017760 A2 |V P00 0 O 0 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

6 January 2005 (06.01.2005)

(10) International Publication Number

WO 2005/001760 A2

(51) International Patent Classification’:

(22) International Filing Date:
(25) Filing Language:

(26) Publication Language:

GO6T

(21) International Application Number:

PCT/US2004/016951

27 May 2004 (27.05.2004)

English

English

(30) Priority Data:

10/446,506 27 May 2003 (27.05.2003) US

(71) Applicant (for all designated States except US): ZAXEL

SYSTEMS, INC. [US/US]; 11666 Dawson Drive, Los Al-
tos Hills, CA 94024 (US).

(72) Inventor: SUZUKI, Norihisa; 11666 Dawson Drive, Los

Altos Hills, CA 94024 (US).

(74) Agents: GLENN, Michael, A. et al.; Glenn Patent Group,

Suite L., 3475 Edison Way, Menlo Park, CA 94025 (US).

(81)

(84)

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB,
GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG,
KP,KZ,LC,LK,LR,LS,LT, LU, LV, MA, MD, MG, MK,
MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT,
TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: FAST LOSS LESS IMAGE COMPRESSION SYSTEM BASED ON NEIGHBORHOOD COMPARISONS

(57) Abstract: A fast loss less image compression system based on neighborhood comparisons compares pixel value differences

& with neighboring pixels and replaces such pixel values with the minimum of the differences. A marker is attached to a block of
m pixels, such that all the pixels in that block are compared with neighbors of one direction. The marker indicates how all of the
& pixels in that block are compared. Intermittent Huffman-tree construction is used such that one tree is used for several frames.
& Huffman coding is used to compress the resulting frame. A single Huffman-tree is constructed once every predetermined number

of frames. The frequency of Huffman-tree construction can be performed according to the instantaneous availability of processor
time to perform the construction. When more processing time is available, the Huffman-trees are computed more frequently. Such
frequency variation can be implemented by using an input video frame buffer. If the buffer is a certain size, then processor time for
Huffman-tree construction is available.

10

15

20

25

30

WO 2005/001760 PCT/US2004/016951

Fast Loss Less Image Compression System
Based on Neighborhood Comparisons

BACKGROUND OF THE INVENTION

TECHNICAL FIELD
The invention relates to data compression methods in a computer environment.
More particularly, the invention relates to real-time fast loss-less video compression
and decompression using video frame preprocessing.

DESCRIPTION OF THE PRIOR ART

Video data is typically encoded in large blocks of memory. Even a single video
frame of, for example, a size of 1K x 1K can requiré megabytes to describe it. Video
data requires large amounts of memory to store and high communication
bandwidths to transfer. It therefore is highly advantageous to compress video data.
However, some compression methods lose information in the process.

Some applications can tolerate various degrees of loss, but still others require loss-
less compression.

The typical loss-less video data compression methods use differential pulse code
modulation (DPCM). A current pixel value is replaced by the difference between it
and the previous pixel. Since pixel values change rather slowly along scan lines,
the difference values will near zero, making compression algorithms particularly
effective. However, many times, the slow change between pixel values occurs in
vertical or diagonal bands. Prior art methods that can only take advantage of
horizontal bands in the image are compromised.

Huffman coding can be used to compress real-time video data. A Huffman-iree is
built and the tree is used to recode the data. The basic idea is that frequently

10

15

20

25

30

WO 2005/001760 PCT/US2004/016951

occurring video codes are replaced by a Huffman code that requires fewer bits.
Occasional video codes that occur infrequently are described with Huffman codes
that require more bits than the video code itself. In spite of this, the combination of
Huffman codes does result in an overall gain in compression.

A conventional approach is to compute the Huffman-tree once. This is regardless
of any real difference resulting from the previous tree and regardless of available
processing time to handle the job at that instant. The computational time required
to compute the Huffman-tree can equal that needed to run the compression for one
image with that tree.

It would be advantageous to provide a fast loss less image compression system
based on neighborhood comparisons that provides fast pre-processing of images.
It would further be advantageous to provide a fast loss less image compression
system based on neighborhood comparisons that speeds up Huffman coding and
the compression of video images.

SUMMARY OF THE INVENTION

The invention provides a fast loss less image compression system based on
neighborhood comparisons. The invention provides fast pre-processing of images.
In addition, the invention provides faster Huffman coding and video image
compression.

A preferred embodiment of the invention preprocesses video frames in a video
stream using a best-neighbor algorithm that compares pixel value differences with
neighboring pixels and replaces the pixel values with the smallest differences. This
reduces the variance of image frame values for better compression.

A marker is attached to an n-by-m block of pixels, such that all the pixels in that
block are compared with neighboring pixels of one direction. The marker indicates
how all the pixels in that block are compared.

10

15

20

25

30

35

WO 2005/001760 PCT/US2004/016951

Huffman coding is used to compress the resulting frame. Intermittent Huffman code
tree construction is used by the invention to provide more efficient use of CPU
resources. A single Huffman-tree is constructed once every predetermined number
of frames and used to compress a set of frames. When used for real-time video
compression, the frequency of Huffman-tree construction is selected according to
the instantaneous availability of processor time to perform the construction.

When more processing time is available, the Huffman trees are computed more
frequently. The frequency variation is implemented by checking an input video
frame buffer for video frames to be compressed. [f the size of the frame buffer is a
predetermined value, then processor time for constructing a Huffman tree is
available.

Other aspects and advantages of the invention will become apparent from the

following detailed description in combination with the accompanying drawings,
illustrating, by way of example, the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a flowchart of a video data compression embodiment of the present
invention that uses four delta computations for improved performance where the
image has horizontal, vertical, and/or diagonal bands;

Fig. 2 is a flowchart of a video data compression embodiment of the present
invention that uses two delta computations for improved performance where the
image has horizontal and/or vertical bands;

Fig. 3 is a block schematic diagram of a flowchart for the coding of frames of an
input video stream by creating a Huffman tree using a statistical distribution from a
series of frames and applying the Huffman tree to a longer series of frames
according to the invention;

Fig. 4 is a block schematic diagram of a flowchart for the coding of frames of an
input video stream by creating a Huffman tree using a statistical distribution from a

10

15

20

25

30

35

WO 2005/001760 PCT/US2004/016951

series of frames, applying the Huffman tree to a longer series of frames, and
creating another Huffman tree when the compression ratio falls below a certain
threshold according to the invention;

Fig. 5 is a block schematic diagram of an input stream and a current bit pointer
according to the invention;

Fig. 6 is a block schematic diagram of a flowchart for the decoding of frames of an
input stream using a concatenated code approach and a decode table according to
the invention;

Fig. 7 is a block schematic diagram of a task viewpoint of the invention showing the
invention’s compression and decompression stages according to the invention;
and

Fig. 8 is a block schematic diagram of a selective compression scheme according

to the invention.

DETAILED DESCRIPTION OF THE INVENTION

The invention is embodied in a fast loss less image compression system based on
neighborhood comparisons. A system according to the invention provides fast pre-
processing of images. The invention additionally provides faster Huffman coding
and video image compression.

In order for the compression and decompression of video frames to work in real-
time, not only must the compression and decompression be fast, but there will be
no preprocessing time for the input video. The compression and decompression
for video frames have to finish in a bounded amount of time.

A preferred embodiment of the invention provides the fast preprocessing of video
images (frames) to reduce the variance of image frame values for better
compression. The video frames that are preprocessed are compressed using
Huffman coding. Huffman coding requires a large amount of computation time, so

10

15

20

25

30

35

WO 2005/001760 PCT/US2004/016951

the invention speeds up the Huffman coding. The invention also seiectively
compresses frames if the available computation capacity cannot keep up with the
video data to be compressed.

Fig. 1 represents a fast preprocessing best-neighbor compression method
embodiment of the present invention, and is referred to herein by the general
reference numeral 100. One skilled in the art will readily appreciate that, although
the text below use a block of size four by four as an example, the invention can b)e
generalized to a block of n by m, for any number n which is smaller than the
number of scan lines, and m which is smaller than the number of pixels in one scan
line.

A typical video stream for compression by method 100 comprises a series of video
frames, each video frame comprises a number of scan lines, and each scan line
includes a number of pixels. The method 100 comprises a step 102 that sets a
current-scan-line address counter to the top scan line of a frame. A step 104
checks if there are less than four (n) scan lines left below the current scan line. |f
not, a step 106 lowers the current-scan-line address counter by four (n).

A step 108 sets a cursor address counter to the first, or left-most pixel of the current
scan line. A step 110 checks to see if there are less than four (m) pixels to the right
of the cursor. If so, control returns to step 104. Otherwise, a step 112 advances the
cursor address counter to the right by four (m). A step 114 selects, for example, a
four-by-four (n-by-m) pixel matrix with a cursor pixel at a bottom-right corner.

A step 116 computes four pixel-differential (delta) values for the selected pixel
matrix, i.e., left delta, left-above delta, above delta, and right-above delta. An
evaluation measure is computed for each delta matrfx resulting from four delta
operations. The delta matrix with the best (lowest) evaluation measure is selected.
One marker is added to indicate which delta matrix was selected. The original
matrix is replaced with the selected delta matrix and its marker. Huffman coding is
applied to the marker.

A step 118 applies pixel left-delta computation to the remaining scan lines below
current and top most scan line. Pixel left-delta computation replaces the pixel

10

15

20

25

30

WO 2005/001760 PCT/US2004/016951

values of the entire scan line except the left most pixel. Each pixel is replaced by
the difference between the value of that pixel and the original value of the
immediately left neighbor pixel. A step 122 applies run-length coding. For
example, if there is a sequential series of the same number in the pixel values such
as: 0,0,0,0,1,1,1,1,2,2,2,2. This will be coded as a series of tuples: (4,0), (4,1), (4,2),
where the first integer indicates the number of times the second integer is
duplicated. A step 124 then Huffman codes each pixel of the whole resultant frame.

In method embodiments of the present invention, a left delta operation returns a
four-by-four (n-by-m) matrix with pixel values computed from the original matrix.
For each pixel in the original matrix, a difference is calculated between a current
pixel value and a left neighbor pixel value.

A left-above delta operation returns a four-by-four (n-by-m) matrix with pixel values
computed from the original matrix. For each pixel in an original matrix, a difference
is calculated between a current pixel value and a diagonally left and above
neighbor pixel value.

An above delta operation returns a four-by-four (n-by-m) matrix with pixel values
computed from the original matrix. For each pixel in the original matrix, a difference
is calculated between a current pixel value and an above-neighbor pixel value.

A right-above delta operation returns a four-by-four (n-by-m) matrix with pixel
values computed from the original matrix. For each pixel in the original matrix, a
difference is calculated between a current pixel value and the diagonally right and
above neighbor pixel value.

The Huffman coding comprises Huffman tree building and encoding based on the
Huffman tree. The Huffman tree building takes a substantial amount of time. If a
Huffman tree is created for every image frame, the computation time would be too
long and the algorithm would not run in real time. Compression iechniques such
as MPEG, use Huffman coding but use one Huffman tree for the entire video. This
is not satisfactory in many cases since the compression ratio deteriorates.

10

15

20

25

30

35

WO 2005/001760 PCT/US2004/016951

The invention creates the Huffman tree periodically. One approach creates the
Huffman tree once every fixed number of frames. The frequency of the tree
generation is computed so that the computation time for tree generation per frame
is about one tenth of the encoding time.

Another approach is an adaptive approach. If the computer is fast and a lot of
cycles are left, then the Huffman tree generation is run more frequenily to get a
better compression ratio. The invention approaches this problem by looking at the
input buffer. Whenever the input buffer becomes empty or near empty, that means
the compression system is catching up with the video input and, therefore,
processing time is left over to do other things, such as tree generation. The
invention’s algorithm looks at the input buffer size and if the size falls below a
threshold, then the Huffman tree generation is invoked.

Fig. 2 represents a simple fast preprocessing best-neighbor compression method
embodiment of the invention, and is referred to herein by the general reference
numeral 200. Method 200 is similar to method 100, but it only computes the left-
delta and above-delta.

A typical video stream for compression by method 200 comprises a series of video
frames, each video frame comprises a number of scan lines, and each scan line
includes a number of pixels. The method 200 comprises a step 202 that sets a
current-scan-line address counter to the top scan line of a frame. A step 204
checks if there are less than four (n) scan lines left below the current scan line. If
not, a step 206 lowers the curreni-scan-line address counter by four (n).

A step 208 sets a cursor address counter to the first, or left-most pixel of the current
scan line. A step 210 checks to see if there are less than four (m) pixels to the right
of the cursor. If so, control returns to step 204. Otherwise, a step 212 advances the
cursor address counter to the right by four (m). A step 214 selects, for example, a
four-by-four (n-by-m) pixel maitrix with a cursor pixel at a bottom-right corner.

A step 216 computes two pixel-differential (delta) values for the selected pixel
matrix, i.e., left delta and above delta. An evaluation measure is computed for each
delta matrix resulting from the two delta operations. The delta matrix with the best

10

15

20

25

30

WO 2005/001760 PCT/US2004/016951

(lowest) evaluation measure is selected. One marker is added to indicate which
delta matrix was selected. The original mairix is replaced with the selecied delia
matrix and its marker. Huffman coding is then applied to the marker.

A step 218 applies pixel left-delta computation to the remaining scan lines below
current and top most scan line. A step 222 applies run-length coding. A step 224
Huffman codes each scan line of the whole frame.

The evaluation measures mentioned for steps 116 and 216 are preferably equal to
the sum of the absolute values of the all the pixels in a four-by-four (n-by-m)
resulting delta matrix. If some pixel value differences cannot be computed because
the pixel is at the edge of a frame, the evaluation value does not exist or is
indicated. Consider the compression example represented in Table .

TABLE |
Compression Example

15116119 (13 | 8 9 | 12| 14
1471812213110} 12] 15| 17
12117120117 1131 11 141 16
7
8

10 | 19 | 21 | 11 9 6 8
9 1 17119 [12 7 2 15

A first matrix to be processed is presented in Table Il.

TABLE |l
First Matrix

14 { 18 [22 | 13
12 |17 [20| 17
10] 19 1211 11
9 117119] 12

In the second row and second column there is a current value of 17. A left delta
computes 17-12=5. An above-left delta computes 17-14=3. An above delta
computes 17-18=-1. An above-right delta computes 17-22=-5. Each of the sixteen
current pixel positions are similarly computed to generate a left delta matrix, a left-
above delta matrix, an above delta matrix, and a right-above delta mairix. A
completed left delta matrix produces an evaluation measure = nil for the first matrix

WO 2005/001760 PCT/US2004/016951

in Table Il. The computation of a left-above delta matrix also produces an
evaluation measure = nil.

An above delta matrix results in an evaluation measure = 27, as in Table lll.

5
TABLE Il
Above Delta Matrix
1121310
21112 4
202 1] -6
21211
10
A right-above delta matrix, as in Table 1V, results in an evaluation measure = 83.
TABLE IV
15 Right-Above Delta Matrix
2| -1 9 5
6| -51-7] 7

T 1 4|2
0| 4] 8| 5

Therefore, the evaluation measure comparison shows that the above delta (A) is
20 Dbest for the first 4x4 pixel matrix. A second matrix is represented in Table V.

TABLE V
Second Exemplary 4x4 Matrix
10 112 1 15} 17
13111] 14} 16
7 9 6 8
8 7 2 5
25
A left delta matrix of such second matrix, as in Table VI, results in evaluation
measure = 38.
30

WO 2005/001760

PCT/US2004/016951
TABLE VI
Left Delta Matrix
-3 2 3 2
41213 2
-4 2 -3 2
41 -1TT5]3
5
A left above delta matrix results in an evaluation measure = 59.
TABLE Vi
10

Left Above Delta Matrix

3[4 6 5
0 1 2 1
10 4 -51] -6
30) -7 -1

An above delta matrix results in an evaluation measure = 51.

15
TABLE Vili
Above Delta Matrix
2 3 3 3
3 -1 -1 -1
-6 -2 -8 -8
T |2 4] 3
20

A right above delta matrix results in an evaluation measure = nil.

Therefore, the evaluation measure comparison shows that the left delta (L) is best
for the second 4x4 pixel matrix. Pixel left delta of the first scan line is represented in
25 Table IX.

TABLE IX
Pixel Left Delta Of The First Scan Line

5] T3]-6]-5]1]37]2 |

30

10

WO 2005/001760 PCT/US2004/016951

Table X represents a result.

TABLE X
Result
5 ‘
151 1 3}1-6]-5]|1 3 2
11 21 3]07]-3] 2] 3] 2
21124 ([-4(-2| 3|2
2l 2| 1|64 2]-3]2
1]l 21271 j-4]-1]-5] 3
Neighbor matrix markers are:
10
Huffman compression processing results in the Huffman tree of Table XI.
TABLE XI
Huffman tree
15
pixel value Huffman code | # of occurrences total bits
0 00010 1 5
1 010 4 12
-1 0110 4 16
2 11 8 16
-2 100 6 18
3 101 6 18
-3 0111 2 8
4 00001 1 5
-4 0011 3 12
-5 0010 2 8
-6 00011 2 10
15 00000 1 5
Total 40 133

The compression ratio for this example is (200-133)/200=34%
In general, method embodiments of the invention compare the pixel value

20 differences with the neighboring pixels and replace the pixel values with the
smallest of the several differences. A marker is attached to a block of pixels, such

11

10

15

20

25

30

WO 2005/001760 PCT/US2004/016951

that all the pixels in that block are compared with neighbors of one direction. The
marker indicates how all the pixels in that block are compared.

Periodic Huffman iree construction is used. Huffman coding is used to compress
the resulting frame. A single Huffman tree is constructed once every q number of
frames. Since the frames do not change frequently, g can be set to thirty and still
not cause much deterioration in compression ratio. When used for real-time video
compression, the frequency of Huffman tree construction is selected according to
the instantaneous availability of processor time to perform the construction. When
more processing time is available, the Huffman trees are computed more
frequently. The frequency variation is implemented by first checking the input video
frame buffer. [f the frame buffer is empty, then processor time for Huffman tree
construction is available.

Lossless compression of images has been implemented using the fact that color
and brightness of the images change gradually on the surface so the values of
neighboring pixels do not change drastically. In other words, each pixel is
constrained by its neighboring pixels because the image data is not completely
arbitrary.

Many compression methods are based on differential pulse code modulation
(DPCM), which creates a "predictor" from some linear function of the pixels
preceding a point in a scan line. The actual pixel value is replaced with a
difference between the actual pixel value and the predictor. The predictor often
equals the value of the immediately preceding pixel. In this way, the whole pixel
values of the images are close to zero, and can be compressed either by using
fewer bits to represent pixels or using Huffman coding to compress.

It each pixel were assigned its own marker, the total amount of data needed for
such markers can be substantial, e.g., one quarter of the total. This overhead can
be significantly reduced by dividing the image into a number of small n-by-m
blocks. All the pixels in a block are assigned one marker. The one marker is
attached to each block that indicates which of the four comparisons is selected. All
the pixels in each block are compared with their neighboring pixels in a single way.

12

10

15

20

25

30

35

WO 2005/001760 PCT/US2004/016951

The shape and size of the block can take any form. In one embodiment of the
invention, the n-by-m block dimension is set to be a four-by-four square matrix.

After all of the absolute pixel values have been preprocessed and reduced to
small-numeric differential values, Huffman coding is used to compress the frame.
But the Huffman coding of video can be time-expensive. Huffman coding consists
of two phases, one to create the Huffman tree for encoding, and a next to encode
the pixels. The first phase Huffman tree-generation processing time can require as
much as the second phase time needed to encode the whole image. In order to
reduce the time the invention performs tree generation once for several frames.
Since the images do not change drastically between sequential frames, this often
does not degrade the compression ratio.

Two different schemes can be used to set the frequency of Huffman tree
generation, one fixed and one variable. A fixed number of frames can be made to
share a single Huffman tree, e.g., thirty frames. The variable method generates
Huffman trees according to the processor power available at the time. The
availability of processing power is assessed by looking at the number of entries in
an input buffer that need to be compressed. Litlle or no work to do means more
time can be spent on generating Huffman trees more frequently.

A Huffman tree is used to convert each code in the input video stream into a
Huffman code. The Huffman code is a variable length code that is short in length
for frequently occurring input codes and longer for less frequently occurring input
codes.

A particular Huffman code tree is considered more efficient than other Huffman
code trees if it can produce a smaller output file. A very efficient Huffman code tree
can be created if the statistical distribution of the input video is known. However,
the distribution of the code in the entire video for a real time compression system
cannot be estimated. One approach is to use a predetermined Huffman code tree,
which works satisfactorily for most input files. But this approach may fail badly for
some special cases. The optimal approach is to create a Huffman code tree for
each frame but this consumes too much computation time.

13

10

15

20

25

30

35

WO 2005/001760 PCT/US2004/016951

The invention assumes the nature of the video, i.e., that the content of frames do not
change very frequently. The invention takes a statistical distribution of codes for the
first several frames, then creates a Huffman code tree. The Huffman code tree can
be applied to the entire input video, but again this may work badly for some other
parts of the video. Instead, the invention creates a Huffman code tree from the first
several (scanned) frames, e.g., three frames, then applies this Huffman code tree to
convert a set of (coded) frames, e.g., 20. Using this method, the lengthy time
required for the Huffman code tree generation can be averaged over a long period
of time to the point of being an insignificant load for computation.

Referring to Fig. 3, the invention keeps the two numbers (scanned and coded)
constant for the entire file or it can change the number of frames to apply the
Huffman code tree to. The invention uses a counter to count the number of frames
that are coded 301. The invention first goes through the scanning process where a
scanFrame number of frames are scanned and a statistical distribution is performed
on the codes in the frames 302, 303, 304, 305. ScanFrame is three in this
example.

A Huffman tree is created using the statistical distribution of the scanned frames
306. The Huffman tree is then stored in the output stream so it can be retrieved
during the decompression stage 307. The invention uses the Huffman tree to
convert the codes in the set of codedFrames that includes the scanned set of
frames and stores the resultant Huffman codes in the output stream 308, 309, 310,
311. CodedFrames in this example is equal to 20.

The invention repeats this process for all of the frames in the video (totalFrames)
312, 313 until the all of the frames in the video are converted 314.

Referring to Fig. 4, if the compression ratio becomes low, it may be because the
scene has changed and the statistics of the codes in the frames have become very
different. The invention recreates the code tree when this occurs. As in Fig. 3, the
invention uses a counter. to count the number of frames that are coded 401. The
invention goes through the scanning process where a scanFrame number of
frames are scanned and a statistical distribution is performed on the codes in the
frames 402, 403, 404, 405. ScanFrame is three in this example.

14

10

15

20

25

WO 2005/001760 PCT/US2004/016951

A Huffman tree is created using the statistical distribution of the scanned frames
406. The Huffman tree is then stored in the output stream so it can be retrieved
during the decompression stage 407. The invention uses the Huffman tree to
convert the codes in the set of codedFrames that includes the scanned set of
frames and stores the resultant Huffman codes in the output stream 408, 409, 410,
411, 413. CodedFrames in this example is equal to 200.

If the compression ratio of a frame falls below a threshold value (typically 0.7),
indicating that a scene most likely has changed, the invention sets the
currentFrame at the next frame 412 and goes back to the scanning process 402,
403, 404, 405, to create a new Huffman tree 406, 407.

The invention repeats this process for all of the frames in the video (totalFrames)
414, 415 until the all of the frames in the video are converted 416.

The Huffman code is encoded using a look up table for fast encoding. However,
since the Huffman algorithm converts a short code to a variable length code, there
are some codes that can be very long. Typically, if the input code is eight bits in
length, the maximum length of the Huffman code generated is about 30-bits.
Encoding is implemented by the invention in a relatively straight forward way using
a lookup table of 256 entries for an eight-bit input code as exemplified in Table XII.

Table Xl
Huffman code encoding table with 256 entries

Number of bits in the output code Code (in binary)
2 00

2 01

4 1000

30 100111100 0eenaeennee,

15

10

15

20

25

WO 2005/001760 PCT/US2004/016951

Decoding, on the other hand, is more complicated and time consuming because it
is not possible to implement a look up table for long codes. If the maximum
Huffman code length is 30-bits, then a table must be created with one billion entries
- which is not feasible even in a modern day computer main memory.

Most Huffman decoding splits the code into two parts in order to fit in main memory
and also to run faster. The two parts are: fixed length prefix; and variable length
remainder. The invention uses the fixed length prefix as an index to a look up table
as exemplified in Table XIII.

Given a modern day computer with several levels of memory hierarchy, it is
desirable to fit the look up table in the fastest memory called the cache memory.
The typical personal computer has 256K bytes of cache memory, which means that
the invention can use the prefix of size 11 bits (this can change as computers
advance and larger cache sizes become more common). Many codes fit into 11
bits because of the nature of Huffman coding, that is, more frequently occurring
input codes are assigned shorter output codes.

Table Xlll
Huffman code decoding table with 2048 entries
Number of biis in the code Qutput code or Pointer to Search Table

7 01111111

11 00111111

13 Pointer to -> Search table A

15 Pointer to -> Search table B

2 00001111

However, if the code does not fit into 11 bits, the rest of the codes are left in the
remainder part. The typical way to handle the conversion of the remainder part is to
use a search table. The first look up table’s entry will point to another table if the

16

10

15

20

25

WO 2005/001760 PCT/US2004/016951

output code that starts with the particular prefix is longer than 11 bits. In this
overflow table as exemplified in Table XIV, entries are pairs of numbers, the
remainder and the target code. If the first lookup table indicates that the code is
longer thanA 11 bits, then the overflow table is searched with the remainder as a
comparison index (or associative look up). If there is a matching entry, then the
corresponding target code is output. This is, however, tremendously time
consuming. So typically a hash table is used to speed up the search.

Table XIV
Overflow Search Table A

Number of bits in the Remainder Remainder Qutput code
2 01 10010001
9 010101010 10010010
6 101010f 10010011
5 11100 10010000

Even a hash table is slow, requiring several look ups. So it is not suited for the
invention’s purpose. Instead, the invention uses a concatenated code. When
generating a Huffman code, if the output is longer than 11 bits, then the result will
be a 19 bit code created by concatenating the 11 bit prefix and the eight bit input
code. A decoding table entry will be either the length of the prefix and eight bit
output code if the prefix is shorter than or equal to 11 bits, or an indicator saying
that the code is longer than 11 bits. A decoding table is exemplified in Table XV.

Table XV
decodeTable for concatenated code with 2048 eniries

Field numBits (Number of bits in the code) Field outputCode (Output code)
2 00001111
4 00110011
19 N/A
19 N/A
11 01010101

17

10

15

20

25

30

WO 2005/001760 PCT/US2004/016951

With respect to Figs. 5 and 6, the invention’s concatenated code Huffman decoding
method is shown. The invention processes the input stream 501 by walking
through the stream using a currentBit pointer 502, 601. A code is calculated from
the input stream 501 using the curreniBit and the following ten bits 602. The
decodeTable, as shown in Table XV, is used to look up the calculated code to find
the number of bits in the code 603.

If the number of bits is 19, then the invention takes the eight bit input code by
indexing into the input stream and appends the code to the ouiput stream 605, 606,
607, 610. If the number of bits is not 19, then the invention takes the output code
from the decodeTable and appends the output code to the output stream 608, 609,
610.

The process is repeated 611 until the bits in the input stream 501 are consumed
612

Referring to Fig. 7, a task viewpoint of the invention is shown. On the compression
side, the capture video task 701 captures the video stream that is to be
compressed. The video siream is fed to the fast preprocess video task 702 which
preprocesses the video as described above and in Figs. 1 and 2. As the frames in
the video are preprocessed, they are passed to the compress video task 703 which
compresses the video as described above and in Figs. 4 and 5. The compress
video task 703 stores the Huffman trees used in the compressed output stream and
stores the output stream on the hard disk 704.

On the decompression side, when a compressed video stream is sent to be
decompressed, the capture compressed video task 705 captures the input stream.
The input stream is passed from the capture compressed video task 705 to the
decompress video task 706. The decompress video task 706 decompresses the
input stream as described above and in Fig. 6 and outputs the decompressed video
stream 707.

18

10

15

20

25

WO 2005/001760 PCT/US2004/016951

When the frame size of a video is large or the frame rate is high, the data rate of the
video can be very large, and sometimes the CPU is not powerful enough to
compress and decompress every frame. In such a case, the invention does not
compress frames for a predetermined period so the CPU can keep up with the
video data that is coming in.

There are two approaches to selective compression. One approach is to compress
at a regular frequency. For example, the invention can compress every other
frame, or it can compress two frames and not do anything about the third frame and
then compress two more frames.

With respect to Fig. 8, another approach that the invention uses is an adaptable
system. The invention compresses frames when there are enough CPU resources
left. The invention measures thé CPU availability by maintaining a buffer of
incoming frames 802. This buffer 802 is placed between the fast preprocess video
task 801 and compress video task 803. |f the number of frames in the buffer 802
becomes greater than a threshold, e.g., five, then the compress video task 803
skips compressing frames and immediately writes the frames in the buffer 802 to
the disk 804. Once the buffer size becomes zero, or less than a second threshold
value, then the compress video task 803 starts compressing frames again.

Although the invention is preferably described herein with reference to the
preferred embodiment, one skilled in the art will readily appreciate that other
applications may be substituted for those set forth herein without departing from the
spirit and scope of the present invention. Accordingly, the invention should only be
limited by the Claims included below.

19

10

15

20

25

30

35

WO 2005/001760 PCT/US2004/016951

CLAIMS

1. A process for compressing and decompressing a video stream, comprising
the steps of:

providing fast preprocessing means for preprocessing video frames in the
video stream using a best-neighbor algorithm;

compressing the video frames using Huffman coding;

wherein a Huffman code tree is created as the video frames are being
received by said compressing step; and

wherein said compressing step outputs a compressed video stream.

2. The process of Claim 1, wherein said compressing step further comprises
the step of: |

providing statistical distribution calculation means for scanning a first
number of frames in a set of frames and performing a statistical distribution on the
codes in the first number of frames.

3. The process of Claim 2, wherein said compressing step further comprises
the steps of:

creating a Huffman tree using the statistical distribution of the scanned
frames;

converting the codes in the set of frames using the Huffman tree;

storing the resultant Huffman codes in the compressed video stream; and

repeating said creating, converting, and storing steps for all of the video
frames in the video stream.

4. The process of Claim 3, wherein said Huffman tree creating step stores the
Huffman tree in the compressed video stream.

5. The process of Claim 1, wherein said compression step compresses video
frames at a regular frequency.

6. The process of Claim 1, wherein said compression step compresses frames
when there are enough CPU resources available, wherein said compression step

20

10

15

20

25

30

35

WO 2005/001760 PCT/US2004/016951

measures the CPU availability by maintaining a buffer of incoming frames, and
wherein if a number of frames in the buffer becomes greater than a predetermined
threshold value, then said compression step skips compressing frames and
immediately writes the incoming frames in the buffer to the output stream until the
number of frames in the buffer becomes less than a second predetermined
threshold value.

7. The process of Claim 2, wherein if the compression ratio of a frame falls
below a threshold value, then said compression step goes back to said statistical
distribution calculation means to create a new Huffman tree.

8. The process of Claim 1, further comprising the steps of:

receiving a compressed video stream;

extracting a code from a set of bits in the compressed video stream;

providing a decode table to look up the extracted code to find a length of bits
in a code;

looking up the length of bits for said calculated code in said decode table;

wherein if the length of bits is equal to a predetermined value, then
extracting an input code from the compressed stream and appending the input
code to an uncompressed video stream;

wherein if the length of bits is not equal to a predetermined value, then
looking up an output code from said decode table and appending the output code
to the uncompressed video stream; and

repeating said extracting and looking up modules until all of the bits in the
compressed video stream are consumed.

9. An apparatus for compressing and decompressing a video stream,
comprising:

fast preprocessing means for preprocessing video frames in the video
stream using a best-neighbor algorithm;

a module for compressing the video frames using Huffman coding;

wherein a Huffman code tree is created as the video frames are being
received by said compressing module; and

wherein said compressing module outputs a compressed video stream.

21

10

15

20

25

30

35

WO 2005/001760 PCT/US2004/016951

10. The apparatus of Claim 9, wherein said compressing module further
comprises:

statistical distribution calculation means for scanning a first number of frames
in a set of frames and performing a statistical distribution on the codes in the first
number of frames.

11. The apparatus of Claim 10, wherein said compressing module further
comprises:

a module for creating a Huffman tree using the statistical distribution of the
scanned frames;

a module for converting the codes in the set of frames using the Huffman
tree;

a module for storing the resultant Huffman codes in the compressed video
stream; and

a module for repeating said creating, converting, and storing modules for all
of the video frames in the video stream.

12. The apparatus of Claim 11, wherein said Huffman tree creating module
stores the Huffman tree in the compressed video stream.

13. The apparatus of Claim 9, wherein said compression module compresses
video frames at a regular frequency.

14. The apparatus of Claim 9, wherein said compression module compresses
frames when there are enough CPU resources available, wherein said
compression module measures the CPU availability by maintaining a buffer of
incoming frames, and wherein if a number of frames in the buffer becomes greater
than a predetermined threshold value, then said compression module skips
compressing frames and immediately writes the incoming frames in the buffer to the
output stream until the number of frames in the buffer becomes less than a second
predetermined threshold value.

15. The apparatus of Claim 10, wherein if the compression ratio of a frame falls

below a threshold value, then said compression module goes back to said
statistical distribution calculation means to create a new Huffman tree.

22

10

15

WO 2005/001760 PCT/US2004/016951

16. The apparatus of Claim 9, further comprising:

a module for receiving a compressed video stream;

a module for extracting a code from a set of bits in the compressed video
stream;

a decode table to look up the extracted code to find a length of bits in a code;

a module for looking up the length of bits for said calculated code in said
decode table;

wherein if the length of bits is equal to a predetermined value, then
extracting an input code from the compressed stream and appending the input
code to an uncompressed video stream;

wherein if the length of bits is not equal to a predetermined value, then
looking up an output code from said decode table and appending the output code
to the uncompressed video stream; and

a module for repeating said extracting and looking up modules until all of the
bits in the compressed video stream are consumed.

23

WO 2005/001760

1/8

l 102
current<—
top line

104

ess than
4 scan lines

-below
curgent

current<«— current - 4

/118

apply pixel left-delta
" operation to
top-most scan line
and all the scan lines
" - below current

y

run length |~
coding

Y
Huffman code ¢~

each scan line
in whole frame

!

Fig. 1

122

124

[/

08

cursor < first pi
of th ot P e

e current scan

&

<€

110

less than\ Y
foqr more
ixels?

N 112
L

cursaor ¢— cursor + 4

[

114

select 4x4 pixel matrix

Y
compute 116
four deltas

PCT/US2004/016951

100

WO 2005/001760 PCT/US2004/016951

2/8

| e

current «—
top line - f

200

r21 8 current «—current - 4
) ‘ -208
apply pixel left-delta cursor J—-ﬁrst ixe/l-
operation to of the current scan line
top-most scan line :
and all the scan lines <
below current 210
less than_Y
four more
A 999 ixels?
run length |-~
coding N }1 2
v CUrsor<—cursor + 4
Huffman code |-~ 224 1214'
.each scan line :
in whole frame select 4x4 pixel matrix
compute 216
two deltas

Fig. 2

WO 2005/001760 PCT/US2004/016951

3/8
scanFrame; --Typically 3 301
codedFrames; -- Typically 20 ¢ /
totalFrames; -~ Number of
frames in the video CurrentFrame = 0;

<

i

306

v /

Create Huffman Code Tree from the
statistic distribution of codes in the first
scanFrame number of frames

i < scanfFrame ?

o

Take statistic distribution of codes
in frame currentFrame +1i Store the Gode Tree in the Output Stream

v — o7

1

i=i1; 308/ ' =b

(=]

Gonvert codes in frame “currentFrame + i" to
Huffman codes and store them in Output Stream

305 / &

309

i=is+l;

31—

i>=

311— codedFrames?

312 ———| currentFrame := currentFrame + codedFrames;

currentFrame >
totalFrames?

313——

e

WO 2005/001760 PCT/US2004/016951

scanFrame; --Typically 3 ¢4/8

codedFrames; -- Typically 200
totalFrames; - Number of frames CurrentFrame = 0;

in the video 401
threshold; -- Typically 0.7

=0 —— 402

406

y

Create Huffman Code Tree from the
statistic distribution of codes in the
first frames with number scanFrame

i < scanfFrame ?

Take statistic distribution of codes A4
in frame currentFrame + i Store the Code Tree in Output Stream
v 408 =0 407
=M1 k*
Convert codes in frame “currentFrame + {” to
/ Huffman codes and store them in Output Stream
40 409 v
410—— i=i+1;
currentFrame :=

compressionRatio
< threshold?

currentFrame + i

412"

i D=
codedFrames?

\ currentFrame := currentFrame + codedFrames;

currentFrame >
totalFrames?

\[Ed)

WO 2005/001760

5/8

501

Stream inputStream

totalBits = 18

PCT/US2004/016951

t——-CurrentBit =96
e

Fig. 5

WO 2005/001760 PCT/US2004/016951

6/8

{otalBits; — number of bits in
the Huffman coded file

inputStream; -- a stream of bits /

currentBit := O;

602 }

\ Extract 11 bits in the inputStream at locations from currentBit to
currentBit+10 and convert these 11 bits to integer and assign to code

v

603— numBits := decodeTable({code).numBits

601

numBits = 197

605 608
currentBits = currentBits + 11 606 ouiputCode :=

/ decodeTable(code).outputCode

v

Extract 8 bits in the inputStream at locations | 609
from currentBit to currentBit+7 and assign \
these 8 bits to outputCode

} currentBits := currentBits + numBits

currentBits := currentBits + 8
|

o7 3

/ Concatenate outputCode to outputStream
610

T [End j

WO 2005/001760

capture
video

fast
preprocess
video

compress
video

Hard Disk

PCT/US2004/016951

7/8

701

capture
compressed
705 / video

702

/ decompress

video

706/

703 decompressed
/ /video stream

707

WO 2005/001760 PCT/US2004/016951

8/8

801

fast
preprocess

video

802

frame buffer

compress
video

Hard Disk

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

