(54) Title: SOLID STATE SPHINCTER MYOMETERS

(57) Abstract

A system for providing real-time measurements of constriction pressure applied by the inner surface of a body lumen, such as a sphincter, includes a probe (10) comprising an elongated core member (24) having a matrix of pressure transducer regions (28) distributed over the surface of the elongated core member (24). The preferred matrix of pressure transducer regions is addressed by a first inner array of substantially parallel electrically conductive strips (36) conformed to at least a portion of the elongated core member, the first array (36) being disposed in overlapping relationship with a second outer array of substantially parallel electrically conductive strips (30), and substantially conformed axially to at least the same portion of the elongated core member, so as to provide a matrix of intersection regions.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
<th>Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GE</td>
<td>Georgia</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IE</td>
<td>Ireland</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>KE</td>
<td>Kenya</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KG</td>
<td>Kyrgyzstan</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KZ</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td>NW</td>
<td>Malawi</td>
</tr>
<tr>
<td>NE</td>
<td>Niger</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>NO</td>
<td>Norway</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>PL</td>
<td>Poland</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>RO</td>
<td>Romania</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>SI</td>
<td>Slovenia</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>VN</td>
<td>Vietnam</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SOLID STATE SPHINCTER MYOMETERS

FIELD OF THE INVENTION

This invention relates generally to pressure measuring apparatus, and relates particularly to a probe for measuring constriction pressure exerted by the muscles of a sphincter.

BACKGROUND OF THE INVENTION

The human anorectal sphincter is a composite structure consisting of unique smooth and striate muscle, and having several anatomic configurations that are innervated from different sources. Both relaxation and contraction of the sphincter can occur simultaneously and at different loci within the sphincter. An adequate understanding of what is occurring at any single point, or at any single cross-sectional plane, is not always sufficient to understand the operation of the entire sphincter. Current recording mechanisms do not permit simultaneous assessment of discrete loci throughout the entire sphincter whether under voluntary control or in response to stimuli.

Numerous techniques have been used to assess various aspects of anorectal function. The techniques can generally be grouped into four categories: radiographic defecography, electromyography, rectal compliance, and anorectal sphincter manometry. Anorectal sphincter manometry, or perhaps more accurately "myography", typically uses measurements of fluid pressure to provide an objective assessment of various aspects of anorectal sphincter function. It provides a far more reliable indicator of the anal sphincter tone than can be achieved by digital examination. The relative contribution of the voluntary and involuntary components can be assessed, and the integrity of reflex inhibition to rectal distention can be evaluated. Moreover, the presence of an abnormal manometric pressure profile can provide insight regarding symptoms, etiology, and treatment.

In the most common sphincter manometry systems, such as a perfusion probe, fluid, typically in the form of an aqueous solution, is perfused at a constant
rate through one or more small side ports in the probe. A transducer measures
pressure to determine the resistance that the sphincter presents to perfused fluid.
Another version of a perfusion probe is an infusion catheter. The catheter includes
several holes near its end and radially arranged so that fluid can be pumped into the
catheter and radially out through the holes. Measuring the back pressure on the
perfused fluid provides a measure of the radially inward pressure exerted by the
musculature of the sphincter on the catheter at the multiple locations of the holes.
The holes are all circumferentially arranged around the catheter at a single axial
position or in a close spiral pattern along the catheter. As a result, it is believed that
the greatest number of holes used to date is eight. The close pattern of the holes
results in only one position along the axis of the sphincter being measured at any one
time. Consequently, it is necessary to pull the catheter at a constant rate so that the
perfusion holes travel along the entire length of the sphincter. Measurements are
taken periodically as the catheter moves to provide a pressure profile of the entire
sphincter. Good resolution is achieved when there are eight radially directed holes,
circumferentially spaced around the catheter so that eight measurements can be taken
simultaneously at each axial location.

Taking a sequence of pressure measurements at corresponding axial positions
of the perfusion catheter over the inner surface of the sphincter has proven to be of
assistance in assessment of a normal sphincter, and is a distinct improvement over
prior less sophisticated methods. Typically, as the catheter moves, readings are
taken every one-half millimeter, and consequently, assessing an entire sphincter can
require some 2000 pressure readings and can take one hundred seconds. The
readings are usually performed according to a protocol where, for example, the
patient is required to relax and contract the sphincter, thereby squeezing the catheter.
Data for each reading is stored in a separate file. Files are stored and various
measurements are determined from the data, such as average pressure and maximum
pressure.

A profile can also be drawn of the sphincter at each axial location that a
reading is taken. Present systems use a chart recorder to record a sequence of
readings. However, because the measurements for each reading are typically taken
over one hundred seconds, noise and various artifacts are introduced. In addition, the amount of information that can be acquired is limited due to mechanical and physical limitations. For example, the number of perfusion channels that can be used is limited because as the number of channels increases, the amount of water required increases too, potentially resulting in patient discomfort and recording artifact. An alternative approach is to use multiple catheters, but this approach creates mechanical problems, since the device is too large, and again, too much perfusion fluid is required. In addition, as the catheter is pulled, static and dynamic friction may result in incorrect readings. Also, during contraction maneuvers the patient can fatigue over the 100 seconds required to scan over an entire sphincter, resulting in some relaxation of the sphincter before the scan is complete. Finally, these devices tend to be very expensive.

Simultaneous multipoint recording has contributed substantially to the development of a more comprehensive picture of sphincter characteristics and action.

In addition to the perfusion probe, several other instruments have been developed for measuring a constriction pressure profile of a sphincter, including the anal, urethral, and esophageal sphincters. One type of probe employs a nueroabloon. Another approach uses pressure microtransducers on a catheter instead of perfusion holes. Nevertheless, the catheter must be pulled through the sphincter and readings sequentially taken to provide a complete assessment.

Further microtransducers, while being solid state, unlike the perfusion probes, are typically very expensive. In addition, a catheter based on known solid state microtransducers would be very large, and a catheter having a radial arrangement of known microtransducers at a single axial location on the catheter would still have to be pulled through a sphincter to acquire a complete pressure profile of the sphincter.

OBJECTS OF THE INVENTION

It is a general object of the present invention to provide an apparatus for measuring constrictive pressures exerted by sphincters that significantly overcomes the above-noted problems of the prior art.
A more specific object of the present invention is to provide a means for high-resolution mapping of constriction pressure applied by the musculature of a sphincter.

Another object of the invention is to provide a probe that can map constriction pressure over the inner surface of a sphincter without moving the probe.

And another object of the invention is to assess migrational and interrelational aspects of motility waves within the sphincter complex.

Yet another object of the invention is to provide a probe that can map the pressure distribution applied by a sphincter without the inconvenience and complications of perfusion fluids.

Still another object of the invention is to provide a probe that can map the pressure distribution within a sphincter without producing the artifacts caused by motion-induced sphincter response.

And yet another object of the invention is to provide a probe that can provide simultaneous and real-time monitoring of the pressure over many points on the inner surface of a sphincter.

And still another object of the invention is to provide large amounts of diagnostic information regarding anorectal sphincter function, and enhanced ability to analyze the information.

And yet another object of the present invention is to provide a method of making the probe of a solid state sphincter myometer from commercially available materials.

Other objects of the present invention will in part be suggested, and will in part appear hereinafter. The invention accordingly comprises the apparatus possessing the construction, combination of elements, and arrangement of parts, and the processes involving the several steps, and the relation and order of one or more of such steps with respect to the others, all of which are exemplified in the following detailed description, and are indicated in the claims.

SUMMARY OF THE INVENTION
The invention provides a sphincter myometer that includes a solid-state probe for the measurement and mapping of constriction pressure applied by the inner surface of a sphincter, or other portion of a body lumen, to the outer surface of the solid-state probe. The probe includes (a) an elongated cylindrical core member, (b) a first array of substantially parallel, electrically-conductive strips, electrically isolated from one another and substantially conforming to at least a portion of the elongated cylindrical core member, and (c) a second array of substantially parallel electrically-conductive strips, disposed in overlapping relationship with the strips of the first array so as to substantially conform to at least the same portion of the elongated core member and provide a matrix of intersection regions between the strips of the first array and the strips of the second array. The probe also includes means, disposed at each intersection region and cooperative with the corresponding electrically conductive strips of the first and second array, for measuring substantially radial forces applied to the intersection region.

A preferred embodiment of the present invention includes pressure-transducer material disposed between the strips of the first array and the strips of the second array at least at each intersection region. The pressure-transducer material preferably is characterized by a measurable resistance which varies as a function of the force applied normal to the material, throughout a range of forces (pressures) which includes the range of forces (pressures) of interest. The preferred material provides a resistance substantially inversely related to the amount of force applied normal to the material. Thus, the resistance decreases with corresponding increases in force applied normal to the material.

An addressable cylindrical matrix of pressure transducer regions is thus formed by the intersection of the two arrays of strips of electrically-conductive material and the pressure transducer material disposed there between. The electrically conductive strips can be sequentially addressed so that the resistance of the pressure transducer material disposed between each electrically conductive strip of the first plurality, and each electrically conductive strip of the second plurality can be measured.
Thus, each intersection of electrically conductive strips having pressure transducer material disposed therebetween results in an addressable pressure transducer region, and the two pluralities of overlapping electrically conductive strips provides an addressable matrix of pressure transducer regions. In a preferred embodiment, each plurality of electrically conductive strips includes sixteen electrically conductive strips, wherein the electrically conductive strips of the first plurality is wrapped circumferentially, and the second plurality of electrically conductive strips extend parallel to the longitudinal direction of the catheter and over the first plurality. Thus, a cylindrical cross-grid matrix pattern of electrically conductive strips forming a 32 by 16 matrix of (512) transducer regions is provided. Preferably, although not necessarily, the transducer regions are circumferentially equally spaced in longitudinal rows around the probe every 22.5°, and distributed in cylindrical rows along the axis of the probe at equally spaced intervals.

The matrix of addressable transducer regions is secured around the cylindrical surface of an elongated core member, which in a preferred embodiment is adapted to be inserted into an anal sphincter. The electrical resistance through the 512 intersecting points is preferably sequentially measured to provide a full scan. The pressure at each transducer region exerted by the sphincter is a function of the measured resistance measured at each region during the scan.

Finally, a method is provided for making the sphincter myometer probe from commercially available materials.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be more fully understood from the following detailed description, in conjunction with the accompanying figures, wherein:

Fig. 1 is an artist’s rendition of a hand-held embodiment of the sphincter myometer of the invention;

Fig. 2 is a schematic perspective view of the end portion of sensor probe of the sphincter myometer of Fig. 1, showing a cylindrical array of pressure transducers supported by an elongated cylindrical core member;
Fig. 2A is a detailed, partial, radial cross-sectional view of the sensor probe of the sphincter myometer of Fig. 1, absent its protective layer, showing an outer array of electrically conductive strips;

Fig. 2B is a detailed, partial, radial cross-sectional view of a portion of the sensor probe of Fig. 2A;

Fig. 2C is a detailed, partial, radial cross-sectional view of a portion of the sensor probe of Fig. 2A, further including slits in an outer support layer;

Fig. 2D is a detailed, partial, radial cross-sectional view of a portion of the sensor probe of Fig. 2A, further including a longitudinally extending region that bonds the outer support layer to an inner support layer;

Fig. 2E is a detailed, cross-sectional view of a multi-layer structure adapted to be wrapped around an elongated cylindrical core member so as to provide a circumferential, cylindrical array of pressure transducers;

Fig. 3 is a graph showing the relationship between resistance and force applied in a direction normal to a pressure transducer region in accordance with the teachings of the present invention;

Fig. 4 is a block diagram of the transducer array of Fig. 2 connected to a data acquisition and analysis system;

Fig. 5 is a more detailed partial block and partial schematic diagram of the data acquisition and analysis system of Fig. 4; and

Fig. 6 is an artist's rendition of the sphincter myometer probe of the invention in use.

DETAILED DESCRIPTION OF THE DRAWINGS

With reference to Fig. 1, a hand-held embodiment of the sphincter myometer probe 10 of the invention includes a cylindrical sensor probe 12 having a sensor region 14 for measuring pressure applied by a sphincter at a plurality of points on the surface of the sensor probe 12, and a sensor connector 16 for connecting the sensor probe 12 to means for acquiring and analyzing data (shown in Figs. 4, 5 and 6). The sphincter myometer probe 10 also, although not necessarily, may include a balloon tip 18 for stimulating sphincter activity, a pneumatic line 20 for inflating
the balloon tip 18, and a thumb grip 22 for firmly grasping and guiding the sphincter
myometer probe 10.

Referring to Fig. 2, the preferred sensor probe 12 includes a rigid elongated
cylindrical core member 24 that terminates at tip 26 for insertion into an anorectal
sphincter. The elongated cylindrical core member can be rigid, to facilitate, for
example, insertion into an anorectal sphincter, or it can be flexible, to facilitate
access to an esophageal or urethral sphincter, for example.

A portion of the elongated cylindrical core member 24 supports a two-
dimensional, cylindrical matrix of pressure transducer regions 28. Higher area-
densities of pressure transducer regions can provide higher resolution pressure
distribution maps. In an anorectal sphincter probe, a sensor matrix of sixty-two
pressure transducer regions per square centimeter provides resolution sufficient to
observe and analyze, for example, complex spatio-temporal patterns of sphincter
muscle relaxation and contraction. (Each transducer region is approximately 0.0025
in\(^2\) and using a conversion factor of \((0.3937)^2\) in\(^2\)/cm\(^2\), each region is
\((0.0025/0.1549996) = 0.016129\ cm^2\).) While the drawings for ease of illustration
show a probe bearing a fewer number of transducer regions than that which is
preferred, a typical anorectal probe has a surface area of at least eight square
centimeters, and consequently would preferably include about 512 pressure
transducer regions, although 256 and even a smaller number of regions seems to
provide adequate resolution. Clearly, the precise number of regions chosen will
depend upon and thus determine the resolution of the system.

In a preferred embodiment, the cylindrical matrix of pressure transducer
regions 28 is formed by the corresponding intersections of two parallel arrays of
strips of pressure transducer material, i.e., a circumferential array including parallel
strips of pressure transducer material that each extend circumferentially around a
portion of the elongated probe, and a longitudinal array consisting of parallel strips
of pressure transducer material extending longitudinally along a portion of the
elongated probe. At the intersection of each circumferential strip with each
longitudinal strip, the circumferential strip makes electrical contact with the
longitudinal strip so as to define the corresponding pressure transducer region. In
addition, each strip of pressure transducer material is backed by a corresponding
electrically conductive strip that is electrically connected to the strip of pressure
transducer material along most of the length of the strip of pressure transducer
material. Thus, it is possible to measure any force component applied radially to
transducer region on the surface of the cylindrical core member 24 by measuring the
resistance across the intersection of a longitudinal strip of pressure transducer
material and a circumferential strip of pressure transducer material at the
 corresponding transducer region, i.e., by measuring the resistance across the
corresponding electrically conductive strips at the transducer region.

Figs. 2A and 2B show a plurality of longitudinal electrically conductive strips
30. Underneath the electrically conductive strips 30, Fig. 2B, shows the
corresponding longitudinal strips 32 of pressure transducer material, the intersecting
circumferential strips 34 of pressure transducer material, and the corresponding
circumferential electrically conductive strips 36. In addition, Fig. 2B shows outer
and inner flexible support layers 38 and 40 that are made of a flexible material, such
as mylar.

In a preferred embodiment, as described below the entire assembly of the
layers comprising the strips 30, 32, 34 and 36 and layers 38 and 40 are
commercially available as flat flex ribbon. As will be readily apparent, when flat
flex, multiple layer ribbon is wrapped around a cylindrical surface the inner layers
will require different dimensions around the circumference of the core member due
to different radial spacings from the center of the core member. This results in
operative problems of the individual transducer regions due to stress placed on the
individual strip materials due to wrapping the materials around the cylindrical
surface, i.e. the outer layers need to be tangentially stretched relative to the inner
layers and/or the inner layers may need to be tangentially squeezed relative to the
outer layers to accommodate the differences in the circumferential dimensions.
Further, and even more significantly, a certain amount of "cross-talk" between
adjacent transducer regions may occur, i.e. pressure applied to one region may
incorrectly effect the reading of pressure at another region because all of the strips
of each array are mechanically coupled together.
As shown in Fig. 2C, and accordance with the method of the present invention, in order to accommodate the increasing circumferential spacing with increasing radius, and in order to insure the longitudinal strips 30 and 32 respond independently under hydrostatic loading, the cylindrical matrix is disposed around the core member 24 so that the circumferential strips 34 and 36 are disposed inside the longitudinal strips 30 and 32 with minimal stress on the inside circumferential strips 34 and 36. The tension that would otherwise occur in the layers supporting the longitudinal strips 30 and 32, and the problem of cross-talk is minimized by mechanically decoupling the longitudinal strips from one another. More particularly, the outer support layer 40 includes a plurality of longitudinal slits 42 that are preferably created by removing a narrow longitudinal region of flexible material so as to substantially mechanically isolate or decouple each of the longitudinal electrically conductive strips 30 from the other longitudinal electrically conductive strips 30, and each of the longitudinal strips 32 of pressure transducer material from the other longitudinal strips 32 of pressure transducer material. This allows the strips 30 and 32 to be radially aligned and normal to forces applied in a radial direction to the cylindrical core member 24. To create the longitudinal slits 42, a laser can be used. For example, where the cylindrical core member 24 is 0.25" in diameter, 16 longitudinal electrically conductive strips, each 0.050" wide, are provided equiangularly (every 22.5°) around the circumference of the core member 24, slits 42 are, for example, each 0.001" wide. In this example, the circumferential strips are each 0.060" wide and spaced at 0.080" intervals along the axis of the cylindrical core member 24. Thus, once the slits 42 are formed, each longitudinal strip 32 of pressure transducer material, and the corresponding longitudinal electrically conductive strip 30, are independently supported by a separate supporting strip 40.

Fig. 2D shows a partial cross-sectional view of an embodiment of the sensor probe of Fig. 2A, further including a longitudinally extending region (whose dimensions have been exaggerated for illustrative purposes) wherein a terminating portion 44 of the outer support layer 40 is bonded to a terminating portion 46 of the inner support layer 38. To provide a cylindrical matrix of pressure transducer
regions distributed over the surface of the elongated cylindrical core member 24, the terminating portion 46 is bonded to the elongated core member 24 along a longitudinal line on the surface of the elongated core member 24. The layers comprising strips 30, 32, 34 and 36, and layers 38 and 40 are then wrapped around the elongated core member 24 so as to cover substantially the entire circumference of the elongated cylindrical core member 24. The process of wrapping increases the circumferential distance between the supporting strips 40', as well as the distance between the strips 30 and 32. This increase is easily accommodated by the slits 42 without creating tension in the layers supporting the strips. Mechanically isolating the longitudinal strips from one another results in substantially eliminating cross-talk between adjacent transducer regions so that the regions will work independently of one another under hydrostatic load.

Fig. 2E shows another preferred embodiment wherein a support layer 48 serves as both an inner support layer and an outer support layer. To provide a cylindrical matrix of pressure transducer regions 28, the support layer 48 is circumferentially wrapped around elongated cylindrical core member 24 such that the circumferential portion 50 of the support layer 48 serves as an inner support layer, the circumferential portion 50 being of a length sufficient to traverse substantially the entire circumference of the elongated cylindrical core member 24. The circumferential portion 50 of the support layer 48 supports a plurality of circumferential electrically conductive strips 52, each strip of which supports a circumferential strip 54 of pressure transducer material.

Next, a longitudinal portion 56 of the support layer 48 is wrapped around the elongated cylindrical core member, so as to serve as an outer support layer, the longitudinal portion 56 being of a length sufficient to traverse substantially the entire circumferential portion 50 of the support layer 48. Wrapping the longitudinal portion 56 brings a plurality of longitudinal strips 58 of pressure transducer material into intersecting electrical contact with the plurality of circumferential strips 54, thereby providing a cylindrical array of pressure transducer regions 28. Preferably, the spacing between the longitudinal strips can be adjusted during the fabrication of the Fig. 2E embodiment, or alternatively longitudinal slits, about as long as the
longitudinal strips 58, are made at locations of the support layer 48 to promote mechanical isolation or decoupling of the longitudinal strips 58 of pressure transducer material, and the associated longitudinal electrically conductive strips 62.

After wrapping of either the embodiment of Fig. 2D or 2E, a protective layer in the form of a sheath, preferably made of an elastomeric material and shown covering the sensor region 12 in Fig. 1, is applied over the entire circumferential array of pressure transducer regions 28 so as to substantially conform to and enclose at least a portion of the elongated cylindrical core member 24. In a preferred embodiment, the protective layer substantially encloses all of the layers comprising strips 30, 32, 34 and 36, and layers 38 and 40 that together form the circumferential array of pressure transducer regions 28. The protective layer allows longitudinal strips of pressure transducer material, and the associated longitudinal electrically conductive strips to move and respond independently of each other, and nevertheless remain at substantially the same circumferential and radial positions, even when the supporting layer has been longitudinally slit. Thus, the protective layer ensures that pressure readings taken over a period of time are all accurately associated with a circumferential position.

The invention employs solid state pressure transducer technology. Traditionally, a force-to-electrical conversion has been performed primarily with strain gauges and piezoelectric devices. In a preferred embodiment of the invention, a pressure transducer material is used that is characterized by an electrical resistance that changes in response to force applied to the material. One example of such a pressure transducer material is called a "force sensing resistor", or "FSR", and is available in the form of flat flex ribbon (comprising a matrix of two parallel arrays of electrically conductive strips with the pressure transducer material disposed in between) from, for example, Interlink Electronics Corporation (Carpinteria, CA), or from Tekscan, Inc. (Boston, MA). FSRs are typically flat, polymer thick film devices which exhibit a decrease in electrical resistance with increasing applied force and can be modified as described above. The exact electromechanical characteristic of an FSR is a function of substrate type and thickness, conductor geometry, and
electrically conductive polymer formulation. Lead attachment is typically accomplished by standard flex-circuit techniques.

Compared to sensing force using electrically conductive rubber, FSRs are lower in cost, have essentially zero travel, and do not change characteristics as readily after repeated cycling. This greater durability is in large part due to the extremely hard resistive material used in FSRs. FSRs have been made from 0.125 to 1.25 mm thick, and as small as 0.015 cm² in area. FSRs are superior for use in the solid state sphincter myometer of the invention as compared with the more common pressure measurement transducers, such as piezoelectric polymers and strain gauges. For example, piezoelectric transducers exhibit much higher speed and sensitivity to pressure changes than do FSRs, but they cannot sense static pressure. The higher speed and sensitivity of piezoelectric transducers causes them to pick up unwanted acoustic and vibrational signals. Strain gauges, while extremely accurate, are not sufficiently rugged, and are too costly.

With reference to Fig. 3, a plot is shown of resistance as a function of force applied to a force sensing resistor having an area of 1 cm², and a thickness of about 0.005". Note that resistance is markedly high for low applied forces, i.e., applied forces of less than about 10 grams, as shown by the portion of the curve indicated by the reference numeral 64. Thus, when no force is applied to a force sensing resistor, the resistance is effectively infinite with effectively no current being permitted to flow through the force sensing resistor. As higher forces are applied, the resistance decreases. Thus, by measuring the electrical resistance of the force sensing resistor, the force applied to the force sensing resistor can be deduced from a knowledge of the way its resistance varies with applied force.

The transducer regions 28 of Fig. 2 provide a useful map of force applied to the cylindrical surface of the elongated core member 24 when they are arranged as a regular matrix of transducer regions 28 over the surface of the elongated cylindrical core member 24. Fig. 4 shows a block diagram of the elements of a system for acquiring, analyzing, and displaying the data obtained from a transducer region matrix 66, such as the matrix of transducer regions 28. Signals from each of the transducer regions 28 of the matrix 66 are acquired by an element scanner 68.
In the preferred embodiment that uses FSR's, a resistance-to-voltage converter senses
the resistance of each transducer region 28 and provides an analog voltage signal 72
in accordance with the resistance sensed. An analog-to-digital (A/D) converter 74
transforms the analog voltage signal 72 into a digital signal 76 representative of the
resistance of a transducer region 28, and thus a function of the force applied radially
to the region. A computer 78, such as an IBM PC/AT, receives the digital signal
76, and uses software 80 to perform data acquisition, first order data correction, data
analysis and display.

Referring to Fig. 5, each pressure transducer region 28 is formed by the
intersection of two strips of pressure transducer material. Each intersection, such
as the intersections 82, is characterized by a resistance that depends on the force
radially applied to the intersection of the strips of pressure transducer material. To
measure the resistance across each intersection of two strips of pressure transducer
material, the resistance across the corresponding electrically conductive strips is
measured.

To perform the functions of the blocks 68 and 70 of Fig. 4, the resistance
values at the intersections, i.e., the pressure transducer regions, are read out
individually using the circuit, for example, shown in Fig. 5. In this circuit, to
measure the value of the resistance R_s at row 1, column 2, all rows except row 1 are
set to ground. Row 1 is set to a reference voltage, $V_{	ext{ref}}$, at the non-inverting input
of op-amp 84 via the CMOS SPDT analog switch 86. Column 2 is then also set to
ground potential, but by way of the virtual ground potential of an operational
amplifier 88. This allows the op-amp 88 to measure the current flowing out of
column 2. Because column 2 and rows 0, 2, 3 are at ground potential, no current
flows through their interconnecting resistors. Only the target resistor contributes to
the current. The result is that each resistance value can be measured individually,
even with only row-column wiring. In a preferred embodiment, a plurality of values
are read out sequentially at a 1 KHz scan rate using the modules 86 and 90, and the
scan control signals CA0, CA1 for addressing each particular column, and the scan
control signals RA0, RA1 for addressing each particular row.
To perform the function of the A/D converter 74, in a preferred embodiment, a ratiometric analog-to-digital converter 90 provides a plurality of digital signals \(N_{OUT} \) representative of the measured pressure distribution to be processed by the computer 78 and subsequently to be displayed by an operator.

Referring to Fig. 6, a patient 92 and an operator 94 are shown, wherein the operator 94 is monitoring the display of a computer 78 that is connected to an embodiment 96 of the sphincter myometer of the invention that is adapted to be supported by an extendable arm 98. The arm 98 also supports a pneumatic tube 100 that is connected to a source of pressurized gas (not shown) for inflating a balloon at the end of the probe that expands so as to apply pressure within the rectum, and thereby stimulate contractions and expansions of the sphincter musculature.

While the measurement of force is provided as a function of measured resistance between an electrically-conductive strip of the first array and an electrically-conductive strip of the second array at each transducer region 28, it is noted that other parameters can be used to measure force. For example, the electrically-conductive strip of the first array and the electrically-conductive strip of the second array at each transducer region can be capacitively coupled, and the force measured as a function of the change in capacitance at each region 28.

The solid state sphincter myometer of the invention can be used as a diagnostic tool, as well as a screening tool, and has several advantages over the prior art. The device is a solid state, non-perfuse instrument, thereby eliminating the need for fluid pressure measurements and the need to pull the catheter during the measurement. The probe can map the pressure distribution applied by a sphincter without the inconvenience and complications of perfusion fluids. It is at least as accurate as the prior art perfusion instruments and eliminates the problems of those prior art devices. The device is capable of performing multiple scans, e.g., three, per second so that the device can process data fairly instantaneously, providing real-time performance. Simultaneous and real-time monitoring of the pressure over many points on the inner surface of a sphincter can therefore be easily accomplished. The system is capable of providing high-resolution mapping of constriction pressure applied by the musculature of a sphincter. The probe can map constriction pressure
over the inner surface of a sphincter without moving the probe. The system makes it easy to assess migrational and interrelational aspects of motility waves within a sphincter complex. The system can map the pressure distribution within a sphincter without producing the artifacts caused by motion-induced sphincter response. The system provides large amounts of diagnostic information regarding anorectal sphincter function, and enhanced ability to analyze the information.

Other modifications and implementations will occur to those skilled in the art without departing from the spirit and the scope of the invention as claimed. Accordingly, the above description is not intended to limit the invention except as indicated in the following claims.
What is claimed is:

1. A system for measuring constriction pressure within a body lumen, said system comprising:
 an elongated cylindrical core member;
 a first array of substantially parallel, electrically-conductive strips substantially conformed to at least a portion of said elongated cylindrical core member;
 a second array of substantially parallel, electrically-conductive strips, disposed transverse to and in overlapping relationship with said first array of substantially parallel electrically conductive strips, and substantially conformed to at least said portion of said elongated core member, so as to provide with said first array a plurality of pressure transducer regions around the circumference and along the axis of said core member; and
 means, disposed between said first and second arrays at said pressure transducer regions, for defining a predetermined, measurable parameter at each of said regions between the corresponding electrical conductive strips of the first and second arrays such that the parameter varies as a function of a force applied to each of said regions.

2. The system of claim 1, wherein each pressure transducer region includes a layer of pressure-transducer material in electrical contact with the corresponding strips of said first and second arrays.

3. The system of claim 2, wherein said pressure-transducer material is characterized by an electrical resistance that changes in response to applied pressure.

4. The system of claim 1, wherein each electrically conductive strip of said first array is coated with a layer of pressure-transducer material.
5. The system of claim 4, wherein each electrically conductive strip of said second array is coated with a layer of pressure-transducer material.

6. The system of claim 1, further comprising:
 a protective layer substantially conformed to at least a portion of said elongated core member, and substantially enclosing said first and second arrays of substantially parallel electrically conductive strips.

7. The system of claim 1, wherein the elongated core member is a flexible catheter.

8. The system of claim 1, wherein the elongated core member is adapted for insertion into an anal orifice.

9. The system of claim 1, wherein each pressure transducer region is a solid state device.

10. The system of claim 1, further including:
 a flexible sheet having a first side and a second side,
 a portion of said first side supporting said first array of substantially parallel electrically conductive strips, and a portion of said second side supporting said second array of substantially parallel electrically conductive strips.

11. The system of claim 10, wherein a portion of said flexible sheet defines a plurality of slits parallel to and in between said electrically conductive strips, said slits serving to substantially mechanically decouple each electrically conductive strip from other substantially parallel electrically conductive strips.

12. The system of claim 10, wherein each electrically conductive strip of said first array is coated with a layer of pressure-transducer material.
13. The system of claim 12, wherein each electrically conductive strip of said second array is coated with a layer of pressure-transducer material.

14. The system of claim 10, wherein said flexible sheet is in wrapped relationship with said elongated member such that said first array of substantially parallel electrically conductive strips is in overlapping relationship with said second array of substantially parallel electrically conductive strips so as to provide a plurality of intersection regions, and

wherein each pressure transducer region is disposed at an intersection region of said plurality of intersection regions, and is in electrical contact with both a electrically conductive strip of said first array, and a electrically conductive strip of said second array.

15. The system of claim 1, further including:

a first flexible sheet having a first side, a portion of said first side supporting said first array of substantially parallel electrically conductive strips;

a second flexible sheet having a second side in confronting relationship with said the first side of said first flexible sheet, a portion of said second side supporting said second array of substantially parallel electrically conductive strips.

16. The system of claim 15, wherein said first flexible sheet is bonded to said second flexible sheet along at least a substantially straight line segment.

17. The system of claim 16, wherein said first flexible sheet is bonded to said second flexible sheet along a substantially straight line segment extending longitudinally with respect to said elongated core member.

18. The system of claim 15, wherein one of said first flexible sheet and said second flexible sheet defines a plurality of slits parallel to and in between said electrically conductive strips of said one flexible sheet, said slits serving to
substantially mechanically decouple each electrically conductive strip from other substantially parallel electrically conductive strips.

19. The system of claim 15, wherein each electrically conductive strip of said first array is coated with a layer of pressure-transducer material.

20. The system of claim 19, wherein each electrically conductive strip of said second array is coated with a layer of pressure-transducer material.

21. The system of claim 15, wherein said first and second flexible sheets are in wrapped relationship with said elongated member such that said first array of substantially parallel electrically conductive strips is in overlapping relationship with said second array of substantially parallel conductive strips so as to provide a plurality of intersection regions, and

wherein each pressure transducer region is disposed at an intersection region of said plurality of intersection regions, and is in electrical contact with both a electrically conductive strip of said first array, and a electrically conductive strip of said second array.

22. The system of claim 1, wherein said plurality of pressure transducer regions are adapted to remain stationary with respect to said body lumen while measuring constriction pressure therein.

23. The system of claim 1, further including:

data acquisition and display means, connected to said array of pressure transducer regions, for real-time data acquisition and display of signals provided by said array of pressure transducer regions.

24. The system of claim 23, wherein said data acquisition and display means includes:
means for multiplexing so as to provide substantially simultaneous readings
of said plurality of pressure transducer regions.

25. The system of claim 23, further including:
 analysis means, connected to said data acquisition and display means, for
 providing analysis of complex spatio-temporal pressure patterns.

26. The system of claim 1, further including:
 an inflatable balloon attached to an end of said elongated core member.

27. The system of claim 26, further including:
 means for inflating said inflatable balloon.

28. The system of claim 27, wherein said means for inflating said inflatable
 balloon includes a source of forced air in fluid communication with said inflatable
 balloon.

29. The system of claim 1, wherein said electrically-conductive strips of said
 first array are oriented substantially circumferentially around said core member, said
 electrically-conductive strips of the second array are disposed over the electrically-
 conductive strips of the first array and oriented substantially parallel to the elongated
 direction of said core member and perpendicular to the electrically-conductive strips
 of the first array, wherein said electrically-conductive strips of the second array are
 mechanically decoupled from one another so that said system is capable of measuring
 hydrostatic pressure.

30. The system of claim 29, wherein each of said first and second arrays are
 supported by a plastic sheet, said plastic sheet supporting said second array including
 a plurality of longitudinally directed slits, one slit disposed between each adjacent
pair of electrically-conductive strips of the second array so as to mechanically couple the strips of said second array.

31. A method of making a system for measuring constriction pressure within a body lumen, wherein said system comprises: (a) an elongated cylindrical core member; (b) a first array of substantially parallel, electrically-conductive strips substantially conformed to at least a portion of said elongated cylindrical core member so that said strips of said first array extend longitudinally along said core member; a second array of substantially parallel, electrically-conductive strips, disposed in overlapping relationship with said first array of substantially parallel electrically conductive strips, and substantially conformed to at least said portion of said elongated core member so that said strips of said second array extend around the circumference of said core member and are axially spaced from one another, such that said electrically conductive strips of said first and second arrays provide a matrix of pressure transducer regions around the circumference and along the axis of said core member; and (c) means, disposed between said first and second arrays at said pressure transducer regions, for defining a predetermined, measurable electrical parameter at each of said regions between the corresponding electrical conductive strips of the first and second arrays such that the parameter varies as a function of a force applied to each of said regions, wherein the method comprises the steps as follows:

providing a flat sheet of flexible material comprising said first and second arrays and said means for defining a predetermined, measurable electrical parameter at each of said regions;

forming slits at least between each of said electrically conductive strips of said first array; and

securing said flat sheet around said core member so that said first array is disposed over said second array.
FIG. 5
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6): A61B 5/103
US CL.: 128/774
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
U.S.: 128/774,675,748,778,780; 73/379.02,379.03

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
none

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
none

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US, A, 4,873,990 (HOLMES ET AL.) 17 October 1989, see entire document.</td>
<td>1-31</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4,887,610 (MITTAL) 19 December 1989, see entire document.</td>
<td>1-31</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 5,109,870 (SILNY ET AL.) 05 May 1992, see entire document.</td>
<td>1-31</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be part of particular relevance
 E earlier document published on or after the international filing date
 L document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed
 T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 Z document member of the same patent family

Date of the actual completion of the international search: 14 SEPTEMBER 1995

Date of mailing of the international search report: 29 SEP 1995

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3590

Authorized officer: Stëva Sërnik
MAX HINDENBURG
Telephone No. (703) 308-3130

Form PCT/ISA/210 (second sheet)(July 1992)*