发明名称
一种木质素改性水性聚氨酯的制备方法

摘要
本发明涉及一种改性水性聚氨酯的制备方法。一种木质素改性水性聚氨酯的制备方法，其特征在于：在水性聚氨酯乳液的合成过程中添加木质素，木质素的加入量为：a. 多异氰酸酯、b. 聚醚多元醇
或聚酯多元醇、c. 含羧基等亲水性基团的多官能基
小分子扩链剂三种原料固体量之和的 0.1～30%；得木质素改性水性聚氨酯。该方法所得到的
木质素改性水性聚氨酯的断裂伸长率与拉伸强度相对改性前都有明显的提高，同时其生产成本低廉且
具有可生物降解、环保的特点，而且本发明工艺简单；可用作膜、涂料、胶粘剂等材料。
1. 一种木质素改性水性聚氨酯的制备方法，其特征在于：

1). 通过多异氰酸酯与聚醚多元醇或聚酯多元醇在 50-90°C 下搅拌反应 1-5 小时反应得水性聚氨酯预聚物；其中，多异氰酸酯与聚醚多元醇或聚酯多元醇的质量百分比为：多异氰酸酯 65-90，聚醚多元醇或聚酯多元醇 10-35；

2). 在 50-90°C 下向步骤 1) 得到的水性聚氨酯预聚物中加入含羧基等亲水性基团的多官能基小分子扩链剂和木质素搅拌反应 1-3 小时进行扩链和交联，得物质 A；其中，含羧基等亲水性基团的多官能基小分子扩链剂为二元醇、二元胺、三元醇、三元胺中的任意一种或任意一种以上的混合，任意一种以上混合时为任意配比；含羧基等亲水性基团的多官能基小分子扩链剂的加入量为多异氰酸酯质量的 10-50%；木质素的加入量为：a 多异氰酸酯、b 聚醚多元醇或聚酯多元醇、c 含羧基等亲水性基团的多官能基小分子扩链剂三种原料固体质量之和的 0.1-30%；

3). 将步骤 2) 得到的物质 A 中加入中和试剂，调节 PH 值为 6-8，中和 5-10 分钟后冷却至 40°C 以下再加冰水分散，固含量的质量百分数为 5-50%，得产品。

2. 根据权利要求 1 所述的一种木质素改性水性聚氨酯的制备方法，其特征在于：所述的木质素为硝化木质素。

3. 一种木质素改性性水性聚氨酯的制备方法，其特征在于：

1). 通过多异氰酸酯与聚醚多元醇或聚酯多元醇在 50-90°C 下搅拌反应 1-5 小时反应得水性聚氨酯预聚物；其中，多异氰酸酯与聚醚多元醇或聚酯多元醇的质量百分比为：多异氰酸酯 65-90，聚醚多元醇或聚酯多元醇 10-35；

2). 在 50-90°C 下向步骤 1) 得到的水性聚氨酯预聚物中加入含羧基等亲水性基团的多官能基小分子扩链剂搅拌反应 1-3 小时进行扩链和交联，得物质 A；其中，含羧基等亲水性基团的多官能基小分子扩链剂为二元醇、二元胺、三元醇、三元胺中的任意一种或任意一种以上的混合，任意一种以上混合时为任意配比；含羧基等亲水性基团的多官能基小分子扩链剂的加入量为多异氰酸酯质量的 10-50%；

3). 将步骤 2) 得到的物质 A 中加入中和试剂，调节 PH 值为 6-8，中和 5-10 分钟后冷却至 40°C 以下再加冰水和木质素分散，木质素的加入量为：a 多异氰酸酯、b 聚醚多元醇或聚酯多元醇、c 含羧基等亲水性基团的多官能基小分子扩链剂三种原料固体质量之和的 0.1-30%，得产品，产品的固含量的质量百分数为 5-50%。

4. 根据权利要求 3 所述的一种木质素改性水性聚氨酯的制备方法，其特征在于：所述的木质素为木质素磺酸盐或硝化木质素。

5. 一种木质素改性水性聚氨酯的制备方法，其特征在于：

1). 通过多异氰酸酯与聚醚多元醇或聚酯多元醇在 50-90°C 下搅拌反应 1-5 小时反应得水性聚氨酯预聚物；其中，多异氰酸酯与聚醚多元醇或聚酯多元醇的质量百分比为：多异
氨基酸 65-90，聚醚多元醇或聚酯多元醇 10-35；

2). 在 50-90℃下向步骤 1）得到的水性聚氨酯预聚物中加入含羧基等亲水性基团的多官能基小分子扩链剂搅拌反应 1-3 小时进行扩链和交联，得物质 A；其中，含羧基等亲水性基团的多官能基小分子扩链剂为二元醇、二元胺、三元醇、三元胺中任一种或任意一种以上的混合，任意一种以上混合时为任意配比。含羧基等亲水性基团的多官能基小分子扩链剂的加入量为多异氰酸酯质量的 10-50%；

3). 将步骤 2）得到的物质 A 中加入中和试剂，调节 PH 值为 6-8，中和 5-10 分钟后冷却至 40℃以下再加冰水分散，得水性聚氨酯乳液；向水性聚氨酯乳液中加入木质素，木质素的加入量为：a 多异氰酸酯、b 聚醚多元醇或聚酯多元醇、c 含羧基等亲水性基团的多官能基小分子扩链剂三种原料固体质量之和的 0.1-30%，得产品，产品的固含量的质量百分数为 5-50%。

6. 根据权利要求 5 所述的一种木质素改性水性聚氨酯的制备方法，其特征在于：所述的木质素是木质素磺酸盐或硝化木质素。
一种木质素改性水性聚氨酯的制备方法

技术领域

本发明涉及一种改性水性聚氨酯的制备方法，属于天然高分子材料领域，也属于环境友好生态材料领域。

背景技术

木质素（lignin）是植物界中仅次于纤维素第二丰富的天然高分子，工业木质素来源于造纸黑液，因而具有价廉、可再生、环境友好等优点。木质素结构的复杂性、来源的多元性和提取过程的多样性造成了开发利用的难度和工业化的阻碍，因此研究和开发木质素高分子材料面临着巨大的机遇和挑战，急需加强对木质素高分子材料的认识，并探索出开发木质素基高分子材料的新思路。目前，由于石油资源的日益紧张、原油价格持续上涨以及环境污染问题，基于可再生资源的天然高分子材料的研究和应用被广泛重视。关于木质素改性材料的研究主要集中在木质素及其衍生物的官能基、星型结构、分子量、球形形状等一级和二级结构的某些方面对宏观性能的影响，而对于改性材料中木质素参与的超分子聚集体和网络结构对材料性能的影响及结构的控制等研究较少，只有少数报道涉及。

现有的改性水性聚氨酯（或称水性聚氨酯材料）的制备方法所得到的改性水性聚氨酯的断裂伸长率与拉伸强度有待进一步提高，目前的改性水性聚氨酯的方法大多只能单方面的提高材料的断裂伸长率或拉伸强度（日本专利：5186543. 1993），甚至在提高一方面的同时通常导致另一方面下降（中国专利：93110541），或者采用的改性技术制备过程复杂（美国专利：5173526. 1992）。

发明内容

本发明的目的在于提供一种断裂伸长率高、拉伸强度高的木质素改性水性聚氨酯的制备方法。

为了实现上述目的，本发明所采用的技术方案如下（3 种方案）：

1. 一种木质素改性水性聚氨酯的制备方法，其中特征在于：
 1.1. 通过多异氰酸酯与聚醚多元醇或聚酯多元醇在 50-90℃下搅拌反应 1-5 小时反应制得水性聚氨酯预聚物：其中，多异氰酸酯与聚醚多元醇或聚酯多元醇的质量百分比为：多异氰酸酯 65-90，聚醚多元醇或聚酯多元醇 10-35；
 2. 在 50-90℃下向步骤 1）得到的水性聚氨酯预聚物中加入含羧基等亲水性基团的官能基小分子扩链剂和木质素搅拌反应 1-3 小时进行扩链和交联，得物质 A；其中，含羧基等亲水性基团的官能基小分子扩链剂为二元醇、二元胺、三元醇、三元胺中的任意一种

4
或任意一种以上的混合，任意一种以上混合时为任意配比；含羧基等亲水性基团的多官能
基小分子扩链剂的加入量为多异氰酸酯物质的量的量的质量的 10-50%；木质素的加入量为：a 多异氰酸酯、b 聚醚多元醇或聚酯多元醇、c 含羧基等亲水性基团的多官能基小分子扩链剂
三种原料固体量之和的 0.1-30%；
3. 将步骤 2) 得到的物质 A 中加入中和试剂，调节 PH 值为 6-8，中和 5-10 分钟后冷
却至 40℃以下再加冰水分散，固含量的质量百分数为 5-50%，得产品（木质素改性水性聚
氨酯）。

所述的木质素为硝化木质素。

2. 一种木质素改性水性聚氨酯的制备方法，其特征在于：
1). 通过多异氰酸酯与聚醚多元醇或聚酯多元醇在 50-90℃下搅拌反应 1-5 小时反应得
水性聚氨酯预聚物；其中，多异氰酸酯与聚醚多元醇或聚酯多元醇的质量百分比为：多异
氰酸酯 65-90、聚醚多元醇或聚酯多元醇 10-35；
2). 在 50-90℃下向步骤 1) 得到的水性聚氨酯预聚物中加入含羧基等亲水性基团的多
官能基小分子扩链剂搅拌反应 1-3 小时进行扩链和交联，得物质 A；其中，含羧基等亲水性
基团的多官能基小分子扩链剂为二元醇、二元胺、三元醇、三元胺中的一种或任意一种
以上的混合，任意一种以上混合时为任意配比；含羧基等亲水性基团的多官能基小分子
扩链剂的加入量为多异氰酸酯质量的 10-50%；
3). 将步骤 2) 得到的物质 A 中加入中和试剂，调节 PH 值为 6-8，中和 5-10 分钟后冷
却至 40℃以下再加冰水和木质素分散，木质素的加入量为：a 多异氰酸酯、b 聚醚多元醇或
聚酯多元醇、c 含羧基等亲水性基团的多官能基小分子扩链剂三种原料固体量之和的
0.1-30%，得产品，产品的固含量的质量百分数为 5-50%。

所述的木质素是木质素磺酸盐或硝化木质素。

3. 一种木质素改性水性聚氨酯的制备方法，其特征在于：
1). 通过多异氰酸酯与聚醚多元醇或聚酯多元醇在 50-90℃下搅拌反应 1-5 小时反应得
水性聚氨酯预聚物；其中，多异氰酸酯与聚醚多元醇或聚酯多元醇的质量百分比为：多异
氰酸酯 65-90、聚醚多元醇或聚酯多元醇 10-35；
2). 在 50-90℃下向步骤 1) 得到的水性聚氨酯预聚物中加入含羧基等亲水性基团的多
官能基小分子扩链剂搅拌反应 1-3 小时进行扩链和交联，得物质 A；其中，含羧基等亲水性
基团的多官能基小分子扩链剂为二元醇、二元胺、三元醇、三元胺中的一种或任意一种
以上的混合，任意一种以上混合时为任意配比；含羧基等亲水性基团的多官能基小分子
扩链剂的加入量为多异氰酸酯质量的 10-50%；
3). 将步骤 2) 得到的物质 A 中加入中和试剂，调节 PH 值为 6-8，中和 5-10 分钟后冷
却至 40℃以下再加冰水分散，得水性聚氨酯乳液；向水性聚氨酯乳液中加入木质素，木质
素的加入量为：a 多异氰酸酯、b 聚醚多元醇或聚酯多元醇、c 含羧基等亲水性基团的多官
能基小分子扩链剂三种原料固体量之和的 0.1-30%，得产品，产品的固含量的质量百分
数为 5-50%。

所述的木质素是木质素磺酸盐或硝化木质素。

本发明通过在现有的水性聚氨酯乳液的合成过程中添加木质素，其乳液固化后形成的膜材料的力学性能显著提高（断裂伸长率高、拉伸强度高）。本发明中的木质素是木质素磺酸盐或硝化木质素，其中木质素磺酸盐是造纸工业的副产品，硝化木质素则是造纸工业的副产品一碱木质素的硝化产物，成本低廉、来源丰富。水性聚氨酯是一种环保型材料，本发明将工业上的废弃物木质素与环保型水性聚氨酯结合既得到了性能改善的材料，并且提高了木质素的利用价值，同时其生产成本低廉且具有可生物降解、环保的特点，而且本发明工艺简单，因此具有较高的科技含量。该方法所得到的木质素改性水性聚氨酯的断裂伸长率与拉伸强度相对改性前都有明显的提高，可作膜、涂料、胶粘剂等材料。

具体实施方式

为了更好地理解本发明，下面结合实施例进一步阐明本发明的内容，但本发明的内容不仅仅局限于下面的实施例。

实施例 1：

一种木质素改性水性聚氨酯的制备方法，它包括如下步骤：

1). 将计算量的聚氧化丙烯二醇（分子量 2000，南京钟山石化）与甲苯二异氰酸酯 (TDI，中国医药集团上海化学试剂公司）混合在 65 ℃搅拌反应 2 小时，得水性聚氨酯预聚物；聚氧化丙烯二醇与甲苯二异氰酸酯的质量百分比为：聚氧化丙烯二醇 10、甲苯二异氰酸酯 90；

2). 在 75℃下向步骤 1) 得到的水性聚氨酯预聚物中加入小分子扩链剂：2, 2’-二羟甲基丙酸 (DMPA，湖州长盛)，小分子扩链剂 DMPA 的加入量为甲苯二异氰酸酯质量的 10%[使得到的木质素磺酸盐复合水性聚氨酯乳液的 NCO/OH 摩尔比为 1.0-3.5，小分子扩链剂中 [OH] 与聚氧化丙烯二醇中 [OH] 的摩尔比在 1.0-3.5 范围之内]，将搅拌反应 1 小时，并用丙酮降解，丙酮的加入量为固体质量（聚氧化丙烯二醇、甲苯二异氰酸酯和 2, 2’-二羟甲基丙酸固体量）的 5%；得物质 A；

3). 将步骤 2) 得到的物质 A 中加入计算量的三乙胺（TEA，成都科龙）中和 5 分钟，三乙胺（TEA）的加入量与 DMPA 的量相同（调节 PH 值在 6-8 范围之内），反应完成后将温度降到 40 ℃以下，得物质 B；将木质素磺酸盐溶解在冰水中，得木质素磺酸盐冰水溶液，木质素磺酸盐加入量为聚氧化丙烯二醇、甲苯二异氰酸酯和 2, 2’-二羟甲基丙酸固体量的 1.5%；在高剪切力（2000-4000 转/分）下在物质 B 中加入木质素磺酸盐冰水溶液分散；然后抽真空除去丙酮得到木质素改性水性聚氨酯（或称木质素磺酸盐复合水性聚氨酯乳液）；控制木质素磺酸盐复合水性聚氨酯乳液的固含量在 5%（由加入的水量控制）；

4). 在 50 ℃下，将木质素磺酸盐复合水性聚氨酯乳液在聚四氟乙烯膜上流延成膜。

将膜材料裁剪后，在恒定湿度为 30%，室温下放置 7 天后进行性能测试，片材的宽度为 10mm, 标距为 30mm, 厚度在 0.45mm 左右。制备的片材的力学性能：拉伸强度为 16.98MPa, 断裂伸长率为 1253.54%。与相应的空白材料（即不加木质素，以下相同）相比，拉伸强度提
高了1.6倍。断裂伸长率提高了1.2倍。力学性能参照中华人民共和国国家标准GB4456-84
在深圳新三思测试仪器公司的CMT6503仪器上测得，拉伸速率为300mm/min。

比较例1:
与实施例1基本相同，不同之处仅在于不加入木质素。

实施例2:
与实施例1基本相同，不同之处在于：添加的木质素磷酸盐为聚氧化丙烯二醇、甲苯
二异氰酸酯和2, 2’-二羟甲基丙酸固体质量的6.0%，得到木质素改性水性聚氨酯（或称木
质素磷酸盐复合水性聚氨酯乳液）。经相同的测试后得到的材料的力学性能：拉伸强度为
22.9MPa, 断裂伸长率为906.97%，与空白材料相比，拉伸强度提高了2.1倍，但断裂伸长率
降低为原来的86%。

实施例3:
一种木质素改性水性聚氨酯的备方法，它包括如下步骤:
1). 将计算量的聚氧化丙烯二醇（分子量2000）与甲苯二异氰酸酯（TDI）混合在65℃
搅拌反应2小时，得水性聚氨酯预聚物；聚氧化丙烯二醇与甲苯二异氰酸酯的质量百分比
为：聚氧化丙烯二醇35、甲苯二异氰酸酯65；
2). 在75℃下向步骤1）得到的水性聚氨酯预聚物中小分子扩链剂：2, 2’-二羟甲基
丙酸（DMPA，湖州长盛），小分子扩链剂DMPA的加入量为甲苯二异氰酸酯质量的50%（使得
到的木质素磷酸盐复合水性聚氨酯乳液的中NCO/OH摩尔比为1.0-3.5，小分子扩链剂中[=OH]
与聚氧化丙烯二醇中[-OH]摩尔比在1.0-3.5范围之内），搅拌反应1小时，期间用丙酮降
粘，丙酮的加入量为固体质量（聚氧化丙烯二醇、甲苯二异氰酸酯和2, 2’-二羟甲基丙酸
固体质量）的10%；得物质A；
3). 将步骤2）得到的物质A中加入计算量的三乙胺（TEA）中和5分钟，三乙胺（TEA）
的加入量与DMPA的量相同（调节PH值在6-8范围之内），反应完成后将温度降到40℃以
下，在高剪切力（2000-4000转/分）下加入冰水分散，得水性聚氨酯乳液；将木质素磷酸
盐溶于水中与得到的水性聚氨酯乳液共混，木质素磷酸盐加入量为聚氧化丙烯二醇、甲苯
二异氰酸酯和2, 2’-二羟甲基丙酸固体质量的1.5%；然后抽真空除去丙酮得到木质素改
性水性聚氨酯（或称木质素磷酸盐复合水性聚氨酯乳液）；控制木质素磷酸盐复合水性聚
氨酯乳液的固含量在50%（由加入的水量控制）；
4). 在50℃下，将乳液在聚四氟乙烯板上流延成膜。
将膜材料裁片后，在恒定湿度为30%，室温下放置7天后进行性能测试，片材的宽度为
10mm, 标距为30mm, 厚度在0.45mm左右。制备的片材的力学性能：拉伸强度为14.41MPa, 断
裂伸长率为1512.08%。与相应的空白材料相比，拉伸强度提高了1.3倍，断裂伸长率提高了
1.4倍。力学性能参照中华人民共和国国家标准GB4456-84在深圳新三思测试仪器公司的
CMT6503仪器上测得，拉伸速率为300mm/min。

实施例4:
与实施例 3 基本相同，不同之处在于：添加的木质素磺酸盐的含量为聚氯化丙烯二醇、甲苯二异氰酸酯和 2, 2’-二羟甲基丙酸固体质量的 6.0%，得到木质素改性水性聚氨酯，制
备的片材的力学性能：拉伸强度为 18.32MPa，断裂伸长率为 947.71%，与相应的空白材料相
比，拉伸强度提高了 1.7 倍，但断裂伸长率降低为原来的 90%。

由实施例 1-4 可知，本发明的木质素改性水性聚氨酯，木质素磺酸盐的加入对材料的
力学性能的提高起到了显著作用，具有明显的增强效果，但增韧效果不明显。

实施例 5：

与实施例 1 基本相同，不同之处在于：水性聚氨酯的原料为聚醚多元醇（分子量 2000，
烟台华大）和 4，4’-二苯基甲烷二异氰酸酯（MDI），木质素磺酸盐复合水性聚氨酯乳液的
NCO/OH=3.0，扩链剂为 N-甲基二乙醇胺（MDA，上海嘉成），中和试剂为酸盐（中国医药集
团上海化学试剂公司）；添加的木质素磺酸盐的含量为聚酯多元醇、4，4’-二苯基甲烷二
异氰酸酯和 N-甲基二乙醇胺固体质量的 30%，得到木质素改性水性聚氨酯（或称木质素磺
酸盐复合水性聚氨酯乳液）。

实施例 6：

与实施例 3 基本相同，不同之处在于：水性聚氨酯的原料为聚醚多元醇（分子量 3000）
与六亚甲基二异氰酸酯（HDI）混合物，木质素磺酸盐复合水性聚氨酯乳液的 NCO/OH=1.15，
扩链剂为二乙基三胺，中和试剂为酸盐；添加的硝化木质素的含量为聚酯多元醇、六亚
甲基二异氰酸酯和二亚乙基三胺固体质量的 0.5%，得到木质素改性水性聚氨酯（或称木质素
磺酸盐复合水性聚氨酯乳液）。

实施例 7：

一种的木质素改性水性聚氨酯的制备方法，它包括如下步骤：

1). 将计算量的聚氯化丙烯二醇（分子量 2000）与甲苯二异氰酸酯（TDI）混合在 65 ℃
搅拌反应 2 小时，得水性聚氨酯预聚物；聚氯化丙烯二醇与甲苯二异氰酸酯的质量百分比为：
聚氯化丙烯二醇 20、甲苯二异氰酸酯 80；

2). 在 75℃下向步骤 1) 得到的水性聚氨酯预聚物中加入小分子扩链剂：2, 2’-二羟
甲基丙酸（DMPA，湖州长盛），小分子扩链剂 DMPA 的加入量为甲苯二异氰酸酯质量的 20%[使
得到的木质素磺酸盐复合水性聚氨酯乳液的中 NCO/OH 摩尔比为 1.0-3.5，小分子扩链剂中
[-OH]与聚氯化丙烯二醇中[-OH]摩尔比在 1.0-3.5 范围之内]，搅拌反应 1 小时，期间用丙
酮降粘，丙酮的加入量为固体质量（聚氯化丙烯二醇、甲苯二异氰酸酯和 2, 2’-二羟甲基
丙酸固体质量）的 15%，在此阶段将硝化木质素溶解于丙酮中加入反应装置中，硝化木质素
的加入量为聚氯化丙烯二醇、甲苯二异氰酸酯和 2, 2’-二羟甲基丙酸固体质量的 1.5%；

3). 加入计算量的三乙胺（TEA）中和 5 分钟，三乙胺（TEA）的加入量与 DMPA 的量相同
（调节 PH 值在 6-8 范围之内），反应完成后将温度降到 40℃以下（如 10-35℃），在高
剪切力下加入冰水分散；然后抽真空除去丙酮得到木质素改性水性聚氨酯（或称硝化木质
素复合水性聚氨酯乳液）；控制乳液的固含量在 20%（由加入的水量控制）；
4). 在 50°C 下，将乳液在聚四氟乙烯板上延展成膜。

将膜材料裁片后，在恒定湿度为 30%，室温下放置 7 天后进行性能测试，片材的宽度为 10mm, 标距为 30mm, 厚度在 0.45mm 左右。制备的片材的力学性能：拉伸强度为 6.04MPa，断裂伸长率为 787%。与相应的空白材料相比，拉伸强度与断裂伸长率同时提高了 1.6 倍。力学性能参照中华人民共和国国家标准 GB4456-84 在深圳三思测试仪器公司的 CMT6503 仪器上测得，拉伸速率为 300mm/min。

比较例 2:

与实施例 7 基本相同，不同之处仅在于不加入木质素。

实施例 8:

与实施例 7 基本相同，不同之处在于：添加的硝化木质素的含量为聚氧化丙烯二醇、甲苯二异氰酸酯和 2, 2' - 二羟甲基丙酸固体质量的 3.0%, 得到木质素改性水性聚氨酯（或称硝化木质素复合水性聚氨酯乳液）。经相同的测试后得到的材料的力学性能：拉伸强度为 7.38MPa, 断裂伸长率为 866%。与空白材料相比，拉伸强度与断裂伸长率同时提高了 1.8 倍。

实施例 9:

与实施例 7 基本相同，不同之处在于：添加的硝化木质素的含量为聚氧化丙烯二醇、甲苯二异氰酸酯和 2, 2' - 二羟甲基丙酸固体质量的 4.5%, 得到硝化木质素复合水性聚氨酯乳液。经相同的测试后得到的材料的力学性能：拉伸强度为 5.12MPa, 断裂伸长率为 900%, 与空白材料相比，拉伸强度提高了 1.3 倍, 断裂伸长率提高了 1.8 倍。

由实施例 7-9 可知，本发明的木质素改性水性聚氨酯，硝化木质素的加入对材料的力学性能的提高起到了显著作用，具有明显的同步增强、增韧效果。

实施例 10:

与实施例 7 基本相同，不同之处在于：水性聚氨酯的原料为聚酯（分子量 1000，烟台华大）与聚醚多元醇（分子量 3000，南京钟山石化）混合物和六亚甲基二异氰酸酯（HDI, 德国 Bayer），硝化木质素复合水性聚氨酯乳液的 NCO/0H=2.5，扩链剂为二亚乙基三胺（上海嘉辰），中和试剂为盐酸；添加的硝化木质素的含量为聚酯、聚醚多元醇、六亚甲基二异氰酸酯和二亚乙基三胺固体质量的 30%，得到木质素改性水性聚氨酯（或称硝化木质素复合水性聚氨酯乳液）。

实施例 11:

一种木质素改性水性聚氨酯的制备方法，它包括如下步骤：

1). 将计算量的聚氧化丙烯二醇（分子量 2000）与甲苯二异氰酸酯（TDI）混合在 65℃ 搅拌反应 2 小时，得水性聚氨酯预聚物；聚氧化丙烯二醇与甲苯二异氰酸酯的质量百分比为：聚氧化丙烯二醇 25，甲苯二异氰酸酯 75；

2). 在 50-90°C 下向步骤 1) 得到的水性聚氨酯预聚物中加入小分子扩链剂 DMPA，小分子扩链剂 DMPA 的加入量为甲苯二异氰酸酯质量的 30%[使得到的木质素磺酸盐复合水性聚氨酯乳液的中 NCO/0H 摩尔比为 1.0-3.5，小分子扩链剂中 [-OH] 与聚氧化丙烯二醇中 [-OH] 摩
尔比在 1.0-3.5 范围之内)，搅拌反应 1 小时，期间用丙酮降粘，丙酮的加入量为固体质量的 8%；得物质 A；

3). 将步骤 2) 得到的物质 A 中加入计算量的三乙胺 (TEA) 中和 5 分钟，三乙胺 (TEA) 的加入量与 DMPA 的量相同（调节 PH 值在 6-8 范围之内），反应完成后将温度降到 40 °C 以下，得物质 B；将硝化木质素溶解在热水中，得硝化木质素热水溶液，硝化木质素的加入量为聚氧化丙烯二醇-甲苯二异氰酸酯和小分子扩链剂 DMPA 固体质量的 3.0%；在熔融剪切力下物质 B 中加入硝化木质素热水溶液分散；然后抽真空除去丙酮得到硝化木质素复合水性聚氨酯乳液；控制乳液的固含量在 30% (由加入的水量控制)；

4). 在 50℃下，将乳液在聚四氟乙烯板上流延成膜。

将膜材料裁片后，在恒定湿度为 30%，室温下放置 7 天后进行性能测试，片材的宽度为 10mm，标距为 30mm，厚度在 0.45mm 左右。制备的片材的力学性能：拉伸强度为 3.73MPa，断裂伸长率为 844%。与相应的空白材料相比，拉伸强度有所下降，是空白材料的 0.96 倍，断裂伸长率提高了 1.7 倍，力学性能参照中华人民共和国国家标准 GB4456-84 在深圳新思测试仪器公司的 CMT6503 仪器上测得，拉伸速率为 300mm/min。

由实施例 11 可知，本发明的木质素改性水性聚氨酯，硝化木质素的加入对材料的力学性能的提高起到了显著作用，具有明显的通知效果。

实施例 12:

与实施例 11 基本相同，不同之处在于：水性聚氨酯的原料为聚醚多元醇 (分子量 3000) 和多亚甲基多苯基异氰酸酯 (PAPI, 烟台万华)，调节硝化木质素复合水性聚氨酯乳液的 NCO/OH=1.10，扩链剂为磺酸丁二醇 (上海至鑫)；添加的硝化木质素的含量为聚醚多元醇、多亚甲基多苯基异氰酸酯和磺酸丁二醇固含量的 0.5%；得到木质素改性水性聚氨酯 (或称硝化木质素复合水性聚氨酯乳液)。

实施例 13:

与实施例 11 基本相同，不同之处在于：水性聚氨酯的原料为聚酯 (分子量 2000) 与聚醚多元醇 (分子量 1000，南京钟山石化) 混合物和 4, 4’-二苯基甲烷二异氰酸酯 (MDI) 与甲苯二异氰酸酯 (TDI) 混合物，硝化木质素复合水性聚氨酯乳液的 NCO/OH=3.5，添加的硝化木质素的含量为聚酯、聚醚多元醇、4, 4’-二苯基甲烷二异氰酸酯、甲苯二异氰酸酯和小分子扩链剂 DMPA 固含量的 30%，得到硝化木质素复合水性聚氨酯乳液。

实施例 14:

一种木质素改性水性聚氨酯的制备方法，它包括如下步骤：

1). 将计算量的聚氧化丙烯二醇 (分子量 2000) 与甲苯二异氰酸酯 (TDI) 混合在 50-90 ℃搅拌反应 1-5 小时，得水性聚氨酯预聚物；聚氧化丙烯二醇与甲苯二异氰酸酯的质量百分比为：聚氧化丙烯二醇 15、甲苯二异氰酸酯 85；

2). 在 50-90 ℃下向步骤 1) 得到的水性聚氨酯预聚物中加入小分子扩链剂 DMPA，小分子扩链剂 DMPA 的加入量为甲苯二异氰酸酯质量的 40% (使得到的木质素磺酸盐复合水性聚氨酯
酯乳液中的 NCO/OH 摩尔比为 1.0-3.5，小分子扩链剂中 [–OH] 与聚氧化丙烯二醇中 [–OH] 摩尔比在 1.0-3.5 范围之内），搅拌反应 3 小时，期间用丙酮降粘，丙酮的加入量为固体质量（聚氧化丙烯二醇、甲苯二异氰酸酯和小分子扩链剂 DMPA 固体质量）的 9%；得物质 A；

3). 将步骤 2）得到的物质 A 中加入计算量的三乙胺（TEA）中和 5 分钟，三乙胺（TEA）的加入量与 DMPA 的量相同（调节 PH 值在 6-8 范围之内），反应完成后将温度降到 40℃以下（如 0-30℃），在高剪切力下加入冰水分散，得水性聚氨酯乳液：将硝化木质素溶于水中与得到的水性聚氨酯乳液共混，硝化木质素的加入量为聚氧化丙烯二醇、甲苯二异氰酸酯和小分子扩链剂 DMPA 固体质量的 3.0%；然后抽真空除去丙酮得到木质素改性水性聚氨酯（或称硝化木质素复合型水性聚氨酯乳液）；此时乳液的 NCO/OH=1.75，控制乳液的固含量在 40%（由加入的水量控制）；

4). 在 50℃下，将乳液在聚四氟乙烯板上流延成膜。

将膜材料裁剪后，在恒定湿度下 30%，室温下放置 7 天后进行性能测试，片材的宽度为 10mm，标距为 30mm，厚度在 0.45mm 左右。制备的片材的力学性能：拉伸强度为 4.39MPa，断裂伸长率为 330%。与相应的空白材料相比，断裂伸长率有所下降，是空白材料的 0.66 倍，拉伸强度提高了 1.1 倍，力学性能参照中华人民共和国国家标准 GB4456-84 在深圳新三百测试仪器公司的 CMT6503 仪器上测得，拉伸速率为 300mm/min。

由实施例 14 可知，本发明的木质素改性水性聚氨酯，硝化木质素的加入对材料的力学性能的提高起到了显著作用，具有明显的增强效果。

实施例 15：

与实施例 14 基本相同，不同之处在于：水性聚氨酯的原料为聚酯（分子量 1000）与聚醚多元醇（分子量 1000）混合物和 4，4’-二苯基甲烷二异氰酸酯（MDI），扩链剂为三乙醇胺与二乙醇胺的混合物，中和试剂为盐酸；添加的硝化木质素的含量为聚酯、聚醚多元醇、4，4’-二苯基甲烷二异氰酸酯、三乙醇胺和甲基二乙醇胺固含量的 25%，得到木质素改性水性聚氨酯（或称硝化木质素复合型水性聚氨酯）。

实施例 16：

与实施例 14 基本相同，不同之处在于：水性聚氨酯的原料为聚酯多元醇（分子量为 2000）和异佛尔酮二异氰酸酯（IPDI）与六亚甲基二异氰酸酯（HDI）混合物，扩链剂为 DMPA 与磺酸丁二醇混合物，乳液的 NCO/OH=3.5，添加的硝化木质素的含量为聚酯多元醇、异佛尔酮二异氰酸酯、六亚甲基二异氰酸酯、DMPA 和与磺酸丁二醇固含量的 30%；得到木质素改性水性聚氨酯（或称硝化木质素复合型水性聚氨酯）。

附表 1：木质素改性水性聚氨酯的力学性能

| 类别 | 木质素占固体质量的比例/% | 木质素加入方式 | 力学性能
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>拉伸强度（MPa）</td>
<td>断裂伸长率（%）</td>
</tr>
</tbody>
</table>

11
<table>
<thead>
<tr>
<th>实施例</th>
<th>木质素磺酸盐</th>
<th>复合水性聚氨酯</th>
<th>木质素磺酸盐</th>
<th>复合水性聚氨酯</th>
<th>木质素磺酸盐</th>
<th>复合水性聚氨酯</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>随水加入</td>
<td>16.98</td>
<td>1253.54</td>
<td>7.58</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6.0</td>
<td>随水加入</td>
<td>22.9</td>
<td>906.97</td>
<td>16.33</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>直接添加到水性聚氨酯乳液中</td>
<td>14.41</td>
<td>1512.08</td>
<td>6.13</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6.0</td>
<td>随水加入</td>
<td>18.32</td>
<td>947.71</td>
<td>31.24</td>
<td></td>
</tr>
<tr>
<td>比较例1</td>
<td>—</td>
<td>—</td>
<td>10.88</td>
<td>1051.72</td>
<td>8.27</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.5</td>
<td>随有机溶剂加入</td>
<td>6.04</td>
<td>787</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3.0</td>
<td>随水加入</td>
<td>7.38</td>
<td>866</td>
<td>15.5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4.5</td>
<td>随水加入</td>
<td>5.12</td>
<td>900</td>
<td>39.5</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3.0</td>
<td>随水加入</td>
<td>3.73</td>
<td>844</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3.0</td>
<td>直接添加到水性聚氨酯乳液中</td>
<td>4.39</td>
<td>330</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>比较例2</td>
<td>—</td>
<td>—</td>
<td>3.89</td>
<td>499</td>
<td>15.9</td>
<td></td>
</tr>
</tbody>
</table>

附表1所述的木质素占固体质量的比例为：a 多异氰酸酯、b 聚醚多元醇或聚酯多元醇、c 含羧基等亲水基团的多官能基分子扩链剂三种原料固体质量之和的比例。

力学性能参照中华人民共和国国家标准 GB4456-84 在深圳新三思测试仪器公司的 CMT6503 仪器上测得，拉伸速率为 300mm/min。