
(12) STANDARD PATENT (11) Application No. AU 2018208667 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
SYSTEM AND ARCHITECTURE FOR SUPPORTING ANALYTICS ON ENCRYPTED
DATABASES

(51) International Patent Classification(s)
G06F 21/62 (2013.01) H04L 9/00 (2006.01)

(21) Application No: 2018208667 (22) Date of Filing: 2018.07.25

(30) Priority Data

(31) Number (32) Date (33) Country
15/675,055 2017.08.11 US

(43) Publication Date: 2019.02.28
(43) Publication Journal Date: 2019.02.28
(44) Accepted Journal Date: 2023.07.13

(71) Applicant(s)
Palo Alto Research Center Incorporated

(72) Inventor(s)
Rane, Shantanu;Bindschaedler, Vincent;Brito, Alejandro E.;Uzun, Ersin;Rao,
Vanishree

(74) Agent / Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000, AU

(56) Related Art
SCOTT ARCISZEWSKI: "Building Searchable Encrypted Databases with PHP
and SQL - Paragon Initiative Enterprises Blog", 7 June 2017 (2017-06-07),
XP055522233, Retrieved from the Internet [retrieved on 20181108]
US 2013/0191650 Al

ABSTRACT

A method is provided for generating an encrypted database. The method includes:

receiving a plaintext database having plaintext data entries in one or more columns;

augmenting the received plaintext database to generate an augmented plaintext

database, the augmenting including the addition of one or more columns to the

received plaintext database, each added column corresponding to an attribute which

is to be made available for conditional queries; and encrypting the augmented

plaintext database to generate the encrypted database including encrypted data

entries. The encrypted database supports at least one form of conditional query for

those attributes corresponding to the added columns, the at least one form of

conditional query being computed on the encrypted data entries without the

decryption thereof to produce an encrypted result.

20160648AU01
1/2

'All

uj
ED

LU I

LU LLJ CY CY uj

cw LU LU
9= ui LL%

LU

LU

ME

----- -----------------

W

CY
---------- -------------- --- --- ------------- -----

.. j

LU

L

z
LU LU
z

6u

CL

1

SYSTEM AND ARCHITECTURE FOR SUPPORTING ANALYTICS ON ENCRYPTED

DATABASES

BACKGROUND

[0001] The subject matter of the present specification generally relates to the art of

data security. Exemplary embodiments disclosed herein find particular application in

conjunction with a Structured Query Language (SQL) database (DB) and/or a Database

Management System (DBMS) (e.g., such as MySQL), and they will be described herein

with particular reference thereto at times. However, it is to be appreciated that various

exemplary embodiments such as those disclosed herein are also amenable to other like

applications including other types of relational databases as well as graphic and/or other

types of databases.

[0002] In the field of data security, certain types of encrypted databases are not

unknown. However, heretofore, there has been no strong consensus about a suitable

architecture that incorporates sufficient privacy by design in data analytics. For example,

there has been no strong consensus about how encrypted data should be arranged or

stored such that it remains amenable to otherwise traditional database queries, how key

management is to be performed and/or what measures should be taken to perform private

analytics efficiently.

[0003] One proposed architecture is known as "CryptDB." In general, it involves

storing data in an encrypted format using "onions of encryption," in which different

encryptions are successively applied to the data. Accordingly, depending upon a query,

layers of encryption can be removed (like peeling an onion), until one can access the data

in the appropriate encrypted format, and perform sufficient computations thereon to

answer the query. While this approach has been shown to support a subset of SQL

queries, making it useful to data scientists who are already skilled in analytics for plain

text databases, there are some potential disadvantages.

[0004] One potential disadvantage to the foregoing approach is that not all the

cryptosystems employed in CryptDB have sufficiently strong security properties. For

instance, deterministic encryption and order preserving encryption may leak more

2

information than is sufficient to answer a given query. In particular, in order to execute

SQL WHERE queries, CryptDB has to access the deterministic encryption layer, which

may leak additional information to someone that knows the distribution and cardinality of

the data.

[0005] Disclosed herein are a new and/or improved system, and/or method for

providing and/or utilizing an encrypted database, or at least a useful alternative.

INCORPORATION BY REFERENCE

[0006] The present specification incorporates by reference the U.S. Patent Application

entitled "System and Architecture for Analytics on Encrypted Databases," filed on 11

August 2017, by inventors Shantanu Rane, et al., US Patent Application No. 15/674,935.

BRIEF DESCRIPTION

[0007] This Brief Description is provided to introduce concepts related to the present

specification. It is not intended to identify essential features of the claimed subject matter

nor is it intended for use in determining or limiting the scope of the claimed subject matter.

The exemplary embodiments described below are not intended to be exhaustive or to

limit the claims to the precise forms disclosed in the following Detailed Description.

Rather, the embodiments are chosen and described so that others skilled in the art may

appreciate and understand the principles and practices of the subject matter presented

herein.

[0008] In accordance with one exemplary embodiment, there is provided a method for

generating an encrypted database. The method includes: receiving a plaintext database

having plaintext data entries in one or more columns; augmenting the received plaintext

database to generate an augmented plaintext database, the augmenting including the

addition of one or more columns to the received plaintext database, each added column

corresponding to an attribute which is to be made available for conditional queries; and

encrypting the augmented plaintext database to generate the encrypted database

including encrypted data entries. The encrypted database supports at least one form of

conditional query for those attributes corresponding to the added columns, the at least

3

one form of conditional query being computed on the encrypted data entries without the

decryption thereof to produce an encrypted result.

[0009] In accordance with another exemplary embodiment, there is provided a system

for administering an encrypted database. The system includes: an Extract, Transfer and

Load (ETL), implemented on one or more computers, wherein said ETL server is

operative to (i) receive as input a plaintext database having unencrypted data entries

therein in one or more columns, (ii) augment the received plaintext database to generate

an augmented plaintext database, wherein said augmented plaintext database includes

the addition of one or more columns to the input plaintext database, each said added

column corresponding to an attribute which is to be made available for conditional

queries, and (iii) encrypt the augmented plaintext database to generate the encrypted

database including encrypted data entries; a database (DB), implemented on one or more

computers, wherein said DB server is operative to (i) receive and maintain the encrypted

database from the ETL server, and (ii) return encrypted data in response to queries

submitted to the DB server; and a computation, implemented on one or more computers,

wherein said computation server is operative to (i) submit queries to the DB server, and

(ii) conduct computations on encrypted data returned from the DB server. Suitably, the

computations are conducted on the encrypted data from the encrypted database without

decryption of the encrypted data, and results obtained from said computations are

encrypted. The encrypted database is suitably configured so as to support obtaining

correct encrypted results in response to at least one form of conditional query without

revealing samples of the unencrypted data underlying the encrypted data.

[0010] Numerous advantages and benefits of the subject matter disclosed herein will

become apparent to those of ordinary skill in the art upon reading and understanding the

present specification. It is to be understood, however, that the detailed description of the

various embodiments and specific examples, while indicating preferred and/or other

embodiments, are given by way of illustration and not limitation.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The following Detailed Description makes reference to the figures in the

accompanying drawings. However, the inventive subject matter disclosed herein may

take form in various components and arrangements of components, and in various steps

4

and arrangements of steps. The drawings are only for purposes of illustrating exemplary

and/or preferred embodiments and are not to be construed as limiting. Further, it is to be

appreciated that the drawings may not be to scale.

[0012] FIGURE 1 is a diagrammatic illustration showing an exemplary system and/or

architecture in accordance with aspects of the present inventive subject matter.

[0013] FIGURE 2 is a flow chart showing an exemplary process and/or method for

pre-processing and encrypting a database in accordance with aspects of the present

inventive subject matter.

DETAILED DESCRIPTION

[0014] For clarity and simplicity, the present specification shall refer to structural

and/or functional elements, relevant standards, algorithms and/or protocols, and other

components, methods and/or processes that are commonly known in the art without

further detailed explanation as to their configuration or operation except to the extent they

have been modified or altered in accordance with and/or to accommodate the preferred

and/or other embodiment(s) presented herein. Moreover, the apparatuses and methods

disclosed in the present specification are described in detail by way of examples and with

reference to the figures. Unless otherwise specified, like numbers in the figures indicate

references to the same, similar or corresponding elements throughout the figures. It will

be appreciated that modifications to disclosed and described examples, arrangements,

configurations, components, elements, apparatuses, methods, materials, etc. can be

made and may be desired for a specific application. In this disclosure, any identification

of specific materials, techniques, arrangements, etc. are either related to a specific

example presented or are merely a general description of such a material, technique,

arrangement, etc. Identifications of specific details or examples are not intended to be,

and should not be, construed as mandatory or limiting unless specifically designated as

such. Selected examples of apparatuses and methods are hereinafter disclosed and

described in detail with reference made to the figures.

[0015] In accordance with aspects of the present inventive subject matter, the set of

computations that can be performed on DBs secured with additively homomorphic

cryptosystems is extended. One exemplary embodiment is concerned with relational DBs

5

that can be queried using a language like SQL. Consider, for example, the following SQL

query that adds up the number of children in a DB of a school:

SELECT AVG(age) FROM hogwarts

[0016] If the number of children in each household is encrypted using a semantically

secure additively homomorphic cryptosystem, then this query can be processed in the

encrypted domain, returning an encrypted result. This result can then be decrypted by an

analyst or other user with the appropriate privileges.

[0017] Consider now, a slightly more complicated query:

SELECT AVG(age) FROM hogwarts

WHERE gender = "female";

[0018] In this query, the encrypted-domain summation is performed only over those

particular rows in the table that satisfy the specified condition, i.e., the gender attribute is

"female". Even with this small addition, executing the query is no longer straightforward.

The reason is that, with semantically secure encryption, it is not readily feasible to tell

which rows correspond to female children, just by examining the ciphertexts in the

encrypted "gender" column of the table.

[0019] One could instead use deterministic encryption for the gender column.

However, this will result in only two kinds of ciphertexts, one for male and one for female.

This makes it easy to identify the rows corresponding to female and male children while

still keeping the age of each student encrypted using the semantically secure additively

homomorphic cryptosystem. A problem with the foregoing deterministic encryption

approach is that it can leak information, not only to the DB server, but also to any

computing node that is processing the query in the encrypted domain. In practice, the

storage and computation could be based in the cloud or otherwise, and thus may be

handled by an untrusted party. For example, a Chosen Plaintext Attack (CPA) on such a

DB plainly reveals which entries in the database correspond to girls and which correspond

to boys. In accordance with aspects of the present inventive subject matter, a system

and/or method is proposed to avoid such privacy leakage. More specifically, a system

and/or method is described which is capable of processing conditional queries like the

above, with semantic security.

6

[0020] The present specification describes an architecture for performing

analytics on privacy-sensitive data. Suitably, the architecture includes a DB server,

e.g., an untrusted DB server. In practice, the DB server stores encrypted data and is

backed by a relational database management system such as MySQL or the like.

The architecture also includes a computation server (e.g., an untrusted computation

server) that performs computations in the encrypted domain, and a web server or

web service that queries the DB. Suitably, the computation server returns an

encrypted result for every query submitted by the web server/service. In practice,

only an authorized user is able to decrypt the returned results. In an exemplary

embodiment, aggregate functions (e.g., including summations, linear combinations,

basic classifiers, count queries and histograms) are computed without discovering

the samples of the underlying data. Suitably, objectives of the present inventive

subject matter (e.g., supporting a subset of SQL queries, while providing improved

privacy assurances) are achieved using semantically secure homomorphic

encryption techniques within the described system and/or architecture.

[0021] Generally, the system and/or architecture described herein enables

privacy-preserving data analytics, whereby a dataset owner or curator grants to a

user (e.g., such as an analyst or data scientist) the ability to run queries against an

encrypted version of the dataset. More precisely, the disclosed system and/or

architecture suitably provides the following functionality to the dataset owner and

analyst:

• the dataset owner is provided the ability to generate cryptographic keys, pre-process

and encrypt a dataset; and

• the analyst is provided the ability to run queries against a dataset in its encrypted form,

and obtain the necessary key(s) from the data owner to decrypt the query results.

[0022] Suitably, to provide the aforementioned functionality, the system is

designed, for example, with a three-tiered architecture as illustrated in FIGURE 1.

More specifically, in practice, the system may include: (i) a so-called "Front-End,"

e.g., implement via a web service and/or web server 10 or the like; (ii) a so-called

"Back End" including a Computation Server (CS) 20; and (iii) a DBMS 30, e.g.,

including a DB server implemented via MySQL or another relational or other suitable

type of DB.

7

[0023] In practice, a basic embodiment includes the following elements: (1) a DB

server that stores data in one or more of a plurality of encrypted formats (e.g., the

DB server is a MySQL DB server or the like); (2) a CS that executes queries provided

by a user/analyst using encrypted data served by the DB (e.g., via an appropriate

privacy preserving protocol); and (3) a web service/server that supports queries

made to the DB and receives encrypted results corresponding to the queries made.

[0024] In an expanded embodiment, a Key Authority (KA) 40 is included that

provides key management functionality. In particular, the KA 40 provides public

encryption keys to generate the encrypted DB that is stored in the DB server. Further,

the KA 40 provides public encryption keys to the CS 20 for running privacy

preserving protocols. Finally, the KA 40 provides decryption keys to an authorized

user of the web service/server that allows the user to decrypt the encrypted result of

the query that is received from the CS 20.

[0025] In a further expanded embodiment, an additional element and/or elements

are provided to prepare the encrypted DB (denoted as De herein). In practice,

preparation of De starts with an unencrypted DB (denoted as Dp herein) as input.

That is to say, the data elements in Dp are initially stored and/or maintained in an

unencrypted form or as plaintext. Prior to encryption, the schema of Dp is augmented

in such a way that the augmented schema supports a desired subset of SQL queries.

In the augmented DB (denoted herein as Da), the data elements are also

stored/maintained in an unencrypted form or as plaintext. Da (having the augmented

schema with the resulting data) is then encrypted using one or more encryption

formats to achieve De. Finally, De is transmitted to the DB server.

[0026] Suitably, the Front-End provides a specific view and/or user interface (UI)

for a specific task or tasks. In practice, for example, an Analyst View 12 and/or

suitable UI is provided in a first instance to be used by an analyst to write and run

Structured Query Language (SQL) and/or SQL-like queries against an encrypted

dataset 32e, whereas in a second instance an Extract, Transfer and Load (ETL) View

14 and/or suitable UI is provided to be used by a data owner to pre-process and

encrypt a plaintext dataset 32. In practice, the Front-End may interact directly with

the CS 20, for the Analyst View 12, and with an ETL server 50 for the ETL View 14.

In a suitable embodiment, the ETL server 50 may be a trusted "helper" under the

control of the data owner. In contrast, the CS 20 may be an untrusted helper that

8

functions as a separate entity. Suitably, the CS 20 is responsible for processing the

analyst's queries it receives, and interacting with the DBMS 30. Because the dataset

32e is encrypted in the DBMS 30, the CS 20 performs the query on encrypted data

and returns (encrypted) results to the analyst through the Front-End. The analyst,

having previously obtained the necessary decryption keys, e.g., from the Key

Authority (KA) 40, can recover the queries' results by decrypting the data received

by the Front-End from the CS 20.

[0027] In one exemplary embodiment, the DBMS 30 is implemented with a

standard MySQL DB server, while both the CS 20 and ETL server 50 are

implemented with Java-based programs (e.g., which use the same codebase).

Suitably, the Front-End may be implemented as a combination of Javascript,

HyperText MarkUp Language (HTML) and Cascading Style Sheets (CSS). That said,

in practice, other implementations for the aforementioned components may be

employed which are suitable for achieving the functions, objectives, operations

and/or purposes described herein.

[0028] In accordance with exemplary embodiments described herein, one threat

sought to be avoided is parties other than the data owner and analyst learning

information about the dataset 32 imported into the system. This includes both

accidental and intentional leaks at the CS 20 and DBMS 30, both of which may be

untrusted. Suitably, such leaks are prevented by design because the imported

dataset 32 is encrypted under keys which neither the DBMS 30 nor the CS 20 have

access to. Additionally, and depending on the context, the system's architecture may

provide protection against additional threats, e.g., such as the following:

(1) The analyst learning sensitive information about individuals whose records

are in the imported dataset 32; and/or

(2) The CS 20, DBMS 30 and/or data owner learning about the analyst's

queries.

[0029] For example, guarding against item (1) above is referred to as preserving

an individual's privacy, and may be accomplished using techniques such as

Differential Privacy and, guarding against item (2) above is referred to as preserving

query privacy, and may be accomplished using "special" queries which obfuscate the

"real" query.

9

[0030] With additional reference now to FIG. 2, there is shown a process and/or

method 100 by which a plaintext DB Dp is pre-processed and encrypted, e.g., via the ETL

server 50. In practice, a DB owner or the like may employ the Front-End web

service/server 10, e.g., using the ETL View 14 or other suitable UI to access the ETL

server 50 in order to pre-process and encrypt the plaintext dataset 32.

[0031] Suitably, the process or method 100 converts an input plaintext DB Dp to an

encrypted DB De, that supports conditional queries in the encrypted domain. Of course,

one could construct De simply by encrypting each individual entry of Dp using an

appropriate semantically secure homomorphic cryptosystem, but as explained above, this

approach would not effectively support conditional queries as desired. Instead, as

described herein, Da is first constructed, which is an augmented plaintext version of Dp,

and then Da is encrypt to obtain De.

[0032] As shown, in step 110, Dp (containing the plaintext dataset 32) is input into the

ETL server 50, e.g., using an ETL process. The data elements of Dp are suitably

unencrypted and/or represented in a plaintext form. Suitably, along with Dp there is input

a specification identifying those attributes which will be made available for use in

connection with conditional queries and the like. For example, in the above-referenced

scenario, the gender attribute may be such a specified conditional attribute that takes two

distinct values, i.e., male or female. A conditional attribute is an attribute of the DB (e.g.,

which is specified and/or identified along with the input Dp) that will be made available for

the execution of conditional queries and/or the like computed in the encrypted domain.

[0033] In step 120, the schema of the input Dp is augmented to achieve Da, e.g., such

that the augmented schema supports a desired set of queries after the DB is encrypted.

[0034] More specifically, the augmentation and/or generation of Da may take place as

follows. The resulting augmented plaintext DB Da will contain a number of extra columns

as compared to the input Dp. The number of extra columns is V =]I vm, where there

are M specified conditional attributes, and each of those attributes take vm possible

values, m = 1, 2, ... , M. In practice, some attributes may take only one value for a given

DB entry. For instance, the aforementioned gender attribute may take a value of male or

female. Other attributes can take more than one value for a given database entry. For

instance, a hobbies attribute for a given student may take multiple values such as reading,

cycling, herbology, etc.

10

[0035] In one suitable embodiment, to construct Da from Dp, the following sub-steps

are applied to each of the M conditional attributes. In the following sub-steps consider a

conditional attribute Am, m = 1, 2, ... , M that takes vm distinct values. Then, for each

attribute Am:

1) Set Da = Dp.

2) Create vm extra columns in Da. For convenience, consider the additional vm x

n entries added to the database Da as a result of the vm extra columns as

belonging to a matrix S. This notation will allow us to refer to the additional

element in the ith row and jth column as S(i, j) where 1 i :i n, and 1 5 j : vm.

3) For every row index i, set S(i, j) to be the binary indicator variable for the jth

possible value of Am. Thus, for a given row i E {1, 2, ... , n}, if the attribute

value is b E {1, 2, ... , vm}, then S(i, b) = 1 and S(i, j) = 0 for all j 0 b.

[0036] Having suitably obtained the augmented plaintext DB Da, at step 130, Da is

encrypted to obtain De, suitably using a public key (pk), e.g., obtained from the KA 40. In

practice, this encryption is suitably achieved by employing a combination of additive

secret sharing and a semantically secure homomorphic cryptosystem. The following

describes two suitable embodiments which may be employed depending upon the kind

of homomorphic cryptosystem used to construct De, although other variations may

likewise be suitable and/or desired depending on the particular environment, computing,

storage and/or other applicable considerations.

[0037] In a first variation or embodiment, the encryption procedure uses a

cryptosystem that supports 2-DNF (Disjunctive Normal Form) operations, e.g., the BGN

(Boneh, Goh, and Nissim) cryptosystem, which supports the encrypted-domain

computations that involve a single multiplication followed by an unlimited number of

additions. With the BGN cryptosystem, the database Da (e.g., as obtained above) is

encrypted, with the addition of a single encrypted column per queried attribute. The use

of the BGN variant is particularly applicable when the computational power available for

decrypting the encrypted result is relatively high, but the storage available at the DB

server is relatively low.

[0038] In a second variant or embodiment, the encryption procedure uses an additively

homomorphic cryptosystem, e.g., the Paillier cryptosystem, which supports only

11

encrypted-domain additions. The two variants address a tradeoff between the capability

of the cryptosystem and the storage overhead for De. With the Paillier cryptosystem, the

database Da (e.g., as obtained above) is encrypted, with the addition of a single encrypted

column per (queried attribute, conditional attribute) pair. The use of the Paillier variant is

particularly applicable when the computational power available for decrypting the

encrypted result is relatively low, but the storage available at the DB server can be

relatively high.

[0039] Referring now to the aforementioned first variant, the input to the encryption

process or step 130 includes: (1) the augmented plaintext database Da, which contains

=H] vi extra columns; and (2) the public key pk of a 2-DNF homomorphic cryptosystem.

The resulting output is the encrypted database De, in which the entries in the V extra

columns are encrypted using a 2-DNF homomorphic cryptosystem and attributes to be

queried are additively blinded.

[0040] To describe the encryption protocol (including application of the below sub

steps), we focus here separately on the conditional attributes, i.e., the attributes following

the WHERE clause and the query attributes, i.e., the attributes following the SELECT

statement.

1) As above, let the conditional attribute be Am, m = 1, 2, ... , M that takes vm

distinct values. Index these values using the variable j = 1, 2, ... , vm. Then, for

each attribute Am, there is constructed binary indicator variables S(i, j) for the

jth possible value of Am in the ith row, where i E {1, 2, ... , n}. S(i, j) is then

encrypted using a semantically secure 2-DNF homomorphic cryptosystem, to

obtain E (pk, S(i, j)).

2) Let the queried attributes be Qk, k = 1, 2, .. , L. Then, instead of each plaintext

value Qk(i) of attribute Qk in row i E {1, 2, .. , n},store E (pk, Qk(i)), which is the

2-DNF homomorphic encryption of the query attribute value under the public

key pk of the data owner.

[0041] As a result of applying the above steps to the value of each of the M conditional

attributes and L queried attributes in Da, the encrypted database De is obtained.

[0042] Referring now to the aforementioned second variant, the input to the encryption

process or step 130 includes: (1) the augmented plaintext database Da, which contains

12

=]Ivi extra columns; and (2) the public key pk of an additively homomorphic

cryptosystem. The resulting output is the encrypted database De, in which the entries in

the V extra columns are encrypted using an additively homomorphic cryptosystem and

attributes to be queried are additively blinded.

[0043] To describe the encryption protocol (including application of the below sub

steps), we again focus here separately on the conditional attributes, i.e., the attributes

following the WHERE clause and the query attributes, i.e., the attributes following the

SELECT statement.

1) As above, let the conditional attribute be Am, m = 1, 2, ... , M that takes vm

distinct values. As above, index these values using the variable j = 1, 2, ... , vm.

Then, for each attribute Am, there is constructed binary indicator variables S(i,

j) for the jth possible value of Am in the ith row, where i E {1, 2, ... , n}. S(i, j) is

then encrypted using a semantically secure additively homomorphic

cryptosystem, to obtain E (pk, S(i, j)).

2) Let the queried attributes be Qk, k = 1, 2, ... , L. Then for the value Qk(i) of

attribute Qk in row i E {1, 2, ... , n}, choose an integer rk(i) uniformly at random

from the interval E [-Rk, Rk], where Rk is a positive integer, and the number of

bits in Rk, denoted by A(Rk) is a security parameter. In place of the plaintext

attribute value Qk(i), store the additively blinded value ak(i) = Qk(i)+rk(i). Let the

column containing these blinded values be considered as a new attribute k.

3) For each queried attribute Qk, and each of the vm possible values of the

conditional attribute Am, an extra column is introduced denoted by Rk,m. The

entry in the ith row of this new column is given by Rk,j(i) = E (pk, rk(i) - S(i, j)) for

j = 1, 2, ... , vm.

[0044] As a result of applying the above steps to the value of each of the M conditional

and L queried attributes in Da, we obtain the encrypted database De. Unlike the 2-DNF

homomorphic case considered above, the total number of columns added as a result of

sub-step 3 above is L = mi vm, which makes this approach less storage-efficient.

[0045] In either case, having thus obtained the encrypted DB De, at step 140, the

encrypted DB De is transmitted, loaded and/or otherwise sent to the DBMS 30. In practice,

in the DBMS 30, all the table names are available in plaintext, and all the column attribute

13

names are available in plaintext, but the entries in the tables are encrypted as explained

above. That is to say, the only items available in plaintext at the DB server are the attribute

names. For example, in a relational DB, the names of the tables and columns are known,

but the data entries in those columns are encrypted.

[0046] Having thus loaded the encrypted DB De into the DBMS 30, the same may be

accessed by the CS 20 in response to queries submitted by a user/analyst via the Front

End web service/server 10, e.g., using the Analyst View 12. Suitably, the queries may be

submitted in a plaintext form. The DB server of the DBMS 30 in turn provides data to the

CS 20 and the computations executed by the CS 20 are suitably carried out in the

encrypted-domain. In response to the submitted query, the results of the computations

carried out by the CS 20 are returned in an encrypted form. Using a corresponding

decryption key or private key (corresponding to the public key used to carry out the

encryption), e.g., made available or otherwise obtained from the KA 40, the analyst may

decrypt the encrypted results that are received and view them in plaintext. In practice,

such a decryption/private key is not made available to and/or otherwise kept from the CS

20 or DBMS 30 to limit the potential for information or data leakage thereat.

[0047] In accordance with one suitable embodiment, there are now described

encrypted-domain computation protocols executed, for example, at the CS 20 and/or the

DB server, in response to plaintext queries supplied by an analyst. Suitably, the analyst

or other like user may submit the plaintext query via the Analyst View 12. Recall that

suitably, in the DB server of the DBMS 30, the table names are available in plaintext, the

column attribute names are available in plaintext, but the entries in the tables are

encrypted as explained above.

[0048] Initially, there are considered herein simple aggregate queries, e.g., such

as sum and average queries on single query attributes without WHERE clauses. In

practice, to execute these queries, suitably the CS 20 simply exploits the additive

homomorphic property of the cryptosystem used to encrypt the data. Through the

summation protocol, there is now illustrated some of the operations that will be

repeatedly used in the more involved conditional queries to follow.

[0049] For example, an analyst may provide as input, a plaintext query of the form:

SELECT SUM(queryattribute) FROM tablename;

14

[0050] Suitably, the CS 20 parses this query, and immediately recognizess that it

has to access encrypted data belonging to queryattribute. Following earlier

notation, this attribute is denoted by Q, and the individual values in the ith row as

Q (i), i = 1, 2, ... , n.

[0051] In response to the aforementioned query, the CS 20 suitably returns to the

analyst the encrypted summation given by:

E (pk, Q (i)

where pk is the public key that was used to encrypt the DB De. Presuming the analyst

has received the proper authorization and/or key from the data owner and/or KA 40, he

can decrypt this result.

[0052] More specifically, for example, the following protocol may be followed:

1) The CS 20 retrieves the n entries in the table table-name, corresponding to the

attribute Q.

2) It uses the additive homomorphic property to obtain the desired result as follows:

nn

E (pk, Q (i)) = E pk, Q (i)

3) The CS 20 returns the result to the analyst, e.g., via the Analyst View 12 of the

web service/server 10.

15

[0053] Recall that, based on the construction of the encrypted DB De the total

number of rows in the DB is not a secret. Thus, for example, an analyst can also

evaluate the queries of the following form:

SELECT AVG(queryattribute) FROM tablename;

[0054] Notably, in practice, the CS 20 does not perform the averaging since it does not

have access to the plaintext summation. Therefore, in response to this AVG query, it first

runs the simple SUM protocol, e.g., as illustrated above, and additionally returns the

number of rows n to the analyst. The analyst, e.g., via the Analyst View 12, can then

decrypt the summation and divide by n to obtain the answer to his query.

[0055] Next, the present specification address privacy-preserving WHERE queries,

i.e., protocols involving queries utilizing a WHERE clause. Here, there will be utilized the

extra columns that were introduced when the plaintext DB Dp was augmented to Da. The

following will illustrate two exemplary protocols, one for the implementation based on 2

DNF homomorphic encryption, and one for the implementation based on Paillier

homomorphic encryption. In either case, the dot product of the blinded values in the query

attribute column and the encrypted values in a relevant indicator attribute column are

securely computed, for example, as explained below.

[0056] For example, an analyst may provide as input, a plaintext query of the form:

SELECT SUM(queryattribute) FROM tablename;

WHERE conditionalattribute = "somevalue";

[0057] Suitably, the CS 20 parses this query, and recognizes that it has to access

blinded data belonging to queryattribute. Following earlier notation, this attribute is

denoted by Q. Furthermore, it has to access encrypted data corresponding to the

conditionalattribute. Following earlier notation, this attribute is denoted by A. Let the

somevalue be the jth out of v possible values that can be taken by attribute A. Following

earlier notation, the indicator variables are processed in the column S(-,j) of the matrix S

that was used to augment the database, where each value in the matrix is encrypted using

a semantically secure homomorphic encryption scheme.

[0058] In response to the aforementioned query, the CS 20 suitably returns to the

analyst the encrypted summation given by:

16

E pk, Q(i)ffts(ijj)=1}

where pk is the public key that was used to encrypt the DB De. Presuming the analyst

has received the proper authorization and/or key from the data owner and/or KA 40, he

can decrypt this result. By the construction described above, the indicator function

denotes that the query picks up only those values for which conditionalattribute has

value somevalue.

[0059] More specifically, for example, the following protocol may be followed in

the case of the 2-DNF homomorphic scheme. In this case, the encryption function

E(pk, -) is the 2-DNF homomorphic encryption under the public key of the data owner.

Suitably, the encrypted DB De is prepared according to the procedure described

above.

1) The CS 20 retrieves the n encrypted entries in the table table_name,

corresponding to the attribute Q. These are represented as E(pk, Q(i)), i = 1, 2,

n.

2) The CS 20 retrieves the n encrypted indicator variables S(-, j), i.e., the jth column

of the matrix S. These are represented as E(pk, S(i, j)), i = 1, ... , n.

3) The CS 20 uses the 2-DNF homomorphic properties to compute:
n

E (pk, S(i, j))E (pk, Q (i))

= E(pkS(i,j)Q(i))

E (pk, Q (i) ffs(i,j)=1})) n

= E pk, Q (i)fts(ij)=1}

4) The CS 20 returns the result to the analyst, e.g., via the Analyst View 12 of the

web service/server 10.

[0060] More specifically, for example, the following protocol may be followed in

the case of the Paillier homomorphic scheme. In this case, the encryption function

E(pk, -) is the additively homomorphic encryption under the public key of the data

17

owner. Suitably, the encrypted DB De is prepared according to the procedure

described above.

1) The CS 20 retrieves the n blinded entries in the table table_name, corresponding

to the attribute Q. These are represented as Q(i), i = 1, 2, ... , n.

2) The CS 20 retrieves the n encrypted indicator variables S(-, j), i.e., the jth column

of the matrix S. These are represented as E(pk, S(i, j)), i = 1, ... , n.

3) Recall that, corresponding to each attribute Qk, and the jth value of the conditional

attribute A, the encrypted database De contains a column Rk,j of encrypted blinding

entries. Dropping the first suffix k, let the column of blinding entries corresponding

to the attribute Q be denoted by the attribute Rj. The CS 20 also retrieves the n

encrypted blinding terms from the column Rj, represented as Ri(i) = E(pk, r(i) S(i,

j)), i = 1, ... , n.

4) The CS 20 uses the additively homomorphic properties to compute:
n

IE(pk,S(i,j)) ()Rj(i)-1

n

= E (pk, S(i, j)Q (i)ffts(i'j)=1})E (pk, -r(i)ffts(ijj)=1})

n

= E (pk, (Q - r(i))Efs(i,j)=1)

n

nE (pk, Q (i) ff s(i,j)=1}))
i=1

= E pk, Q(i)ffts(ij)=1}

5) The CS 20 returns the result to the analyst, e.g., via the Analyst View 12 of the

web service/server 10.

[0061] As desired for database privacy, the protocols do not reveal which rows

were selected for the above summation calculations, even to the CS 20 which is

performing the computation. These are the rows for which the value S(i, j) = 1. Note

that the analyst already knows the schema of the encrypted DB De along with the

augmentations carried out. So, if he wants to find the number of rows for which

conditionalattribute took the jth possible value, he can send, for example, a query

as follows:

18

SELECT SUM (jth-valueofconditionalattribute) FROM tablename;

[0062] This is essentially a count query, because the S(i, j) are indicator variables.

In response to this count query, the CS 20 returns the encryption of the number of

rows (for both the 2-DNF and the additively homomorphic schemes) using:

Number of Rows =]IE(pk,S(i,j))

[0063] The above argument also provides a way to execute average queries of

the form:

SELECT AVG(query_attribute) FROM table name;

WHERE conditional-attribute = "some-value";

[0064] Essentially, when the CS 20 parses an average query of the above form, it

internally generates two related queries on the encrypted database: the conditional

sum query whose protocol is discussed above, followed by the count query

discussed above. It returns to the analyst the results of both queries. By dividing the

result of the conditional sum query with the result of the count query, the analyst

obtains the result of the average query.

[0065] Next, the present specification addresses privacy-preserving GROUPBY

queries, i.e., protocols involving queries utilizing a GROUPBY clause. These protocols will

also utilize the extra columns that were introduced when the plaintext database Dp was

augmented to Da. Essentially, the protocols achieve the GROUPBY functionality by

executing multiple WHERE queries with an equality condition using the above protocols.

[0066] For example, an analyst may provide as input, a plaintext query of the form:

SELECT SUM(queryattribute) FROM tablename

GROUPBY conditionalattribute;

[0067] Suitably, the CS 20 parses this query, and recognizes that it has to access

blinded data belonging to queryattribute. Following earlier notation, this attribute is

denoted by Q. Furthermore, it has to access encrypted data corresponding to the

conditionalattribute. As before, the conditional attribute is denoted by A and it is assumed

that it can take v possible values, which are denoted by value_1, value_2, ... , valuev. The

19

schema of the encrypted database Da is assumed to be known to the CS 20, the DB server

and the analyst.

[0068] Suitably, the CS 20 returns to the analyst (e.g., via the Analyst View 12), an

encrypted v-length vector, where the jth element of the vector is given by:

E (pk, Z'1 Q (i)ffsgj)= 1}) (1)

for j = 1, 2, ... , v. As before, pk is the public key that was used to encrypt the DB De.

Presuming the analyst has received the proper authorization and/or key from the data

owner and/or KA 40, he can decrypt this vector of encrypted values. Depending upon the

encryption scheme used, E(pk, -) is a ciphertext for an additively homomorphic or a 2-DNF

homomorphic cryptosystem respectively.

[0069] More specifically, for each j = 1, 2, ... , v, the following steps may be executed:

1) The compute server constructs a WHERE query given by:

SELECT SUM(queryattribute) FROM table-name;

WHERE conditionalattribute = value j;

2) Using the protocol described above, the CS 20 obtains an encrypted result given

by equation (1).

[0070] Suitably, the CS 20 gathers the encrypted results obtain by repeatedly invoking

WHERE protocols into a v-length vector and sends it to the analyst.

[0071] Clearly, the correctness of the privacy-preserving GROUPBY protocols follows

from that of the WHERE protocols. By combining summation queries with count queries

as before, the CS 20 can also execute average queries of the form:

SELECT AVG(queryattribute) FROM table_name;

GROUPBY conditional-attribute;

[0072] In one suitable embodiment of the described privacy-preserving querying

architecture, the plaintext database is read in the form of one or more text files. To facilitate

the database preparation phase, an interface is suitably provided that displays to the data

owner the data schema, the range of values for different attributes and the data types for

20

each attribute. For example, the interface provides the data owner with the following

capabilities:

1) Import a database from a text file, such as a comma-separated values (*.csv) file.

2) Display the schema of the database.

3) For each attribute, choose whether to ignore it, import it in plaintext, or to import it

in encrypted form.

4) For conditional attributes, choose whether or not to support encrypted-domain

WHERE or GROUPBY queries.

5) For each attribute, choose whether or not to support queries on the statistical

distributions on the attributes.

6) Load a key for Paillier homomorphic encryption, or generate a new key-pair.

[0073] In response to the commands provided from the data owner's interface,

encryption is performed on the plaintext database Dp by an encryption server and the

encrypted database De is stored on the DB server of the DBMS 30. Suitably, the encrypted

database is backed by MySQL. The data owner's interface may be implemented in

Javascript in a browser, and it may communicate with the encryption server and database

server via a RESTful interface. Suitably, the encryption routines executed by the

encryption server are implemented in the Java programming language.

[0074] Similar to the case for the data owner, a querying interface is provided for a data

analyst, also using Javascript in a browser. This may be a RESTful interface that can be

accessed from a computer, tablet or smartphone, to transmit and receive data from the

CS 20. To facilitate querying, the data analyst may be provided with the following

capabilities:

1) Import an encrypted database from the MySQL database.

2) Load a key for decrypting the ciphertext results of the query returned by the CS

20.

3) View the database schema and information about how the attributes have been

encrypted.

21

4) View the suite of queries supported.

5) Enter a SQL-like query involving encrypted and/or plain-text attributes.

6) View the query results numerically (or graphically, if requested).

[0075] Since the database server may be backed by MySQL, any queries involving

unencrypted attributes can be processed in the conventional way. Queries which involve

processing of encrypted data suitably use the protocols that have been described herein.

[0076] The above methods, system, platforms, modules, processes, algorithms and/or

apparatus have been described with respect to particular embodiments. It is to be

appreciated, however, that certain modifications and/or alteration are also contemplated.

[0077] It is to be appreciated that in connection with the particular exemplary

embodiment(s) presented herein certain structural and/or function features are described

as being incorporated in defined elements and/or components. However, it is

contemplated that these features may, to the same or similar benefit, also likewise be

incorporated in other elements and/or components where appropriate. It is also to be

appreciated that different aspects of the exemplary embodiments may be selectively

employed as appropriate to achieve other alternate embodiments suited for desired

applications, the other alternate embodiments thereby realizing the respective

advantages of the aspects incorporated therein.

[0078] It is also to be appreciated that any one or more of the particular tasks, steps,

processes, methods, functions, elements and/or components described herein may

suitably be implemented via hardware, software, firmware or a combination thereof. In

particular, various modules, components and/or elements may be embodied by

processors, electrical circuits, computers and/or other electronic data processing devices

that are configured and/or otherwise provisioned to perform one or more of the tasks,

steps, processes, methods and/or functions described herein. For example, a processor,

computer or other electronic data processing device embodying a particular element may

be provided, supplied and/or programmed with a suitable listing of code (e.g., such as

source code, interpretive code, object code, directly executable code, and so forth) or

other like instructions or software or firmware, such that when run and/or executed by the

computer or other electronic data processing device one or more of the tasks, steps,

processes, methods and/or functions described herein are completed or otherwise

22

performed. Suitably, the listing of code or other like instructions or software or firmware

is implemented as and/or recorded, stored, contained or included in and/or on a non

transitory computer and/or machine readable storage medium or media so as to be

providable to and/or executable by the computer or other electronic data processing

device. For example, suitable storage mediums and/or media can include but are not

limited to: floppy disks, flexible disks, hard disks, magnetic tape, or any other magnetic

storage medium or media, CD-ROM, DVD, optical disks, or any other optical medium or

media, a RAM, a ROM, a PROM, an EPROM, a FLASH-EPROM, or other memory or

chip or cartridge, or any other tangible medium or media from which a computer or

machine or electronic data processing device can read and use. In essence, as used

herein, non-transitory computer-readable and/or machine-readable mediums and/or

media comprise all computer-readable and/or machine-readable mediums and/or media

except for a transitory, propagating signal.

[0079] Optionally, any one or more of the particular tasks, steps, processes, methods,

functions, elements and/or components described herein may be implemented on and/or

embodiment in one or more general purpose computers, special purpose computer(s), a

programmed microprocessor or microcontroller and peripheral integrated circuit

elements, an ASIC or other integrated circuit, a digital signal processor, a hardwired

electronic or logic circuit such as a discrete element circuit, a programmable logic device

such as a PLD, PLA, FPGA, Graphical card CPU (GPU), or PAL, or the like. In general,

any device, capable of implementing a finite state machine that is in turn capable of

implementing the respective tasks, steps, processes, methods and/or functions described

herein can be used.

[0080] Additionally, it is to be appreciated that certain elements described herein as

incorporated together may under suitable circumstances be stand-alone elements or

otherwise divided. Similarly, a plurality of particular functions described as being carried

out by one particular element may be carried out by a plurality of distinct elements acting

independently to carry out individual functions, or certain individual functions may be split

up and carried out by a plurality of distinct elements acting in concert. Alternately, some

elements or components otherwise described and/or shown herein as distinct from one

another may be physically or functionally combined where appropriate.

[0081] In short, the present specification has been set forth with reference to preferred

embodiments. Obviously, modifications and alterations will occur to others upon reading

23

and understanding the present specification. It is intended that the inventive subject

matter be construed as including all such modifications and alterations insofar as they

come within the scope of the appended claims or the equivalents thereof.

[0082] Throughout this specification and the claims which follow, unless the context

requires otherwise, the word "comprise", and variations such as "comprises" and

"comprising", will be understood to imply the inclusion of a stated integer or step or group

of integers or steps but not the exclusion of any other integer or step or group of integers

or steps.

[0083] The reference in this specification to any prior publication (or information

derived from it), or to any matter which is known, is not, and should not be taken as an

acknowledgment or admission or any form of suggestion that that prior publication (or

information derived from it) or known matter forms part of the common general knowledge

in the field of endeavour to which this specification relates.

24

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method of generating an encrypted database, said method comprising:

receiving, at an Extract, Transfer and Load, ETL, server, a plaintext database

having plaintext data entries in one or more columns;

augmenting, at the ETL server, the received plaintext database to generate an

augmented plaintext database, said augmenting including the addition of one or more

columns to the received plaintext database, each said added column corresponding to an

attribute which is to be made available for conditional queries;

encrypting, at the ETL server, the augmented plaintext database to generate the

encrypted database including encrypted data entries; and

sending, from the ETL server, the encrypted database to a database, DB, server,

wherein said encrypted database supports at least one form of conditional query

for those attributes corresponding to the added columns, said at least one form of

conditional query being computed on the encrypted data entries without the decryption

thereof to produce an encrypted result,

wherein the number of added columns is V = lllmlvm , where M is the number of

specified conditional attributes, and each of those attributes take vm possible values,

where m = 1, 2, ... , M.

2. The method of claim 1, wherein the encrypted data is encrypted with a semantically

secure encryption.

3. The method of claim 2, wherein the encrypted data is encrypted using a

homomorphic cryptosystem.

4. The method of claim 3, wherein the homomorphic cryptosystem is an additively

homomorphic cryptosystem.

5. The method of claim 3, wherein the homomorphic cryptosystem supports 2

Disjunctive Normal Form, DNF, operations.

6. The method of claim 1, wherein the at least one form of conditional query is one of

a WHERE query or a GROUPBY query.

25

7. The method of claim 1, further comprising:

(d) establishing a public-private key pair, wherein a public key of said pair is

used to encrypt the encrypted database and a private key of said pair is provided to

decrypt an encrypted result of a query.

8. The method of claim 1, wherein said private key is not made available to a

database management system in which the encrypted database is maintained or a server

which computes queries conducted on the encrypted database.

9. A system for administering an encrypted database, said system comprising:

an Extract, Transfer and Load, ETL, server, implemented on one or more

computers, wherein said ETL server is configured to:

receive as input a plaintext database having unencrypted data entries therein in

one or more columns;

augment the received plaintext database to generate an augmented plaintext

database, wherein said augmented plaintext database includes the addition of one or

more columns to the input plaintext database, each said added column corresponding to

an attribute which is to be made available for conditional queries;

encrypt the augmented plaintext database to generate the encrypted database

including encrypted data entries; and

send the encrypted database to a database, DB, server;

the DB server, implemented on one or more computers, wherein said DB server is

configured to:

receive and maintain the encrypted database from the ETL server; and

return encrypted data in response to queries submitted to the DB server; and

a computation server, implemented on one or more computers, wherein said

computation server is configured to:

submit queries to the DB server; and

conduct computations on encrypted data returned from the DB server;

wherein said computations are conducted on the encrypted data from the

encrypted database without decryption of the encrypted data, and results obtained from

said computations are encrypted, said encrypted database being configured so as to

support obtaining correct encrypted results in response to at least one form of conditional

query without revealing samples of the unencrypted data underlying the encrypted data,

26

wherein the number of added columns is V = lllmlvm , where M is the number of

specified conditional attributes, and each of those attributes take vm possible values,

where m = 1, 2, ... , M.

10. The system of claim 9, wherein the encrypted data is encrypted with a semantically

secure encryption.

11. The system of claim 10, wherein the encrypted data is encrypted using a

homomorphic cryptosystem.

12. The system of claim 11, wherein the homomorphic cryptosystem is an additively

homomorphic cryptosystem.

13. The system of claim 11, wherein the homomorphic cryptosystem supports 2-DNF

(Disjunctive Normal Form) operations.

14. The system of claim 9, wherein the at least one form of conditional query is one of

a WHERE query or a GROUPBY query.

15. The system of claim 9, further comprising:

a key authority which administers a public-private key pair, wherein a public key of

said pair is used to encrypt the encrypted database and a private key of said pair is usable

to decrypt the encrypted result of a query.

16. The system of claim 15, wherein said private key is not made available to the DB

server or the computation server.

40

W
EB

 S
ER

VI
CE

ET

L
SE

RV
ER

ET
LV

IE
W

KE

Y
A

U
TH

O
RI

TY

\

M
A

ST
ER

PU

BL
IC

-P
RI

V
A

TE

KE
Y

PA
IR

zQ

i
DA

TA
SE

T
DA

TA
BA

SE

H
TM

L,
 C

SS
, J

S
EN

CR
YP

T
EN

CR
Y

PT

PR
IV

AT
E

KE
Y

^
-
2
0

W
EB

SE
RV

ER

M
yS

Q
L

CO
M

PU
TE

 S
ER

V
ER

JO

SQ

L-
LI

K
E

Q
U

ER
Y

SQ

L
Q

U
ER

Y

AN
AL

YS
T

VI
EW

M

A
ST

ER

EN
CR

Y
PT

ED
 D

AT
A

EN
CR

Y
PT

ED

DA
TA

BA
SE

SQ

L
Q

U
ER

Y

H
TM

L,
 C

SS
, J

S
EN

CR
Y

PT
ED

 D
AT

A
Y

PT
ED

 R
EA

U
LT

S
CO

M
PU

TE

CO
M

PU
TE

V
3
2
e

F
R

O
N

T
 E

N
D

B

A
C

K
E

N
D

D

B
M

S

F
IG

.
1

20160648AU01

1/2

20
18

20
86

67

 2
5

Ju
l 2

01
8

20160648AU01

2/2

100

INPUT Dp no

AUGMENT I

TOGENERAT h 120 ，

PUBLIC
KEY(pk)

ENCRYPT I
TOGENERAT \ 130

――-‘

LOAD De

IN DBMS
140

FIG. 2

20
18

20
86

67

 2
5

Ju
l 2

01
8

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

