
US011367198B2 

( 12 ) United States Patent 
Tadi et al . 

( 10 ) Patent No .: US 11,367,198 B2 
( 45 ) Date of Patent : Jun . 21 , 2022 

( 54 ) SYSTEMS , METHODS , AND APPARATUSES 
FOR TRACKING A BODY OR PORTIONS 
THEREOF 

( 71 ) Applicant : MindMaze Holdiing SA , Lausanne 
( CH ) 

7/70 ( 2017.01 ) ; G06T 17/205 ( 2013.01 ) ; G06T 
19/20 ( 2013.01 ) ; G06T 2207/20076 ( 2013.01 ) ; 

( Continued ) 
( 58 ) Field of Classification Search 

CPC ... GO6T 7/20 ; G06T 7/55 ; G06T 7/70 ; G06T 
17/205 ; G06T 19/20 ; G06F 3/011 ; G06F 

3/017 ; GOON 7/005 
USPC 382/100 
See application file for complete search history . 

( 72 ) Inventors : Tej Tadi , Lausanne ( CH ) ; Nicolas 
Fremaux , Lausanne ( CH ) ; Jose Rubio , 
Lausanne ( CH ) ; Jonas Ostlund , 
Lausanne ( CH ) ; Max Jeanneret , 
Lausanne ( CH ) ( 56 ) References Cited 

( 73 ) Assignee : MindMaze Holding SA , Lausanne 
( CH ) 

U.S. PATENT DOCUMENTS 

2008/0181507 Al * 7/2008 Gope 
( * ) Notice : Subject to any disclaimer , the term of this 

patent is extended or adjusted under 35 
U.S.C. 154 ( b ) by 0 days . 

G06T 7/194 
382/190 

G06T 13/40 
345/647 

2010/0156935 A1 * 6/2010 Lim 

( Continued ) 
( 21 ) Appl . No .: 16 / 524,085 

( 22 ) Filed : Jul . 28 , 2019 
Primary Examiner — Stephen P Coleman 
( 74 ) Attorney , Agent , or Firm -Graeser Associates 
International Inc .; D'vorah Graeser ( 65 ) Prior Publication Data 

US 2020/0193614 A1 Jun . 18 , 2020 ( 57 ) ABSTRACT 
Related U.S. Application Data 

( 63 ) Continuation - in - part of application 
PCT / IB2018 / 000171 , filed on Feb. 7 , 2018 . 

( Continued ) 

No. 

( 51 ) Int . Ci . 
G06K 9/00 ( 2022.01 ) 
G06T 7/20 ( 2017.01 ) 
G06T 7/70 ( 2017.01 ) 
G06T 7/55 ( 2017.01 ) 
G06T 17/20 ( 2006.01 ) 

( Continued ) 
( 52 ) U.S. CI . 

CPC G06T 7/20 ( 2013.01 ) ; GO6F 37011 
( 2013.01 ) ; G06F 37017 ( 2013.01 ) ; GO6N 

7/005 ( 2013.01 ) ; G06T 7/55 ( 2017.01 ) ; G06T 

Systems , methods and apparatuses for tracking at least a 
portion of a body by fitting data points received from a depth 
sensor and / or other sensors and / or “ markers ” as described 
herein to a body model . For example , in some embodiments , 
certain of such data points are identified as “ super points , " 
and apportioned greater weight as compared to other points . 
Such super points can be obtained from objects attached to 
the body , including , but not limited to , active markers that 
provide a detectable signal , or a passive object , including , 
without limitation , headgear or a mask ( for example for VR 
( virtual reality ) ) , or a smart watch . Such super points may 
also be obtained from specific data points that are matched 
to the model , such as data points that are matched to vertices 
that correspond to joints in the model . 

35 Claims , 28 Drawing Sheets 

1400 

Markers ( 118 ) Joint 
Bone ? 

Camera ( 102 ) Depth sensor ( 104 ) Audio sensor ( 106 ) Additional sensor ( 120 ) 

jQjit 0 
Skelex device interface ( 1402 ) 108 

Library 
( 1406 ) 

Skelex 
structure 
( 1408 ) 

Serializes 
( 1410 ) 

Binary 
buffer 
( 1412 ) Bone o 

Skelex analysis interface ( 1404 ) 
Joint 1 

Data analysis layer ( 110 ) Tracking 
engine ( 112 ) 

Application layer ( 116 ) 

System 
calibration ( 114 ) V Bone 1 

Origin 
Computational device ( 130 ) 



US 11,367,198 B2 
Page 2 

Related U.S. Application Data 
( 60 ) Provisional application No. 62 / 715,671 , filed on Aug. 

7 , 2018 , provisional application No. 62 / 527,129 , filed 
on Jun . 30 , 2017 , provisional application No. 
62 / 456,025 , filed on Feb. 7 , 2017 . 

( 51 ) Int . Ci . 
G06T 19/20 ( 2011.01 ) 
G06F 3/01 ( 2006.01 ) 
GOON 7700 ( 2006.01 ) 

( 52 ) U.S. Ci . 
CPC G06T 2207/20212 ( 2013.01 ) ; GO6T 

2207/30196 ( 2013.01 ) ; G06T 2219/2004 
( 2013.01 ) 

( 56 ) References Cited 

U.S. PATENT DOCUMENTS 

2011/0181601 A1 * 7/2011 Mumbauer 

2013/0314401 Al * 11/2013 Engle 
2015/0178988 A1 * 6/2015 Montserrat Mora 

G06F 3/011 
345/473 

G06K 9/46 
345/419 

G06T 13/40 
345/420 

G06T 7/50 
345/420 

G06T 3/4038 

2015/0213646 A1 * 7/2015 Ma 

2017/0140578 A1 * 5/2017 Xiao 

* cited by examiner 



U.S. Patent 

Figure 1A 

Markers ( 118 ) 

100 

Additional sensor ( 120 ) 
( ) 

Jun . 21 , 2022 

Camera ( 102 ) 

Depth sensor ( 104 ) 

Audio sensor ( 106 ) 

Computational Device ( 130 ) 

processor ( 103 ) 

Sheet 1 of 28 

Device Abstraction Layer ( 108 ) Data Analysis Layer ( 110 ) 

memory ( 105 ) 

Tracking engine ( 112 ) 

System calibration ( 114 ) 

Application layer ( 116 ) 

US 11,367,198 B2 



Figure 1B 

U.S. Patent 

Camera ( 140 ) 

Audio 

Orientation 

Left RGB sensor ( 142 ) 

Right RGB sensor ( 144 ) 

Depth sensor ( 104 ) 

Additional sensor ( s ) ( 120 ) 

Sensor 

sensor 

( 106 ) 

( 146 ) 

Jun . 21 , 2022 

152 

Sheet 2 of 28 

CPU / 
Computer ( 130 ) 

Inertial sensor ( 148 ) 

Active marker ( 150 ) 

1 
?? L 

US 11,367,198 B2 

Possibly integrated into the same physical 

element 



Figure 2 

U.S. Patent 

System initiates 
( 202 ) 

Sensor data received 
( 210 ) 

Optionally integrate with video image data ( 216 ) 

Jun . 21 , 2022 

System calibration 
( 204 ) 

Map data as point cloud to GMM 
( 212 ) 

Sheet 3 of 28 

Determine initial user position ( 206 ) 

Impose constraints to GMM ( 214 ) 

Initialize template 
( 208 ) 

US 11,367,198 B2 



U.S. Patent 

Figure 3 

112 
GMM mapper ( 308 ) 

Jun . 21 , 2022 

Template engine 
( 300 ) 

Input depth sensor data 
( 306 ) 

Point cloud data 
decomposer ( 304 ) 

GMM data mapping module 
( 310 ) 

Template database ( 302 ) 

Mapping constraint module 
( 312 ) 

Sheet 4 of 28 

Template deformation module ( 314 ) 

US 11,367,198 B2 



Figure 4 

U.S. Patent 

Template engine ( 300 ) Adjust template module ( 414 ) 

Initial user position input 
( 412 ) 

Jun . 21 , 2022 

Template database ( 302 ) 

Sheet 5 of 28 

Skeleton ( 400 ) 

Surface vertices 
( 406 ) 

Skinning weights ( 410 ) 

Hierarchy of joints ( 402 ) 

Surface mesh connectivity ( 408 ) 

Constraints ( 416 ) 

Joint detection ( 404 ) 

US 11,367,198 B2 



Figure 5 

U.S. Patent 

Scan example body in fixed position ( 502 ) 

Obtain sensor data for subject in 
given position ( 510 ) 

Jun . 21 , 2022 

Model body in blender ( 504 ) 

Determine at least one 
measurement of subject ( 512 ) 

Sheet 6 of 28 

Decompose model to template parameters 
( 506 ) 

Scale body template according to measurement ( 514 ) 

Export template parameters to file 
( 508 ) 

US 11,367,198 B2 



Figure 6A 

U.S. Patent 

Decompose depth sensor data to point 
cloud ( 602A ) 

Solve for new location in parameter space 
( 610A ) 

Jun . 21 , 2022 

Adjust template vertices ( 604A ) 

Apply deformation model ( 612A ) 

Determine cost function gradient 
( 606A ) 

Sheet 7 of 28 

Repeat stages 606A - 612A until solved ( 614A ) 

Apply constraints to energy equation 
( 608A ) 

US 11,367,198 B2 



Figure 6B 

U.S. Patent 

Detect only markers as 
points ( 602B ) 

Solve for new location in parameter space 
( 610B ) 

Jun . 21 , 2022 

Adjust template vertices ( 604B ) 

Apply deformation model ( 612B ) 

Sheet 8 of 28 

Determine cost function gradient ( 606B ) Apply constraints to energy equation 
( 608B ) 

Repeat steps 606B 612B until solved 
( 614B ) 

US 11,367,198 B2 



Figure 6C 

U.S. Patent 

Detect only joint position as points 
( 602C ) 

Solve for new location in parameter space 
( 610C ) 

Jun . 21 , 2022 

Adjust template vertices ( 604C ) 

Apply deformation model ( 612C ) 

Sheet 9 of 28 

Determine cost function gradient ( 606C ) 

Repeat steps 606B 612B until solved 
( 6140 ) 

Apply constraints to energy equation 
( 608C ) 

US 11,367,198 B2 



Figure 6D 

U.S. Patent 

Decompose depth sensor data to point cloud ( 602D ) 

Apply constraints to energy equation 
( 610D ) 

Jun . 21 , 2022 

Detect super points ( 604D ) 

Solve for new location in parameter 

Detect only markers as 
points ( 602B ) 

space ( 612D ) 

Sheet 10 of 28 

Adjust template vertices ( 606D ) 

Apply deformation model ( 614D ) 

Determine cost function gradient ( 608D ) 

Repeat steps 608D - 614D 
until solved ( 616D ) 

US 11,367,198 B2 



Figure 6E 

U.S. Patent 

Decompose depth sensor data to point 
cloud ( 602E ) 

Apply constraints to energy equation 
( 610E ) 

Jun . 21 , 2022 

Apply classifier to point cloud ( 604E ) 

Solve for new location in 
parameter space ( 612E ) 

Sheet 11 of 28 

Adjust template vertices ( 606E ) 

Apply deformation model ( 614E ) 

Determine cost function gradient ( 608E ) 

Repeat stages 608E 612E until solved ( 616E ) 

US 11,367,198 B2 



U.S. Patent 

Figure 7 

Initialize position of joints by template ( 702 ) 

Jun . 21 , 2022 

Adjust surface vertices by skinning weights 
( 708 ) 

Detect joint position separately ( 704 ) 

Sheet 12 of 28 

Update deformation model from last 
known position ( 710 ) 

Deform surface vertices by joint position ( 706 ) 

US 11,367,198 B2 



Figure 8 

U.S. Patent 

Run separate pose 
recovery thread ( 802 ) 

Jun . 21 , 2022 

Every n frames check against recovery pose 
( 804 ) 

Sheet 13 of 28 

Rerun algorithm with recovery pose ( 806 ) If recovery pose has lower energy , 

US 11,367,198 B2 

swap ( 808 ) 



U.S. Patent 

Figure 9 

910 

Jun . 21 , 2022 

wa 

920 

9k - ( 1 - Ymk ) dk 

Ik - dk 

mmk 

Ik 

Sheet 14 of 28 

930 

930 

II II18 

dk 

US 11,367,198 B2 



Figure 10 

U.S. Patent 

Decompose depth sensor data to point 
cloud ( 1002 ) 

Jun . 21 , 2022 

Select segmentation model ( 1004 ) 

Upvote points shown in model according to number of times 
detected ( 1010 ) 

Apply RANSAC algorithm to point 
cloud ( 1006 ) 

Sheet 15 of 28 

Remove points belonging to model 
( 1012 ) 

Determine which points belong to model ( 1008 ) 

US 11,367,198 B2 



Figure 11 

U.S. Patent 

Receive point cloud 
( 1102 ) 

Optimize for best candidates for 
joints ( 1110 ) 

Jun . 21 , 2022 

Determine estimated joint location ( 1104 ) 

Apply trained classifier tree ( s ) to 

candidates ( 1112 ) 

Sheet 16 of 28 

Sample plurality of points ( 1106 ) 

Repeat steps 1106-1112 with candidate points ( 1114 ) 

Determine distance from sampled points to joint ( 1108 ) 

US 11,367,198 B2 



U.S. Patent 

Figure 12 

1200 

calibration 

Tracker 

Base initialization ( 1202 ) 

Scale manager ( 1212 ) 

Jun . 21 , 2022 

manager ( 1216 ) 

manager ( 1214 ) 

Sheet 17 of 28 

Table 

Marker manager ( 1210 ) 

Reference frame 

manager ( 1206 ) 

manager ( 1204 ) 

Table model ( 1208 ) 

US 11,367,198 B2 



Figure 13A 

U.S. Patent 

Start calibration process ( 1300 ) Perform marker calibration ( 1302 ) 

Jun . 21 , 2022 

Perform table 
calibration ( 1304 ) 

Sheet 18 of 28 

Perform scale 
calibration ( 1306 ) Complete calibration process ( 1308 ) 

US 11,367,198 B2 



U.S. Patent Jun . 21 , 2022 Sheet 19 of 28 US 11,367,198 B2 

Figure 13B 

1310 
RGB D image 

1314 

1312 Camera Compute world 
orientation sensors 

1316 

Track markers 

1318 
Adapt marker 
color models 

1320 All 
markers 
detected 

1322 
Setup Game Scene 

Scene is 
correct ? 

Display info 
message 

1324 

1326 

User 
validates 

? 
1328 

1330 
Done 



U.S. Patent Jun . 21 , 2022 Sheet 20 of 28 US 11,367,198 B2 

Figure 130 

1332 
RGB D image 

1334 

Detect pattern 

1338 
1336 

Fit table with 
RANSAC 

Pattern 
detected 

? 

1340 
Fit table with 

pattern 

T 1342 
Compute world 

origin 
1344 

1346 

Point Cloud Segment table 
Display 

segmented 
table 

1348 

Number 
stable 

frames > 
100 ? 1350 3 1352 Done 



U.S. Patent Jun . 21 , 2022 . , Sheet 21 of 28 US 11,367,198 B2 

Figure 13D 

1354 
RGBD image 

1356 
Track markers 

1358 
All 

markers 
detected 

? 

1360 
Initialize pose 

1362 Scale body with 
markers 

1364 Estimate marker 
offsets 

Marker 
offsets 

converged 
? 1366 

1368 
Done 



Figure 14A 

1400 

U.S. Patent 

Markers ( 118 ) 

Camera ( 102 ) 

Depth sensor ( 104 ) 

Audio sensor ( 106 ) 

Additional sensor ( 120 ) 

Jun . 21 , 2022 

Skelex device interface ( 1402 ) 

108 

Library ( 1406 ) 

Skelex structure ( 1408 ) 

Serializer ( 1410 ) 

Binary buffer ( 1412 ) 

Sheet 22 of 28 

Skelex analysis interface ( 1404 ) 
Data analysis layer ( 110 ) Tracking 

engine ( 112 ) 

Application layer ( 116 ) 

System 
calibration ( 114 ) 

US 11,367,198 B2 

Computational device ( 130 ) 



Figure 14B 

U.S. Patent 

sacrum Or / l_hip_bone 

Jun . 21 , 2022 

r / I_thigh 

Sheet 23 of 28 

rl calf 

r / _fore_foot 
or / toes 

r / l_foot 

US 11,367,198 B2 



U.S. Patent Jun . 21 , 2022 Sheet 24 of 28 US 11,367,198 B2 

r / l_upperarm 
r / l_forearm r / l_hand 

******************************** 
ril clavicle 

t1 

Figure 14C 



U.S. Patent Jun . 21 , 2022 Sheet 25 of 28 US 11,367,198 B2 

TI 

skull 2 

TI 
Yarim Oy 

Figure 14D 



U.S. Patent 

Figure 145 

Jun . 21 , 2022 

ril hand 

r / _thumb_metacarpal r / _thumb proximal 

r / l_fingername_metacarpal 
r / _thumb_distal 0000 r / l_fingernameproximal 

r fingername middle 

0000 
117 / _fingername_distal 

Sheet 26 of 28 

99 

US 11,367,198 B2 



U.S. Patent Jun . 21 , 2022 Sheet 27 of 28 US 11,367,198 B2 

Joint 1 

Joint ox 

? 

Bone i Bone 1 

1 
R 

Origin 
Joint 0 Bone 0 

Figure 14F 



Figure 146 

U.S. Patent 

1450 

Create skelex skeleton during calibration ( 1452 ) 

Store data compactly 
( 1458 ) 

Jun . 21 , 2022 

Track skeleton in each frame ( 1460 ) 

Receive sensor data 
( 1454 ) 

Sheet 28 of 28 

Transfer tracking information ( 1462 ) 

Format data to skelex structure ( 1456 ) 

US 11,367,198 B2 



9 

5 

10 

a 

30 

US 11,367,198 B2 
1 2 

SYSTEMS , METHODS , AND APPARATUSES instruction selected from a defined native instruction set of a 

FOR TRACKING A BODY OR PORTIONS codes ; and memory ; wherein said computer instructions 
THEREOF comprise a first set of machine codes selected from the 

native instruction set . 
FIELD OF THE DISCLOSURE Optionally said constraint is selected from the group 

consisting of a constraint against self - intersection , an angle 
The present invention is of a system , method and appa- constraint and a pose prior constraint , 

ratus for tracking a body or portions thereof , and in particu- Optionally the body model comprises a template , said 
lar , to such a system , method and apparatus for performing template including a standard model of a skeleton and 
such tracking with a depth sensor and / or camera . skinning , 

Optionally said template is adjusted as an input to the 
BACKGROUND body model ; and wherein said probabilistic fitting algorithm 

A body of a subject that is in motion may be considered comprises a GMM ( Gaussian mixture model ) for mapping 
to change shape and position ; it may be considered to change is the data points to the body model . 15 
shape because of changing of the overall outline of the body . Optionally said object attached to the body comprises one 
The prior art attempts to determine shape and position either or more of active markers that provide a detectable signal , 
via explicit point correspondences or using a deformation or a passive object that is so attached , including without 
model as part of a Gaussian Mixture Model ( GMM ) . For limitation headgear ( for example for VR ( virtual reality ) ) or 
example , U.S. Pat . No. 8,724,906 describes shape and 20 a smart watch . 
position of a moving body determined by applying a mesh Optionally said data points identified with joints of the 
to a model of the body , and then attempting to fit data points body are identified according to a previously determined 
to the mesh by using a random walk fier ; and U.S. Pat . position as an estimate . 
No. 9,344,707 describes fitting such data points but by Optionally said template including a standard model of a 
searching for a global minima for matching the data points 25 skeleton according to a hierarchy of joints as vertices and 
to points on a model . An example of a GMM is disclosed in skinning , and a first determination of a position of said joints 
“ Real - time Simultaneous Pose and Shape Estimation for of the body are determined according to said template . 
Articulated Objects Using a Single Depth Camera " by Mao Optionally for a given joint , the angle constraints are 
Ye and Ruigang Yang , IEEE Transactions on Pattern Analy determined according to a rotational model , for determining 
sis & Machine Intelligence , 2016 , vol . 38 , Issue No. 08 . 1 , 2 or 3 degrees of freedom , and for each degree of freedom , 

a minimum and maximum angle is determined . SUMMARY OF AT LEAST THE INVENTION Optionally the system further comprises a camera , and 
Embodiments of the present disclosure are directed to one or more processors having computer instructions oper 

systems , methods and apparatuses for tracking at least a 35 ating thereon configured to cause the processor to fit data 
portion of a body by fitting data points received from a depth points from at least one of the camera and the depth sensor 
sensor and / or other sensors and / or " markers ” as described relative to a user . 
herein to a body model . For example , in some embodiments , Optionally the camera is configured to collect video data 
certain of such data points are identified as “ super points , ” of one or more movements of the user in an environment via 
and apportioned greater weight as compared to other points . 40 optionally a plurality of markers affixed to points on the 
Such super points can be obtained from objects attached to user's body , the depth sensor is configured to provide at least 
the body , including , but not limited to , active markers that one of : data to determine the three - dimensional location or 
provide a detectable signal , or a passive object , including , position of a user , or a combination thereof , in the environ 
without limitation , headgear or a mask ( for example for VR ment according to a distance ( s ) of one or more of the 
( virtual reality ) ) , or a smart watch . Such super points may 45 markers from depth sensor in the volume ; and TOF ( time of 
also be obtained from specific data points that are matched flight ) data ; and the instructions are additionally configured 
to the model , such as data points that are matched to vertices to cause the processor to combine the data from the depth 
that correspond to joints in the model . sensor with the video data from the camera to produce a According to at least some embodiments , there is pro three - dimensional map of the user in an environment of the vided a system for tracking at least a portion of a body , 50 
comprising : a depth sensor for providing data to determine Optionally each marker comprises either an active or the three - dimensional location of the body in space accord 
ing to a distance of the body from the depth sensor ; a body passive sensor . 
model , comprising a skeleton ; and a computational device Optionally each marker comprises an active optical 

marker for emitting light . having computer instructions operating thereon configured 55 
to fit data points from the depth sensor to the body model Optionally computer instructions include instructions 
according to a probabilistic fitting algorithm , wherein a configured to cause the processor to perform as a calibration 
plurality of data points is identified as super points and are module configured to calibrate the system according to 
given additional weight in the fitting algorithm ; said super tracking one or more active markers . 
points are defined according to an object attached to the 60 Optionally at least one of the markers includes an inertial 
body , the data points are identified with joints of the body or 
a combination thereof , and said probabilistic fitting algo- Optionally the system further comprises an orientation 
rithm is constrained according to at least one constraint sensor for determining an orientation of the camera , the 
defined by the body . instructions are additionally configured to cause the proces 

Optionally said computational device comprises a hard- 65 sor to combine the data from the depth sensor with the video 
ware processor configured to perform a defined set of basic data from the camera according to the orientation of the 
operations in response to receiving a corresponding basic 
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Optionally the system further comprises one or more Optionally instructions are configured to cause the pro 
additional sensors , wherein at least one of the one or more cessor to operate as a calibration module configured to 
additional sensors are configured to collect biological sig- calibrate the system according to removal of an inanimate 
nals of the user . object . 

Optionally at least one of the one or more sensors com- Optionally said inanimate object comprises a table which 
prise an inertial sensor . is segmented out of the tracking of the point cloud . 

Optionally the instructions are additionally configured to Optionally the instructions are configured to exclude a 
cause the processor to convert sensor signals to sensor data plurality of points from tracking analysis . 
which is sensor - agnostic . According to at least some embodiments , there is pro 

Optionally the computer instructions are additionally con- 10 vided a system for tracking at least a portion of a body , 
figured to cause the processor to clean signals by either comprising : a depth sensor for providing data to determine 
removing or at least reducing noise , and or normalizing the the three - dimensional location of the body in space accord 
signals . ing to the distance from depth sensor ; a body model , 

Optionally the computer instructions are additionally con- comprising a skeleton ; and a computational device having 
figured to cause the processor to perform data analysis on the 15 computer instructions operating thereon configured to fit 
sensor data . data points from the depth sensor to a body model according 

Optionally computer instructions include instructions to a probabilistic fitting algorithm , wherein said probabilistic 
which cause the processor to perform as a tracking engine . fitting algorithm is constrained according to at least one 

Optionally the tracking engine is configured to either constraint defined by the human body , said constraint being 
track the position of the user's body , track the position of one 20 selected from the group consisting of a constraint against 
or more body parts of the user , including but not limited , to self - intersection , an angle constraint and a pose prior con 
one or more of arms , legs , hands , feet , and head , or both . straint , the body model comprises a template , said template 

Optionally the tracking engine is configured to decom- including a standard model of a skeleton and skinning , said 
pose signals representing physical actions made by the user template is adjusted as an input to the body model ; and 
into data representing a series of gestures . 25 wherein said probabilistic fitting algorithm comprises a 

Optionally the tracking engine is configured to decom- GMM ( Gaussian mixture model ) for mapping the data 
pose signals representing physical actions made by the user points to the body model . 
into data representing a series of gestures via classifier According to at least some embodiments , there is pro 
functionality . vided a system comprising : a camera ; a depth sensor ; a body 

Optionally computer instructions include instructions 30 model ; one or more additional sensors ; and one or more 
which cause the processor to perform as a calibration processors having computer instructions operating thereon 
module configured to calibrate the system with respect to the configured to cause the processor to fit data points from at 
position of the user . least one of the camera and the depth sensor relative to a 

Optionally the system further comprises a plurality of user , to the body model according to a probabilistic fitting 
templates , wherein the computer instructions are further 35 algorithm , wherein : the camera is configured to collect video 
configured to cause the processor to initialize a template of data of one or more movements of the user in an environ 
the plurality of templates . ment via optionally a plurality of markers affixed to points 

Optionally the template features a model of a human body on the user's body , the depth sensor is configured to provide 
configured only as a plurality of parameters , only as a at least one of : data to determine the three - dimensional 
plurality of features , or both . 40 location or position of a user , or a combination thereof in the 

Optionally the plurality of parameters and / or features environment according to one or more distances of one or 
include a skeleton , and one or more joints . more of the markers from depth sensor in the volume ; TOF 

Optionally instructions are additionally configured to ( time of flight ) data ; the instructions are additionally con 
cause the processor to utilize the plurality of parameters figured to cause the processor to combine the data from the 
and / or features to assist in tracking of the user's movements . 45 depth sensor with the video data from the camera to produce 

Optionally the instructions are configured to map the a three - dimensional map of the user in the environment . 
sensor data onto a GMM ( Gaussian mixture model ) . According to at least some embodiments , there is pro 

Optionally the body model includes a sparse - skin repre- vided a method for creating and / or using templates for a 
sentation . markerless tracking system comprising : scanning at least a 

Optionally the instructions are additionally configured to 50 portion of a user's body to form a standard body ; modeling 
cause the processor to suppress corresponding gaussians . the body in 3D , creating a mesh for representing a human 

Optionally data is mapped to a GMM . body or at least a portion thereof ; wherein : vertexes of the 
Optionally the data is mapped by a classifier . mesh are assigned as joints and / or bones , the model is 
Optionally the tracking engine includes a template engine configured to impose a constraint on positions of the verti 

configured to read a template from a template database , and 55 ces , and to reposition skin vertices in terms of joint posi 
the instructions are additionally configured to cause the tions , corresponding the modeled body to one or more 
processor to operate as a GMM mapper , and to send the template parameters ; and exporting the template and / or 
template to the GMM mapper . parameters thereof as a file . 

Optionally instructions are additionally configured to Unless otherwise defined , all technical and scientific 
cause the processor to operate as a point cloud decomposer , 60 terms used herein have the same meaning as commonly 
and to enable the GMM mapper to receive point cloud understood by one of ordinary skill in the art to which this 
information therefrom . invention belongs . The materials , methods , and examples 

Optionally the instructions are configured to apply Kal- provided herein are illustrative only and not intended to be 
man filter to determine a pose of the user . limiting . 

Optionally the instructions are configured to cause the 65 Implementation of the apparatuses , devices , methods and 
processor to operate as a calibration module configured to systems of the present disclosure involve performing or 
calibrate the system according to a scale of the user . completing certain selected tasks or steps manually , auto 
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matically , or a combination thereof . Specifically , several way of example and for purposes of illustrative discussion of 
selected steps can be implemented by hardware or by some embodiments of the present invention only , and are 
software on an operating system , of a firmware , and / or a presented in order to provide what is believed to be the most 
combination thereof . For example , as hardware , selected useful and readily understood description of the principles 
steps of at least some embodiments of the disclosure can be 5 and conceptual aspects of some of the embodiments . In this 
implemented as a chip or circuit ( e.g. , ASIC ) . As software , regard , no attempt is made to show details of some embodi 
selected steps of at least some embodiments of the disclo- ments in more detail than is necessary for a fundamental 
sure can be implemented as a number of software instruc- understanding thereof . 
tions being executed by a computer ( e.g. , a processor of the FIGS . 1A and 1B show a non - limiting example of systems 
computer ) using an operating system . In any case , selected 10 according to at least some embodiments of the present 
steps of - methods of at least some embodiments of the disclosure ; 
disclosure can be described as being performed by a pro- FIG . 2 shows a non - limiting example of a method for 
cessor , such as a computing platform for executing a plu- tracking the user , optionally performed with the 
rality of instructions . FIG . 1 , according to at least some embodiments of the 

Software ( e.g. , an application , computer instructions ) 15 present disclosure ; 
which is configured to perform ( or cause to be performed ) FIG . 3 shows a non - limiting example of a tracking engine , 
certain functionality may also be referred to as a “ module " optionally for use with the system of FIG . 1 or the method 
for performing that functionality , and also may be referred of FIG . 2 , according to at least some embodiments of the 
to a “ processor " for performing such functionality . Thus , present disclosure ; 
processor , according to some embodiments , may be a hard- 20 FIG . 4 shows templates and a template engine , according 
ware component , or , according to some embodiments , a to at least some embodiments of the present disclosure ; 
software component . FIG . 5 shows a non - limiting example of a method for 

Further to this end , in some embodiments : a processor creating and using templates , according to at least some 
may also be referred to as a module ; in some embodiments , embodiments of the present disclosure ; 
a processor may comprise one or more modules ; in some 25 FIGS . 6A to 6E show non - limiting examples of methods 
embodiments , a module may comprise computer instruc- for mapping data to track a user , according to at least some 
tions which can be a set of instructions , an application , embodiments of the present disclosure ; 
software — which are operable on a computational device FIG . 7 shows a non - limiting example of a method for 
( e.g. , a processor ) to cause the computational device to applying a deformation model , according to at least some 
conduct and / or achieve one or more specific functionality . 30 embodiments of the present disclosure ; 
Furthermore , the phrase " abstraction layer " or " abstraction FIG . 8 shows a non - limiting example of a method for pose 
interface , ” as used with some embodiments , can refer to recovery , according to at least some embodiments of the 
computer instructions ( which can be a set of instructions , an present disclosure ; 
application , software ) which are operable on a computa- FIG . 9 shows a prior art diagram of bone parameters . 
tional device ( as noted , e.g. , a processor ) to cause the 35 FIG . 10 shows a non - limiting example of a method for 
computational device to conduct and / or achieve one or more segmentation of a background object , according to at least 
specific functionality . The abstraction layer may also be a some embodiments of the present disclosure ; 
circuit ( e.g. , an ASIC ) to conduct and / or achieve one or more FIG . 11 shows a non - limiting example of a method for 
specific functionality . Thus , for some embodiments , and joint detection , according to at least some embodiments of 
claims which correspond to such embodiments , the noted 40 the present disclosure ; 
feature / functionality can be described / claimed in a number FIG . 12 shows a non - limiting , exemplary system for 
of ways ( e.g. , abstraction layer , computational device , pro- calibration , according to at least some embodiments of the 
cessor , module , software , application , computer instruc- present disclosure ; 
tions , and the like ) . FIGS . 13A - 13D show non - limiting , exemplary methods 
Some embodiments are described with regard to a “ com- 45 for calibration , according to at least some embodiments of 

puter , ” a “ computer network , " and / or a “ computer opera- the present disclosure ; and 
tional on a computer network . ” It is noted that any device FIGS . 14A - 146 relate to a non - limiting implementation 
featuring a processor ( which may be referred to as “ data for tracking abstraction with a skeleton according to at least 
processor ” ; “ pre - processor ” may also be referred to as some embodiments . 
" processor ” ) and the ability to execute one or more instruc- 50 
tions may be described as a computer , a computational DESCRIPTION OF AT LEAST SOME 
device , and a processor ( e.g. , see above ) , including but not EMBODIMENTS 
limited to a personal computer ( PC ) , a server , a cellular 
telephone , an IP telephone , a smart phone , a PDA ( personal FIG . 1A shows a non - limiting example of a system 
digital assistant ) , a thin client , a mobile communication 55 according to at least some embodiments of the present 
device , a smart watch , head mounted display or other disclosure . As shown , a system 100 features a camera 102 , 
wearable that is able to communicate externally , a virtual or a depth sensor 104 and optionally an audio sensor 106 . 
cloud based processor , a pager , and / or a similar device . Two Optionally an additional sensor 120 is also included . Option 
or more of such devices in communication with each other ally camera 102 and depth sensor 104 are combined in a 
may be a “ computer network . ” 60 single product ( e.g. , Kinect® product of Microsoft® , and / or 

as described in U.S. Pat . No. 8,379,101 ) . FIG . 1B shows an 
BRIEF DESCRIPTION OF THE DRAWINGS exemplary implementation for camera 102 and depth sensor 

104. Optionally , camera 102 and depth sensor 104 can be 
Embodiments of the present disclosure herein described implemented with the LYRA camera of Mindmaze SA . The 

are by way of example only , with reference to the accom- 65 integrated product ( i.e. , camera 102 and depth sensor 104 ) 
panying drawings . With specific reference now to the draw- enables , according to some embodiments , the orientation of 
ings in detail , it is stressed that the particulars shown are by camera 102 to be determined with respect to a canonical 
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reference frame . Optionally , three or all four sensors ( e.g. , a variable assumes continuous variables ( see for example 
plurality of sensors ) are combined in a single product . http://scottge.net/2015/06/14/ml101-regression-vs-classifi 

The sensor data , in some embodiments , relates to physical cation - vs - clustering - problems / ) . 
actions of a user ( not shown ) , which are accessible to the The tracking of the user's body and / or body parts , option 
sensors . For example , camera 102 can collect video data of 5 ally decomposed to a series of gestures , can then be provided 
one or more movements of the user , while depth sensor 104 to application layer 116 , which translates the actions of the 
may provide data to determine the three - dimensional loca- user into a type of reaction and / or analyzes these actions to 
tion of the user in space according to the distance of the user determine one or more action parameters . For example , and 
from depth sensor 104 ( or more specifically , the plurality of without limitation , a physical action taken by the user to lift 
distances that represent the three - dimensional volume of the 10 an arm is a gesture which could translate to application layer 
user in space ) . Depth sensor 104 can provide TOF ( time of 116 as lifting a virtual object . Alternatively or additionally , 
flight ) data regarding the position of the user , which , when such a physical action could be analyzed by application 
combined with video data from camera 102 , allows a layer 116 to determine the user's range of motion or ability 
three - dimensional map of the user in the environment to be to perform the action . 
determined . As described in greater detail below , such a map 15 To assist in the tracking process , optionally , one or more 
enables the physical actions of the user to be accurately markers 118 can be placed on the body of the user . Markers 
determined , for example , with regard to gestures made by 118 optionally feature a characteristic that can be detected 
the user . Audio sensor 106 preferably collects audio data by one or more of the sensors , such as by camera 102 , depth 
regarding any sounds made by the user , optionally including , sensor 104 , audio sensor 106 or additional sensor 120 . 
but not limited to , speech . Additional sensor 120 can be a 20 Markers 118 can be detectable by camera 102 , for example , 
sensor that can collect biological signals about the user as optical markers . While such optical markers may be 
and / or may collect additional information to assist the depth passive or active , preferably , markers 118 are active optical 
sensor 104. Non - limiting examples of biological signals markers , for example featuring any type of light emitting 
include an EEG sensor , a heartrate sensor , an oxygen satu- marker , such as an LED light for example . More preferably , 
ration sensor , an EKG or EMG sensor , or a combination 25 each of markers 118 , or alternatively each pair of markers 
thereof . 118 , can comprise an LED light of a specific color which is 

Sensor signals are collected by a device abstraction layer then placed on a specific location of the body of the user . The 
108 , which preferably converts the sensor signals into data different colors of the LED lights , placed at a specific 
which is sensor - agnostic . Device abstraction layer 108 pref- location , convey a significant amount of information to the 
erably handles the necessary preprocessing such that , if 30 system through camera 102 ; as described in greater detail 
different sensors are substituted , only changes to device below , such information can be used to make the tracking 
abstraction layer 108 would be required ; the remainder of process efficient and accurate . Additionally , or alternatively , 
system 100 can continue functioning without changes ( or , in one or more inertial sensors can be added the hands of the 
some embodiments , at least without substantive changes ) . user as a type of marker 118 , which can be enabled as 
Device abstraction layer 108 preferably also cleans signals , 35 Bluetooth or other wireless communication , such that the 
for example , to remove or at least reduce noise as necessary , information would be sent to device abstraction layer 108 . 
and can also be used to normalize the signals . Device The inertial sensors can also be integrated with an optical 
abstraction layer 108 may be operated by a computational component in at least markers 118 related to the hands , or 
device ( not shown ) , and any method steps may be performed even for more such markers 118. The information can then 
by a computational device ( note — modules and interfaces 40 optionally be integrated to the tracking process , for example , 
disclosed herein are assumed to incorporate , or to be oper- to provide an estimate of orientation and location for a 
ated by , a computational device , even if not shown ) . particular body part , for example as a prior restraint . 

The preprocessed signal data from the sensors can then be Data analysis layer 110 , in some embodiments , includes a 
passed to a data analysis layer 110 , which preferably per- system calibration module 114. As described in greater 
forms data analysis on the sensor data for consumption by an 45 detail below , system calibration module 114 is configured to 
application layer 116 ( according to some embodiments , calibrate the system with respect to the position of the user , 
" application , ” means any type of interaction with a user ) . in order for the system to track the user effectively . System 
Preferably , such analysis includes tracking analysis , per- calibration module 114 can perform calibration of the sen 
formed by a tracking engine 112 , which can track the sors with respect to the requirements of the operation of 
position of the user's body and also can track the position of 50 application layer 116 ( although , in some embodiments , 
one or more body parts of the user , including but not limited , which can include this embodiment , device abstraction layer 
to one or more of arms , legs , hands , feet , head and so forth . 108 is configured to perform sensor specific calibration ) . 
Tracking engine 112 can process the preprocessed signal Optionally , the sensors may be packaged in a device ( e.g. , 
data to decompose physical actions made by the user into a Microsoft® Kinect ) , which performs its own sensor specific 
series of gestures . A “ gesture ” in this case may include an 55 calibration . 
action taken by a plurality of body parts of the user , such as Computational device 130 may further comprise a pro 
taking a step while swinging an arm , lifting an arm while cessor 103 and a memory 105. As used herein , a processor 
bending forward , moving both arms , and so forth . Such such as processor 103 generally refers to a device or 
decomposition and gesture recognition can also be done combination of devices having circuitry used for implement 
separately , for example , by a classifier trained on informa- 60 ing the communication and / or logic functions of a particular 
tion provided by tracking engine 112 with regard to tracking system . For example , a processor may include a digital 
the various body parts . signal processor device , a microprocessor device , and vari 

It is noted that while the term “ classifier " is used through- ous analog - to - digital converters , digital - to - analog convert 
out , this term is also intended to encompass “ regressor ” . For ers , and other support circuits and / or combinations of the 
machine learning , the difference between the two terms is 65 foregoing . Control and signal processing functions of the 
that for classifiers , the output or target variable takes class system are allocated between these processing devices 
labels ( that is , is categorical ) . For regressors , the output according to their respective capabilities . The processor may 
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further include functionality to operate one or more software with blending weights . In this way , the skin can deform 
programs based on computer - executable program code accordingly with the body pose to simulate a realistic human 
thereof , which may be stored in a memory , such as memory shape . 
105 in this non - limiting example . As the phrase is used Optionally , the sensor data is analyzed by mapping onto 
herein , the processor may be " configured to ” perform a a GMM ( Gaussian mixture model ) as described herein . As 
certain function in a variety of ways , including , for example , described in greater detail below , optionally , a classifier can 
by having one or more general - purpose circuits perform the be used . Because the user's pose is not likely to change 
function by executing particular computer - executable pro- significantly between frames , optionally , the process at 212 , 
gram code embodied in computer - readable medium , and / or 214 , while performed iteratively , can only performed with 
by having one or more application - specific circuits perform regard to a limited number of iterations . For example , the 
the function . present inventors have found that , surprisingly , as few as 
FIG . 1B shows a non - limiting example of the implemen- 3-10 iterations may be used to map the data . If a GMM is 

tation of the camera and depth sensor , according to at least used , each vertex of the skin defines an isotropic gaussian , 
some embodiments of the present disclosure ( components whose mean location in the 3D space is a function of the 
with the same or similar function from earlier figures are rotation parameters of the joints to which the vertex is 
labeled with the same component numbers ) . Here , a camera attached ( rotating the left wrist won't affect the position of 
140 includes a plurality of different sensors incorporated the vertices on the right hand skin ) . 
therein , including , without limitation , a left RGB ( red green The body model preferably features a sparse - skin repre 
blue ) sensor 142 , a right RGB sensor 144 , depth sensor 104 , 20 sentation . Having a sparse - skin representation is convenient 
audio sensor 106 and an orientation sensor 146. Orientation to handle occlusions . Both self - occlusions or occlusions of 
sensor 146 is configured to provide information on the body parts due to clutter or because the user exits the camera 
orientation of the camera . frame . One dynamically enables or disables the gaussians 

The markers of FIG . 1A are now shown in more detail , as that are considered to be occluded at a given frame , so that 
markers 152. Markers 152 preferably comprise an inertial 25 those disabled won't influence the optimization . 
sensor 148 and an active marker 150. Active marker 150 can In a different direction , it is also straightforward to model 
comprise any type of marker which issues a detectable amputee users by suppressing the corresponding gaussians . 
signal , including but not limited to an optical signal such as This can be done online during a calibration process or 
from an LED light as previously described . A plurality of having a therapist manually configuring the body model . At 
different markers 152 can be provided ; active marker 150 30 212 , if a GMM is used , the sensor data is mapped as a point 
can be adjusted for the plurality of markers 152 , for example cloud to the GMM . The GMM and mapping are optionally 
to show LED lights of different colors as previously implemented as described with regard to “ Real - time Simul 
described . taneous Pose and Shape Estimation for Articulated Objects 

FIG . 2 shows an exemplary , illustrative non - limiting Using a Single Depth Camera ” by Mao Ye and Ruigang 
method for tracking the user , optionally performed with the 35 Yang , IEEE Transactions on Pattern Analysis & Machine 
system of FIG . 1 , according to at least some embodiments of Intelligence , 2016 , vol . 38 , Issue No. 08. In this paper , an 
the present disclosure . As shown , at 202 , the system initiates energy function is described , which is minimized according 
activity , for example , by being powered up ( i.e. , turned on ) . to the mapping process . 
The system can be implemented as described in FIG . 1 but Optionally , only the depth sensor data is used , but alter 
may also optionally be implemented in other ways . At 204 , 40 natively , both the depth sensor and the camera data are used . 
the system performs system calibration , which can include For example , the calculations may be performed as follows . 
determining license and / or privacy features . System calibra- Given a set of N points xEX it is desired to fit a GMM with 
tion may also optionally include calibration of one or more M components ( vm ) . 
functions of a sensor , for example , as described in reference 
to FIG . 1A . 

At 206 , an initial user position is determined , which ( in ( 1 ) 
some embodiments ) , is the location and orientation of the p ( xn ) = ( 1 – u ) plvm ) p ( xn | Vm ) + u 
user relative to the sensors ( optionally at least with respect 
to the camera and depth sensors ) . For example , the user may 
be asked to or be placed such that the user is in front of the 50 At 214 , one or more constraints are imposed on the GMM 
camera and depth sensors . Optionally , the user may be asked as described in greater detail below . For example , optionally 
to perform a specific pose , such as the “ T ” pose for example , the model is constrained so that the body parts of the user are 
in which the user stands straight with arms outstretched , constrained in terms of the possible angles that they may 
facing the camera . The term “ pose ” relates to position and assume . At 216 , the mapped data is optionally integrated 
orientation of the body of the user . 55 with video data . 
At 208 the template is initialized . As described in greater FIG . 3 shows an exemplary , illustrative non - limiting 

detail below , the template features a model of a human body , tracking engine , optionally for use with the system of FIG . 
configured as only a plurality of parameters and features , 1 or the method of FIG . 2 , according to at least some 
such as a skeleton , joints and so forth , which are used to embodiments of the present invention . For this embodiment 
assist in tracking of the user's movements . At 210 , sensor 60 of the tracking engine , the data is assumed to be mapped to 
data is received , such as for example , one or more of depth a GMM , but as described herein , optionally a classifier is 
sensor data and / or camera data . At 212 and 214 , the sensor used instead . As shown , the tracking engine features a 
data is analyzed to track the user , for example , with regard template engine 300 , which reads a template from a template 
to the user's movements . Optionally , the sensor data can be database 302 , and then feeds the template to a GMM mapper 
mapped onto a body model , e.g. , the body model features an 65 308. GMM mapper 308 also receives point cloud informa 
articulated structure of joints and a skin defined by a mesh tion from a point cloud decomposer 304 , which receives the 
of vertices that are soft - assigned to the joints of the model depth sensor data as an input in 306. Optionally color 
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camera data could also be provided to point cloud decom- 402 , which is ( as known ) representative of a virtual skeleton 
poser 304. For example , stereo RGB could be used to assist with its virtual parts . A hierarchy of joints 402 enables each 
with the assignment of points to body parts and / or to joint of the user's body to be located and for the location to 
improve the depth sensor data . Solutions to the problem of be determined in context to the location of other joints . Joint 
configuring depth sensor data to a point cloud is well known 5 detection 404 can relate to information for detecting the 
in the art and could optionally be performed according to joints of the user as specific points , or groups of points , from 
any suitable method . One non - limiting example of a suitable the point cloud as described in greater detail below . 
method is provided in “ Alignment of Continuous Video onto Each template can also feature surface vertices 406 , 
3D Point Clouds ” by Zhao et al . , available at surface mesh connectivity 408 , skinning weights 410 and 
https://pdfs.semanticscholar.org/124c/0ee6a3730a9266dae- 10 constraints 416. Surface vertices 406 relate to the vertices on 
59d94a90124760fla5c.pdf . the external body of the user ( as opposed to the internal 

To increase the speed of processing , the depth sensor data representation of the user's body structure by the virtual 
may be configured as follows . To do so a KD - tree of the skeleton ) , while surface mesh connectivity 408 defines the 
scene each frame is built , so that when computing corre- external body surface of the user according to a mesh . 
spondences from vertices to cloud one only uses the K 15 Skinning weights 410 determine the weights for how the 
nearest neighbors and assume a zero - posterior for the rest . skinning is performed , for example in terms of determining 
As a consequence , the algorithm runs several orders of the correct external surface of the user . 
magnitude faster . The gating of correspondences allows Constraints 416 can be used to determine which body 
sparsification of both the distance and the posterior matrix positions are not allowed , for example , according to the 
with huge gains on computation speed . 20 possible angle ranges of different body part positions . For 
As compared to “ Real - time Simultaneous Pose and Shape example , and without limitation , constraints may include 

Estimation for Articulated Objects Using a Single Depth one or more of self - intersection , angle , and pose prior . These 
Camera ” by Mao Ye and Ruigang Yang , IEEE Transactions constraints can be weighted differently . Weighting is pre 
on Pattern Analysis & Machine Intelligence , 2016 , vol . 38 , ferred , rather than setting the constraints as an absolute bar , 
Issue No. 08. , which reached real time performance only 25 as the inventors have determined that surprisingly , the GMM 
with a GPU ( graphics processing unit ) , the presently model does not operate efficiently if the search space is too 
described algorithm , according to some embodiments , can restricted . Therefore , weighting allows the importance of the 
reach real - time performance ( 100+ fps in a i7 processor ) constraints to be captured without excessively restricting the 
with CPU ( central processing unit ) only , which is a signifi- search space . The constraints can be applied to the previ 
cant computational advantage . 30 ously described energy function . 
GMM mapper 308 features a GMM data mapping module The self - intersection constraint is optional and may not be 

310 , a mapping constraint module 312 and a template applied , as the angle constraints may effectively account for 
deformation module 314. GMM data mapping module 310 self - intersection according to how they are applied . If 
receives the point cloud data from point cloud decomposer applied , the self - intersection constraint may be calculated as 
304 and maps this data onto the GMM , as adjusted by the 35 follows : 
input template from template engine 300. Next one or more 
constraints from mapping constraint module 312 , for 
example in regard to the angle range that body parts of the ( 2 ) 

( Eself ) max ( 0 , hgo ( 0 + 1 +10 ) user can assume , are applied to the mapped data on the PI 
GMM by mapping constraint module 312. Optionally , such 40 
information is augmented by deforming the template accord hs ( 0 ) = ( rs + r ; ) 2 – || v , ( 0 ) – V : ( 0 ) | 12 ( 3 ) 
ing to information from template deformation module 314 ; ( 4 ) alternatively , such deformations are applied on the fly by Um ( @ + 1 +10 ) = Vm + lmAfg + Bmkš & VnAQk ? GMM data mapping module 310 and mapping constraint 
module 312. In this case , template deformation module 314 45 
is either absent or alternatively may be used to apply one or ( 5 ) 

more heuristics , for example according to pose recovery as hs ( 0 ) = ( rs + r ; ) ???? , ? : ??? 
described in greater detail below . 
FIG . 4 shows templates and the template engine in more 

detail , according to at least some embodiments of the present 50 where r , „ , r , represent the radius of the intersecting gaussians . 
disclosure . Template engine 300 , according to some embodi- The set P defines the set of pairs of gaussians that should be 
ments , features an adjust template module 414 , which forbidden to intersect . 
receives information regarding the initial position of the user In some embodiments , the angle constraints are important 
from an initial user position input 412 and adjusts the for correct operation of the model and are heavily weighted . 
template accordingly . For example , if the template is con- 55 Constraints are currently applied per angle , but could 
structed with a standing user , but the user is lying down or optionally be applied for all angles jointly . The angle con 
sitting , then the template is preferably adjusted according to straints relate to the ranges of angles that various body parts 
the actual position of the user . Even if the user's position is are allowed to achieve . 
the same as that intended by the template , such as standing For a given joint , the angle constraints are preferably 
in a T pose , the template can be adjusted according to the 60 determined according to a rotational model , such that for 
actual user , such as the actual dimensions of the user . example optionally 1 , 2 or 3 degrees of freedom are deter 

Template database 302 can contain a variety of different mined . For example the elbow may be determined to have 
types of information in each template . For example , each 1 degree of freedom and the shoulder may be determined to 
template preferably includes a skeleton 400 , a hierarchy of have 3 degrees of freedom . For each degree of freedom , a 
joints 402 and a joint detection 404. Skeleton 400 defines the 65 minimum and maximum angle is determined . As another 
virtual skeleton of the user , as determinable from the point example of the ranges , the Appendix provides notation in 
cloud data . Each skeleton 400 includes a hierarchy of joints regard to the angles , such that limit_rotation_x relates to the 
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minimum and maximum angle for a first degree of freedom , orientation of the inertial sensor may be applied as a prior on 
limit_rotation_y relates to the minimum and maximum the orientation of the bones ( preferably the hands ) . Alterna 
angle for a second degree of freedom , and limit_rotation_z tively , the orientation data could be used in the optimization , 
relates to the minimum and maximum angle for a third not as a prior but as an additional specific term . 
degree of freedom . If the values are set to zero for a limit 5 The inertial data can be introduced as a “ super point ” as 
rotation , then that degree of freedom is not available to the described herein , additionally or alternatively to the above 
joint and those angles would not change at all . If no specific uses . The use as a super point increases the accuracy of the 
limit rotations are set , then the joint or bone achieves the absolute position data , but unless combined with one of the 
rotation of the entire body . above uses , the orientation data is not retained , which is 

The angle constraints are optionally imposed with a 10 helpful for determining the position orientation of the hands . 
Different templates can be created for different user max / mean operator . This operator is non - linear and involves 

gradient based optimizing . Such angle constraints can be positions , such as sitting , standing , lying down and so forth . 
imposed as rotation limits , that are applied using a non Different templates may also optionally be created according 
linear term . Non - limiting examples of such terms are to gender or other demographic information , and / or accord 
described in equations 11 , 12 of this paper : " Efficient and 15 ing to body dimensions ( such as for various ranges of height , 
Precise Interactive Hand Tracking Through Joint , Continu girth and so forth ) . 
ous Optimization of Pose and Correspondences " by Taylor Template engine 300 can be updated as to the above 

information which would enable a particular template to be et al . , 2016 , available from http://www.samehkhamis.com/ 
taylor - siggraph2016.pdf . One example of a non - limiting selected and / or adjusted , such as demographic information 
method to calculate angle constraints is as follows : 20 for example . Template engine 300 can then select a particu 

lar template from template database 302 according to this 
information . The adjust template for initial user position 
module 414 then adjusts the template according to the initial ( 6 ) 

Elimit vcomin , o , omax ) ? detected user position , which can also relate to initialization 
25 of the template for that particular user from the first set of 

input data . 
FIG . 5 shows a non - limiting example of a method for where v ( a , x , b ) = max ( 0 , a - x ) + max ( x - b , 0 ) . Since it is desired creating and using templates , according to at least some to optimize with respect to A0 , the following equations embodiments of the present disclosure . As shown , an should be used : 30 example user's entire body ( or optionally a portion thereof ) 

is scanned in a fixed position at 502 , to form a standard body . 
At 504 , the body of the user is modeled in 3D modeling ( 7 ) 

max ( 0 , emin – ( 0-1 + 40 ; ) ) + max ( 0 : - ! + A0 ; ) – omax , 0 ) software , for example , according to the Blender software 
( created by the Blender Foundation ) as a non - limiting 

35 example . A mesh is created which represents the human 
body . Each vertex of the mesh , which is each vertex of the Applying subgradient , and assuming A0 is very small : skin , is incorporated . Certain vertices can be assigned as 
" joints ” and / or " bones . ” For example , the vertices of the left 
forearm would be associated with the left elbow , so that 1 . 40 when the left elbow rotates , the vertices of the left forearm 

if 01-1 > Amin A 0-1 < gmax also rotate . The model , according to some embodiments , ( 8 ) imposes a type of constraint on the possible positions of the 
2 ( 0 - max ) if 0-1 > Amin 109-1 > gmax vertices , as well as repositioning the skin vertices in terms 
-2 ( 0min - 0 ) if 0-1 < gmin 109-1 semax of joint positions . At 506 , the modeled body is corresponded 

45 to the template parameters , according to the operation of the 
specific 3D modeling software . The template parameters in 
terms of what is included ( according to some embodiments ) 

The pose prior constraints are optionally applied to avoid are described with regard to FIG . 4 . 
problems caused by depth sensor noise , like not correctly At 508 , the template parameters can be exported to a file , 
detecting dark hair or dark clothing . One example of a pose 50 a portion of a non - limiting example of which is given in the 
prior constraint is keeping the pelvic bone more or less Appendix . The example in the Appendix shows a portion of 
straight . If the user is sitting at a table or lying down , the a standard male body in a pose . The features are generally 
lower body can be more or less hidden by the furniture and , self - explanatory , but a few examples are described here for 
as a consequence , the pelvic bone may try to fit outlier completeness . The global scale parameter means that the 
points , usually located in the region of the furniture , and the 55 orientation is set to the global orientation rather than the 
pelvic bone rotates towards the furniture , which is not object's orientation relating to the scale of the body . Next a 
correct . Another pose prior constraint is to keep the head list of bones is provided , with their respective names , their 
more or less straight . This is applied to solve noisy rotations initial locations ( provided as “ head ” and “ tail ” parameters ) . 
of the head that happen if the hair points are not showing due The rotations can be as previously described . Each bone can 
to depth - sensor issues . These pose prior constraints may be 60 be a parent to another bone , such that “ sacrum ” is the parent 
applied a priori and / or added to energy function on the fly . to bones such as “ 1. thigh ” or left thigh for example . The 

Both pose prior and angle limit constraints , in some skinning weights provide the blending weights , or weights 
embodiments , are implemented with a weighted sum of to be assigned for skinning ; each data point represents a 
components in the energy function . The angle limit energy vertex in the model , with the one or more bone ( s ) that are 
component preferably has a larger weight relative to the pose 65 influencing the vertex plus the weight ( s ) for that influence . 
prior . Data from inertial sensors can also be used for one or At 510 , sensor data is obtained for the subject in a given 
more constraints . For example , and without limitation , the position , which is preferably manually communicated to the 

K 

Elimit 

0 

av 
??? 

0 otherwise 



5 

10 may 

US 11,367,198 B2 
15 16 

template engine as described herein . At 512 , at least one distance is calculated for each point in the point cloud to 
measurement of the subject is determined as described each vertex for the cost function gradient . 
herein , for example , with regard to bone length . Such At 608A , one or more constraints can be applied to the 
information can be determined from the point cloud . Option- energy function , as previously described , although this stage 
ally , as described with regard to FIG . 6 below , different types can be performed concurrently at 606A , as part of this stage . 
of point cloud data are used . For example , and without At 610A , a new location in the parameter space is solved for 
limitation , optical markers can provide “ super point " data , as with regard to probability density , to determine a most likely 
their locations are known according to the different colors of location , according to an EM ( expectation - maximization ) 
the LED lights featured in the markers . Other non - limiting algorithm , which provides an iterative solution . The EM 
examples of super point data include points associated with be applied according to the previously described GMM . 

At 612A , the deformation model can be applied , for a VR headset , a smart - watch or some other appliance . example , as described with regard to FIG . 7 , according to the Such “ super point ” data may also optionally be performed iterative solution from the EM algorithm . At 614A , steps with joint detection as described in greater detail below , such 606A , 608A , 610A and 612A can be repeated until the as for example with regard to FIG . 10 , or alternatively as 15 problem is solved . 
described in “ Random Tree Walk toward Instantaneous 3D FIG . 6B shows such an exemplary method which uses Human Pose Estimation ” by Jung et al . , June 2015 CVPR only optical marker point data , to map to a GMM model . At conference ( available from https://researchgate.net/publica 602B , only the optical marker data is detected from the point 
tion / 275771971_Random_Tree_Walk_toward_Instan cloud data . The optical marker point data are an example of 
taneous_3D_Human_Pose_Estimation ) and / or according to 20 super points , in that their location on the body can be 
the description provided in " Efficient Human Pose Estima- detected and tracked accurately , because specific colors of 
tion from Single Depth Images ” by Shotton et al . , 2011 LED lights are associated with specific locations . Apart from 
( available from https://people.eecs.berkeley.edu/~rbg/pa- only using the optical marker point data , the method pro 
pers / pose - from - depth - pami / pdf ) . ceeds as described with regard to FIG . 6A and steps 604B 

Alternatively the point cloud data can be used alone or in 25 614B of FIG . 6B correspond to steps 604A - 614A of FIG . 
combination with one or more types of “ super point ” data . 6A , except that , optionally , the distance from each point to 
The measurement that is obtained from the subject is used to each vertex does not need to be calculated , which in some 
initialize the tracking calculations , to adjust the template embodiments , is due to the possibility to identify each 
according to the specific parameters of the user . marker with a specific location on the body with a very high 
At 514 , the template is scaled or otherwise adjusted 30 degree of likelihood , so that it is known which marker is 

according to the specific parameters of the user , for example , related to which location on the body . 
and without limitation , according to one or more of user FIG . 6C shows such an exemplary method which uses 
position , demographic da size ata , particular measure- only joint detection point data , to map to a GMM model . At 
ments within the body of the user such as bone length , and 602C , only the joint data is detected from the point cloud 
the like . Preferably , the dimensions of the user are scaled , 35 data . The joint point data are an example of super points , in 
not the constraint angles . To adjust the template for scaling , that their location on the body can be detected and tracked 
preferably the cost function can be adjusted for the param- accurately , because of the special joint detection method that 
eter space of bone scales , rather than joint constraints . can be used as described herein . For example , the joint 

FIGS . 6A to 6E relate to different exemplary , illustrative detection method can be performed according to a classifier 
non - limiting methods for mapping data to track the user , 40 as described herein . The joint detection algorithm can permit 
according to at least some embodiments of the present joints to be detected which can be difficult to label with 
invention . FIG . 6A shows such an exemplary method which optical markers ( e.g. , the jaw or neck ) . Apart from using 
uses the point cloud data without weighting any particular only joint detection point data , the method proceeds as 
points and / or without a priori knowledge regarding these described with regard to FIG . 6B and steps 604C - 614C of 
points , to map to a GMM model . At 602A , the sensor data 45 FIG . 6C correspond to steps 604B - 614B of FIG . 6B . 
from the depth sensor is decomposed to form point cloud FIG . 6D shows such an exemplary method which uses a 
data . At 604A , the template vertices are adjusted , which also combination of super points , with higher weighting , in 
includes estimating an initial pose of the user . The adjust- combination with the remainder of the point cloud data , to 
ment can include adjusting the template according to the map to a GMM model . At 602D , the sensor data is decom 
user position and scale , and optionally according to other 50 posed to a point cloud as described with regard to 602A of 
parameters . If the process is being performed on a series of FIG . 6A . At 604D , one or more super points are detected and 
video frames and has already been performed on at least one are given higher weighting . The super points may be 
frame , then optionally such an estimate may take into detected according to the previously described optical mark 
account a previous pose of the user , as the pose of the user ers and / or according to joint detection . The position of the 
is unlikely to change dramatically between frames . The 55 super points may not be reliable but the correspondences to 
adjustment of the template vertices preferably also includes various vertices are known with a high degree of probability , 
the inclusion of the previously described constraints , which even if the data relating to the position of the super points is 
can then be applied in later stages to increase the probability noisy . Steps 606D , 608D , 610D , 612D , 614D and 616D can 
of correct minima being obtained . be performed as described with regard to steps 604A , 606A , 

At 606A , the cost function gradient can be determined . 60 608A , 610A , 612A and 614A of FIG . 6A , except that the 
The cost function gradient can be calculated as described super points are given a higher weighting for the various 
with regard to “ Real - time Simultaneous Pose and Shape calculations performed , over that of regular point cloud data . 
Estimation for Articulated Objects Using a Single Depth FIG . 6E shows an exemplary method which uses a 
Camera ” by Mao Ye and Ruigang Yang , IEEE Transactions classifier . At 602E is optionally performed as described with 
on Pattern Analysis & Machine Intelligence , 2016 , vol . 38 , 65 regard to FIG . 6A . At 604E , a trained classifier is applied to 
Issue No. 08. In this paper , an energy function is described , the point cloud . The trained classifier preferably features 
which is minimized according to the mapping process . The some type of body part classification model , such as 
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described for example in “ Efficient Human Pose Estimation This adjustment may be applied to any suitable method to 
from Single Depth Images ” by Shotton et al . , IEEE Trans- model the shoulder joint . For example , it can be used to 
actions on Pattern Analysis and Machine Intelligence , Vol . adjust the deformation model of “ Real - time Simultaneous 
35 , No. 12 , December 2013 ( available from https : // peo- Pose and Shape Estimation for Articulated Objects Using a 
ple.eecs.berkeley.edu/~rbg/papers/pose-from-depth-pami- 5 Single Depth Camera " by Mao Ye and Ruigang Yang , IEEE 
pdf ) . The described method operates as follows . Body part Transactions on Pattern Analysis & Machine Intelligence , 
classification ( BPC ) first predicts a body part label at each 2016 , vol . 38 , Issue No. 08 as follows . In this paper , the 
pixel , and then uses these inferred labels to localize the body basic deformation model is given by : 
joints . The number and location of body parts are selected to 
provide the most information for determining the joints 10 
while at the same time , not overwhelming the trained ( 9 ) 
classifier with data requirements . The trained classifier may z vm + PA + Bmkšiv , ACY 
be constructed and trained according to any known method , 
such as for example the random trees method of classifica 
tion . The location of the joints may then be fed into the 15 In the above equation , V , is a vertex of the previously 
previously described generative model of “ Real - time Simul described model { 40x4 } relates to the joint angles and aeg 
taneous Pose and Shape Estimation for Articulated Objects relates to the global transformation . 
Using a Single Depth Camera ” by Mao Ye and Ruigang To accommodate the improved modeling of the shoulder , 
Yang , IEEE Transactions on Pattern Analysis & Machine the previously described ball - joint information is plugged in 
Intelligence , 2016 , vol . 38 , Issue No. 08. Such a classifica- 20 and the constraint of a having unit length is dropped , such 
tion would create a plurality of super points from regular that it is possible to represent jointly the rotation axis and the 
point cloud data , by significantly increasing the probability angle as the norm of w : 
of a correct assignment to a particular vertex . Therefore , 
optionally , the remainder of the process would continue only 
with the super points or alternatively , the super points are 25 ( 10 ) implemented with higher weights than other points . The vite = vn + L , 48 , + Bmkškvm , 40 € + Bomulvm - 9 / ̂ Aw ' + 9 ) 
process then continues as for FIG . 6B with the classified 
points acting as super points , such that steps 606E , 608E , 
610E , 612E , 614E and 616E of FIG . 6E correspond to steps It is therefore possible to make a distinction between the 604B - 614B of FIG . 6B . indices k which represent degrees of freedom of ID and 2D FIG . 7 shows a non - limiting example of a method for joints , and the indices 1 which represent whole ball - joints . applying the deformation model , according to at least some 
embodiments of the present disclosure . At 702 , the position The optimization parameters are transformed from three 

scalar angles A0 to a 3 - dim vector Aw'O that represents both of the joints is initialized according to the template . At 704 , angle and axis orientation . The vector q , refers to the location the position of each joint is detected separately . At 706 , the 35 of the axis of joint 1. Note that the twist is primed , so to surface vertices are deformed according to the joint position . recover the original the coordinate transform needs to be At 708 , the surface vertices are adjusted by skinning undone : weights , to smooth the skin over a plurality of bones and 
( 11 ) joints . The skinning weights are blending weights as previ AW0F ( ( T ) - ' A0,0 , ) T , 

ously described , to determine how much each bone or joint 40 At 710 , the deformation model is updated from the last 
determines an input to the skin surface vectors . An exem- known position , according to the calculations in the previous 
plary implementation is described in “ Real - time Simultane- stages . 
ous Pose and Shape Estimation for Articulated Objects FIG . 8 shows a non - limiting example of a method for pose 
Using a Single Depth Camera " by Mao Ye and Ruigang recovery , according to at least some embodiments of the 
Yang , IEEE Transactions on Pattern Analysis & Machine 45 present disclosure . At 802 , a separate pose recovery thread 
Intelligence , 2016 , vol . 38 , Issue No. 08. At step 710 , the is operated , which is separate from the main thread which is 
deformation model is updated from the last known position . tracking the user and performing the above described pose 

With regard to the modeling of the data as described calculations . To avoid overwhelming available computa 
herein , a specific case relates to modeling of the shoulder tional resources , the pose recovery process is preferably 
joint . Ball - joints are a way of improving the present mod- 50 operated intermittently rather than continuously . At 804 , for 
eling of 3 - DOF ( 3 degrees of freedom ) joints ( shoulders ) every n frames , the recovery pose is calculated from the 
that suffer from several issues due to the representation of point cloud data to determine the energy level of that pose . 
rotations . The shoulder joint may be modeled by applying The number n can be any plurality of frames , such as from 
three rotations sequentially , for each DOF . This presents 2 to 10 frames , but is preferably from 3 to 5 frames . The 
problems mainly related to gimbal lock and that such 55 initialization is applied with the previous frame's pose as the 
parameter space is not very well suited for optimization . seed point but rerun to fit the data according to the GMM . 
An optional implementation uses twists that jointly The algorithm is then rerun with the recovery pose in stage 

encode angle , axis , and axis location . It is necessary to 3. At 808 , the current calculated pose of the user is compared 
decouple the axis location in order to leave the axis vector to the recovery pose . If and only if the recovery pose has 
free , as described for example in Pons - Moll and Rosenhahn , 60 lower energy in terms of the calculation of the point cloud , 
“ Ball Joints for Marker - less Human Motion Capture , ” IEEE then the current calculated pose is replaced with the recov 
Workshop on Applications of Computer Vision ( WACV ) , ery pose . The recovery pose can be a resting pose of the user , 
2009 ( available from https://ps.is.tuebingen.mpg.de/upload- for example . 
s_file / attachment / attachment / 140 / Pons WACV2010 . pdf ) . In accordance with preferred embodiments , bone size can 
One exemplary way to do so is to subtract the axis location 65 be scaled to address the problem of some bones in the avatar 
from the points rotating with respect to the ball joint and being sized too large or small in relation to other related 
assume in the twist that the axis is in ( 0 , 0 , 0 ) . bones in the displayed model . Bone scaling generally is 
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known in the art and is discussed , for example in Ye et al . , -continued 
“ Real - time Simultaneous Pose and Shape Estimation for ( 13 ) 
Articulated Objects Using a Single Depth Camera . ” Prior art fm , n ( S ) = Pmk Sx dx – xn 
solutions either manually set the data for scaling of limbs 
and exact locations of the markers or use a dataset of 5 
prototypical bodies and use the one that best fits the user , where Pmk Pmk - Amk ( 1 - Ymk ) either manually or automatically . Other prior art solutions The first and second term in Eq . 12 refer to the mapping rely on classifiers , deep learning , or analysis of RGB data . of points ( n ) to mesh vertices ( m ) and marker detections ( în ) The exemplary method disclosed herein for scaling bones 
provides better scaling results while requiring less to mesh marker sites ( m ) respectively . In the first term , the compu 
tational power than other solutions . In particular , the bone weighting factor Prm is optimized during tracking , while for 
scaling disclosed herein adapts the model to the user in terms the marker objective function it is fixed as a constant 
of body scale and marker placement and , importantly , the parameter f for all marker - site correspondences . We could 
tracking is robust to variability of these factors , and avoids as well set - up different weights for the different marker - sites 
having to manually set this information by an operator . 15 correspondences so that we could induce for instance more 
Additionally , the inventors have observed a decrease in the attraction wrists - markers and less in shoulders - markers if it 

would fit our use - case . 
In accordance with preferred embodiments , a marker Referring now to FIG . 9 , a diagram of bone coordinates 

offset from a joint ( i.e. , end of a bond ) is calculated as pose taken from Ye is shown for illustrative purposes . The point 
is calculated and , as a separate process , bone scaling is 20 910 represents a vertex of the skin . The segment 920 
determined . That is , the processes are preferably alternated . represents a bone of the skeleton and the two circles 930 
Preferably , as pose is calculated , bone scaling is held fixed represent the head and tail joints of the bone . The parameter 
and as bone scaling is calculated , pose is held fixed . optimized are the bone scales Sk for each bone k . The vector 

Optionally , the solution could use pose or bone scaling to nm denotes the vector between the bone k and the vertex m , 
get out of local minimum of the other . Markers can be perpendicular to the bone . The matrices a and ß are the same 
present in both scale and pose , which regularizes the solu- as defined for pose estimation that encode the skin blending 
tion and , thus , prevents major problems . That is , markers act weights . The term g , denotes the position of the root of the 
as a constraint . body . The coefficient Ymk parametrizes the bone coordinates 

Optionally , anatomical constraints can be used . This solu- to indicate the projection of the vertex in the bone . 
tion determines how much to allow a bone to scale if In preferred embodiments , we constrain the scaling opti 
neighbor bone scales . For example , if a bone scales 1 unit , mization with some reasonable priors because of the pres 
the neighbor might only scale 0.5 unit . This can be used , for ence of outliers and noise . The types of priors can include 
example , if the arm is straight and the elbow may be hard to symmetry and connectivity . Preferred system embodiments 
locate . Preferred embodiments consider the effect of ampu- can constrain symmetric bones to scale similarly , can con 
tation . Furthermore , preferred embodiments provide sym- strain connected bones to scale together , or both so that the 
metry . That is , if the left arm grows , the right arm grows by proportions of the body do not alter . In order to impose the 
a similar scale . The solution also adjusts for a child , and symmetry and connectivity constraints , preferred embodi 
other body types ( at least 2-3 body types ) . Optionally , the ments apply the following set of constrains to the cost 
solution calibrates for body type such that where multiple function : 
body types are tried , the one preferably with the minimum 
energy is kept . Preferred embodiments can account for body qW ;; $ = w ; j ; Vi , j , w ) E B ( 14 ) 
types based on different criteria including the age of person 
and whether the person is an amputee . The term às weights the importance of the constraint 

against the rest of the objective . The weights 0 , indicates Preferably , the scale of the skinned model should match the real scale and proportions of the user in order to facilitate 45 the strength of the specific pair / constraint . For instance , for 
the pose estimation and reach a low energy solution during symmetric pairs ( e.g. , left forearm , right forearm ) preferred 

embodiments can use w = 1 to encourage the same scale to be optimization . Automatic bone scaling generally is disclosed applied to both bones . In the case of connected ( e.g. , left in the prior art , for example , in “ Real - time Simultaneous upperarm , left forearm ) bones preferred embodiments can Pose and Shape Estimation for Articulated Objects Using a use w = 0.5 to indicate that one bone can scale only to half ( or Single Depth Camera ” by Mao Ye and Ruigang Yang , IEEE 
Transactions on Pattern Analysis & Machine Intelligence , twice ) the scale of the other . The set B contains all con 
2016 , vol . 38 , Issue No. 08. Ye and other prior art solutions straints to apply as triplets { bone , bone ;, 0 , } . 
suffer from accuracy problems however . The inventors have Preferred embodiments can use markers to aid the track 
discovered that specially weighting points , applying a novel ing to make the estimation more robust in the case of outliers 
approach to optimizing offsets , and re - parameterizing the 55 and avoids the optimizer to get trapped in bad local minima . 
problem in terms of bone scales instead of orientations as As a practical matter , marker placement on the body may not 
discussed below improves on the accuracy of Ye and the be precise ( e.g. , misplacement by the user or a therapist ) and 
prior art . can change during use . Preferred embodiments of the pres 

Preferred embodiments use an energy function similar to ent invention account for this uncertainty by using a different 
the energy function disclosed in Ye to match the model skin 60 energy that models an offset between the expected location 
to the point cloud and to minimize the objective : of the marker and the location that we observe during 

tracking . This offset optimization process could be run 
continuously alongside the pose estimation , or be executed 

Ô ( 12 ) once during a calibration process and fixed for the rest of the 
Q ( S ) = 65 activity . 

The vertex - to - point distance component in the original 
objective has the form : 
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At 1008 , the group of points that are most likely to belong 
( 15 ) Q10,0 ? ) = 2.2 £ Poulsen – vy ? to the selected segmentation model are located , and option 

ally , at 1010 , if the method described herein has been 
performed more than once , then points which were previ 

5 ously detected as belonging to the model are up - voted . 
while a new term to formulate a marker - detection distance Because the object being segmented is a background , inani 
for the offset optimization process in preferred embodiments mate object , its position is not likely to change during the 
is introduced per the following : tracking process . Therefore , once a point has been deter 

mined to belong to the background object , it is likely to 
10 continue to be correctly associated with that object . At 1012 , 

( 16 ) points that have been determined to belong to the model are 
Q ( 0 , 0 , 0² ) Pnmll xn – vom ? + pcllXc ( v® + 0c ) Il ? removed , as such points could interfere with the correct 

tracking of the user . 
FIG . 11 describes a non - limiting example of a method for 

The set defines all pairs of correspondences between 15 joint detection , according to at least some embodiments of 
markers in the model and detections of color markers that the present disclosure . As shown , the point cloud is received 

as input at 1102 ; the point cloud could optionally be gen the marker detection system provides . For instance , an erated as previously described . At 1104 , an estimated loca example of the contents of the set C could be { purple tion is determined for each joint . Preferably each joint is detection - left elbow marker , blue detection - right wrist 20 determined as a point in the point cloud , such that the marker , green detection - left shoulder marker , etc. } . estimated location relates to the location of the point that For each of these correspondences c we estimate the offset would correspond to that joint . For clarity , the joint locations 
oc that accounts for those small misplacements that we are determined as vertices in the skeletal model , such that 
mentioned previously . The goal is to avoid the body pose to each joint is mapped as a discrete point ( vertex ) in the 
change drastically due to small shifts of the markers ( or 25 skeletal model . For the first frame , a mean position may be 
disagreements on their predefined locations ) . used from the training data determined from training the 

Finally , we can also regularize the norm of those offset trees ( as described in greater detail below ) , or from the 
vectors to avoid the offsets to account for all the misplace- template data . For subsequent frames , it is possible to use the 
ments that happen . As an extreme example the body could position from the previous frame as an estimate . At 1106 , a 
stay motionless while the offset vectors account for all the 30 plurality of points close to the estimated location of the point 
motion of the markers . To do so we simply penalize the sum corresponding to the joint is sampled . For example , the 
of the norm of the offset vectors to keep them as small as points can be sampled within a sphere having a particular 
possible : radius from that point , such as 0.5 meter for example . Other 

distances are also possible , including any distance within a 
35 range from 0.005 meter to 2 meters , or 0.1 to 1 meter , and 

E = Q ( 0,0,0 % ) + 10 1106112 ( 17 ) optionally any distance in between for example . The radius 
could optionally be different for each joint . 

In terms of the mathematical representation of the 
sampled points , every candidate that is considered Cij 

The meta - parameter ào weights the influence of the regu- 40 position P : , ER 3 that can be generated in a number of 
larizer against the main objective . Tuning this parameter different ways . For a given joint j , candidate 3D positions 
adjusts to which extent the offsets should account for marker can be generated for example as follows . Given training data 
motion . of likely 3D poses of the skeleton , a multivariate 3D normal 

FIG . 10 shows a non - limiting example of a method for distribution of positions for every joint is estimated . A 
segmentation of a background object , according to at least 45 position can be generated by simply sampling a point from 
some embodiments of the present disclosure . Here , the that distribution . This is optionally and preferably refined 
background object can be an inanimate object ( which should according to data from previous frames . 
not be confused with the user ) , such as a table , chair , bed or With regard to subsequent stages , assume the joints are 
other piece of furniture . At 1002 , the point cloud is generated indexed by integers jEJ , with J representing the set of all 
from the sensor data as previously described , followed by 50 joints . It is also assumed that two trained trees are trained as 
1004 , where a segmentation model is selected . For example , classifiers or regressors in advance , described in greater 
the segmentation model can be a simple model , such as a detail below with regard to 1112. These two trees include a 
planar model , for certain types of background objects such that can estimate the distance x - yl , as well as a 
as a table for example . tree T offsetj that can directly estimate the offset y - x to the 

At 1006 , the RANSAC ( random sample consensus ) algo- 55 joint . The training of these trees seeks to minimize a 
rithm is applied to the point cloud data according to the least - squares objective function . The trees can be trained as 
selected segmentation model . This algorithm is probabilistic described with regard to “ Random Tree Walk toward Instan 
and iterative and is used to detect ( and remove ) outliers from taneous 3D Human Pose Estimation ” by Jung et al . , June 
a point cloud data , in order to fit this data to the segmentation 2015 CVPR conference ( available from https : //www.re 
model . A non - limiting example of the application of the 60 searchgate.net/publication/275771971_Random_Tree_ 
RANSAC model to segmentation according to a planar Walk_toward_Instantaneous_3D_Human_Pose_Estimation ) . 
model is described in “ RANSAC algorithm and elements of At every leaf node of the tree Tdist , jo there is a set of 
graph theory for automatic plane detection in 3D point distances . Once the distance tree has been traversed , a leaf 
clouds ” , by Martyna Poreba and Francois Goulette , Sympo- node is reached where one takes the median distance at the 
sium de PTFiT ( Polish Society for Photogrammetry and 65 leaf node to be the estimated distance . For the tree T. [ 
Remote Sensing ) , September 2012 , Poland . 24 , pp . 301-310 , clusters are computed at every leaf node . Once at a leaf node 
2012 . of that tree , one takes the mean position of a randomly 

+ 

CEC 

has a 

a 

tree T dist , j 

offset , j 



€ 

one 

3 

15 

+ a 
( m , n ) e e Template edge length Actual edge length 

Data term Edge length violation 
Regularization 

9 

a 3 

dist , j 

c 

US 11,367,198 B2 
23 24 

selected cluster , with the probability of choosing a cluster tree - structured graph , connected by a set of edges & C 3x3 . being proportional to the number of samples in the cluster . Furthermore , considers N , templates indexed 
At 1108 , the distance from each of the sampled points to the by tET with T = { 1 , N , } and introduce a estimated location is determined . Preferably , the distance is calculated by using a tree as follows . Several candidate 5 function D : exT T?R which provides the length in meters of an edge in the skeleton template . The solution of the positions for each joint whose position is to be estimated . 
One assumes there are N , joints jEJ with J = { 1 , ... , N ; } . optimization problem is a vector IEIN.CZ Nc which is the 

index of the candidate associated with every joint , with i ; For every joint , one generates N. candidates indexed by representing the candidate index associated with joint j C = { 1 , ... , N . } . Every candidate ( Pd . ) , with IEC 10 I = ( 11 , 12 , ... , in ; ) . consists of a position P , ER of the proposed position for a 
joint in the camera coordinate system , and a distance 
d . , ER in meters which is an estimate of how far away the ( 18 ) position Pij is from the actual , unknown joint position . A Minimize ? D ( ( m , n ) , 1 ) - [ Pim , m - Pinin distance of di , = 0 would mean that the candidate is a very JEJNC , TET 
good estimate of the true unknown 3D position . In other 
words , it is an estimated measure of how faithfully Pij 
approximates the true unknown location . Let rET be a 
randomly generated number from a set of random numbers 
R. Let fE F represent an input depth frame from a set of 20 template index t and the vector I of candidate assignments The parameters that are to be optimized are the skeleton 
frames F , consisting of pixels with a depth value associated for all joints . The left sum of the objective function is the with every pixel . One lets Sdirdist , j : R $ x FxR -R3 repre data term of the optimization problem : For a candidate i ; and sent the process of given a position XER using the tree Tdir.j a joint j , that estimated distance is diji The right sum of the 
at that position to compute a direction q , and the tree T objective function is the regularization term of the optimi 
at that position to compute a distance d , one obtains a new 25 zation problem : given a template t , for every edge ( m , n ) of 
position y = x + dq . In other words , one can estimate the joint the tree - structured skeleton , where m and n refer to joints , by 
position y given some position x by first computing the how much the template distance D ( ( m , n ) , t ) is violated by 
direction towards the new position , then scaling that direc- the two positions Primum and Pipon of the candidates . All 
tion by an estimated distance , and finally adding it to the solutions of the above optimization problem can be enumer 
current position . So if one has a position x , one obtains the 30 ated and the number of possible solutions is N N.N , 
estimated position y as y = Sdirdist , j ( x , f , r ) for a given frame f The alpha parameter is heuristically determined and has 
and random number r . The random number r is used to been found to have useful values particularly between 0.4 
randomly select the cluster the leaf node of the tree t . and 1. Alpha is set higher for noisy data , and lower for clean 

It is possible to also define Sofer ; : RºxFxR- > R $ " 10 data . The alpha term is at least 0.001 for clean data . To solve 
represent the process of given a position x , estimating the 35 the optimization problem in a computationally manner , 
offset PER using the tree Toffsetj , and then computing the 3 because of the tree - structure of the skeleton , it is possible to 
estimated joint position yeR as y = x + p . For every candi- use the dynamic optimization approach to compute the 
date position P , ER " , one estimates the distance dj to the global optimum in a reasonable amount of time , as noted 
true position by evaluating the tree to at that candidate above . One non - limiting example of a suitable dynamic 
position . 40 optimization method that could be applied to this problem is 

The optimization problem for determining the true loca- described in Felzenszwalb , Pedro F. , and Ramin Zabih . 
tion of the joint , and for selecting a candidate point , is then “ Dynamic programming and graph algorithms in computer 
preferably performed at 1110. Optimization can be per- vision , ” IEEE Transactions on Pattern Analysis & Machine 
formed with regard to relative length constraints between Intelligence , vol . 33 , no . 4 ( 2011 ) : 721-740 ( available at 
each pair of joints and / or according to constraints on the 45 http://www.cs.cornell.edu/~rdz/Papers/FZ-survey.pdf ) . 
angles . Step 1110 can be performed according to dynamic At 1112 , optionally at least one trained classifier tree is 
optimization , with relative length constraints between each used to assess the appropriateness of each candidate point as 
pair of joints , as follows . For example , see the exemplary representing the location of the joint . Preferably , the trees are 
bone scaling method disclosed herein . Also , the skeletal trained to determine a direction from a point to a joint and 
model provides information about the range of lengths that 50 also to estimate the distances from a given 3D position to a 
are possible . The dynamic optimization algorithm then can particular joint location . The trees can be used to determine , 
solve the location of the candidate point representing a joint for each candidate position , how good the candidate is for 
for each pair of joints , according to the relative lengths that explaining the actual location of the joint . Two different sets 
are possible between each pair of joints , after which the of trees , in some embodiments , can be used as previously 
algorithm determines a global solution . It is not necessary to 55 described . Since direction alone doesn't determine how 
consider all possible assignments , but only assignments for close a candidate is to a particular location , in some embodi 
every pair of connected joints . To perform this calculation , ments , distance trees are also used . Optionally , the trees can 
templates for modeling the human skeletal structure are be trained such that , given a particular data point , how close 
used . These templates can optionally be the previously is that point to a particular joint . With respect to the notation 
described templates or alternatively may be obtained from 60 used herein , the assignment is further refined by applying 
http://h-anim.org/Specifications/H-Anim1.1/appendices . either Sdirdist , or Soffset , j to that position , or preferably both , j ' html # appendixa . The below described objective function is in order to obtain a position which could be closer to the true 
used , which takes an edge ( distance between each pair of joint position . 
joints ) and information from the template , and returns the Optionally , at 1114 , the candidate points can be used as 
distance between two joints in the template . 65 features to a second process for refinement , to better localize 

Specifically , the objective function may be defined as the joints . Optionally , steps 1106-1112 of the algorithm can 
follows . One assumes that the joints are vertices of a be repeated but with these candidate points as the initial 
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estimates ( according to some embodiments ) . The process number of disadvantages , including with regard to the core 
can optionally be repeated more than once , optionally with random walk algorithm , which tends to diverge significantly 
additional , different features . from the actual desired fitted model . The method described 

Also optionally , the initial training process for training the in the Shotton et al . paper requires each pixel to vote on a 
previously described trees could be improved from the 5 particular location , first to determine background as opposed 
method described in “ Random Tree Walk toward Instanta to the subject , and then to determine the location of each 
neous 3D Human Pose Estimation ” by Jung et al . , June 2015 joint within the subject , as the points are determined as offset 

from the joints ; this method is computationally very expen CVPR conference ( available from https : //www.research sive . gate.net/publication/275771971_Random_Tree_Walk_to 
ward_Instantaneous_3D_Human_Pose_Estimation ) . The 10 Optionally , according to at least some embodiments , there 

is provided a Kalman filter for increasing the efficiency of feature used for partitioning the training samples was deter 
mined as shown in equation 6 of that paper : the tracking system . For example , and without limitation , 

the application of the Kalman filter may increase the effi 
ciency to a rate of 60 body poses per second . Without 
wishing to be limited by a single hypothesis , the Kalman 

fal F , x ) = df ( x + de 1 ) – dr ( x + diete ( 19 ) 15 filter provides body pose estimates at a higher rate than the df ( x ( x ) underlying reconstruction algorithm , through extrapolation 
of historical data . 

where F is the current frame , xER 3 is the 3rd position where For every pose reconstructed by the underlying algorithm , 
the pose is encoded on the following form . The skeleton of we evaluate the feature , df ( x ) is the image depth at x and 20 the body is modeled as a rooted tree , where every joint of the t , ER3 and 12 ER 3 are the two offsets . body pose is a node in this rooted tree . The 3D translation A new feature fo can be added , for example , as follows , of the body pose with respect to the world coordinate system assuming that the current position has components X1 , X2 and is encoded as a 3D translation tER of the root node of the X3 , that is x = ( X1 , X2 , X3 ) , thereby comparing the depth of the skeleton . For every joint i , a quaternion qi encodes an current point with the depth at some random nearby point : 25 orientation . For the root node i = 0 ; that quaternion corre 
sponds to the rotation that when applied to joint coordinates 
transform those coordinates to world coordinates . For all ( 20 ) fo ! ( F , x ) = dp ( x + ) - other joints , the rotation is the rotation that , when applied to df ( x ) 
a vector in the coordinate system of that joint , will transform 

30 that vector the coordinate system of the parent joint . Every 
where t , ER 3 is a random offset . joint , except for the root joint , also has a fixed origin in the 
A further refinement could optionally feature training a coordinate system of its parent joint . But that origin is 

new set of trees that also include previous estimates . This constant and not variable . To summarize , there are 3 param 
would include a feature : eters that encode the translation of the body , and then 4 

35 quaternion parameters for every joint of the body . If there are fu , ? ( x ) = w * ( x - p ; * ) ( 21 ) N joints , there are a total of 3 + 4N parameters that encode the 
where uER with Jul = 1 is a randomly chosen unit vector , j body pose . 
is the joint index , XER? is the position where one evaluates A non - limiting example of the algorithmic flow of the 
the feature and the symbol “ . ” represents the dot product of filtering is now described . There is a body filter B , an 
two vectors . In other words , this feature computes the offset 40 underlying reconstruction algorithm R and queue G. 
with a given point XER 3 and a previous estimate p * , of that The body filter is a stateful object that will be referred to 
point to obtain a feature which takes previous knowledge as B. It has two operations : update and predict . Updating the 
into account . This can be used to train trees as before using body filter means providing the body filter with a recent 
both this new feature for different joints j and random unit body pose together with a time stamp when that body pose 
vectors u , in addition to ( or in place of ) the features provided 45 was produced . Updating the body filter means that the 
in the previously described paper . internal state of the body filter is also updated to reflect the 

For a given frame , first position p * ; is detected using the knowledge of the new body pose and the time when it was 
trees that were trained . Then the algorithm is rerun , but using produced . Prediction means predicting the state of the body 
the second set of trees that were trained , which in addition pose at an arbitrary time , after the time of the last update . 
to image data also uses the detections p * , for the second 50 This means using the internal state of the body pose to 
feature . This refined position can be used as a new input extrapolate an approximate body pose at a given time . The 
feature and then to obtain for every joint an even better body filter is updated whenever a new body pose is recon 
refinement p ; * 9 . It is possible to repeat this process as many structed by the underlying reconstruction algorithm . A new 
times as desired . If one performs this process n times , for body pose is predicted as necessary . The two operations , 
every joint j there will be a position p ; * " . 55 update and predict , are mutually exclusive so that consistent 

Without wishing to be limited by a single hypothesis , the results are obtained even if the two operations are called 
method of FIG . 11 has a number of advantages over “ Ran- simultaneously on the same filter B from different threads . 
dom Tree Walk toward Instantaneous 3D Human Pose Both operations are also relatively computationally cheap in 
Estimation ” by Jung et al . , June 2015 CVPR conference comparison to reconstructing the body pose using R. 
( available from https://www.researchgate.net/publication/ 60 Whenever a set of new data arrives , such as a frame from 
275771971_Random_Tree_Walk_toward_Instantaneous_ the camera , that data is enqueued on the queue G. Currently , 
3D_Human_Pose_Estimation ) or according to the descrip- this queue G has a maximum size of 1 element . If we 
tion provided in “ Efficient Human Pose Estimation from enqueue an element on that queue and there is already an 
Single Depth Images ” by Shotton et al . , 2011 ( available element in the queue , the element already present is replaced 
from https://people.eecs.berkeley.edu/~rbg/papers/pose- 65 by the new element that is enqueued . 
from - depth - pami - pdf ) , or a combination thereof . The In a separate thread , there is a loop that ( i ) either pops the 
method described in the Jung et al . paper suffers from a last element from the queue G or waits for an element to be 
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put on the queue , that it then pops , then ( ii ) feeds the data of the body pose . Those parameters are an observation z ; and 
just popped from the queue to the reconstruction algorithm they have dimension n . On the first call to the Kalman filter , 
R that uses this data to reconstruct a body pose . Once a new the first n elements of the state X , are initialized to be z ;. The 
body pose has been reconstructed , the body filter B , is remaining elements of x are set to 0 . 
updated with the reconstructed body pose and a time stamp 5 For the remaining updates 1 < = j , for every observation 
of when the input data was acquired by the sensor , e.g. , the vector Z ; that arrives , the time difference D ; = T ; -T ; -1 is time of flight camera . calculated in seconds to the time before when the filter was The body filter B permits prediction of a body pose at any updated . A model matrix F ; of size nx2n is constructed time later than the last update of the body filter . Prediction whose left nxn is an identity matrix . The right nxn matrix is is computationally cheap and can , for instance , be done 10 a diagonal matrix with every element set to T. The state is whenever it is necessary to render a new body pose on the predicted as Xpred , F , ** ; - 1 

A matrix is constructed : Ppred . ; = F , + P , F , + Q . Here the implementation of the body filter B mentioned in The observation is predicted as Zpredj = Hx , the previous section is described in an algorithm overview . * prednje 
There is one Kalman filter for every parameter vector that 15 The prediction error is y , 2 - Zpred.j " ; ; 

is used to encode the body pose . There is one Kalman filter The uncertainty in the predicted state , represented as a 
covariance matrix P , to filter the global translation t and one Kalman filter for predje can be propagated to an uncer 

each quaternion q ; of every joint i . For a body pose with N tainty in the predicted observation : S ; = HP , 
joints , there are N + 1 Kalman filters . The filtering takes place Then the following is computed : K ; = Ppred jH s ; -1 . 
in multiple threads . Every time the body filter B is updated 20 Finally , the state vector x , and the state covariance matrix 
with a new body pose , every Kalman filter is updated with P , are updated . If the state vector contains a quaternion , it is 
its respective parameters of that body pose . Every time a necessary to renormalize : x ; = C ( Xpred.jt + K ; y ; ) . 

The function that normalizes : C : R " > R ” is defined as : new body pose is predicted from B , the Kalman filter 
predicts the associated parameters . 

Every Kalman filter has a dimension n , which is 3 for the 25 
body translation filter , and 4 for the joint rotation filters . A C ( x ) = | x1 counter j keeps tracks of how many times the filter has been 
updated . The following variables represent the state of the 
filter after j updates . Otherwise , if filtering a translation , no normalization is 
A state vector x ; of dimension 2n after the filter has been 30 needed : X ; Xpredj + K ; y ;. 

updated j times . The first n dimensions of this vector are an The covariance is updated as : P ; = ( 1 - K , H ) P prednji 
estimate of the state being tracked . The remaining n dimen- Kalman filter prediction is performed as follows . As 
sions are an estimate of the rate - of - change of those param- needed or desired , a given time T and after j filter updates 
eters . In this case , the state that is estimated corresponds to to obtain a prediction k of the parameters being filtered , Xoj 
the observations : for the translation filter , the filter is updated 35 is the first n parameters of x ; and X1j is the last n parameters 
with a translation reconstructed by R and the state that is of x ;. For quaternions , the prediction needs to be normalized : 
reconstructed is also a translation . For the joint rotation k = C ( Xo , + ( T - T ; ) * x1 ) . 
filters , we update each filter with a quaternion and the state Otherwise , no normalization is needed : k = Xo ; + ( T - T ; ) * X 1 j . 
that the filter estimates is also a quaternion . In accordance with preferred embodiments , a jitter filter 
A state covariance matrix P , holds the covariance of the 40 can also be provided . Preferrably , such a jitter filter is a dead 

state parameters after the filter has been updated j times . The band jitter filter for removing the appearance of jitter in 
matrix P , is a square symmetric positive semidefinite matrix tracking avatars . In motion tracking systems , inaccuracies in 
of size 2n . tracking can cause the avatar of the tracked person or object 
A time stamp T ; of the last observation j is the time in to jitter when the tracked person or object is not actually 

seconds elapsed since a historical point in time e.g. , when 45 moving or moving slowly . This problem can be exacerbated 
the filter was instantiated . when there is a flat , close - to - uniform surface ( e.g. , a table ) 

Every Kalman filter has a set of parameters A = ( astates near the jitter body part or object . Typical prior art systems 
arate , aobs ) , where astate is an estimate of the standard adjust tracking to reduce jitter by averaging point locations 
deviation of the state that is being estimated , and corre- and either the input raw data is filtered ( the camera images ) 
sponds to the first n parameters of x . The arate parameter is 50 or the tracking itself has implicit filtering ( for instance a 
an estimate of the standard deviation of the rate of change of Kalman - based tracker ) . Other systems must also take into 
the state , and corresponds to the last n parameters of the account more information ( for instance , temporal filtering ) 
Kalman filter . The aobs parameter is an estimate of the noise than is required by embodiments in accordance with the 
in the observation that is used to update the Kalman filter . present disclosure . 

There are a few constants that remain the same : Q is a 55 The inventors surprisingly have found a more elegant 
2nx2n diagonal matrix that represents the state estimate solution , which is to preferably filter all movement — to 
covariance . Its upper left nxn submatrix is a diagonal matrix show no movement in the avatar or virtual object if the 
where every element is set to astate ?. motion detected is less than a certain threshold . Applying 

The lower left nxn part is a diagonal matrix where every jitter filters in accordance with the present disclosure 
60 reduces considerably the jitter and improves the user expe 

The W matrix is an nxn diagonal matrix that represents rience . A clear advantage is that it applies on the final 
the observation covariance , with every diagonal element elements of the system ( the skeleton joints ) and filters in the 
being aobs . The matrix H is a nx2n matrix whose left part is same space that those elements work on ( embodiments in 
an nxn identity matrix and all remaining elements are 0 . accordance with the present disclosure can filter quaternions 
Upon instantiation of a Kalman filter with j = 0 , the matrix 65 in rotation joints , or translations in translation joints ) . 

PO is set to Q. Every time the full body filter B is updated , Tables and other flat surfaces ( i.e. , flat , uniform plane or 
every Kalman filter is updated with its part of the parameters surface , which can also mean a close - to - uniform plane or 
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surface ) may add to noise , which when mapped from the frame of reference . Reference frame manager 1204 then 
point cloud onto the avatar ( representation of the user ) , provides the reference frame determination to base initial 
causes trembling of the avatar hands for example , or other ization module 1202 . 
inaccurate movements of the avatar . The uniform surface Next a table manager 1206 locates a table or other 
can be segmented out , preferably without calibration or 5 furniture ( such as a bed or chair for example ) , or any other 
during calibration . Points from the uniform surface can be inanimate object , which is within the visual detection area of 
removed as table model or “ table bone . ” Then , if it is the subject . Table manager 1206 uses a table model 1208 
determined that a point is explained by the table or is from ( which may optionally relate to any inanimate object ) to 
the table , then it can be removed . If the point is explained by segment out the table or other inanimate object , in order to 
the body or from the body , then it can be kept . As part of the prevent artifact generation from detection of such an inani 
solution , it becomes acceptable to get rid of some hand mate object . 
points because when hands are on the table , the markers are Base initialization module 1202 is also in contact with a 
very visible . To remove the plane , a probabilistic model is marker manager 1210 , which locates any active or passive 
used , not RANSAC . markers that may be attached to the subject or patient being 

Due to the input noise of the depth sensor the final pose tracked . As described in greater detail above , such markers estimated during tracking may suffer from jitter , despite the may optionally include without limitation lights ( such as temporal regression that is part of the tracking objective LED lights for example ) , inertial markers , magnetometers , function . To alleviate jittering , preferred embodiments post passive visual markers and the like . In order for the cali process the pose parameters with a dead band filter that suppresses all motion if the movement with respect to the 20 bration process to be performed , marker manager 1210 
previous frame falls under a certain threshold . Preferred locates the markers attached to the subject or otherwise in 
embodiments can apply it to the orientation of one or more the environment . In case of markers which require specific 
bones as well as the translation of the root bone . For the case placement on the subject , for example at particular locations 
of the orientation we formulate it as follows : or body parts , marker manager 1210 also verifies that these 

25 markers have been correctly placed , at least relative to each 
other . 

ani diam , 9h - 1 ) < 0 ( 22 ) A scale manager 1212 then determines the relative size of 
an the subject , for example according to the positions of the 

slerpan , an !, a ) : detected markers with respect to the model markers . 
Once the various components of the system have been 

The orientations are modeled as quaternions q for each located , a tracker manager 1214 initiates calibration of all 
bone n . The distance function d refers to the angle between components so as to be able to track the subject . Calibration 

is performed through calibration manager the current and the last frame orientation . The slerp function forms the calibration process as described with regard to interpolates over two quaternions , and the interpolating 35 FIGS . 13A - 13D below . factor a is computed as the ratio : FIGS . 13A - 13D show non - limiting , exemplary methods 
for calibration , according to at least some embodiments of 
the present disclosure . FIG . 13A shows the overall exem dlan , anl ) -0 plary calibration process , while FIG . 13B shows the process 

40 for marker calibration , FIG . 13C shows the process for table 
( inanimate object ) calibration and FIG . 13D shows the 

The case of the translation is analogously formulated but process for scale calibration . 
instead of quaternions , preferred embodiments linearly Turning now to FIG . 13A , as shown the calibration 
interpolate the 3d location of the root bone and the function process starts at stage 1300. Next , at stage 1302 , marker 
d is modeled as an Euclidean distance . 45 calibration is performed . As described in greater detail 

In preferred embodiments , modules configured to perform below , this stage includes detecting the markers , and if 
tracking analysis can also be configured to filter jitter . For particular place of the markers is required , determining their 
example , in preferred embodiments , tracking engine 112 can relative placement to each other . 
be configured to perform jitter filtering or include a jitter Table ( inanimate object ) calibration is performed at stage 
filter , according to any of the methods described above . In 50 1304. As described in greater detail below , this stage 
other preferred embodiments , another module can perform includes detecting one or more inanimate objects , such as a 
jitter filtering or include a jitter filter . Tracking engine 112 table , and then segmenting them out of the subsequent 
can include a specific jitter filter module or one of the above tracking process , to avoid generation of artifacts . 
disclosed modules within tracking engine can implement a Scale calibration is performed at stage 1306. As described 
jitter filter . 55 in greater detail below , this stage includes determining the 

FIG . 12 shows a non - limiting , exemplary system for relative scale of each limb by comparing the detected 
calibration , according to at least some embodiments of the markers with the model markers . The global scale of the 
present disclosure . As shown , a system 1200 features a base model is then preferably inferred as well optimizing a single 
initialization module 1202 , which handles initialization and scale parameter on the same tracking cost function . 
calibration . A reference frame manager 1204 determines the 60 Once these separate calibration processes have been per 
reference frame for the RGB camera , in order to be able to formed , the calibration process ends at 1308 . 
assess the visual information being provided . Reference Turning now to FIG . 13B , the marker calibration process 
frame manager 1204 may optionally also determine the is optionally performed as follows . In stage 1310 , an RGBD 
reference frame of the depth sensor , such as a TOF ( time of image is preferably obtained , featuring color ( optical ) data 
flight ) sensor . As described in greater detail below , reference 65 ( RGB ) and depth data , for example from a TOF sensor . The 
frame manager 1204 receives calibration information from a optical data is preferably synchronized with and calibrated 
calibration manager 1216 in order to be able to determine the to the depth data . 

6 , which per 
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Next in stage 1312 , the transformation from the optical regard to FIG . 13B . Steps 1356 and 1358 are optionally 
and / or TOF sensors frame of reference to the world frame of repeated until all markers are detected . 
reference is computed . Preferably this process is supported Step 1360 includes pose initialization , which relates to the 
by receipt of data from camera sensors in stage 1314 , for initial determination of the location and position of the 
example in regard to their relative orientation . 5 subject being tracked . At 1362 , the body of the subject is 

The process of tracking the markers is then started in stage scaled according to the relative locations of the markers . At 
1316. Data from each marker is preferably detected . For 1364 , the offsets of the markers are determined . At 1366 , the 
example , if the markers are LED lights , then each LED light marker offsets are converged . Steps 1364 and 1366 , option 
is preferably detected . If the markers are colored , for ally with step 1362 , are repeated until the body scale and 
example as colored lights , then preferably each color of each 10 relative marker positions have been determined . The process 

then ends at 1368 . marker is detected in stage 1318. The detected colors of the 
markers are then preferably mapped to the stored color According to at least some embodiments , optionally the 

markers being tracked are hybrid markers . Such hybrid information , so that the color of each marker can be cor markers may optionally include a combination of different rectly detected , as part of this process . 15 types of active markers ( for example , optical and inertial ) , In stage 1320 , the calibration process is preferably con and / or a combination of active and passive markers ( for 
tinued until all of the markers have been detected and example , optical and / or inertial , and joint detection or mapped . In stage 1322 , the game scene is set up which another type of passive marker ) . 
consists of determining if the patient has enough free Preferably , with hybrid markers , all joints can be tracked . 
movement space as well as making sure that the position / 20 Confidence could also be associated with orientations and 
orientation of the camera relative to the patient allows a not only joint positions . 
correct and comfortable user interaction . A given joint location may be the result of a marker 

The calibration process is preferably continued in stage detection ( that already brings a confidence with it ) , due to a 
1324 until the game scene has been correctly set up . This point - cloud , or both . Optionally , the probability of a location 
information is then displayed to the user in stage 1326 , who 25 being correct is scaled , for example to a range such as the 
then has the option to determine that the game scene ( or range -100,100 . When representing tracking / detection con 
some other aspect of the calibration ) is not set up correctly fidence in such a range , optionally c ( confidence ) is deter 
and to return to the initialization of calibration . If the scene mined relative to the probability of detection ( p ( detection ) ) 
is correctly set up and the user verifies in stage 1328 , then as follows : 
the process may end in stage 1330 . c = -100- > p ( detection ) - = 0.00001 

Stages 1318-1328 are optionally repeated at least once c = -80- > p ( detection ) ~ = 0.0001 
during the process of tracking the movements of the subject . C = -60- > p ( detection ) ~ = 0.001 
FIG . 13C shows the process for table ( inanimate object ) c = -40- > p ( detection ) - = 0.01 

calibration . Although the example is described with regard c = -20- > p ( detection ) - = 0.1 
to a table , it is understood that the process would be 35 c = 0- > p ( detection ) = 0.5 
operative for any inanimate object or combination thereof . c = 20- > p ( detection ) ~ = 0.9 
Step 1332 begins as for step 1310 of FIG . 13B , in which an c = 40- > p ( detection - = 0.99 
RGBD image is obtained . At 1334 , a pattern search is c = 60- > p ( detection ) ~ = 0.999 
performed to check for one or more inanimate objects , c = 80- > p ( detection ) ~ = 0.9999 
which for this non - limiting example is a table . Optionally 40 c = 100- > p ( detection ) = 0.99999 
the patterns of tables , or the descriptive parameters relating Optionally the special value NOT_TRACKED relates to 
to tables , are stored in a database for the pattern search . the situation in which the joint is never tracked . For example 

At 1336 , a table pattern is detected . The optical and / or if the system is configured to track only the human upper 
depth data relating to this pattern is then optionally fit with body then , during tracking , requesting information about the 
a suitable algorithm , such as the previously described 45 joints of the legs would result in a NOT_TRACKED value . 
RANSAC algorithm for example , at 1338. In addition , the Another non - limiting example of this situation would be if 
table is also preferably fit to one of the predetermined the tracking system ( or a particular module within the 
patterns as previously described , at 1340. The combination system ) is configured to track only hands . In that case , 
of the output of 1338 and 1340 may then optionally be used requesting information of any joint not belonging to the 
to compute the world origin of the environment relative to 50 hands ( neck , head , shoulders , etc. ) would result in a NOT_ 
the table in stage 1342. At 1346 , this computation enables TRACKED value . This division allows the system to explic 
the table to be segmented out of the calculations , to avoid itly set - up and track an arbitrary subset of joints of an 
artifacts . Preferably the segmentation is performed relative complete skeleton , enabling several use - cases , including but 
to the received point cloud data from 1344. The segmented not limited to , specific body part tracking , or tracking 
table is then optionally displayed at 1348 , for example to 55 amputee users . 
enable the user to determine whether the table has been Optionally the special value NOT_DETECTED relates to 
correctly segmented . the situation in which the value is not reliably detected ( e.g. , 

At 1350 , the process is optionally repeated , for example one hand is occluded and was not detected ) , but could 
until a certain number of stable frames or a stable time theoretically have been , given the available sensors . 
period has elapsed , and / or after such a number of stable time 60 Optionally , confidence could be expressed in terms of a 32 
frames or stable time period . At 1352 , optionally after one or bit integer value that stores in its upper 16 bits the flag code 
more predetermined criteria have been met regarding the and its lower 16 bits the value of the confidence . Having a 
table segmentation , the calibration process for the table may separate bit - set flag would support communication of situ 
be complete . ations such as joint occluded , tracked , with confidence 30 % . 
FIG . 13D shows the process for scale calibration . Steps 65 Optionally , the ranges of the confidence could be changed to 

1354 ( obtaining RGBD image ) , 1356 ( tracking markers ) and 0-100 in order to have a more intuitive probabilistic inter 
1358 ( marker detection ) are optionally performed with pretation as int ( PROB * 100 ) 
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In either situation , the confidence is based on the prob- and skull ; and left and right arms , without fingers . Option 
ability of a detection ( “ Probability that the detection of X is ally , non - minimal vertebrae can be added , as well as left and 
a true positive ” ) . right - hand fingers . 

The confidence is linked to the probability through a logit Turning now to FIG . 14A , there is shown a system 1400 , 
function such as for example c = 20 * log_10 ( p / ( 1 - p ) ) . The 5 featuring a number of components as previously described . 
confidence is bounded to the interval [ -100 ; 100 ] . A special Components with the same number as those previously 
value “ not detected ” ( current value : -101 ) may optionally described have the same or similar function . Device abstrac 
have an equivalent meaning with the lowest possible con tion layer 108 further features a plurality of Skelex compo 
fidence . A special value “ not tracked ” ( current value : -102 ) nents . Analysis components of device abstraction layer 108 
can be used to signify that the tracking algorithm is not 10 are able to access these Skelex components in order to obtain data in a correct format . These components provide a aware of the particular joint / item being asked about . skeleton and pose data exchange system , a format of pose Computing Bone Confidences from the Point Cloud : data , i.e. location and orientation in space , a minimal refer The confidence of a certain bone / joint given a point cloud ence for a humanoid skeleton , i.e. joint hierarchy / topology , is optionally computed as follows : 15 and utilities for exchange of data between different skeleton 

types and different data modules . 
As shown , skelex device interface 1402 enables data to be ( 23 ) confidence ( b ) = alb , v ) post ( v , p ) conf ( p ) provided from various data sources , shown here with the 

non - limiting examples of markers 118 , camera 102 , depth 
20 sensor 104 , and optionally also audio sensor 106 and / or one 

or more additional sensors 120 as previously described . This 
where b refers to a bone , v refers to a skin vertex , and p data can be formatted in a manner that enables it to be 
refers to a point of the cloud . The matrix alpha indicates the analyzed for tracking the subject as previously described . 
blending weights and the matrix post the posteriors . Next , a library 1406 enables the data to be formatted to a 

Finally the function conf ( p ) returns the confidence of a 25 skelex structure 1408 , optionally followed by a serializer 
point p of the cloud . The idea is that each point of the cloud ? 1410. Serializer 1410 can translate the skelex data structure 
has a confidence associated ( this confidence can be set to a into a format that can be stored more compactly . As a result 
default value or inferred from the raw camera data ) , and the of the operation of serializer 1410 , the data is provided as a 
confidence of a bone is accumulated in two steps : first , how binary buffer 1412 ( compact set of data bytes following each 
strongly a vertex is influenced by a point , and then how 30 other memory - wise ) . 
strongly the bone is influenced by that vertex . Skeleton tracking data can then be provided in various 

Computing Bone Confidences from the Hybrid Cloud : formats through skelex analysis interface 1404 , to data 
Without loss of generality the same formula can be analysis layer 110 and the associated tracking engine 112 . 

applied to compute confidences based on marker detections , Optionally skelex device interface 1402 and skelex analysis 
35 interface 1404 are combined to a single interface , for where the function conf ( m ) refers to the confidence of a enabling data to be written to , and read from , the skelex marker detection m instead , and the vertices v correspond to structure . the locations in the body where the markers are placed . Definitions and notation : Homogeneous coordinates . The To combine both confidences within the joints , a max 

operator is used : conf_bone_b = \ max ( conf_b_cloud , conf_b- 40 is implicitly assumed to be represented as x : = [ X0 , X1 , X2 , 1 ) " . following uses homogeneous coordinates , so that a point x 
_markers ) so that if a marker is present in the cloud This allows proper rigid transforms ( combination of a influencing a given bone with high confidence , the bone translation and a rotation- -no reflection ) to be expressed in 
confidence will ultimately be the one of the markers . linear form as : 

Computing Joint Confidences from Bone Confidences : 
Since the confidences are preferably expressed in terms of 45 

joint confidences rather than bone confidences , the bone ( 24 ) 
values are mapped to joints , in such way that a joint that is 
shared between K bones has a confidence that is the average x = T [ R | ] x 

of the confidence of those K bones . 
FIGS . 14A - 146 relate to a non - limiting implementation 50 

for tracking abstraction with a skeleton according to at least 
some embodiments . FIG . 14A relates to a non - limiting Rigid transforms can be chained : 
example of a system for tracking abstraction , and FIGS . 7 [ Ri | t1 ] 7 [ R2 | t2 ] = 7 [ R1R2 | R112 + t1 ] ( 25 ) 14B - 14F show an exemplary kinematic chain , joint trans 
forms and pose . FIG . 14G relates to a non - limiting example 55 
of a method for implementing same . 

In this implementation , but without wishing to be limited , 7 [ R1 | 41 ] 7 [ R2 / 72 ] ... 7 [ Rn \\ n ] = T [ R *** ] ( 26 ) 
the tracking system uses a Skelex skeleton as the abstract 
representation for a user body during tracking , to which 
mesh / skin is added in order to be able to fit the point - cloud 60 
to the skelex pose . R * = R_R2 ... Rn ( 27 ) 

Skelex is used as well as a " skeleton data format ” in order 
to exchange data between the system modules ( for instance 
to export the pose to a 3D rendering engine such as Unity 3D 

( 28 ) during tracking , or to describe a user body scale during 65 t * = R1R2 ... Rn - 1tn + RiR2 . . . Rn - 2in - 1 + ... + R112 + 11 
calibration ) . The minimal skelex topology includes the fol- Points in space can be described from different frames of 
lowing : left and right legs ; backbone ( subset of vertebrae ) reference . One can write x the coordinates of a point 

to 
?? 

R 11 
RX1 : = a 12 

( x2 ) ( 12 ) 10 0 1 

a 

and 

with 

and 



W 

5 

a 

= = y 
15 zs cancel ys cancel 

US 11,367,198 B2 
35 36 

expressed in the frame of reference V and T , for the rigid the skelex structure in stage 1456. The data is optionally 
transform from the frame of reference V to the frame of stored compactly in stage 1458 . 
reference W. Thus , for example , Next , the skeleton is processed during each tracking 

* W = T , " x " ( 29 ) frame , to match the point cloud to at least the location of the 
vertices of the skeleton , in stage 1460. In stage 1462 , the 

[ T , " | --Ty ( 30 ) skelex skeleton is transferred to a 3D rendering engine , such 
as the Unity 3D rendering engine , after each frame . 

With this notation , transforms across several frames of 
reference can easily be expressed by concatenating trans Without wishing to be limited by a single implementation , 
forms and points , by eliminating equal left - hand side sub- 10 for creating such a skeleton as described above , optionally 
script and right - hand side superscript . For example the following design features are included . The skeleton data 

can be split into 3 levels of information from static infor 
mation to dynamic information . The skeleton hierarchy will 

? ? ? ? * Typy = pt ( 31 ) typically be fixed in a given application , and consists of the 
set of joints , and the parent of each joint . 
The skeleton dimensions should be specified if a new user 

A skeleton is defined as a rooted tree . Each node ( i ) of the has been calibrated . It consists of the canonical position of 
tree is a transform as described herein that has a single each joint in the referential of the parent , and the degrees of 
transform of the tree as parent . One can write PQ ) the parent 20 freedom and range of motion for each joint . 
of transform i . The root is a special joint that doesn't have Pose information is the actual pose data and consists of a 
a parent joint in the skeleton . The skeleton being a tree , transform T W [ R ; lt ; ] for each joint . 
following the parent chain from any node is guaranteed to 
lead to the root after a finite number of steps . The upward The skeleton preferably has the following features . Any 
path from a node to the root defines the kinematic chain of 25 joint should be mappable to a precise anatomical position so 
that transform . The set of transforms formed by the skeleton that information can be conveyed in a precise manner with 
can be used to map the physical position and orientation of medical applications in mind . The skeleton can be a com 
a human body , by associating a transform to each bone . plete skeleton as defined above or a valid subset thereof . A 
FIGS . 14B - 14E show exemplary kinematic chains , valid subset is defined as including the HumanoidRoot joint , 

defined according to the above definitions . FIG . 14B shows 30 and respecting the skeletal hierarchy , i.e. , if i is a parent of 
a side view of the kinematic chain for the right leg . A similar j in the subset , then i must be part of j's kinematic chain in 
chain could be created for the left leg . FIG . 14C shows a the complete skeleton . 
front view of the kinematic chain for the right arm . A similar Any and all references to publications or other docu 
chain could be created for the left arm . FIG . 14D shows a ments , including but not limited to , patents , patent applica 
side view of the kinematic chain for the skull and backbone . 35 tions , articles , webpages , books , etc. , presented in the pres 
FIG . 14E shows a top view of the kinematic chain for the ent application , are herein incorporated by reference in their right hand . A similar chain could be created for the left hand . entirety . FIG . 14F shows an exemplary joint transform , defined 
according to the above definitions . Example embodiments of the devices , systems and meth 

A non - limiting list of skelex bone components is provided 40 ods have been described herein . As noted elsewhere , these 
herein : sacrum , 1_hip_bone , 1_thigh , 1_calf , 1_foot , 1_fore_ embodiments have been described for illustrative purposes 
foot , 1_toes , r_hip_bone , r_thigh , r_calf , r_foot , r_fore_foot , only and are not limiting . Other embodiments are possible 
r_toes , 11 , t7 , t1 , skull , 1_clavicle , 1_upperarm , 1_forearm , and are covered by the disclosure , which will be apparent 
1_hand , r_clavicle , r_upperarm , r_forearm , r_hand , from the teachings contained herein . Thus , the breadth and 
1_thumb_metacarpa , 1_thumb_proximal , 1_thumb_distal , 45 scope of the disclosure should not be limited by any of the 
1_index_metacarpal , 1_index_proximal , 1_index_middle , above - described embodiments but should be defined only in 
1_index_distal , l_middle_metacarpal , 1_middle_proximal , accordance with claims supported by the present disclosure 
1_middle_middle , 1_middle_distal , 1_ring_metacarpal , and their equivalents . Moreover , embodiments of the subject 
1_ring_proximal , 1 ring_middle , 1_ring_distal , 1_pin- disclosure may include methods , systems and devices which 
ky_metacarpal , 1_pinky_proximal , 1_pinky_middle , 1_pin- 50 may further include any and all elements from any other 
ky_distal , r_thumb_metacarpal , r_thumb_proximal , disclosed methods , systems , and devices , including any and 
r_thumb_distal , r_index_metacarpal , r_index_proximal , all elements corresponding to systems , methods and appa 
r_index_middle , r_index_distal , r_middle_metacarpal , ratuses / device for tracking a body or portions thereof . In 
r_middle_proximal , r_middle_middle , r_middle_distal , other words , elements from one or another disclosed 
r_ring_metacarpal , r_ring_proximal , r_ring_middle , 55 embodiments may be interchangeable with elements from 
r_ring_distal r_pinky_metacarpal , r_pinky_proximal , other disclosed embodiments . In addition , one or more 
r_pinky_middle , r_pinky_distal , 15 , 14 , 13 , 12 , t12 , t11 , t10 , features / elements of disclosed embodiments may be 
t9 , t8 , t6 , t5 , 14 , t3 , t2 , c7 , ch , c5 , c4 , c3 , c2 , cl . removed and still result in patentable subject matter ( and 
A non - limiting list of skelex bone components is provided thus , resulting in yet more embodiments of the subject 

herein : // BASE sacrum , pelvis ; // LEGS 1_thigh , l_calf , 60 disclosure ) . Correspondingly , some embodiments of the 
1_foot , 1_fore_foot , 1_toes , r_thigh , r_calf , r_foot , r_fore_ present disclosure may be patentably distinct from one 
foot , r_toes ; // SPINAL 11 , t7 , FIG . 14G relates to a non- and / or another reference by specifically lacking one or more 
limiting , exemplary embodiment of a method for tracking elements / features . In other words , claims to certain embodi 
abstraction , by determining a skeleton from the previously ments may contain negative limitation to specifically 
described sensor data . As shown , a method 1450 features 65 exclude one or more elements / features resulting in embodi 
creating a skelex skeleton during calibration in stage 1452 . ments which are patentably distinct from the prior art which 
The sensor data is received in stage 1454 and is formatted to include such features / elements . 
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( partial description of a skeleton ) 

= 

= 

# Everything is expressed in world coordinate 
Articulated Model 
{ 

global_scale = 0.80 ; 
dense_mesh true ; 
bones = { 

{ 
name = " sacrum ” ; 
head [ -0.03382374346256256 , -0.907242476940155 , 

0.39482375979423523 ] ; 
tail = [ -0.03382374346256256 , -1,063200831413269 , 

0.40458834171295166 ] ; 
x_axis = [ 0.999997615814209 , 

0.00013603654224425554,0.0021727425046265125 ] ; 
y_axis = [ -2.764863893389702e - 10 , -0.9980457425117493 , 

0.06248803436756134 ] ; 
z_axis [ 0.0021769972518086433,0.062487829476594925 , 

0.9980433583259583 ] ; 
parent “ None ” ; 
ndof 3 ; 
initial_theta = [ 0.0,0,0,0.0 ] ; 
offset = [ 0.0,0.0,0.0 ] ; 
active = True ; 

= 

= 

= 

= 

name = 

= 

= 

= 

y_axis 

{ 
“ 1_thigh " ; 

head [ 0.07265270501375198 , -0.9023483991622925 , 
0.3843427300453186 ] ; 

tail [ 0.11466878652572632 , -0.49611833691596985 , 
0.41821298003196716 ] ; 

x_axis [ 0.9938485026359558 , -0.10558056086301804 , 
0.03343289718031883 ] ; 

[ 0.10252843052148819,0.9912905097007751 , 
0.08265086263418198 ] ; 

z_axis 
[ 0.04186808317899704,0.07871462404727936,0.996017575263977 ] ; 

limit_rotation_x = [ -1.5707963705062866,0.7853981852531433 ] ; 
limit_rotation_y [ -0.7853981852531433,0.7853981852531433 ] ; 
limit_rotation_z = [ -0.7853981852531433,0.7853981852531433 ] ; 
parent " sacrum ” ; 
ndof = 3 ; 
initial_theta [ 0.0,0.0,0.0 ] ; 
offset = 

[ 0.10647644847631454,0.16085243225097656,0.020245611667633057 ] ; 
active = False ; 

} , 

= 

= 

= 

45 

What is claimed is : wherein said computer instructions comprise : 
1. A system for tracking at least a portion of a body , a first set of machine codes selected from the native 

comprising : instruction set to identify the plurality of data points a depth sensor for providing data to determine a three 
dimensional location of the body in space according to as super points ; 

a second set of machine codes selected from the native a distance of the body from the depth sensor ; 
a body model , comprising a skeleton template having a instruction set to identify the data points with joints 

hierarchical data structure of joint information and 50 of the body , according to said super points or a 
vertex information ; and combination thereof ; and 

a computational device comprising a memory and one or a third set of machine codes selected from the native 
more processors having computer instructions operat instruction set to perform the constrained probabi 
ing thereon configured to : listic fitting algorithm . 
fit data points from the depth sensor to the body model 55 2. The system of claim 1 , wherein the computer instruc 

according to a probabilistic fitting algorithm , tions are configured to cause the processor to operate as a 
wherein a plurality of data points is identified as calibration module configured to calibrate the system 
super points and are given additional weight in the according to removal of an inanimate object . 
fitting algorithm , said super points are defined 3. The system of claim 2 , wherein said inanimate object 
according to an object attached to the body , the data 60 comprises a table which is segmented out of the tracking of 
points are identified with joints of the body or a the point cloud . 
combination thereof , and said probabilistic fitting 4. The system of claim 1 , further comprising a plurality of 
algorithm is constrained according to at least one templates , wherein the computer instructions are further 
constraint defined by the body ; and configured to cause the processor to initialize a template of 

perform a defined set of basic operations in response to 65 the plurality of templates , wherein the template features a 
receiving a corresponding basic instruction selected model of a human body configured only as a plurality of 
from a defined native instruction set of codes ; and parameters , only as a plurality of features , or both . 

a 
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5. The system of claim 4 , wherein the plurality of param user's body , the depth sensor is configured to provide 
eters and / or features include a skeleton , and one or more at least one of : data to determine the three - dimensional 
joints . location or position of a user , or a combination thereof , 

6. The system of claim 5 , wherein instructions are addi- in the environment according to a distance ( s ) of one or 
tionally configured to cause the processor to utilize the 5 more of the markers from depth sensor in the volume ; 
plurality of parameters and / or features to assist in tracking of and TOF ( time of flight ) data ; and the instructions are 
the user's movements . additionally configured to cause the processor to com 

7. The system of claim 4 , wherein the computer instruc bine the data from the depth sensor with the video data 
tions are configured to map the sensor data onto a GMM from the camera to produce a three - dimensional map of 
( Gaussian mixture model ) ; wherein the body model includes 10 the user in an environment of the user . 
a sparse - skin representation ; and wherein the instructions 21. The system of claim 20 , wherein each marker com 
are additionally configured to cause the processor to sup- prises either an active or passive sensor . 
press corresponding gaussians . 22. The system of claim 21 , wherein at least one of the 

8. The system of claim 7 , wherein data is mapped to a markers includes an inertial sensor . 
GMM by a classifier . 23. The system of claim 21 , wherein each marker com 

9. The system of claim 7 , wherein : the tracking engine prises an active optical marker for emitting light . 
includes a template engine configured to read a template 24. The system of claim 23 , wherein the computer instruc 
from a template database , and the computer instructions are tions include instructions configured to cause the processor 
additionally configured to cause the processor to operate as to perform as a calibration module configured to calibrate 
a GMM mapper , and to send the template to the GMM 20 the system according to tracking one or more active markers . 
mapper , and wherein instructions are additionally config- 25. The system of claim 21 , further comprising an orien 
ured to cause the processor to operate as a point cloud tation sensor for determining an orientation of the camera , 
decomposer , and to enable the GMM mapper to receive wherein the computer instructions are additionally config 
point cloud information therefrom . ured to cause the processor to combine the data from the 

10. The system of claim 9 , wherein the computer instruc- 25 depth sensor with the video data from the camera according 
tions are configured to apply Kalman filter to determine a to the orientation of the camera . 
pose of the user . 26. The system of claim 25 , further comprising one or 

11. The system of claim 1 , wherein said constraint is more additional sensors , wherein at least one of the one or 
selected from the group consisting of a constraint against more additional sensors are configured to collect biological 
self - intersection , an angle constraint and a pose prior con- 30 signals of the user . 
straint . 27. The system of claim 26 , wherein at least one of the one 

12. The system of claim 11 , wherein said data points or more sensors comprise an inertial sensor . 
identified with joints of the body are identified according to 28. The system of claim 26 , wherein the computer instruc 
a previously determined position as an estimate . tions are additionally configured to cause the processor to 

13. The system of claim 11 , wherein said object attached 35 convert sensor signals to sensor data which is sensor 
to the body comprises one or more of active markers that agnostic . 
provide a detectable signal , or a passive object that is so 29. The system of claim 26 , wherein the computer instruc 
attached . tions are additionally configured to cause the processor to 

14. The system of claim 13 , wherein said object comprises clean signals by either removing or at least reducing noise , 
headgear or a smart watch . 40 and or normalizing the signals , and wherein the computer 

15. The system of claim 11 , wherein the body model instructions are additionally configured to cause the proces 
comprises a template , said template including a standard sor to perform data analysis on the sensor data , wherein said 
model of a skeleton and skinning . data analysis comprises performing instructions as a track 

16. The system of claim 15 , wherein said template is ing engine 
adjusted as an input to the body model ; and wherein said 45 30. The system of claim 29 , wherein the tracking engine 
probabilistic fitting algorithm comprises a GMM ( Gaussian is configured to either track the position of the user's body , 
mixture model ) for mapping the data points to the body track the position of one or more body parts of the user , 
model . including but not limited , to one or more of arms , legs , 

17. The system of claim 15 , wherein said template includ- hands , feet , and head , or both . 
ing a standard model of a skeleton according to a hierarchy 50 31. The system of claim 30 , wherein the tracking engine 
of joints as vertices and skinning , and a first determination is configured to decompose signals representing physical 
of a position of said joints of the body are determined actions made by the user into data representing a series of 
according to said template . gestures . 

18. The system of claim 15 , wherein : 32. The system of claim 31 , wherein the tracking engine 
for a given joint , the angle constraints are determined 55 is configured to decompose signals representing physical 

according to a rotational model , for determining 1 , 2 or actions made by the user into data representing a series of 
3 degrees of freedom , and for each degree of freedom , gestures via classifier functionality . 
a minimum and maximum angle is determined . 33. A system for tracking at least a portion of a body , 

19. The system of claim 1 , further comprising a camera , comprising : 
and wherein the one or more processors having computer 60 a depth sensor for providing data to determine the three 
instructions operating thereon are further configured to dimensional location of the body in space according to 
cause the processor to fit data points from at least one of the the distance from depth sensor ; 
camera and the depth sensor relative to a user . a body model , comprising a skeleton ; and 

20. The system of claim 19 , wherein : a computational device having computer instructions 
the camera is configured to collect video data of one or 65 operating thereon configured to fit data points from the 
more movements of the user in an environment via depth sensor to a body model according to a probabi 
optionally a plurality of markers affixed to points on the listic fitting algorithm , 
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wherein 35. A method for tracking at least a portion of a body , 
said probabilistic fitting algorithm is constrained accord- comprising : 

ing to at least one constraint defined by the human determining an initial position of the body using a depth 
body , said constraint being selected from the group sensor ; 
consisting of a constraint against self - intersection , an receiving sensor data from the depth sensor , the sensor angle constraint and a pose prior constraint , data comprising data points ; the body model comprises a template , said template defining a plurality of the data points as super points , each including a standard model of a skeleton and skinning , super point identified with an object attached to the said template is adjusted as an input to the body model ; 
and wherein said probabilistic fitting algorithm com- 10 body , a joint of the body , or a combination thereof ; 
prises a GMM ( Gaussian mixture model ) for mapping retrieving , from a memory of a memory storage device , 
the data points to the body model . one or more groups of data , each group of data repre 

34. The system of claim 33 , further comprising : senting a body model template , each body model 
a camera configured to collect video data of one or more template according to a hierarchy of joints as vertices 
movements of the user in an environment via optionally 15 and skinning ; 
a plurality of markers affixed to points on the user's fitting a plurality of the data points to a body model using 
body ; and a probabilistic fitting algorithm in which each super 

wherein the depth sensor is configured to provide at least point is given additional weight ; 
one of ( a ) data to determine a three - dimensional loca mapping sensor data as a point cloud to a Gaussian 
tion or position of a user or a combination thereof in the mixture model ( GMM ) ; and 
environment according to one or more distances of one imposing constraints on the GMM ; 
or more of the markers from depth sensor in the volume wherein the imposing constraints comprises scaling one 
and ( b ) TOF ( time of flight ) data ; and the computer or more distances between a first data point and a 
instructions are additionally configured to cause the second data point according to the distance between the 
processor to combine the data from the depth sensor 25 first data point and a third data point and a predeter 
with the video data from the camera to produce a mined scale ratio . 

three - dimensional map of the user in the environment . 

20 
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