20047027541 A2 || VA0 0 0 P O O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
1 April 2004 (01.04.2004)

AT O Y00 OO R

(10) International Publication Number

WO 2004/027541 A2

(51) International Patent Classification’: GOOF
(21) International Application Number:
PCT/US2003/016553

(22) International Filing Date: 27 May 2003 (27.05.2003)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/252,868 20 September 2002 (20.09.2002) US

(71) Applicant: INTERNATIONAL BUSINESS MA-
CHINES CORPORATION [US/US]; Gail H. Zarick,
P.O. Box 218, Yorktown Heights, NY 10598 (US).

(72) Inventors: DAS, Rajarshi; 714-1. Pelhamdale Avenue,
New Rochelle, NY 10801 (US). LASSETTRE, Edwin;
123 Vineyard Court, Los Gatos, CA 95032 (US). SEGAL,
Alla; 48 Park Drive, Mount Kisco, NY 10549 (US).
WHALLEY, Ian; 203 Charles Colman Blvd., Pawling,
NY 12564-1124 (US). WHITE, Steve; 225 East 57th
Street, Apt. 19F, New York, NY 10016 (US).

(74) Agent: YEE, Duke; Carstens, Yee & Cahoon, L.L..P., P.O.
Box 802334, Dallas, TX 75380 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD,
SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ,
VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
Buropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii)) for all designations

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii)) for all designations

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR AUTOMATIC UPDATING AND TESTING OF SOFTWARE

500
/
r PRIMARY UPDATE MANAGEMENT COMPONENT |
510 502 504
N N ‘ e
AVAILABLE SECONDARY UPDATE SECONDARY UPDATE
UPDATES MANAGEMENT COMPONENT MANAGEMENT COMPONENT
516) 590 ‘ ‘
506 522 524 508 526
: TEST5 E > £ > v
HISTORY | [PREFERENCES HISTORY | [PREFERENCES
INFORMATION DATABASE DATABASE DATABASE DATABASE
INSTALLATION
INFORMATION
N
N
ROLL BACK
INFORMATION

(57) Abstract: A method, apparatus, and computer instructions for updating a software component. A determination is made as to
whether to update the software component (602). The software component is updated to form an updated software component in
response to a determination to update the software component (606). The updated software component is automatically tested (612).
A corrective action is performed in response to a failure in testing of the updated component (620).

WO 2004/027541 A2 I} N0 08000 00000 00 AR

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished — ance Notes on Codes and Abbreviations” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gagzette.

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553
1
METHOD AND APPARATUS FOR AUTOMATIC UPDATING

AND TESTING OF SOFTWARE

CROSS REFERENCE TO RELATED APPLICATIONS

The present invention is related to the following applications entitled: “Method and
Apparatus for Publishing and Monitoring Entities Providing Services in a Distributed Data
Processing System”, serial no. 10/252,816, attorney docket no. YOR920020173US1;
“Composition Service for Autonomic Computing”, serial no. 10/252,324, attorney docket no.
YOR920020176US1; “Self-Managing Computing System”, serial no. 10/252,247, attorney
docket no. YOR920020181US1; and “Adaptive Problem Determination and Recovery in a
Computer System”, serial no. 10/252,979, attorney docket no. YOR920020194US1; all filed

even date hereof, assigned to the same assignee, and incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Technical Field:

The present invention relates generally to an improved data processing system, and in
particular, to a method and apparatus for managing software components. Still more particularly,
the present invention provides a method and apparatus for automatically updating software

components.

2. Description of Related Art:

Modern computing technology has resulted in immensely complicated and ever-changing
environments. One such environment is the Internet, which is also referred to as an
mnternetwork”. The Internet is a set of computer networks, possibly dissimilar, joined together by
means of gateways that handle data transfer and the conversion of messages from a protocol of the
sending network to a protocol used by the receiving network. When capitalized, the term "Internet"
refers to the collection of networks and gateways that use the TCP/IP suite of protocols. Currently,
the most commonly employed method of transferring data over the Internet is to employ the World
Wide Web environment, also called simply "the Web". Other Internet resources exist for
transferring information, such as File Transfer Protocol (FTP) and Gopher, but have not achieved
the popularity of the Web. In the Web environment, servers and clients effect data transaction

using the Hypertext Transfer Protocol (HTTP), a known protocol for handling the transfer of

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553
2
various data files (e.g., text, still graphic images, audio, motion video, etc.). The information in
various data files is formatted for presentation to a user by a standard page description language,
the Hypertext Markup Language (HTML). The Internet also is widely used to transfer applications
to users using browsers. Often times, users of software packages may search for and obtain updates
to those software packages through the Internet.

Other types of complex network data processing systems include those created for
facilitating work in large corporations. In many cases, these networks may span across regions in
various worldwide locations. These complex networks also may use the Internet as part of a virtual
product network for conducting business. These networks are further complicated by the need to
manage and update software used within the network.

Such environments, made up of many loosely connected software components, are
typically somewhat fragile. Within these environments, deploying a new version of one of the
software components involved in the network data processing system is problematic, and may
well have far-reaching and unforeseen effects on parts of the overall system that are only
tangentially connected to the component being replaced. Even less obviously risky changes are
often prone to cause unpredictable and undesirable side effects. Thus, system administrators are
often extremely wary of performing updates, such as component upgrades or minor configuration
changes, due to these far-reaching effects. When information systems are so critical to modern
business, even seconds of downtime can be a serious problem, and tracing that downtime can
take far more than seconds. For example, email servers provide a critical component for many
businesses because these servers facilitate communications between users inside and outside of
the business or organization. An update to an email server that results in errors in delivery of
email messages can cause loss in productivity and loss of business for a company or
organization.

As software changes to become increasingly “autonomic”, the task of updating,
configuring, and patching software will, more and more, be performed by the computers
themselves, as opposed to being performed by administrators. The current updating mechanisms
are moving towards an “autonomic” process. For example, many operating systems and software
packages will automatically look for updates based on some event, such as a timer or a particular
set of actions by a user. The update mechanisms often connect to the Internet at a preselected
location to see whether an update is present. If an update is present, the message is presented to
the user in which the message asks the user whether to download and install the update. A next

step towards “autonomic” computing involves identifying and downloading the updates without

WO 2004/027541 PCT/US2003/016553
3

requiring user intervention. Therefore, it would be advantageous to have an improved method,
apparatus, and computer instructions to deal with the effects, be they undesired or merely

unexpected, that such updating, reconfiguring, and patching of software could cause.

WO 2004/027541 PCT/US2003/016553
4
SUMMARY OF THE INVENTION

The present invention provides a method, apparatus, and computer instructions for
updating a software component. A determination is made as to whether to update the software
component. The software component is updated to form an updated software component in
response to a determination to update the software component. The updated software component
is automatically tested. A corrective action is performed in response to a failure in testing of the

updated component.

10

15

20

WO 2004/027541 PCT/US2003/016553
5

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention are set forth in the appended
claims. The invention itself, however, as well as a preferred mode of use, further objectives and
advantages thereof, will best be understood by reference to the following detailed description of
an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:

Figure 1 is a pictorial representation of a network of data processing systems in which the
present invention may be implemented; |

Figure 2 is a block diagram of a data processing system that may be implemented as a
Server in accordance with a preferred embodiment of the present invention; |

Figure 3 is a block diagram illustrating a data processing system in which the present
invention may be implemented;

Figure 4 is a diagram illustrating components used in updating a software component n
accordance with a preferred embodiment of the present invention;

Figure 5 is a diagram illustrating components used in autonomic updates in accordance
with a preferred embodiment of the present invention;

Figure 6 is a flowchart of a process used for performing an autonomic update in
accordance with a preferred embodiment of the present invention;

Figure 7 is a flowchart of a process used for performing an autonomic update in
accordance with a preferred embodiment of the present invention;

Figure 8 is a flowchart of a process used for performing an autonomic update in-
accordance with a preferred embodiment of the present invention; and

Figure 9 is a flowchart of a process used for modifying autonomic updates in accordance

with a preferred embodiment of the present invention.

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553
6 :
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

With reference now to the figures, Figure 1 depicts a pictorial representation of a network
of data processing systems in which the present invention may be implemented. Network data
processing system 100 is a network of computers in which the present invention may be
implemented. Network data processing system 100 contains a network 102, which is the medium
used to provide communications links between various devices and computers connected together
within network data processing system 100. Network 102 may include connections, such as!wire,
wireless communication links, or fiber optic cables.

In the depicted example, server 104 is connected to network 102 along with storage unit
106. In addition, clients 108, 110, and 112 are connected to network 102. These clients 108, 110,
and 112 may be, for example, personal computers or network computers. In the depicted
example, server 104 provides data, such as boot files, operating system images, and applications
to clients 108-112. Clients 108, 110, and 112 are clients to server 104. Server 104 may provide a
source of updates for clients, such as clients 108, 110, and 112. In these examples, network data
processing system 100 contains autonomic computing features, such as those for updating
software components used within network
data processing system 100. In particular, updates may be made to software components without
requiring user intervention to obtain and install the updates. These updates may include, for
example, updates to executable files for a software component, new executable or data files for a
software component, or even a change in a configuration file for a software component. Network
data processing system 100 may include additional servers, clients, and other devices not shown.

In the depicted example, network data processing system 100 is the Internet with network
102 representing a worldwide collection of networks and gateways that use the Transmission
Control Protocol/Internet Protocol (TCP/IP) suite of protocols to communicate with one another.
At the heart of the Internet is a backbone of high-speed data communication lines between major
nodes or host computers, consisting of thousands of commercial, government, educational and
other computer systems that route data and messages. Of course, network data processing system
100 also may be implemented as a number of different types of networks, such as for example, an
intranet, a local area network (LAN), or a wide area network (WAN). Figure 1 is intended as an
example, and not as an architectural limitation for the present invention.

Referring to Figure 2, a block diagram of a data processing system that may be

implemented as a server, such as server 104 in Figure 1, is depicted in accordance with a

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553
7

preferred embodiment of the present invention. Data processing system 200 may be a symmetric
multiprocessor (SMP) system including a plurality of processors 202 and 204 connected to system
bus 206. Alternatively, a single processor system may be employed. Also connected to system
bus 206 is memory controller/cache 208, which provides an interface to local memory 209. I/O
bus bridge 210 is connected to system bus 206 and provides an interface to I/O bus 212. Memory
controller/cache 208 and I/O bus bridge 210 may be integrated as depicted.

Peripheral component interconnect (PCI) bus bridge 214 connected to I/O bus 212
provides an interface to PCI local bus 216. A number of modems may be connected to PCI local
bus 216. Typical PCI bus implementations will support four PCI expansion slots or add-in
connectors. Communications links to clients 108-112 in Figure 1 may be provided through
modem 218 and network adapter 220 connected to PCI local bus 216 through add-in boards.

Additional PCI bus bridges 222 and 224 provide interfaces for additional PCI local buses
226 and 228, from which additional modems or network adapters may be supported. In this
manner, data processing system 200 allows connections to multiple network computers. A
memory-mapped graphics adapter 230 and hard disk 232 may also be connected to I/O bus 212 as
depicted, either directly or indirectly.

Those of ordinary skill in the art will appreciate that the hardware depicted in Figure 2
may vary. For example, other peripheral devices, such as optical disk drives and the like, also
may be used in addition to or in place of the hardware depicted. The depicted example is not
meant to imply architectural limitations with respect to the present invention.

The data processing system depicted in Figure 2 may be, for example, an IBM eServer
pSeries system, a product of International Business Machines Corporation in Armonk, New
York, running the Advanced Interactive Executive (AIX) operating system or LINUX operating
system.

With reference now to Figure 3, a block diagram illustrating a data processing system is
depicted in which the present invention may be implemented. Data processing system 300 is an
example of a client computer. Data processing system 300 employs a peripheral component
interconnect (PCI) local bus architecture. Although the depicted example employs a PCI bus,
other bus architectures such as Accelerated Graphics Port (AGP) and Industry Standard
Architecture (ISA) may be used. Processor 302 and main memory 304 are connected to PCI local
bus 306 through PCI bridge 308. PCI bridge 308 also may include an integrated memory
controller and cache memory for processor 302. Additional connections to PCI local bus 306 may

be made through direct component interconnection or through add-in boards. In the depicted

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553
8 i
example, local area network (LAN) adapter 310, SCSI host bus adapter 312, and expansion bus

interface 314 are connected to PCI local bus 306 by direct component connection. In contrast,
audio adapter 316, graphics adapter 318, and audio/video adapter 319 are connected to PCI local
bus 306 by add-in boards inserted into expansion slots. Expansion bus interface 314 provides a
connection for a keyboard and mouse adapter 320, modem 322, and additional memory 324.
Small computer system interface (SCSI) host bus adapter 312 provides a connection for hard disk
drive 326, tape drive 328, and CD-ROM drive 330.

An operating system runs on processor 302 and is used to coordinate and provide control
of various components within data processing system 300 in Figure 3. The operating system may
be a commercially available operating system, such as Windows XP, which is available from
Microsoft Corporation. An object oriented programming system such as Java may run in
conjunction with the operating system and provide calls to the operating system from Java
programs or applications executing on data processing system 300. “Java” is a trademark of Sun
Microsystems, Inc. Instructions for the operating system, the object-oriented operating system,
and applications or programs are located on storage devices, such as hard disk drive 326, and may
be loaded into main memory 304 for execution by processor 302.

Those of ordinary skill in the art will appreciate that the hardware in Figure 3 may vary
depending on the implementation. Other internal hardware or peripheral devices, such as flash
read-only memory (ROM), equivalent nonvolatile memory, or optical disk drives and the like,

may be used in addition to or in place of the hardware depicted in Figure 3. Also, the processes

of the present invention may be applied to a multiprocessor data processing system.

The depicted example in Figure 3 and above-described examples are not meant to imply
architectural limitations. For example, data processing system 300 also may be a notebook
computer or hand held computer in addition to taking the form of a PDA. Data processing
system 300 also may be a kiosk or a Web appliance.

Turning now to Figure 4, a diagram illustrating components used in updating a software
component is depicted in accordance with a preferred embodiment of the present invention.
These components may be located within a single data processing system, or one or more of
these components may be located in one or more other data processing systems.

Update management component 400 employs database 402 in performing autonomic
updates. The use of the term “autonomic update” means that an updaté to a software component
is performed automatically using a software process without any user intervention. This update

may include, for example, changes to an executable file, changes to a data file, an addition of a

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553

9

new executable file, an addition of a new data file, or changes to 2 configuration. Database 402
includes available updates 404, test information 406, installation information 408, and roll back
information 410. Available updates 404 contains information on updates for different software
components, which may be managed by update management component 400. This information
may include, for example, presently available updates identified by version numbers, locations or
paths on which updates may be identified, or the actual update files themselves. This information
also may include an identification of different data processing systems participating in autonomic
updates. If an update is located externally to available updates 404, these updates may be located
through a path or location information. For example, update information within available
updates 404 may point to storage medium 412, which is accessible by update management
component 400. Storage medium 412 may be located on the same data processing system as
update management component 400 or may be located on a remote data processing system. This
storage medium may take many forms, such as, for example, a hard disk drive, a magnetic tape,
or a CD-ROM.

Database 402 also includes test information for each update listed in available updates
404. Test information 406, in these examples, specifies zero or more tests that are to be
performed following the autonomic deployment of an update. The use of the term “autonomic
deployment” is interchangeable with the term “autonomic update”. The tests performed after the
autonomic update will vary depending on the particular implementation. Tests may include tests
other than those used to determine whether the update has been properly installed. For example,
in some cases the testing may involve performance testing, unit testing, compatibility testing, or
on-the-fly regression testing. Unit testing involves testing a small section of a larger whole.
For example, software unit tests are performed on individual objects for the particular software
being developed to verify that these objects behave correctly in response to different inputs and
outputs. In these examples, unit testing involves testing one or more components specifically
related to the update that was applied. The update may be, for example, a new program file, a
modified program file, or a configuration change. This type of testing is low cost in terms of
time and impact and verifies on a course level that the updates are performing sufficiently to
some standard or benchmark. Performance testing is employed to insure that t)he performance of
the system after the update is acceptable. Various thresholds and benchmarks may be used as
part of the performance testing. Compatibility testing may be employed to ensure that the
updated component performs in a marmer acceptable to other components with which the

updated component communicates. Regression testing is another test that may be employed to

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553
10

determine whether the updated component performs equivalently to the old component. With
performance testing, if the software component does not meet some metric or threshold, the test
fails even though the update has been successfully deployed on the software component. The
different types of testing performed are referred to as “autonomic” testing because the testing is
performed automatically after an update has been performed. No user input is required to
perform these tests. In these examples, autonomic tests are performed by update management
component 400. An “autonomic” test is a test that is initiated and performed without requiring
user input or intervention. In other words, an autonomic test is initiated in response to an update
having just occurred without requiring a user to provide user input to a data processing system to
select or initiate the test. Whether to perform a test and what test to perform are based on
policies within test information 406. For example, the policy may specify that if the update is to
an email server, performance testing is to be performed after the update has been deployed.
Additionally, corrective actions to be taken may be included in test information 406. Corrective
actions may include, for example, rolling back the update, installing an entirely different
software component, or reinstalling the update with different parameters or options.

Further, database 402 also contains installation information 408. In these examples, this
installation information specifies a procedure used by update management component 400 in
installing or updating a software component with a particular update. Roll back information
410 specifies a procedure that is to occur if an update is to be rolled back. A roll back of an
update involves removing the update and placing the software component back into its previous
state prior to the update. Such a procedure is performed in accordance with a preferred
embodiment of the present invention if testing of an updated software component yields a failure
or some particular error. In some cases, an error may be minor, resulting in the update remaining
without a roll back. In other cases, the error may be serious, resulting in update management
component 400 performing a roll back of the update.

Installation database 414 is a database of software components and updates installed on a
particular data processing system. Installation database 414 may contain information for one
data processing system or for many data processing systems. Installation database 414 may be
used by update management component 400 to cross-reference information in this database with
available updates 404 to identify updates applicable to a particular data processing system. Next,
history database 416 contains a history of updates made to a data processing system. For
example, this history information includes an identification of updates from available updates

404 that have been deployed to a data processing system, when each update was deployed, as

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553
11

well as test results for testing performed on an update. This database also may track the status
for more than one computer. Further, decisions made subsequent to testing of updates as well as
any actions taken as a result of testing may be stored in history database 416. With history
database 416, update management component 400 may make decisions on updates, such as, for
example, which updates to install and when to install an update. Another database used by
update management component 400 is preferences database 418. This database contains
additional information used to control the operation of update management component 400. For
example, preferences database 418 may specify that for a particular software component, the
most recent update should never be installed. As a result, that particular software component
will always run using an update prior to the currently available update.

In these examples, installation database 414, history database 416, and preferences
database 418 may contain information relating to more than one client data processing system.
For example, preferences database 418 may specify that for a particular software component and
a particular data processing system, the most recent update should never been installed. Asa
result, that particular data processing system will always run using an update prior to the
currently available update for that particular software component. Update management
component 400 also may track other types of information other than that illustrated in database
402. For example, information relating to the past status of computers and updates may be
stored in database 402.

With reference now to Figure 5, a diagram illustrating components used in autonomic
updates is depicted in accordance with a preferred embodiment of the present invention. In this
example, updates are performed using a central or primary update component, such as primary
update management component 500, to manage updates on a number of different clients, such as
client 502 and 504. These clients contain secondary update management components, such as,
for example, secondary update management components 506 and 508. Primary update
management component 500 may be located on a server, such as server 104 in Figure 1, while
secondary update management components 506 and 508 may be located on clients, such as
clients 108 and 110 in Figure 1. Each of these secondary update management components
manages software components on the client on which it is located.

In this example, database 510 is accessed by primary update management component 500
to control autonomic updates, testing, and roll backs of available updates. Available updates are
located in available updates 512 in these examples. The information used to install updates on

clients 502 and 504 is located in installation information 514, while tests to be performed after

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553

12
the install are located in test information 516. If testing fails, the procedure used to roll back an
update is located in roll back information 518.

Secondary update management component 506 accesses history database 520 and
preferences database 522, while secondary update management component 508 accesses history
database 524 and preferences database 526. Each of these secondary update management
components will contact primary update management component 500 to determine whether an
update is available for each particular client. In checking for an available update, preference
information and history information on installed updates may be sent to primary update
management component 500 from secondary update management component 506 and secondary
update management compoﬁent 508. This check may be made based on some event, such as a
periodic event, like the expiration of a timer or some other non-periodic event, such as the
starting of the software component. The availability of updates is stored in available updates
512.

If an update is available, the procedure for installing the update is obtained from
installation information 514 by primary update management component 500 and sent to
secondary update management components 506 and 508. In response to receiving the
installation information, secondary update management component 506 and secondary update
management component 508 will perform the autonomic update using the procedures received
from primary update management component 500. After installation of the update, secondary
update management component 506 and secondary update management component 508 will
perform testing of the update using test information from test information 516, received through
primary update management component 500. If the tests are successful, the software

components continue to operate. If the tests are unsuccessful, a roll back procedure is received

. from roll back information through primary update management component 500. Data and other

statistical information regarding updates, testing, and roll backs are stored in history database
520 and history database 524. |

In this particular example, primary update management component 500 may track
additional information, such as that about computers participating in autonomic updates, an
identification of a data processing system to perform testing, an identification of versions of each
software component and configurations currently installed in the computers, as well as
information about versions and configurations for software components available for installation.
Additionally, primary update management component 500 also may track other information

relating to updates and tests currently underway on clients. This information may include, for

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553
13

example, software components currently being updated and the state or stage of any testing being
performed.

In the case of a critical software component, installation of that software component may
be performed on a new client having a similar or identical configuration. For example, client
502 may be an email server forming a critical component of a network data processing system.
When secondary update management component 506 identifies an available update to the email
server component, another client is identified on which the update is to be performed.
Specifically, an update may be made to client 504 by secondary update management component
508, while no updates are made by client 502. After the updates are made and testing is
performed on the email server component on client 504, users may be transferred or migrated
from client 502 to client 504. If no failures or errors occur, then client 502 may be phased out
and client 504 may provide email services to the users. If an error occurs, then users may be
moved back to client 502. This procedure provides for additional failsafe mechanisms in the
case of some error or failure after an update has occurred. By performing the update on a second
data processing system, while maintaining the first data processing system in a state without the
update, the first data processing system may be brought back into service quickly in case of
failure on the second data processing system. Of course, this procedure may be performed
through a single management component directing updates and migration of use of a software
component, as illustrated in Figure 4, rather than employing the distributed structure illustrated
in Figure 5.

Turning now to Figure 6, a flowchart of a process used for performing an autonomic
update is depicted in accordance with a preferred embodiment of the present invention. The
process illustrated in Figure 6 may be implemented in an update management component, such
as update management component 400 in Figure 4.

The process begins by selecting a software component (step 600). Selection of a
component may vary depending on the particular implementation. In these examples, the
component selected may be identified by accessing an installation database, such as installation
database 414 in Figure 4. The installation database may identify software components installed
on a particular data processing system. Alternatively, software components may be identified
dynamically at a particular time, such as when an update is to be performed. A determination is
made as to whether an update is available for the software component (step 602). This update
may be made by checking a database, such as database 402 in Figure 4 for information. If an

update is available for the component, a determination is made as to whether the update is

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553
14

desired (step 604). This decision may be made with the aid of preference and history
information, which may be found in databases, such as history database 416 and preferences
database 418 in Figure 4. If the update is desired, the update is deployed (step 606). After
deployment of the update, a determination is made as to whether the deployment was successful
(step 608). If the deployment is successful, a determination is made as to whether to test the
update (step 610). In some cases, no tests may be performed on the update. If the update is to be
tested, then one or more specified tests are performed (step 612). The particular test or tests to
run are specified by test information, such as test information 406 found in database 402 in
Figure 4. After the testing has been performed, a determination is made as to whether the testing
performed on the update was successful (step 614). If the testing was successful, a history
database is updated (step 616). The history database is one, such as history database 416 in
Figure 4. The information written into the database includes information about the update form,
results of the test, and any other data that could be used for determining the application of future
updates to the software component. Next, a determination is made as to whether additional
unprocessed software components are present (step 618). If additional unprocessed software
components are not present, the process terminates.

Referring again to step 618, if additional unprocessed software components are present,
the process returns to step 600 as described above. Returning to step 614, if the testing was not
‘successful, a corrective action is performed (step 620). A roll back of the update to the software
component may be performed as the corrective action. Other corrective actions that may be
performed include, for example, identifying a different update to apply to the software
component or agcelerating a roll out of an entirely new software component to take the place of
the present one. For example, if an update to a Web server process results in a test failure, a Web
server process from a different source may be installed in place of the current one, rather than
rolling back the Web server process to its un-updated state. The particular corrective action to
take may be included in a database, such as database 402 in Figure 4. If a roll back is
performed, the process used to roll back the update can be identified from roll back information
410 in database 402 in Figure 4. Thereafter, a notification is sent (step 622). The notifications
are typically sent when no more attempts are made to reapply an update. This notification is
typically sent to an administrative person. The notification may be sent through various
communication mechanisms, such as, for example, email, pager, and simple network
management protocol (SNMP) with the process proceeding to step 618 as described above.

Turning back to step 608, if the deployment was unsuccessful, a determination is made as

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553
15

to whether to retry the deployment of the update (step 624). If the update is to be repeated, the
process returns to step 606. Otherwise, the process proceeds to step 622 as described above. In
this case, the notification indicates a failure in the deployment. The notification may occur after
various types of failures, such as, for example, when a single deployment fails, two or more
attempted deployments of the same update to the same target fails, two or more attempted
deployments of the same update to different targets fails, or one or more attempted deployments
of two or more different updates to the same target fail. These notifications may be logged in a
file or sent to administrative personnel depending on the particular implementation. With
reference again to step 610, if testing is not to be performed, the process proceeds to step 618 as -
described above. In some cases, testing is not performed if metrics indicate that failures are
unlikely to occur. The process also proceeds to step 618 from step 604 if the update is not
desired. Referring again to step 602, if an update is not available for the component, the process
also proceeds to step 618.

With reference now to Figure 7, a flowchart of a process used for performing an
autonomic update is depicted in accordance with a preferred embodiment of the present
invention. The process illustrated in Figure 7 may be implemented in a secondary update
management component, such as secondary update management component 506 in Figure 5.

The process begins by sending a message to the primary update management component
(step 700). This message includes a query as to whether an update is available and should be
performed. The message sent to the primary management component may include information,
such as, for example, preference information on updates and history information on the last
update performed on the software component. A response to the message is received (step 702).

The message indicates whether an update is to be performed along with an identification of any

~ update that is to be performed. This message also may include information, such as the

procedure to install the update, an identification of one or more tests to perform after the update
has been installed, and an identification of a roll back process if testing is unsuccessful. A
determination is made as to whether an update is to be performed (step 704). If an update is to
be performed, an update is performed on the software component using installation information
received from the primary update management component (step 706). The component is tested
(step 708) and a determination is made as to whether the test was successful (step 710). If the
test was successful, a history database is updated (step 712) and the process terminates thereafter.
Returning again to step 710, if the test was not successful, a roll back of the update is

performed to remove the update from the software component and place the software component

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553
16
back into its prior state (step 714) and the process terminates thereafter. Referring again to step
704, if an update is not to be performed, the process terminates.

The steps illustrated in Figure 7 also may be modified to allow for a secondary update
management component to be contact by a primary update management component. In this case,
the primary update management component tells the secondary update management component
what updates are available. Such a configuration is a push model in contrast to the pull model
illustrated in these examples in which a secondary update management component queries the
primary update management component to determine whether updates are available.

Turning now to Figure 8, a flowchart of a process used for performing an autonomic
update is depicted in accordance with a preferred embodiment of the present invention. The
process illustrated in Figure 8 may be implemented in an update management component, such
as secondary update management component 506 in Figuré 5 and update management
component 400 in Figure 4. The process in this example is used to perform software updates on
software components having critical functions.

The process begins by making a determination as to whether an update is available (step
800). If an update is available, a determination is made as to whether an update is desired (step
802). If an update is desired, a new system is identified (step 804). The new system is another
data processing system, which is configured to provide the same function as the software
component managed by the update management component. For example, if the software
component is an email server, another data processing system containing the software component
is selected to be updated. The update is deployed on the new system (step 806). The update on
the new system is tested (step 808) and a determination is made as to whether the update is
successful (step 810). If the update is successful, clients of the software component are moved to
anew system (step 812). In step 812, some or all of the clients may be moved to the new system
depending on the particular implementation. A determination is made as to whether errors are

present after the clients have been moved or transitioned to the new system (step 814). If errors

. are present, clients are moved back to the old system (step 816) and the process terminates

thereafter.

With reference again to step 814, if no errors are present, the old system is phased out
(step 818) and the process terminates thereafter. Turning again to step 810, if the update is not
successful, the process terminates. Of course, additional attempts to implemént the update may
be performed depending on the particular implementation. With reference again to step 802, if

an update is not desired, the process terminates. Referring again to step 800, if an update is not

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553
17

available, the process terminates.

Turning now to Figure 9, a flowchart of a process used for modifying autonomic updates
is depicted in accordance with a preferred embodiment of the present invention. The process
illustrated in Figure 9 may be implemented in an update management component, such as
primary update management component 500 in Figure 5.

The process begins by retrieving metrics on an update (step 900). These metrics may be
retrieved from a history database, such as history database 520 or history database 524 in Figure
5. These metrics may be pulled from a single client or node or from multiple clients or nodes in

a network data processing system. These metrics include data, such as, for example, the date and

clients on which roll outs were performed, the data and clients on which roll backs occurred, and

any testing and test results related to the updates. The metrics are analyzed (step 902). This
analysis may take various forms depending on the particular implementation. For example, the
metrics may be analyzed to identify patterns and correlations between occurrences of faults
between specific types or sets of software entities, users, types of hardware, and operating
systems. The deployment of the update is modified using the analysis (step 904) and the process
terminates thereafter. This modification may take various forms. For example, deployment of
an update may be avoided on data processing systems on which an update is likely to fail. This
modification also may include accelerated deployment of an update to data processing systems
on which a successful deployment is likely. The modification also may include ceasing
deployment of the update or modifying the update. The analysis may resultin a modification in
which additional updates are deployed or made to improve on the success of previous updates.
Further, depending on the particular correlation or pattern identified in step 902, administrative
personnel may be provided a notification of the correlation or pattern.

Thus, the present invention provides an improved method, apparatus, and computer
instructions for an autonomic update of a software component. The mechanism of the present
invention updates the software component, automatically tests the software component to
determine whether faults or errors occur, and may roll back the update to a prior version or take
some other corrective action in the event of a fault or e&or identified in testing. It will be evident
that the update management component of the present invention is able to receive information
about the progress and status of updates, and make decisions based on that information. These
decisions can range from the simple (for example, a decision to roll back the upgrade and to not
attempt a redeployment) to the complex (for example, a decision to partially roll back the
upgrade - to roll it back from a subset of the upgraded computers -- and to not attempt fo deploy

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553
18

the upgrade to computers similar -- by some relevant metric -- to those on which the upgrade
failed testing). It can therefore be seen that the presence of the update management component
allows much more complex decisions to be made automatically, based on a much wider set of |
available data, than is possible without the update management component.

To elaborate, in another preferred embodiment, the dramatic success of the update (by
one or more appropriate metrics) may accelerate the deployment of the update to other machines.
In yet another embodiment, analysis of the metrics may indicate that the software update works
well in some envirénments but not in others, and analysis may indicate similarities between the
environments in which the update does not work -- the update roll out may then continue to
machines that do not share the similarity with the environments on which the update failed. In
another embodiment, upon encountering problems with a component deployment, it may be
decided to accelerate the deployment of another software component that is believed to resolve,
or in some other way deal with, the problems detected. Another possible embodiment has the
update management component performing the same update to many computers, and deciding,
after the update and tests have succeeded on a number of those computers, to skip some or all of
the tests on subsequent deployments of that update to the remaining computers.

Additionally, the mechanism of the present invention may maintain metrics of all the
software updates, roll outs, roll backs, and testing to identify patterns of occurrences of faults
between specific types of software entities, specific types of users, specific types of data
processing systems, and/or operating systems. These patterns may be identified through different
statistical analysis normally used to identify patterns. Some examples of overall behavior of
multiple updates on multiple data processing systems include a pattern in which an update fails
every time an update is attempted on a machine running a particular operating system. In this
case, updates on that specific operating system should not be performed in the future. Another
example is if an update fails every time it is installed on a data processing system of a particular
manufacturer. An example of another pattern is when a third update installs, but fails to pass
testing whenever it is installed after the first update. Another pattern may be, for example, a
fourth update never installs unless the second update has been installed first. Finer grained
pattern detection also may be used to detect other patterns, such as, for example, patterns in
performance or compatibility. These patterns may be used to adaptively modify the course of
updates or other factors in the update process to decrease the incidence of faults and required roll
backs in deployment. For example, a specific pattern may indicate a change in the manner in

which an installation occurs or the selection of options for an update if particular steps or options

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553

19

are identified as causing more faults or failure in testing. In this manner, deployment or updates
may be avoided on systems that are likely to fail testing. Further, these identifications may
accelerate the deployment of software to update other computers. This is especially true in the
instance in which the patterns identified show that an update is unlikely to cause any failures.
Also, the deployment of updates may be ceased or terminated when the patterns indicate that
many failures will occur. In other cases, the patterns may indicate that additional updates should
be employed to improve the success of previous updates. This mechanism also may be used to
identify modifications for updates in a manner to increase the likelihood that subsequent updates
will be successful. An update procedure may be employed that automatically detects and
responds to patterns, such as patterns in which certain installs fail or do not successfully occur
based on what prior updates have or have not been performed. The update process may be
adapted by changing the process to avoid failures in testing or installation of updates.

It is important to note that while the present invention has been described in the context
of a fully functioning data processing system, those of ordinary skill in the art will appreciate that
the processes of the present invention are capable of being distributed in the form of a computer
readable medium of instructions and a variety of forms and that the present invention applies
equally regardless of the particular type of signal bearing media actually used to carry out the
distribution. Examples of computer readable media include recordable-type media, such as a
floppy disk, a hard disk drive, a RAM, CD-ROMs, DVD-ROMs, and transmission-type media,
such as digital and analog communications links, wired or wireless communications links using
transmission forms, such as, for example, radio frequency and light wave transmissions. The
computer readable media may take the form of coded formats that are decoded for actual use in a
particular data processing system.

The description of the present invention has been presented for purposes of illustration
and description, and is not intended to be exhaustive or limited to the invention in the form
disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art.
The embodiment was chosen and described in order to best explain the principles of the
invention, the practical application, and to enable others of ordinary skill in the art to understand
the invention for various embodiments with various modifications as are suited to the particular

use contemplated.

10

15

20

25

30

WO 2004/027541

PCT/US2003/016553
20
CLAIMS
What is claimed is:
1. A method in a data processing system for updating a software component, the method

comprising the computer implemented steps of:

determining whether to update the software component;

responsive to a determination to update the software component, uf)dating the software
component to form an updated software component;

automatically testing the updated software corgponent; and

responsive to a failure in testing the updated component, performing a corrective action.

2. The method of claim 1, wherein the determining step comprises:
determining whether an update is present for the software component;
responsive to the update being present for the software component, determining whether
the update should be applied to the software component; and |
responsive to a determination to apply the update to the software component, applying the

update to the software component to form the updated software component.

3. The method of claim 1, wherein the corrective action includes rolling back the updated

software component to a state prior to the update being made.

4. The method of claim 1, wherein the corrective action includes at least one of identifying

an alternative update, rolling back the updated software component to the

software component without the update, installing a different software component, and installing

the alternative update.
5. The method of claim 1, wherein the testing step comprises:
identifying a test to perform from a database of tests to form an identified test; and

performing the identified test of the updated component.

6. The method of claim 1, wherein the update is a new parameter for a configuration file.

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553
21

7. The method of claim 1, wherein the update is to an executable file for the software

component.

8. The method of claim 1 further comprising:
storing data on at least one of updates, roll backs, test results from testing of the updated
component, occurrences of faults between sets of users, occurrences of faults between specific

types of software components, and occurrences of faults between sets of operating systems.

9. The method of claim 1, wherein the automatically testing step uses at least one of

performance testing, on-the-fly-regression testing, unit testing, and compatibility testing.

10. The method of claim 1, wherein a first party is a source of the software update and a

second party provides a policy used in determining whether to update the software component.

11. The method of claim 1, wherein the determining step comprises:

determining whether the update is available; and

if the update is available, determining whether to apply the update using a pattern of
occurrences of faults correlating to at least one of specific types of software sources, users, types

of operating systems, and types of data processing systems.

12. The method of claim 1 further comprising:

determining whether the software component was successfully updated to form the
updated software component; and ‘
responsive to a failure to successfully update the software component, sending a

notification of the failure.

13. The method of claim 1 further comprising:
| determining whether the software component was successfully updated to form the
updated software component; and
responsive to a failure to successfully update the software component, reattempting

updating of the software component.

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553
22
14. The method of claim 13, wherein the notification is sent after at least two attempted

updates to the software component have failed.

15. A computer process in a data processing system for deploying an update to a plurality of
nodes in a network data processing system, the computer process comprising:

identifying nodes within the plurality of nodes in the network data processing system
having a software component requiring an update to form a set of identified nodes;

initiating updating of the set of identified nodes with the update to generate a set of
updated nodes;

automatically testing the set of updated nodes; and

responsive to a test failure in a node in the set of updated nodes, performing a corrective

action.

16. The computer process of claim 15, wherein the corrective action is at least one of sending
a notification of the test failure, reattempting updating of nodes having the test failure, rolling
back the update, and installing a different software component.
17. The computer process of claim 15 further comprising: ’
determining whether a failure occurred in a node when updating the software component
in the set of identified nodes; and
responsive to a failure in updating the software component in at least two nodes in the set

of nodes, sending a notification of the failure.

18. The computer process of claim 15, further comprising:

determining whether a failure occurred in a node when updating the software component
in the set of identified nodes; and

responsive to a failure in updating the software component in the node, reattempting

updating of the software component in the node.

19. The computer process of claim 18 further comprising:
responsive to a second failure to update the software component in the node, sending a

notification of the failure.

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553

23
20. The computer process of claim 15 further comprising:
storing data on metrics of at least one of successful deployments of updates in the

plurality of nodes and results from testing of updates.

21. The computer process of claim 20 further comprising:

analyzing the data to identify patterns of test failures in the plurality of nodes.

22. The computer process of claim 21 further comprising: '
modifying an identification of nodes within the plurality of nodes to receive future
updates in a manner reducing test failures, wherein the identification is based on the patterns of

test failures.

23. The computer process of claim 21 further comprising:
modifying an identification of nodes within the plurality of nodes to receive future
updates in a manner in which some nodes in the plurality of nodes cease to receive updates for

the software component, wherein the identification is based on the patterns of test failures.

24. The computer process of claim 21 further comprising:

modifying an identification of nodes within the plurality of nodes to receive future
updates in a manner in which some nodes in the plurality of nodes cease to receive updates for
the software component, wherein the some nodes are nodes in which failures are likely to occur

and wherein the identification is based on the patterns of test failures.

25. The computer process of claim 21 further comprising:
modifying an identification of nodes within the plurality of nodes to receive future
updates in a manner in which some nodes in the plurality of nodes receive the update at an

accelerated rate, wherein the identification is based on the patterns of test failures.

26. A computer implemented process in a computer for updating a software component, the
computer implemented process comprising:

determining whether to update the software component, wherein the software component
is executing on the computer;

responsive to a determination to update the software component, identifying a second

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553

24
computer also containing the software component for deployment of an update to the software
component,
initiating means for initiating an update of the software component on the second
computer to generate an updated software component on the second computer, wherein the
computer continues to execute the software component;
automatically testing the updated software component on the second computer; and

responsive to a failure in testing the updated component, performing a corrective action.

27 The method of claim 26, wherein the testing step includes:
migrating clients of the software component executing on the computer to the updated

software component on the second computer.

28. The method of claim 27 further comprising:
responsive to successful testing of the software component, removing the software

component on the computer from service.

29. A data processing system for updating a software component, the data processing system
comprising:

a bus system,;

a communications unit connected to the bus system;

a memory connected to the bus system, wherein the memory includes a set of
instructions; and

a processing unit connected to the bus system, wherein the processing unit executes the
set of instructions to determine whether to update the software component;
update the software component to form an updated software component in response to a
determination to update the software component; automaticélly test the updated software
component; and perform a corrective action in response to a failure in testing the updated

component.

30. A data processing system for deploying an update to a plurality of nodes in a network
data processing system, the data processing system comprising:
a bus system;

a communications unit connected to the bus system;

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553

25

a memory connected to the bus system, wherein the memory includes a set of
instructions; and

a processing unit connected to the bus system, wherein the processing unit executes the
set of instructions to identify nodes within the plurality of nodes in the network data processing
system having a software component requiring an update to form a set of identified nodes;
initiate an updating of the set of identified nodes with the update to generate a set of updated
nodes; automatically test the set of updated\nodes; and perform a corrective action in response to
a test failure in a node in the set of updated nodes. .
31. A data processing system for updating a software component, the data processing system
comprising:

a bus system;

a communications unit connected to the bus system;

a memory connected to the bus system, wherein the memory includes a set of
instructions; and

a processing unit connected to the bus system, wherein the processing unit executes the

set of instructions to determine whether to update the software component in which the software

component is executing on the computer; identify a second computer also containing the
software component for deployment of an update to the software component in response to a
determination to update the software component; initiate an update of the software component on
the second computer to generate an updated software component on the second computer in
which the computer continues to execute the software component; automatically test the updated
software component on the second computer; and perform a corrective action in response to a

failure in testing the updated component.

32. A data processing system for updating a software component, the data processing system
comprising: |

determining means for determining whether to update the software component;

updating means, responsive to a determination to update the software component, for
updating the software component to form an updated software component;

testing means for automatically testing the updated software component; and

performing means, responsive to a failure in testing the updated component, for

performing a corrective action.

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553
26

33. The data processing system of claim 32, wherein the determining means is a first
determining means and further comprises:

second determining means for determining whether an update is present for the software
component;

third determining means, responsive to the update being present for the software
component, for determining whether the update should be applied to the software component;
and

applying means, responsive to a determination to apply the update to the software
component, for applying the update to the software component to form the updated software

component.

34, The data processing system of claim 32, wherein the corrective action includes rolling

back the updated software component to a state prior to the update being made.

35. The data processing system of claim 32, wherein the corrective action includes at least
one of identifying an alternative update, rolling back the updated software component to the
software component without the update, installing a different software component, and installing

the alternative update.

36. The data processing system of claim 32, wherein the performing means is a first
performing means and wherein the testing means comprises:

identifying means for identifying a test to perform from a database of tests to form an
identified test; and

second performing means for performing the identified test of the updated component.

v

37. The data processing system of claim 32, wherein the update is a new parameter for a
configuration file.
38. The data processing system of claim 32, wherein the update is to an executable file for

~ the software component.

39. The data processing system of claim 32 further comprising:

storing means for storing data on at least one of updates, roll backs, test results from

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553

27
testing of the updated component, occurrences of faults between sets of users, occurrences of
faults between specific types of software components, and occurrences of faults between sets of

operating systems.

40. The data processing system of claim 32, wherein the automatically testing means uses at
least one of performance testing, on-the-fly-regression testing, unit testing, and compatibility

testing.

41. The data processing system of claim 32, wherein a first party is a source of the software
update and a second party provides a policy used in determining whether to update the software

component.

42. The data processing system of claim 32, wherein the determining means cOmprises:
first means for determining whether the update is available; and
second means, responsive to the update being available, for determining whether to apply

the update using a pattern of occurrences of faults correlating to at least one of

specific types of software sources, users, types of operating systems, and types of data processing

systems.

43. The data processing system of claim 32, wherein the determining means is a first
determining means and further comprising:

second determining means for determining whether the software component was

successfully updated to form the updated software component; and

sending means, responsive to a failure to successfully update the software component, for

sending a notification of the failure.

44. The data processing system of claim 32, wherein the determining means is a first
determining means and the updating means is a first updating means, further comprising:

second determining means for determining whether the software component was
successfully updated to form the updated software component; and

second updating means, responsive to a failure to successfully update the software

. component, for reattempting updating of the software component.

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553

28

45. The data processing system of claim 44, wherein the notification is sent after at least two

attempted updates to the software component have failed.

46. A data processing system for deploying an update to a plurality of nodes in a network
data processing system, the data processing system comprising:

identifying means for identifying nodes within the plurality of nodes in the network data
processing system having a software component requiring an update to form a set of identified
nodes;

initiating means for initiating updating of the set of identified nodes with the update to
generate a set of updated nodes;

testing means for automatically testing the set of updated nodes; and

performing means, responsive to a test failure in a node in the set of updated nodes, for

performing a corrective action.

47. The data processing system of claim 46, wherein the corrective action is at least one of
sending a notification of the test failure, reattempting updating of nodes having the test failure,

rolling back the update, and installing a different software component.

48. The data processing system of claim 46 further comprising:

determining means for determining whether a failure occurred in a node when updating
the software component in the set of identified nodes; and |

sending means, responsive to a failure in updating the software component in at Jeast two

nodes in the set of nodes, for sending a notification of the failure.

49. The data processing system of claim 46, wherein the updating means is a first updating
means and further comprising:

determining means for determining whether a failure occurred in a node when updating
the software component in the set of identified nodes; and

second updating means, responsive to a failure in updating the software component in the

node, for reattempting updating of the software component in the node.

50. The data processing system of claim 49 further comprising:

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553
29

sending means, responsive to a second failure to update the software component in the
node, for sending a notification of the failure.
51. The data processing system of claim 46 further comprising:

storing means for storing data on metrics of at least one of successful deployments of

updates in the plurality of nodes and results from testing of updates.

52. The data processing system of claim 51 further comprising:
analyzing means for analyzing the data to identify patterns of test failures in the plurality

of nodes.

53. The data processing system of claim 52 further comprising:
modifying means for modifying an identification of nodes within the plurality of nodes to
receive future updates in a manner reducing test failures, wherein the identification is based on

the patterns of test failures. »

54. The data processing system of claim 52 further comprising:

modifying means for modifying an identification of nodes within the plurality of nodes to
receive future updates in a manner in which some nodes in the plurality of nodes cease to receive
updates for the software component, wherein the identification is based on the patterns of test

failures.

55. The data processing system of claim 52 further comprising:

modifying means for modifying an identification of nodes within the plurality of nodes to
receive future updates in a manner in which some nodes in the plurality of nodes cease to receive
updates for the software component, wherein the some nodes are nodes in which failures are

likely to occur and wherein the identification is based on the patterns of test failures.

56. The data processing system of claim 52 further comprising:
modifying means for modifying an identification of nodes within the plurality of nodes to
receive future updates in a manner in which some nodes in the plurality of nodes receive the

update at an accelerated rate, wherein the identification is based on the patterns of test failures.

57. A dataprocessing system for updating a software component, the data processing system

10

15

20

25

30

WO 2004/027541 PCT/US2003/016553
30

comprising:

determining means for determining whether to update the software component, wherein
the software component is executing on the computer;

identifying means, responsive to a determination to update the software component, for
identifying a second computer also containing the software component for deployment of an
update to the software component;

| iniating means for initiating an update of the software component on the second computer

to generate an updated software component on the second computer, wherein the computer
continues to execute the software component;

testing means for automatically testing the updated software component on the second
computer; and

performing means, responsive to a failure in testing the updated component, for

performing a corrective action.

58. The data processing system of claim 57, wherein the testing means includes:
migrating means for migrating clients of the software component executing on the
computer to the updated software component on the second computer.
59. The data processing system of claim 58 further comprising:
removing means, responsive to successful testing of the software component, for

removing the software component on the computer from service.

60. A computer program product in a computer readable medium for updating a software
component, the computer program product comprising:

first instructions for determining whether to update the software component;

second instructions, responsive to a determination to update the software component, for
updating the software component to form an updated software component;

third instructions for automatically testing the updated software component; and

fourth instructions, responsive to a failure in testing the updated component, for

performing a corrective action.

61. A computer program product in a computer readable medium for deploying an update to
a plurality of nodes in a network data processing system, the computer program product

comprising:

10

15

20

WO 2004/027541 PCT/US2003/016553
31

first instructions for identifying nodes within the plurality of nodes in the network data
processing system having a software component requiring an update to form a set of identified
nodes; |

second instructions for initiating updating of the set of identified nodes with the update to
generate a set of updated nodes;

third instructions for automatically testing the set of updated nodes; and

fourth instructions, responsive to a test failure in a node in the set of updated nodes, for

performing a corrective action.

62. A computer program product in a computer readable medium for updating a software
component, the computer program product comprising:

first instructions for determining whether to update the software component, wherein the
software component is executing on the computer;

second instructions, responsive to a determination to update the software component, for
identifying a second computer also containing the software component for deployment of an
update to the software component;

third instructions for initiating an update of the software component on the second
computer to generate an updated software component on the second computer, wherein the
computer continues to execute the software component;

| fourth instructions for automatically testing the updated software component on the

second computer; and

fifth instructions, responsive to a failure in testing the updated component, for performing

a corrective action.

WO 2004/027541

B
=5}

—J
 —

100

FIG.

1/5

PCT/US2003/016553

1

CLIENT

202 204
\ /
PROCESSOR PROCESSOR
@ 206
SYSTEM BUS P,
< >
200
MEMORY ¥~
208~L CONTROLLER/ | 1/0 BRIDGE }~210
CACHE
214
i / 216
209~] LOCAL S R ﬁ el 858 ﬁ/ >
MEMORY
_Al1/0 | NETWORK
21271 8 MODEM ADAPTER
GRAPHICS 222 \ \
230~ ADAPTER / 218 oot s 220
PCI BUS
. <= BRinGe < =>
226
N— BRIDGE < >
228
FIG. 2 v)

224

WO 2004/027541 PCT/US2003/016553

2/5
FIG. 83
CLIENT
300 HOST/PCI MAIN AUDIO
(| PROCESSOR K=>{ cacke /BRIDGE =1 MENORY ADAPTER
306 / ’ \ N
§ 302 gy 308 304 316
N r o u r
SCSI HOST | - 317 LN || EXERION | caprics | | aupio/vioeo
BUS ADAPTER [~ ADAPTER | | oFom o | | ADAPTER | | ADAPTER
/ N \ \ \
310 314 318 319
DISK _
> < , T
AT 328 KEYBOj\IzD ND v
A
\}:> CD-ROM |39 320 <[MOUSE ADAPTER | | MODEM | | MEMORY
\ \
322 324
FIG. 4 0
UPDATE MANAGEMENT COMPONENT
Y l \J \ B Y
INSTALLATION HISTORY PREFERENCES
AVAILABLE STORAGE DATABASE DATABASE DATABASE
UPDATES MEDIUM 7 N N
406 4\0 414 16 418
\ 4 412
TEST
INFORMATION
INSTALLATION | ™
INFORMATION 42
N
41? 408
ROLL BACK

INFORMATION

WO 2004/027541

PCT/US2003/016553

3/5

FIG. &5 590
PRIMARY UPDATE MANAGEMENT COMPONENT
A A A
510 502 504
\ \A \ Y \ i '/
AVAILABLE SECONDARY UPDATE SECONDARY UPDATE
UPDATES MANAGEMENT COMPONENT MANAGEMENT COMPONENT
N ’ /
51\6 519 5200 | 506 522 | | 524 508 526
\ Y Y / \ Y \ /
INFOTRESXTION HISTORY | [PREFERENCES HISTORY | [PREFERENCES
DATABASE | | DATABASE DATABASE | | DATABASE
INSTALLATION
INFORMATION
N
51\8 514
ROLL BACK
INFORMATION
FIG. 9
START
309] " ReTRIEVE METRICS ON UPDATE
Y
902~

ANALYZE METRICS

A

9041 MODIFY DEPLOYMENT OF UPDATE

END

WO 2004/027541 PCT/US2003/016553

(_ START) 4/5

"

A

600~{ SELECT SOFTWARE COMPONENT

UPDATE
AVAILABLE FOR SOFTWARE
COMPONENT?

NO

604

NO UPDATE
) DESIRED?

YES

rﬂ

\
606" DEPLOY UPDATE

DEPLOYMENT
SUCCESSFUL?

NO

RETRY
UPDATE?

YES

NO TEST

A

UPDATE? noY. 624

610
6121 PERFORM TESTING

TEST
succEssFUL N0 620
5 v /

PERFORM CORRECTIVE ACTION

614 YES

"

y
616" UPDATE HISTORY DATABASE SEND NOTIFICATION

622

<
L
y

MORE

UNPROCESSED SOFTWARE YES

COMPONENTS? FIGC. 6

618

PCT/US2003/016553

WO 2004/027541
5/5
FIG. 7
START
SEND MESSAGE TO
PROMARY UPDTE | 'OV FIG. 8
MANAGEMENT COMPONENT

7 START

RECEIVE REsPoNsE | /02 800
UPDATE

NO
AVAILABLE
?

704
3
YES 802

PERFORM UPDATE ON
SOFTWARE COMPONENT [-706

UPDATE
DESIRED

'
TE5T CONPONENT__ I\-708 804~ IDENTIFY
NEW SYSTEM
710
0 :
714 806~ DEPLOY UPDATE
719 v / ON NEW SYSTEM
S G pm—
UPDATE HISTORY DATABASE | | UPDATE 808—"___TEST UPDATE
= |
END UPDATE
SUCCESSFUL
?
810 Tes

MOVE CLIENTS
81271 TO NEW SYSTEM

814
818 816
\ i YES /

PHASE OUT | | MOVE CLIENTS BACK
OLD SYSTEM T0 OLD SYSTEM

Lt)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

