxamide

Method A: The "sulfaturamide" compound can be prepared by chiral resolution of its racemic precursor trans-7-oxo-6-(phenylmethoxy)-1,6-diazabicyclo[3.2.1]octane-2-carboxamide, the preparation of which is described in Example 33a Stage A in Application WO 02/10172.

Injection of 20 µl of a sample of 0.4 mg/mL of trans-7-oxo-6-(sulfooxy)-1,6-diazabicyclo[3.2.1]octane-2-carboxamide, eluted on a Chiralpak ADH column (5 µm, 25 cm x 4.6 mm) with heptane-ethanol-diethylamine mobile phase 650/350/0.05 vol at 1 mL/min makes it possible to separate the (1R,2S,5R) and (1S,2R,5S) enantiomers with retention times of 17.4 minutes and 10.8 minutes respectively.
The sulfaturamide is then obtained by conversion according to the conditions described in Example 33a Stage B then Stage C and finally in Example 33b of Application WO 02/10172.

Method B: The "sulfaturamide" can also be prepared from the mixture of the oxalate salt of (2S)-5-benzyloxyamino-piperidine-2-carboxylic acid, benzyl ester (mixture (2S,5R)/(2S,5S) ~ 50/50) described in application FR2921060.

Stage A: Dibenzoxurea or (2S)-7-oxo-6-(2-phenylmethoxy)-1,6-diaza-bicyclo[3.2.1] octane 2-benzyl 2-carboxylate

A 10% saturated aqueous solution of sodium bicarbonate (16 L) is added to a suspension of the oxalate salt of (2S)-5-benzyloxyamino-piperidine-2-carboxylic acid, benzyl ester (mixture (2S,5R)/(2S,5S) ~ 50/50) described in application FR2921060 (2 kg, 4.65 mol) in water (12 L) and ethyl acetate (10 L). The aqueous phase is separated and then re-extracted.
with ethyl acetate (8 L). The organic phases are combined, washed with water (4 L) and
then dried over sodium sulfate (2 kg). The solution is filtered and then concentrated in
order to replace the ethyl acetate with acetonitrile (35 L). The solution is cooled to 0-5°C
before adding triethylamine (1.25 L) and then diphosgene (290 mL). The reaction mixture
is stirred at 0-5°C for one hour before adding N,N-dimethylaminopyridine (270 g). After
stirring for two hours at room temperature, the reaction mixture is concentrated and then
diluted with dichloromethane (15 L). The solution is added to a 20% aqueous solution of
ammonium chloride (15 L). The organic phase is isolated. The aqueous phase is re-
extracted with dichloromethane (4 L). The organic phases are combined, dried over sodium
sulfate and concentrated to dryness to produce the compound (1645 g, yield 96% as is,
weight/weight).

Stage B: Benzoxyuracid or (IR,2S,5R)-7-oxo-6-(phenylmethoxy)-1,6-
diazabicyclo[3.2.1]octane-2-carboxylic acid and its cyclohexylamine salt.
A solution of lithium hydroxide (79.2 g, 3.3 mol) in water (3.3 L) is added in 30 minutes to
a stirred solution at 0-5°C of the compound obtained in Stage A (1.028 kg, 2.80 mol) in
water (10.3 L) and tetrahydrofuran (1.5 L). The reaction mixture is stirred for 1.5 h before
adding a mixture of isopropyl ether-ethyl acetate (8/2 vol/vol, 9.25 L). The aqueous phase
is isolated at room temperature. The organic phase is extracted with water (2x2.57 L). The
aqueous phases are combined and then washed with a mixture of isopropyl ether-ethyl
acetate (8/2 vol/vol, 2 L). The aqueous solution is stirred with ethyl acetate (10.3 L),
acidified with 2N hydrochloric acid (1.9 L) to pH 2 and then saturated with sodium
chloride (4.8 kg). The aqueous phase is isolated and re-extracted with ethyl acetate (5.14
L). The organic phases are combined and dried over sodium sulfate (1 kg). The solution is
concentrated under vacuum at 40°C to produce the compound (473 g, 61% yield as is,
weight/weight).
The cyclohexylamine salt is prepared according to the method described in Example 32b
of Application WO 02/10172.

Stage C: Benzoxyuramide or (IR,2S,5R)-7-oxo-6-(phenylmethoxy)-1,6-
diazabicyclo[3.2.1]octane-2-carboxamide
This operation is carried out under the conditions described in Example 33a Stage A of Application WO 02/10172 starting with the compound obtained in Stage B above to obtain the compound.

Stages D and E: "Sulfaturamide"

This operation is carried out starting with the compound obtained in Stage C above, under the conditions described in Example 33a Stage B and then Stage C and finally in Example 33b of Application WO 02/10172. The compound is obtained in solid form.

Example 10: Sodium salt of the amorphous (lR,2S,5R)-7-oxo-6-(sulfooxy)-1,6-diazabicyclo[3.2.1]octane-2-carboxamide enantiomer

A solution of Sulfaturamide (6.92 kg, 13.66 mol) in water (56 L) is eluted on a column of Dowex 50WX8 resin (83 kg, 100-200 mesh) preconditioned by elution of an aqueous solution of sodium hydroxide and then washing with water until a neutral pH is reached. The fractions containing the product are combined, filtered, weighed (76 kg net) and then lyophilized to produce the sodium salt in amorphous form (3.72 kg, yield 94.8%, HPLC purity >99%).

Example 11: Sodium salt of the (lR,2S,5R)-7-oxo-6-(sulfooxy)-1,6-diazabicyclo[3.2.1]octane-2-carboxamide enantiomer, monohydrate - pseudopolymorphic form "A"

A solution of the 10.134g (20 mmoles) of the tetrabutylammonium salt of (IR,2S,5R)-7-oxo-6-(sulfooxy)-1,6-diazabicyclo[3.2.1]octane-2-carboxamide in 48.1 ml of isobutanol and 2.53 ml water was filtered through a 1.6 µm filter and added to a 500 ml jacketed-reactor equipped with overhead stirrer and internal temperature probe. The solution was warmed to an internal temperature of 35°C. A solution of 6.65 g (40 mmoles) of sodium 2-ethylhexanoate in 49.5 ml isobutanol and 0.5 ml water was filtered through a 1.6 µm filter and added dropwise to the reactor. Crystallization occurred during the addition. The mixture was stirred for an additional 1h at 35°C followed by 16h at 25°C. The mixture was cooled to 0°C for 2h. The crystals were isolated by filtration and washed with an ice-cold mixture of 19.5 ml isobutanol and 0.5 ml water. The crystals were dried
under vacuum at 35°C for 20 h. 5.48 g of the sodium salt of trans-7-oxo-6-(sulfoxy)-1,6-diazabicyclo[3,2,1]octane-2-carboxamide monohydrate (Form A) was obtained, corresponding to a yield of 90%.

Example 12: Sodium salt of the (IR,2S,5R)-7-oxo-6-(sulphoxy)-1,6-diazabicyclo[3.2.1]octane-2-carboxamide enantiomer, monohydrate - pseudopolymorphic form "A"

![Chemical Structure]

A 5% fraction of a solution of sodium 2-ethyl hexanoate (6.56 g, 39.4 mmol) in ethanol (63 mL) is added over five minutes to a solution of sulfaturamide (10 g, 19.7 mmol) in a mixture of ethanol (63 mL) and water (7 mL, 6.55% of the total weight of the solvent) stirred at 20°C. The mixture is stirred for 15 minutes. The 5% fractional addition/stirring cycle is repeated until spontaneous crystallisation occurs. The suspension is then warmed to 30°C, stirred for one hour then cooled to 20°C. The addition of sodium 2-ethyl hexanoate solution is resumed and completed over forty five minutes. The suspension is cooled down to 0-5°C for 2 hours, filtered and then washed with aqueous ethanol (5%) cooled down to 5°C (2x20 mL). The crystals are dried under reduced pressure of 20 mbar at 30°C. The pseudopolymorphic form A is obtained (5.15 g, 16.9 mmol, yield 85.6%).

An X-ray spectrum ("XRPD diffraction pattern") was recorded and is shown in Figure 1.

Water (Karl Fischer): 6% (theoretical 5.9%)
CLAIMS

1. The sodium salt of (IR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide of formula (I) in crystallized enantiomeric form, hydrated or anhydrous.

2. The sodium salt according to claim 1, characterized in that the salt is in its monohydrate pseudopolymorphic form "A", having an X-ray diffraction pattern with at least two characteristic peaks at about 8.5 +/- 0.5 degrees 2Θ and at about 15.3 +/- 0.5 degrees 2Θ.

3. The sodium salt according to claim 1, characterized in that the salt is in its monohydrate pseudopolymorphic form "A", having an X-ray diffraction pattern with at least three characteristic peaks at about 8.5 +/- 0.5 degrees 2Θ at about 15.3 +/- 0.5 degrees 2Θ and at about 16.4 +/- 0.5 degrees 2Θ.

4. The sodium salt according to claim 1, characterized in that the salt is in its monohydrate pseudopolymorphic form "A", having an X-ray diffraction pattern with at least four characteristic peaks at about 8.5 +/- 0.5 degrees 2Θ at about 15.3 +/- 0.5 degrees 2Θ at about 16.4 +/- 0.5 degrees 2Θ and at about 17.0 +/- 0.5 degrees 2Θ.

5. The sodium salt according to claim 1, characterized in that the salt is in its monohydrate pseudopolymorphic form "A", having an X-ray diffraction pattern with at least five characteristic peaks at about 8.5 +/- 0.5 degrees 2Θ at about 15.3 +/- 0.5 degrees 2Θ.
2Θ at about 16.4 +/- 0.5 degrees 2Θ, at about 17.0 +/- 0.5 degrees 2Θ and at about 24.3 +/- 0.5 degrees 2Θ.

6. The sodium salt according to claim 1, characterized in that the salt is in its
monohydrate pseudopolymorphic form "A", having an X-ray diffraction pattern with five
characteristic lines at 2Θ(± 0.5°) 8.48, 15.34, 16.38, 17.04, 24.28 and a specific line at
8.48.

7. The sodium salt according to claim 1, characterized in that the salt is in its
dihydrate pseudopolymorphic form "E" having an X-ray diffraction pattern with five
characteristic lines at 2Θ(± 0.5°) 13.65, 15.01, 15.38, 15.72, 19.42 and two specific lines at
15.01 and 24.57.

8. The sodium salt according to claim 1, characterized in that the salt is in its
polymorphic form "B", having an X-ray diffraction pattern with at least two characteristic
peaks at about 13.0 +/- 0.5 degrees 2Θ and at about 16.5 +/- 0.5 degrees 2Θ.

9. The sodium salt according to claim 1, characterized in that the salt is in its
polymorphic form "B", having an X-ray diffraction pattern with at least three characteristic
peaks at about 13.0 +/- 0.5 degrees 2Θ, at about 16.5 +/- 0.5 degrees 2Θ and at about 17.2
 +/- 0.5 degrees 2Θ.

10. The sodium salt according to claim 1, characterized in that the salt is in its
polymorphic form "B", having an X-ray diffraction pattern with at least four characteristic
peaks at about 13.0 +/- 0.5 degrees 2Θ, at about 16.5 +/- 0.5 degrees 2Θ, at about 17.2 +/-
0.5 degrees 2Θ and at about 17.5 +/- 0.5 degrees 2Θ.

11. The sodium salt according to claim 1, characterized in that the salt is in its
polymorphic form "B", having an X-ray diffraction pattern with at least five characteristic
peaks at about 13.0 +/- 0.5 degrees 2Θ, at about 16.5 +/- 0.5 degrees 2Θ, at about 17.2 +/-
0.5 degrees 2Θ, at about 17.5 +/- 0.5 degrees 2Θ and at about 22.3 +/- 0.5 degrees 2Θ.
12. The sodium salt according to claim 1, characterized in that the salt is in its polymorphic form "B", having an X-ray diffraction pattern with at least five characteristic peaks at about 13.0 +/- 0.5 degrees 2Θ at about 16.5 +/- 0.5 degrees 2Θ at about 17.2 +/- 0.5 degrees 2Θ at about 17.5 +/- 0.5 degrees 2Θ at about 22.3 +/- 0.5 degrees 2Θ and two specific peaks at about 10.4 +/- 0.5 degrees 2Θ and at about 13.0 +/- 0.5 degrees 2Θ.

13. The sodium salt according to claim 1, characterized in that the salt is in its polymorphic form "D" having an X-ray diffraction pattern with five characteristic lines at 2Θ (± 0.1°) 16.23, 17.44, 17.75, 18.53, 22.22 and a specific line at 12.43.

14. A pharmaceutical composition, characterized in that it contains, as ingredient, the sodium salt in crystallized enantiomeric form according to any one of claims 1 to 13 and, if appropriate, a pharmaceutically acceptable excipient.

15. A pharmaceutical composition according to claim 14, characterized in that it further contains, as ingredient, an antibacterial medicament of the beta-lactamine type.

16. Method for the preparation of the sodium salt according to any one of claims 1 to 13, characterized in that the tetrabutylammonium salt of (IR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide is treated, in a (1-6 C) alkanol containing between 0 and 50% water, with a sodium salt that is soluble in the reaction medium, and the crystals obtained are then isolated.

17. Method according to claim 16, characterized in that the sodium salt used is an acetate, a butyrate, a hexanoate, an ethyl-hexanoate or a dodecylsulfate.

18. Method according to claim 16 or 17, characterized in that the sodium salt is the 2-ethyl-hexanoate.

19. Method according to any one of claims 16 to 18, characterized in that it is carried out either by adding the alcoholic solution of the tetrabutylammonium salt to the alcoholic solution of the sodium salt, or vice versa.
20. Method according to any one of claims 16 to 19, characterized in that the alkanol is selected from ethanol, propanol, isopropanol and linear or branched butanol.

21. Method according to any one of claims 16 to 20, characterized in that the alkanol is ethanol.

22. Method according to any one of claims 16 to 21, characterized in that it is carried out in the presence of 0 to 10% water, at a temperature between 15 and 40°C.

23. Method according to any one of claims 16 to 22, for the preparation of the sodium salt of formula (I) in the crystallized polymorphic form "B", characterized in that a solution of sodium 2-ethylhexanoate in pure ethanol is added to a solution of the tetrabutylammonium salt of (IR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide, in an ethanol/water mixture in such a way that the final proportion of water is from 0 to 5 wt.% of the solvent, operating at a temperature from 10 to 40°C, in the presence of seed crystals of the polymorphic form "B" or of the pseudopolymorphic form "A".

24. Method according to claim 23, characterized in that it is carried out in the presence of seed crystals of the polymorphic form "B" and a final proportion of water less than 2%, by introducing the solution of sodium 2-ethylhexanoate over a period of 1 to 7 hours and operating at a temperature of 30 to 35°C.

25. Method according to any one of claims 16 to 22, for the preparation of the sodium salt of formula (I) in the crystallized polymorphic form "B", characterized in that a solution of the tetrabutylammonium salt of (IR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide in pure ethanol is added to an ethanol/water mixture of sodium 2-ethylhexanoate, moreover operating under the same conditions of solvent and temperatures as those described in claim 23 or 24.

26. Method according to any one of claims 16 to 22, for the preparation of the sodium salt of formula (I) in its crystallized pseudopolymorphic form "A", characterized in that a
solution of sodium 2-ethylhexanoate in pure ethanol is added to a solution of the
tetrabutylammonium salt of (IR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-
2-carboxamide in an ethanol/water mixture in such a way that the final proportion of water
is from 3 to 10 wt.% of the solvent, operating at a temperature from 10 to 40°C, in the
presence or absence of seed crystals of the pseudopolymorphic form "A".

27. Method according to claim 26, characterized in that it is carried out at room
temperature, in the presence of a final proportion of water greater than 5 wt.% of the
solvent, and by introducing the solution of sodium 2-ethylhexanoate over a period of 30
minutes to 2 hours.

28. Method according to any one of claims 16 to 22, for the preparation of the sodium
salt of formula (I), in its crystallized pseudopolymorphic form "A", characterized in that an
ethanolic solution of the tetrabutylammonium salt of (IR,2S,5R)-7-oxo-6-sulfooxy-1,6-
diazabicyclo[3.2.1]octane-2-carboxamide is added to an ethanol/water mixture of sodium
2-ethylhexanoate, operating under the same conditions of solvent and temperatures as
those described in claim 26 or 27.

29. Use of the polymorphic form "Form B", of the sodium salt of (IR,2S,5R)-7-oxo-6-
sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide in combination with ceftazidime to
treat bacterial infections.

30. Use of the pseudopolymorphic form "Form A", of the sodium salt of (IR,2S,5R)-7-
oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide in combination with
ceftazidime to treat bacterial infections.

31. Use of the polymorphic form "Form B", of the sodium salt of (IR,2S,5R)-7-oxo-6-
sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide in combination with ceftaroline
fosamil to treat bacterial infections.
32. Use of the pseudopolymorphic form "Form A", of the sodium salt of (IR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide in combination with ceftaroline fosamil to treat bacterial infections.

33. A method of treating a bacterial infection comprising administering to a patient in need thereof, a therapeutically effective amount of a polymorphic or pseudopolymorphic crystalline form "A", "B", "D" or "E" of the sodium salt of (IR,2S,5R)-7-oxo-6-sulfooxy-1,6-diazabicyclo[3.2.1]octane-2-carboxamide in combination with an antibacterial agent, such as, ceftazidime, ceftaroline or a prodrug of ceftaroline such as ceftaroline fosamil.
Specific lines of the enantiomeric forms by XRPD

FIG. 5
XRPD pattern of the racemic compound obtained according to the prior art described in WO 02/10172
Theoretical XRPD pattern of the dihydrated form of the racemic compound (monocrystal Example 8)

FIG. 7
XRDP / Comparison of racemic forms

Dihydrate racemic form — theoretical powder diffraction pattern

Racemic form, prior art

FIG. 9
XRPD / Dihydrate racemic form / Comparison with enantiomeric forms

Dihydrate racemic form — theoretical powder diffraction pattern

Angles β (°)

Intensities (a.u.)
A. CLASSIFICATION OF SUBJECT MATTER

INV. C07D471/08 A61K31/4188 A61K31/439 A61K31/551

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practical, search terms used)

EPO-Internal, EMBASE, BIOSIS, WPI Data, BEILSTEIN Data, CHEMABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>wO 03/063864 A2 (AVENTIS PHARMA SA [FR]; ASZODI JOZSEF [US]; FROMENTIN CLAUDE [FR]; LAM) 7 August 2003 (2003-08-07) cited in the application on example e 33c</td>
<td>1-33</td>
</tr>
<tr>
<td>Y</td>
<td>wO 02/10172 AI (AVENTIS PHARMA SA [FR]; ASZODI JOZSEF [FR]; ROWL) 7 February 2002 (2002-02-07) cited in the application on example e 33c</td>
<td>1-33</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier document but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search: 16 March 2011

Date of mailing of the international search report: 24/03/2011

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax. (+31-70) 340-3016

Authorized officer:

Frel on, Didier
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>STACHYRA, THERESE ET AL: "In vitro activity of NXL104 against KPC-2 carbapenemase and Enterobacteriaceae expressing KPC carbapenemases", JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, vol. 64, no. 2, 2 June 2009 (2009-06-02), pages 326-329, XP002582641, the whole document</td>
<td>1-33</td>
</tr>
<tr>
<td>A</td>
<td>ENDIMIANI, ANDREA ET AL: "In vitro activity of NXL104 in combination with β-lactams against Klebsiella pneumoniae isolates producing KPC carbapenemases", ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, vol. 53, no. 8, August 2009 (2009-08), pages 3599-3601, XP002582642, the whole document</td>
<td>1-33</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>wo 03063864 A2</td>
<td>07-08-2003</td>
<td>AR 038234 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 484281 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0307267 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2474043 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1655781 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1994301 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101406471 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 5601014 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1480644 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EC SP045193 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1480644 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2279737 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2835186 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1077205 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1105864 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR 20040686 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 163167 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4472346 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005523897 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MA 26351 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA04006621 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 533936 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OA 12761 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PE 09692003 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 1480644 E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UA 80271 C2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009215747 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010048528 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005020572 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UY 27626 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 200405607 A</td>
</tr>
<tr>
<td>wo 0210172 AI</td>
<td>07-02-2002</td>
<td>AP 1614 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AR 031716 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 263768 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7990501 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2001279905 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BG 107497 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0112986 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2417475 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1468242 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 20030223 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60102702 DI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60102702 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1307457 T3</td>
</tr>
<tr>
<td>wo 0210172 AI</td>
<td></td>
<td>EC SP034460 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EE 200300046 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1307457 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2220793 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2812635 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1060356 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR 20030034 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 0302943 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 154187 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4515704 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004505088 T</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>JP 2010138206 A</td>
<td>24-06-2010</td>
<td></td>
</tr>
<tr>
<td>MA 26938 A1</td>
<td>20-12-2004</td>
<td></td>
</tr>
<tr>
<td>MX PA03000881 A</td>
<td>06-06-2003</td>
<td></td>
</tr>
<tr>
<td>NO 20030494 A</td>
<td>28-03-2003</td>
<td></td>
</tr>
<tr>
<td>NZ 523707 A</td>
<td>25-02-2005</td>
<td></td>
</tr>
<tr>
<td>OA 12347 A</td>
<td>15-05-2006</td>
<td></td>
</tr>
<tr>
<td>PL 365162 A1</td>
<td>27-12-2004</td>
<td></td>
</tr>
<tr>
<td>PT 1307457 E</td>
<td>31-08-2004</td>
<td></td>
</tr>
<tr>
<td>SK 1052003 A3</td>
<td>04-11-2003</td>
<td></td>
</tr>
<tr>
<td>TR 200400859 T4</td>
<td>21-06-2004</td>
<td></td>
</tr>
<tr>
<td>UA 73791 C2</td>
<td>16-06-2003</td>
<td></td>
</tr>
<tr>
<td>US 2006046995 A1</td>
<td>02-03-2006</td>
<td></td>
</tr>
<tr>
<td>US 2003199541 A1</td>
<td>23-10-2003</td>
<td></td>
</tr>
<tr>
<td>US 2011021772 A1</td>
<td>27-01-2011</td>
<td></td>
</tr>
<tr>
<td>YU P6303 A</td>
<td>03-03-2006</td>
<td></td>
</tr>
<tr>
<td>YU 6303 A</td>
<td>03-03-2006</td>
<td></td>
</tr>
<tr>
<td>ZA 200300676 A</td>
<td>10-05-2004</td>
<td></td>
</tr>
</tbody>
</table>