METHOD OF AERATING WATER TO PROMOTE OXIDATION OF AN IODINE-RELATED SPECIES

Inventors: Frederick James Dart, Missisauga (CA); John Owen Richmond, Toronto (CA)

Correspondence Address:
FITCH EVEN TABIN AND FLANNERY
120 SOUTH LA SALLE STREET
SUITE 1600
CHICAGO, IL 60603-3406 (US)

Appl. No.: 11/622,732
Filed: Jan. 12, 2007

Related U.S. Application Data
Continuation of application No. 10/876,449, filed on Jun. 28, 2004.
Provisional application No. 60/487,244, filed on Jul. 16, 2003.

Publication Classification
Int. Cl.
CO2F I/68 (2006.01)
U.S. Cl. 210/749

ABSTRACT
An automatic, self-regulating method of water treatment for use in water circulating towers in which water is evaporated, and make up water is added, with components which synergistically function to cut chemical, energy, water, corrosion, pollution, and maintenance costs, by passing the water through a water conditioning unit to prevent adhering evaporation scale deposits along with their content of concentrated biofouling nutrients from forming on the flooded surfaces of the tower and its associated water flow circuit, adding a trace level of iodine to the input make-up water to enhance the further disinfection of nutrient-deprived surfaces from any residual biofilm and chance pathogen contaminations, and adding a trace level addition of zinc ions in the water such as by an assured treatment feeder to the input make-up flow for inhibiting residual iodine-resistant algal and bacterial organisms of hazard for restoring bionutrient tower conditions, such as within sun-lit environments, and apparatus for carrying out the foregoing method.
FIG. 4

FIG. 5
METHOD OF AERATING WATER TO PROMOTE OXIDATION OF ANIODINE-RELATED SPECIES

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application comprises a continuation of application Ser. No. 10/876,449 as filed on Jun. 28, 2004, and which claims benefit of the filing date of Provisional Application No. 60/487,244 as was filed on Jul. 16, 2003.

1. FIELD OF THE INVENTION

[0002] A water treatment method using a unique synergistic combination of water treatment components performing treatment steps automatically and continuously applied to the make-up and recirculation waters in evaporative cooling towers, and to apparatus for the application of such a method.

2. BACKGROUND OF THE INVENTION

[0003] Cooling towers are widely used in H.V.A.C. and Industry. The towers will normally employ evaporation of water, and heat exchange the building HVAC circulating water to cool water. The evaporation results in the concentration of dissolved solids in the cooling tower recirculation water. Scale, principally in the form of calcium carbonate, can build up, thereby reducing the rates of heat transfer and hence the efficiency of the tower. The water is also suitable for the growth of biological contaminants such as bacteria and algae. Biofouling organisms, using organic nutrients collected by scale deposits, attack system surfaces with corrosive acids to further increase dissolved particulate contamination. Conventional chemical treatment, particularly since chromates were banned by E.P.A., in practice, does not control scale, corrosion or microbiological contamination, and produces the potential liability of toxic discharge water into the environment, and handling barrels of toxic chemicals.

[0004] U.S. Pat. No. 4,830,761, Leach et al., disclose a method of recirculation cooling tower basin water through a series of filter bags in order to reduce the amount of particulate contamination. In U.S. Pat. No. 6,332,978, Cusior et al. teach a combination of filtration and treatment with redox media to reduce contamination in recirculation cooling tower waters. However scale is not controlled, backwashing cycles are mandatory, and the copper compounds used plate out onto the metal of the equipment. Ozone treatment, among other disadvantages, does not prevent scale formation and is restricted in application. The known prior art methods do not eliminate scale, and do not offer 24 hour/day, automatic, effective protection against legionella, scale, corrosion and microbiological contamination.

BRIEF SUMMARY OF THE INVENTION

[0005] The present invention provides an improved method and apparatus for automatically eliminating scale, minimizing particulate contaminants, legionella and controlling corrosion, fouling & microbiological contamination in cooling tower recirculation water, 24 hours per day.

[0006] In particular, the invention provides a first Module A for the treatment of incoming make-up water, and a second Module B for the treatment of the cooling tower recirculation water. The first Module A directs some incoming make-up water through an iodine canister (18), and also through a micronimer suppressant canister (20), containing zinc, in order to provide metered, low levels of iodate and zinc, to suppress bio-organic contamination throughout the tower. All incoming make up water also passes through a physical type, self-cleaning water conditioner (22), which prevents the formation of scale dissolves old scale and inhibits corrosion.

[0007] The second Module B includes a pump (24) that recirculates the tower sump water through a strainer (26), a centrifugal separator (28) and a physical type, self-cleaning water conditioner (30) which maintains the water in an unsaturated state. The strainer (26) removes the larger particulates and any debris that gets into the tower (32). The centrifugal separator (28) brings the particulates down to minus 40 microns throughout the recirculation system, in addition the conditioner (30) produces large calcium carbonate particles, which in turn coagulate with the organics, and are blown down by the separator (28) and a “blow-down” valve.

[0008] An alternative second Module B can consist of a bypass pipe installed across the cooling tower recirculation pump inlet and outlet pipes; with the separator (28), conditioner (30) and flow meter (34) mounted in this by-pass pipe.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 is a schematic representation of a typical cooling tower which illustrates with Module “A” and Module “B” a preferred method and apparatus for automatically treating water according to the invention;

[0010] FIG. 2 is a schematic representation of the self regulating zinc generator (20), which in conjunction with FIG. 3 schematic is attached to the make up water line. (36);

[0011] FIG. 3 is a schematic representation of the self regulating iodine generator (18), which in conjunction with FIG. 2 is attached to the make up water line. (36);

[0012] FIG. 4 is a diagrammatic drawing of a laser particle test result before hard water entered the conditioner;

[0013] FIG. 5 is a diagrammatic drawing of a laser particle test result, in the same water as in FIG. 4, after the water had passed through the same conditioner.

DETAILED DESCRIPTION

[0014] Cooling towers are designed to work on an evaporative process in conjunction with a heat exchanger/chiller condenser (14). A tower (32) will typically include baffles or fill and spray bars (16) or like elements having increased surface areas over which warm water cascades. At the same time, cooling tower fans (not shown) move air over the cascading water to increase evaporation and lower the water temperature. The resultant cooled water is cycled back through a chiller condenser (14) where it picks up heat and is then returned to the tower (32) to be cooled. As the water evaporates in the tower (32), the dissolved solids in the water which collect in the tower sump (10) become concentrated. To maintain a constant water volume within the system, make-up water must be continuously added to compensate for the water lost through evaporation in the tower (32), and through “blow-down”.
Scale builds up in the chiller condenser (14) and in the fill and spray bars (16) in the tower (32) with conventional chemical treatment. This scale reduces the heat transfer efficiency of the condenser (14). In addition, the cooling tower water is subjected to biological contamination by airborne micro-organisms from the air, which are sucked into the tower (32) by the fans. Microbiological contamination of this type entering the cooling tower recirculation water is a major cause of corrosion of metallic surfaces due to bio-film formation. Known chemical water treatment processes result in having to ‘rod-out’ chiller condenser tubes (14) and/or “acid-wash”, to reduce excess energy costs, and protect the system from severe damage.

To prevent and control the problems of scale and fouling, high corrosion rates (usually >3 m.p.y.) with conventional chemical treatment, and low cooling tower life span the present invention automatically performs several functions, some by themselves and others in conjunction with one another, as follows:

FIG. 1 is a schematic representation of a cooling tower treatment system illustrating the present invention. A typical cooling tower installation, portions of which are illustrated in FIG. 1, includes a make-up water line (36) discharging fresh water into the tower sump (10) continually replacing the total amount of water loss from evaporation and sump discharge water losses. A cooling tower recirculating pump(s) (12) circulates cooled water from the tower sump (10) through the condenser side of a heat exchanger (14), where it picks up building heat from the evaporator side of the chiller (14), and then from there is piped to a spray bar system (16) mounted at the top of the tower (32). The water from the spray bars (16) cascades down into the tower sump (10), and then is piped back into the condenser side of the heat exchanger (chiller) (14).

In this preferred embodiment a typical cooling tower is fitted with the groups of components identified as Module A and Module B in FIG. 1, which go to make up the invention.

Module A, which treats incoming make-up water, consists of an iodine generator canister (18), (see FIG. 3, a) mineral suppressant generator canister (20), (see FIG. 2), and a physical type water conditioner (22).

Module B schematically depicts a side stream sump recirculation line, consisting of a strainer (26), a pump (24), a separator (28) & a physical-type water conditioner (30). Conditioner (22) used in Module A, and conditioner (30) used in Module B are physical type, self-cleaning, require no chemicals or electricity, and are maintenance free. Depending on water quality, physical type water conditioners such as capacitance or magnetic designs may be used that can produce large sized calcium carbonate particles in hard water, as measured by independent laser particle counts “before” and “after” hard water passes through the conditioner, as shown in FIG. 4 and in FIG. 5; also producing a minimum increase of 300% turbidity and 200% suspended solids. A capacitance type unit that may be used in either or both Module A and Module B is disclosed in U.S. Pat. No. 5,695,644. A suitable magnetic unit is disclosed in U.S. Pat. No. 4,422,933.

Conditioners other than those mentioned above can also be used if they offer the above required characteristics.

The conditioners (22) and (30), prevent the formation of scale, cause the dissolution of old scale and inhibit corrosion throughout the system. With the scale removed, and automatically maintained that way, the ferrous and ferric oxides then combine to form magnetite on the piping surfaces. Without the presence of scale, nutrients for micro-organisms are reduced to a minimum. In addition to a scale free environment, a very clean water system is maintained by a centrifugal separator (28) which reduces particulate contaminants down to minus 40 microns in the system (manual or automatic blow-down). Further reduction in the number of contaminant particles is achieved by the action of the conditioners (22) and (30) which automatically produce large sized calcium carbonate particles throughout the recirculation water system on a continual basis when treating hard water. These growing calcium carbonate particles coagulate with the organics thereby preventing further corrosion as a result of the elimination of the organic nutrients, and are continually removed from the system by the sump recirculation line separator (28) and by the ‘blow-down’ valve (38). This blow down valve (38) is a valve which can be installed in alternative places but usually into a pipe which emanates from the sump (10). It is actuated electrically by a timer, which in turn is signaled electrically from the make up water line meter. This water meter is pre set to signal the timer for (say) every 25 gallons flowing through the make up water pipe (36). The timer can be adjusted for controlling the concentration of the chlorides in the cooling tower water. The strainer (26) installed before the sump recirculation pump (24) eliminates larger particles and debris.

Water that has been cooled by evaporation in the tower (32) is collected in the sump (10). The cold sump water is piped back into the chiller condenser (14) by the main recirculation pump(s) (12). The heated water exiting the chiller condenser (14) is returned to the tower (32) for evaporative cooling. The water in the sump (10) is cycled through Module B by a pump (24). Larger particulate contaminants are removed from the water by a strainer (26). Particle size of scale and other contaminants throughout the cooling tower system is reduced below minus 40 microns by the Model B separator (28). Water directed back to the sump (10) passes through a water conditioner (30), which further ensures elimination of calcareous and organic contaminants, maintaining the recirculation water in an unsaturated mode, with the continual production of large calcium carbonate particles. Incoming make-up water is treated in Module A by the iodine conditioner (18), zinc conditioner (20), and water conditioner (30).

The make up water assembly incorporates two ‘see through’ type similar canisters containing zinc in one canister (20) and iodine in the other canister (18).

In the zinc canister (20) at the bottom of the vertical canister there is an inlet tube (40), with nozzle holes (42) designed to exit the water into the nozzle cone (44), creating a deep penetration scrubbing action on the zinc. In the iodine conditioner (18) there is an inlet tube (46) with holes (48). This design does not have a nozzle cone since a lesser action is desirable. This internal design difference is to obtain the maximum desired water action for each of the two elements, ensuring consistent results, i.e. the scrubbing action on the zinc, which is less desirable on the iodine. The feed water for the two canisters (18) and (20) is derived from some of the
make-up water being diverted from the make up water pipe (36) by an adjustable valve, located in the make up water line, between an inlet pipe and an outlet pipe to the generators. This water passes through the iodine canister (18), to introduce iodine; and some of this make up water diverted into the micro-mineral suppressant canister (20), for zinc to be metered in amounts sufficient to control bio-organic contaminants. The iodine is discharged from the iodine canister (18) through a "see through" type horizontal flexible tube to a needle valve, that controls the iodine discharged back into the make up water main pipe (36). Concentrated iodine is very aggressive, so all materials used have to be neutral to iodine. The micro-mineral suppressant canister (20) internal parts and design to generate zinc, has to be constructed to a modified fluidized bed principle for ensuring that the surfaces of the zinc are constantly self-scrubbed when operating, for consistent erosion release, giving an on-going accuracy of correct metering, even for small injections, the metering being controlled by the aforementioned adjustable valve in the make up water line.

[0026] An additional benefit offered by the invention is that, as the water concentrates, build up of total dissolved solids, hardness (as CaCO₃), TDS, conductivity levels are reduced by about 40%, as compared to conventional chemical treatment, thereby permitting increased cycles of concentration, and considerable water savings. This occurs because the calcium carbonate particles produced by the conditioners combine with the organics, which together then have a specific gravity heavy enough to be automatically discharged. As an example, in Great Lakes Water, cooling tower water use and discharge is reduced by at least 25%. In addition to this water savings, in hard make up water situations, even more water is saved compared to chemical treatment which has to "soften" this water before use, involving the additional cost of an appropriately sized water softener, plus having to use quantities of salt. In addition to this expense, the "softener" has to be regenerated on a regular basis (such as twice/week), which uses up large quantities of water. The system, according to the invention, does not require a softener in hard water. Cooling towers using chemical treatment, use vast quantities of water, whereas according to the invention, up to 40% water use and discharge can be saved.

[0027] The above description explains how the total recirculation water is treated, which creates and maintains a very clean system, a mandatory condition for effective prevention of microbiological contamination. The invention adds to this bacterial control by automatically and accurately metering into the make up water line (36), as described below <250 p.p.b. of zinc, and <200 p.p.b. of iodine for bacteria kill. The iodine, then has a final adjustment to reflect 1 p.p.m. in the recirculation water. The iodine becomes iodate, due to the aeration of the sump cascading water. The iodate in a clean system, at 1 p.p.m., kills legionella up to 99.99999% (U.S. Dept. of Health – Atlanta). The zinc, when present, at only 50 p.p.b., kills pseudomonas & other pathogens. Pseudomonas when present is harmful because it generates bio-nutrients which are a major source of nutrients for legionella. The iodate penetrates under bio-films, even penetrates amoebas thereby killing legionella. Algae is efficiently controlled by the combination of iodate and zinc.

[0028] Each canister holds enough zinc and iodine to last 2 to 3 years before a refill is required. This replenishment is a simple operation, and takes approximately 20 minutes. A test valve or tap (50) is provided in module A. By opening this valve (50) and collecting a sample of the water, it is possible to sample the iodine content of the make up water, and thus ensure that the percentage is adjusted to produce optimum results.

[0029] Depending on water quality, other metals at <500 p.p.b. may possibly be used in addition to, or in place of zinc. The water quality throughout the system is always maintained to potable standards, when the make-up water is of potable quality.

[0030] To summarize the operation, water that has been cooled by evaporation in the tower (32) is collected in the sump (10). The cold sump water is piped back into the chiller condenser (14) by the main recirculating pump(s) (12). The heated water exiting the chiller condenser (14) is returned to the tower (32) for evaporative cooling. The water in the sump (10) is cycled through Module B by a pump (24). Larger particulate contaminants are removed from the water by a strainer (26). Particulate size of scale and other contaminants throughout the cooling tower system is reduced below minus 40 microns by the separator (28). Water directed back to the sump (10) passes through a water conditioner (14), which further ensures elimination of calcarious and organic contaminants, maintaining the recirculation water in an unsaturated mode, with the continual production of large calcium carbonate particles. Incoming make-up water is treated in Module A by the zinc, iodine and a water conditioner (22).

[0031] The make up water assembly consists of two ‘see through’ type similar canisters containing zinc in canister (20) and iodine in canister (18), the difference in the two canisters being basically that the water discharge holes at the bottom of the vertical canister inlet tube are designed to exit the water into a nozzle cone (44) for the zinc, but directly into the canister, above the disc, for the iodine. This internal design difference is to obtain the maximum desired water action for each of the two metals, ensuring consistent results. The feed water for the two canisters is derived from some of the make up water being diverted from the make up water pipe (36) through the iodine canister (18), to introduce iodine, which converts to iodate with the aeration in the tower; and some of the make up water diverted into the micro-mineral suppressant canister (20), for zinc to be metered in amounts sufficient to control bio-organic contaminants. The iodine is discharged from the iodine canister (18) through a ‘see through’ type flexible tube to a needle valve, that controls the iodine discharged into the make up water main pipe (36). Concentrated iodine is very aggressive, so all materials used have to be neutral to iodine. The micro-mineral suppressant canister (20) internal parts and design have to be constructed to a modified fluidized bed principle for ensuring that the surfaces of the zinc are constantly self-scrubbed when operating, for consistent erosion release, giving an on-going accuracy of correct reading, even for small injections. To attain the scrubbing of the zinc surfaces, FIG. 2 shows the inlet water entering the conventional filter exit into the upper canister centre, and being discharged out of the bottom of the internal vertical tube, through equally spaced and angled holes (42) discharging into a cone (44). This creates a swirling action on the zinc
granules, contained in the canister (20) resulting in the scrubbing of the zinc surfaces, which prevents the surfaces from oxidizing.

[0032] So configured, the iodine unites with the aeration and evaporative processes of the tower to sustain the delivery of effective free iodine or its equivalent precursors into every remote crevice of the flow circuit, wherein iodine is not volatile by aeration as other competing disinfectants, such as chlorine, chlorine dioxide, bromine, or ozone. The iodine remains in the tower environment to become more concentrated and effective as the process water evaporates with the tower cycles of concentration and is not compromised as other disinfectants when the operating pH in the tower rises to 8.5 or more by the stripping of carbon dioxide from the water by aeration activity. The iodine penetrates into the protective sediment and biofilm shelters of resisting microorganisms by eluding chemical neutralization by oxidative side reactions, such as with reduced ferrous iron or proteinaceous releases as thrown up by the more resistant organisms for resisting most of the other “more reactive” disinfectants. The iodine maintains a trace disinfectant presence in the tower even after being reduced by disinfection reactions to iodide ion [I⁻] due to the high oxygen content of the aerated water causing some “spent” iodide to be restored back to free iodine to a slight, but significant, equilibrium level. The iodine becomes gradually oxidized by the tower aeration itself to its secondary disinfectant form, the iodate ion [IO₃⁻], which by its even greater chemical stability diffuses fully into any residual sediments or biofilms that might persist, and where it will reduce back to disinfecting free iodine reactive contact with active anaerobic organisms, thereby deactivating said organisms even as they start up.

[0033] All the make-up water then passes through the Module A water conditioner(s) (22), which change the water into an unsaturated state, dissolves old scale, & inhibits corrosion.

[0034] The system shown in schematic FIG. 1 is for the purposes of illustration only, and is not intended to be limiting, since cooling towers are designed with many different types of configurations, including, but not restricted to, direct & indirect evaporative cooling towers, “coolers”, mechanical draft, hyperbolic towers etc.

[0035] The invention can operate efficiently for any type or size of cooling tower. Persons could generate additional embodiments without departing from the spirit of the claimed inventions. For instance, all or part of the make up water assembly could be applied to controlling microbiological contamination in water systems, for example to control legionella, etc. The schematics provided are to facilitate understanding of the invention only. Also water quality for the make-up water varies over a wide range, and therefore has to be treated accordingly sometimes before entering the make up water line. (36).

[0036] This water treatment method greatly improves the operation of cooling towers; namely, in the permanent elimination of scale build-up on all tower and heat exchanger surfaces; in the effective control of biofouling; in the related suppression of biofilm sponsored corrosion and in the eradication of tower contamination by biological growths, particularly of pathogenic organisms, such as legionella. This results in a very effective, 24 hour/day, 7 days/week automatic control of scale, fouling, corrosion, and microbiological contamination. The system ensures minimal heat transfer losses and pollutional water discharges, with greatly reduced water and energy consumption, applied chemical quantities and operational and ownership costs, and greatly extended cooling tower life. The foregoing is a description of a preferred embodiment of the invention which is given here for the purposes of illustration. The invention is not to be taken as restricted to any of the specific features as described but comprehends all such variations as come within the scope of the following claims.

What is claimed is:

1. A method of automatic, self-regulating water treatment for use in water circulating towers in which water is evaporated, and make up water is added, with components which synergistically function to cut chemical, energy, water, corrosion, pollution, and maintenance costs, and comprising the steps of: passing the water through at least one or more efficient water conditioning units to prevent adhering evaporation scale deposits along with their content of concentrated biofouling nutrients from forming on the flooded surfaces of the tower and its associated water flow circuit; supplying input make up water to replace water lost by evaporation; adding a trace level of iodine to the input make-up water to enhance the further disinfection of nutrient-deprived surfaces from any residual biofilm and chance pathogen contaminations; and adding a trace level addition of zinc ions in the water such as by an assured treatment feeder of said mineral to the input make-up flow for inhibiting residual iodine-resistant algal and bacterial organisms of hazard for restoring biounitroment tower conditions, such as within sun-lit environments.

2. The method as claimed in claim 1 wherein the iodine unites with the aeration and evaporative processes of the tower to sustain the delivery of effective free iodine or its equivalent precursors into every remote crevice of the flow circuit, wherein iodine: is not volatile by aeration as other competing disinfectants, such as chlorine, chlorine dioxide, bromine or ozone.

3. The method as claimed in claim 2 wherein the iodine remains in the tower environment to become more concentrated and effective as the process water evaporates with the tower cycles of concentration.

4. The method as claimed in claim 3 wherein the iodine is not compromised as other disinfectants when the operating pH in the tower rises to 8.5 or more by the stripping of carbon dioxide from the water by aeration activity.

5. The method as claimed in claim 4 wherein the iodine penetrates into the protective sediment and biofilm shelters of resisting micro-organisms by eluding chemical neutralization by oxidative side reactions, such as with reduced ferrous iron or proteinaceous releases as thrown up by the more resistant organisms for resisting most of the other “more reactive” disinfectants.

6. The method as claimed in claim 5 wherein the iodine maintains a trace disinfectant presence in the tower even after being reduced by disinfection reactions to iodide ion [I⁻] due to the high oxygen content of the aerated water causing some “spent” iodide to be restored back to free iodine to a slight, but significant, equilibrium level.

7. The method as claimed in claim 6 wherein the iodine becomes gradually oxidized by the tower aeration itself to its secondary disinfectant form, the iodate ion [IO₃⁻], which by its even greater chemical stability diffuses fully into any
residual sediments or biofilms that might persist, and where it will reduce back to disinfecting free iodine in reactive contact with active anaerobe organisms, thereby deactivating said organisms even as they start up.

8. The method as claimed in claim 2, wherein the iodine is added by visible feeder equipment that permits instant assessment as to whether trace iodine additions are being appropriately maintained to cooling tower make-up flows, and a saturation bed type feeder that fully, automatically, and flow-proportionately feeds iodine-saturated water to make-up flows via a sidestream loop regulated by a flow-controlling needle valve adjusted initially by treated water testing.

9. The method as claimed in claim 7 wherein zinc completes functions complementary to iodine addition measures, and complements iodine limitations at controlling algae through strong suppression of the “Blue-green” group of algae so as to avoid resorting to more toxic algicides, such as copper, silver, ozone, chlorination chemicals, and, also inhibits more persistent tower micro-organisms, such as the Pseudomonads for a further minimization of bioerosion factors; and creates near-saturation of the water with zinc that additionally slows corrosion upon all the protective zinc galvanizing present upon metallic equipment surfaces.

10. A trace level zinc feeder for use with water circulation systems in cooling towers for adding trace levels of zinc to such water and comprising: an automatically regulating saturation bed feeder operable for continuous addition of zinc to the tower make-up flow to reach near-saturation of all input water with respect to protecting zinc-coated surfaces.

11. A trace level zinc feeder for use with water circulation systems as claimed in claim 10 and including a fluidized bed of size-graded zinc granules which in suspension continuously scrub each other to maintain constantly scoured zinc/ zinc oxide surfaces for solubilizing such zinc at a uniform, consistent rate.

12. A trace level zinc feeder for use with water circulation systems as claimed in claim 11 including the provision of downward and tangentially angled water inflow nozzles at the bottom of the bed of zinc granules that spiral the bed contents around for consistent particle scrubbing over a wider range of flow-rate operation than would be normally possible with a standadly designed fluidized bed unit.

13. A trace level zinc feeder for use with water circulation systems as claimed in claim 12 and including a visually transparent vessel for quick assessment of the bed appropriate fluidized operation.

14. Apparatus for the automatic, self-regulating treatment of water for use in water circulating towers in which water is evaporated, and make up water is added, with components which synergistically function to cut chemical, energy, water, corrosion, pollution, and maintenance costs, and comprising: at least one water conditioning module connected to said tower for receiving water therefrom and for removing adhering evaporation scale deposits along with their content of concentrated biofouling nutrients, and for returning it to the tower; a make up water treatment module connected to the tower for supplying make up water to said tower; an iodine supply canister in said make up water treatment module for metering iodine into the make-up water to enhance the further disinfection of nutrient-deprived surfaces from any residual biofilm and chance pathogen contaminations; a zinc supply canister in said make up water treatment module for adding metered amounts of zinc ions to the make up water for inhibiting residual iodine-resistant algal and bacterial organisms of hazard for restoring bionutrient tower conditions.

15. Apparatus for the automatic, self-regulating treatment of water as claimed in claim 14 including visual inspection ports on said iodine canister and said zinc canister.

16. Apparatus for the automatic, self-regulating treatment of water as claimed in claim 15 including a sample valve cock in said make up water module operable to sample water treated therein.

17. Apparatus for the automatic, self-regulating treatment of water as claimed in claim 16 including a filter in said water conditioning module operable to remove scale from water in said tower.

18. A method comprising:

providing water having an iodine-related species dissolved therein;

aerating the water while subjecting the water to a moving gas to thereby promote oxidation of the iodine-related species.

19. The method of claim 18 further comprising using fans to provide the moving gas.

20. The method of claim 18 wherein providing water comprising providing water in a water recirculating system.

21. The method of claim 20 wherein providing water in a water recirculating system comprises providing water in a cooling tower.

22. The method of claim 21 wherein aerating the water comprises, in part, causing the water to flow downwardly in the cooling tower.

23. The method of claim 22 wherein subjecting the water to a moving gas comprises subjecting the water to the moving gas while causing the water to flow downwardly in the cooling tower.

24. The method of claim 23 wherein subjecting the water to the moving gas while causing the water to flow downwardly in the cooling tower comprises using fans to provide the moving gas.

25. The method of claim 18 wherein the iodine-related species comprises, at least in part, iodine.

26. The method of claim 25 wherein aerating the water while subjecting the water to a moving gas to thereby promote oxidation of the iodine-related species comprises aerating the water while subjecting the water to a moving gas to thereby promote oxidation of the iodine to thereby produce iodate.

27. The method of claim 26 wherein subjecting the water to a moving gas to thereby promote oxidation of the iodine to thereby produce iodate comprises subjecting the water to a moving gas to thereby promote oxidation of the iodine to thereby produce iodate that will diffuse into residual contaminants that may persist in the water.

28. The method of claim 27 wherein subjecting the water to a moving gas to thereby promote oxidation of the iodine to thereby produce iodate that will diffuse into residual contaminants that may persist in the water further comprises subjecting the water to a moving gas to thereby promote oxidation of the iodine to thereby promote oxidation of the iodine to thereby produce iodate that will diffuse into residual contaminants that may persist in the water and that will reduce back to disinfecting free iodine when reactively contacting active organisms in the water.

29. The method of claim 28 wherein the active organisms comprise, at least in part, active anaerobe organisms.
30. The method of claim 27 wherein subjecting the water to a moving gas to thereby promote oxidation of the iodine to thereby produce iodate that will diffuse into residual contaminants that may persist in the water comprises subjecting the water to a moving gas to thereby promote oxidation of the iodine to thereby produce iodate that will diffuse substantially fully into residual contaminants that may persist in the water.

31. The method of claim 18 wherein aerating the water while subjecting the water to a moving gas to thereby promote oxidation of the iodine-related species comprises aerating the water while subjecting the water to a moving gas to thereby promote oxidation of the iodine-related species such that iodine is maintained at least a trace disinfectant presence in the water even after been reduced by disinfection reactions to iodide ions due, at least in part, to a higher aerated oxygen content of the water.

32. The method of claim 31 wherein aerating the water while subjecting the water to a moving gas to thereby promote oxidation of the iodine-related species comprises aerating the water while subjecting the water to a moving gas to thereby promote oxidation of the iodine-related species to cause at least some spent iodide to be restored back to free iodine.

33. The method of claim 32 wherein promoting oxidation of the iodine-related species to cause at least some spent iodide to be restored back to free iodine comprises promoting oxidation of the iodine-related species to cause at least some spent iodide to be restored back to free iodine at a relatively slight but significant equilibrium level.

34. The method of claim 18 wherein the iodine-related species comprises, at least in part, iodide.

35. The method of claim 18 wherein aerating the water while subjecting the water to a moving gas comprises moving the gas in a direction that is substantially opposite a primary direction of flow of the water.

36. The method of claim 35 wherein moving the gas in a direction that is substantially opposite a primary direction of flow of the water comprises moving the gas in a substantially upwards direction.

37. The method of claim 18 wherein the gas comprises an oxygen-containing gas.

38. The method of claim 37 wherein the oxygen-containing gas comprises air.