Title: SPUTTERING TARGET, OPTICAL INFORMATION RECORDING MEDIUM AND PROCESS FOR PRODUCING THE SAME

Abstract: A sputtering target characterized in that it is comprised of an In$_2$O$_3$-ZnO-SnO$_2$ composite oxide whose main component is SnO$_2$ compounded with any one or both of SiO$_2$ and B$_2$O$_3$ oxides. There is provided a thin film for optical information recording medium (especially used a protective film) that is stable in film amorphous properties, realizes high film forming speed, excels in adherence with recording layer and mechanical properties and is high in transmittance and that by effecting non sulfide constitution, can suppress deterioration of adjacent reflective layer and recording layer. Further, there are provided a process for producing the same and a sputtering target for use therein. Accordingly, not only can the performance of optical information recording medium be enhanced but also a striking productivity increase can be attained.

(57) 要約: SnO$_2$を主成分とするIn$_2$O$_3$-ZnO-SnO$_2$系複合酸化物に、SiO$_2$、B$_2$O$_3$の何れか1種又は2種の酸化物を添加した材料から成ることを特徴とするスパッタリングターゲット。膜の非晶性が安定であり、成膜速度が速く、記録層との密着性、機械特性に優れ、且つ透過率が高く、非酸化物系で構成することにより、隣接する反射層、記録層の劣化が生じ難い光情報記録媒体用薄膜（特に保護膜としての使用）及びその製造方法並びにこれに適用できるパッタリングターゲットに関するものであり、これによって、光情報記録媒体の特性の向上及び生産性を大幅に改善することを目的とする。
明細書

スパッタリングターゲット並びに光情報記録媒体及びその製造方法

技術分野

[0001] 本発明は、スパッタ膜の非品質性が安定であり、成膜速度が速く、記録層との密着性、機械特性に優れ、かつ透過率が高く、また非硫化物系で構成されているため、隣接する反射層、記録層の劣化が生じ難い光情報記録媒体用薄膜（特に保護膜としての使用）及びその製造方法並びにこれらに適用できるスパッタリングターゲットに関する。

背景技術

[0002] 従来、主として相変化型の光情報記録媒体の保護層に一般的に使用されるZnS-SiO₂は、光学特性、熱特性、記録層との密着性等において、優れた特性を有し、広く使用されている。

しかし、今日Blue-Rayに代表される書き換え型DVDは、さらに書き換え回数の増加、大容量化、高速記録化が強く求められている。

光情報記録媒体の書き換え回数等が劣化する原因の一つとして、保護層ZnS-SiO₂に挟まれるように配置された記録層材への、ZnS-SiO₂からの硫黄成分の拡散が挙げられる。

[0003] また、大容量化、高速記録化のため高反射率で高熱伝導特性を有する純AgまたはAg合金が反射層材に使用されるようになったが、このような反射層も保護層材であるZnS-SiO₂と接着するように配置されている。

したがって、この場合も同様に、ZnS-SiO₂からの硫黄成分の拡散により、純AgまたはAg合金反射層材も腐食劣化して、光情報記録媒体の反射率等の特性劣化を引き起こす要因となっていた。

[0004] これら硫黄成分の拡散防止対策として、反射層と保護層、記録層と保護層の間に、窒化物や炭化物を主成分とした中間層を設けた構成にすることも行なわれている。しかし、これは積層数の増加となり、スループット低下、コスト増加になるという問題を発生している。
上記のような問題を解決するため、保護層材に硫化物を含まない酸化物のみの材料へと置き換え、ZnS-SiO₂と同等以上の光学特性、非晶質安定性を有する材料系を見出すことが急務となっていた。

[0005] また、ZnS-SiO₂等のセラミックススターゲットは、パルク抵抗値が高いため、直流スパッタリング装置により成膜することができず、通常高周波スパッタリング（RF）装置が使用されている。

ところが、この高周波スパッタリング（RF）装置は、装置自体が高価であるばかりでなく、スパッタリング効率が悪く、電力消費量が大きく、制御が複雑であり、成膜速度も遅いという多くの欠点がある。

また、成膜速度を上げるため、高電力を加えた場合、基板温度が上昇し、ポリカーボネート製基板の変形を生ずるという問題がある。

[0006] 以上のようなことから、ZnSの使用すなわち硫黄成分を含有しない透明導電材料が提案されている（特許文献1、特許文献2参照）。

しかし、特許文献1は、光学特性及び非晶質性が劣る領域を含む問題があり、また特許文献2は、十分な成膜速度が得られず、非晶質性に劣る領域を含むという問題があった。

特許文献1：特開2000-256059号公報
特許文献2：特開2000-256061号公報

発明の開示

発明が解決しようとする課題

[0007] 本発明は、膜の非晶質性が安定であり、成膜速度が速く、記録層との密着性、機械特性に優れ、且つ透過率が高く、非硫化物系で構成することにより、障接する反射層、記録層の劣化が生じ難しい光情報記録媒体用薄膜（特に保護膜としての使用）及びその製造方法並びにこれらに適用できるスパッタリングスターゲットに関するものであり、これによって、光情報記録媒体の特性の向上及び生産性を大幅に改善することを目的とする。

上記の課題を解決するために、本発明者らは銳意研究を行った結果、従来の保護層材ZnS-SiO₂を、下記に提示する硫化物を含まない酸化物のみの材料へと置き換
え、かつZnS-SiO₂と同等の光学特性及び非晶質安定性を確保し、さらに高速成膜が可能であり、光情報記録媒体の特性改善、生産性向上が可能であるとの知見を得た。

課題を解決するための手段

[0008] 本発明はこの知見に基づき、1）SnO₂を主成分とするIn₂O₃-ZnO-SnO₂系複合酸化物に、SiO₂、B₂O₃の何れか1種又は2種の酸化物を添加した材料から成ることを特徴とするスパッタリングターゲット、2）SiO₂を添加する場合、それぞれの元素比が

\[ \text{In}/(\text{In}+\text{Zn}+\text{Sn}+\text{Si})=0.01 \sim 0.43, \text{Zn}/(\text{In}+\text{Zn}+\text{Sn}+\text{Si})=0.02 \sim 0.47, \]
\[ \text{Sn}/(\text{In}+\text{Zn}+\text{Sn}+\text{Si})=0.19 \sim 0.82, \text{Si}/(\text{In}+\text{Zn}+\text{Sn}+\text{Si})=0.04 \sim 0.50, \]

で構成される酸化物であることを特徴とする1記載のスパッタリングターゲット、3）SiO₂を添加する場合、(Sn+Si)/(In+Zn+Sn+Si)=0.45〜0.90、で構成される酸化物であることを特徴とする1又は2記載のスパッタリングターゲット、4）B₂O₃を添加する場合、それぞれの元素比が

\[ \text{In}/(\text{In}+\text{Zn}+\text{Sn}+\text{B})=0.01 \sim 0.41, \text{Zn}/(\text{In}+\text{Zn}+\text{Sn}+\text{B})=0.13 \sim 0.81, \text{Sn}/(\text{In}+\text{Zn}+\text{Sn}+\text{B})=0.13 \sim 0.81, \text{B}/(\text{In}+\text{Zn}+\text{Sn}+\text{B})=0.09 \sim 0.66, \]

で構成される酸化物であることを特徴とする1記載のスパッタリングターゲット、5）B₂O₃を添加する場合、(Sn+B)/(In+Zn+Sn+B)=0.45〜0.90、で構成される酸化物であることを特徴とする1又は2記載のスパッタリングターゲットを提供する。

[0009] また、本発明は、6）相対密度が90%以上であることを特徴とする1〜5のいずれかに記載のスパッタリングターゲット、7）記載1〜6のいずれかに記載のスパッタリングターゲットを使用して、少なくとも薄膜として光情報記録媒体構造の一部を形成することを特徴とする光情報記録媒体及びその製造方法、8）記載1〜7のいずれかに記載のスパッタリングターゲットを使用して、少なくとも薄膜として光情報記録媒体の構造の一部を形成し、且つ記録層又は反射層と隣接して配置されていることを特徴とする光情報記録媒体及びその製造方法を提供する。

発明の効果

[0010] 上記によって、保護層材ZnS-SiO₂を、硫化物を含まない酸化物のみの材料へと置き換えることによって、隣接する反射層、記録層等への破壊による劣化を抑制すると共に、ZnS-SiO₂と同等又はそれ以上の光学特性及び非晶質安定性を備え、高速成
膜が可能であり、記録層との密着性、機械特性に優れ、且つ透過率が高いという優れた特性を持つ光情報記録媒体用薄膜（特に保護膜としての使用）及びその製造方法並びにこれに適用できるパターンニングターゲットを提供できる。
また、本材料系を使用することにより、光情報記録媒体の特性改善、生産性の大幅な向上が可能となるという優れた効果を有する。
発明を実施するための最良の形態

[0011] 本発明のスパッタリングターゲットは、SnO₂を主成分とするInO₂-ZnO-SnO₂系複合酸化物に、SiO₂、B₂O₃の何れか1種又は2種の酸化物を添加した材料から成る。
この材料は、光学特性及び膜の非晶質性が安定しており、相変化型光記録媒体の保護層材に適しており、高周波スパッタリングによるスパッタ成膜速度も速いことが判った。
本材料系にさらにSiO₂、B₂O₃を適量添加することにより、より非晶質性が安定し、透過率を向上させることができることが出来るため、着換え速度の速い相変化記録媒体や青色レーザー系の相変化記録媒体用保護層材に適する。

[0012] また、特に本発明のスパッタリングターゲットは、SiO₂を添加する場合、それぞれの元素比がIn/(In+Zn+Sn+Sb)=0.01〜0.43、Zn/(In+Zn+Sn+Sb)=0.02〜0.47、
Sn/(In+Zn+Sn+Sb)=0.19〜0.82、Si/(In+Zn+Sn+Sb)=0.04〜0.50、で構成される酸化物であること、さらには(Sn+Sb)/(In+Zn+Sn+Sb)=0.45〜0.90、で構成される酸化物であることであることが望ましい。
これにより、非晶質安定性及び光学特性（屈折率、透過率）を改善することができる。
上記数値範囲を逸脱するものは、上記特性に劣る傾向がある。

[0013] また、本発明のスパッタリングターゲットは、B₂O₃を添加する場合、それぞれの元素比がIn/(In+Zn+Sn+B)=0.01〜0.41、Zn/(In+Zn+Sn+B)=0.13〜0.81、
Sn/(In+Zn+Sn+B)=0.13〜0.81、B/(In+Zn+Sn+B)=0.09〜0.66、で構成される酸化物であること、さらには(Sn+B)/(In+Zn+Sn+B)=0.45〜0.90、で構成される酸化物であることが望ましい。これによって、非晶質安定性及び光学特性（屈折率、透過率）をさらに改善することができる。

[0014] また、本発明のスパッタリングターゲットは、相対密度が90%以上とすることが可能で
ある。密度の向上は、スパッタ膜の均一性を高め、またスパッタリング時のパラダイクルの発生を抑制できる効果を有する。

上記に述べるスパッタリングターミグットを使用して、少なくとも薄膜として光情報記録媒体構造の一部を形成する光情報記録媒体を提供することができる。さらに、上記スパッタリングターミグットを使用して、少なくとも薄膜として光情報記録媒体の構造の一部を形成し、且つ記録層又は反射層と隣接して配置されている光情報記録媒体を作製することができる。

[0015] 本発明は、このようにInO_2とZnOとSnO_2の酸化物で構成されるSnO_2を主要成分とする材料とすることにより、一定の導電性を保有させることができ、これによって、高周波スパッタによって成膜速度を高めることができる。

また、光学特性を調整することで、保護膜自体の膜厚を薄くすることも可能となるため、生産性向上、基盤加熱防止効果をさらに発揮できる。

[0016] さらに、本発明のスパッタリングターミグットを使用して形成された薄膜は、光情報記録媒体の構造の一部を形成し、記録層又は反射層と隣接して配置されるが、上記の通り、ZnSを使用していないので、Sによる汚染がなく、保護層に挟まれるように配置された記録層材への硫黄成分の拡散がなくなり、これによる記録層の劣化がなくなるという著しい効果がある。

[0017] また、大容量化、高速記録化のため、高反射率で高熱伝導特性を有する純AgまたはAg合金が反射層材に使用されるようになったが、この隣接する反射層への硫黄成分の拡散も無くなり、同様に反射層材が腐食劣化して、光情報記録媒体の反射率等の特性劣化を引き起こす原因が一掃されるという効果を有する。

[0018] 本発明のスパッタリングターミグットは、平均粒径が5μm以下である各構成元素の酸化物粉末を、常圧焼結又は高温加圧焼結することによって製造することができる。これによって、相対密度が90%以上を有するスパッタリングターミグットが得られる。この場合、焼結前に酸化スズを主成分とした酸化物粉末を、800〜1300°Cで仮焼することが望ましい。この仮焼後、3μm以下に粉碎して焼結用の原料とする。

[0019] さらに、本発明のスパッタリングターミグットを使用することにより、生産性が向上し、品質の優れた材料を得ることができ、光ディスク保護膜をもつ光記録媒体を低コストで
安定して製造できるという著しい効果がある。
本発明のスパッタリングターゲットの密度向上は、空孔を減少させ結晶粒を微細化し、ターゲットのスパッタ面を均一かつ平滑にすることができるので、スパッタリング時のパーティクルやノジュールを低減させ、さらにターゲットライフも長くすることができるという著しい効果を有し、品質のばらつきが少なく量産性を向上させることができる。

実施例

[0020] 以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。

[0021]（実施例1－3）

4N相当で5μm以下のIn2O3粉、ZnO粉、SiO2粉、及び4N相当で平均粒径5μm以下のSnO2粉を準備し、表1に示す組成となるように調合して、湿式混合し、乾燥後、1100℃で仮焼した。

さらに、この仮焼粉を平均粒径1μm相当まで湿式微粉砕した後、バインダーを添加してスプレードライヤーで造粒した。この造粒粉を冷間で加圧成形し、酸素雰囲気、1200℃で常圧焼結し、この焼結材を機械加工でターゲット形状に仕上げた。このターゲットの構成成分、組成比（In/(In+Zn+Sn+Si）、Zn/(In+Zn+Sn+Si）、Sn/(In+Zn+Sn+Si）、Si/(In+Zn+Sn+Si）を表1に示す。

[0022] [表1]
<table>
<thead>
<tr>
<th>例</th>
<th>構成成分</th>
<th>組成</th>
<th>透過率</th>
<th>屈折率</th>
<th>非晶質</th>
<th>スパッタ方式</th>
<th>成膜速度（Å/sec）</th>
</tr>
</thead>
<tbody>
<tr>
<td>実施</td>
<td>In₂O₃, ZnO, SnO₂, SiO₂</td>
<td>In/(In+Zn+Sn+Si)</td>
<td>0.18</td>
<td>95</td>
<td>2.2</td>
<td>1.2</td>
<td>RF</td>
</tr>
<tr>
<td>実施 2</td>
<td>In₂O₃, ZnO, SnO₂, SiO₂</td>
<td>Zn/(In+Zn+Sn+Si)</td>
<td>0.18</td>
<td>98</td>
<td>1.9</td>
<td>1.0</td>
<td>RF</td>
</tr>
<tr>
<td>実施 3</td>
<td>In₂O₃, ZnO, SnO₂, SiO₂</td>
<td>Sn/(In+Zn+Sn+Si)</td>
<td>0.53</td>
<td>92</td>
<td>2.2</td>
<td>1.2</td>
<td>RF</td>
</tr>
<tr>
<td>実施 4</td>
<td>In₂O₃, ZnO, SnO₂, SiO₂</td>
<td>Si/(In+Zn+Sn+Si)</td>
<td>0.11</td>
<td>84</td>
<td>2.3</td>
<td>3.4</td>
<td>DC</td>
</tr>
<tr>
<td>比較 1</td>
<td>In₂O₃, ZnO, SnO₂, SiO₂</td>
<td>In/(In+Zn+Sn+Si)</td>
<td>0.03</td>
<td>98</td>
<td>1.7</td>
<td>1.1</td>
<td>RF</td>
</tr>
<tr>
<td>比較 2</td>
<td>In₂O₃, ZnO, SnO₂, SiO₂</td>
<td>Zn/(In+Zn+Sn+Si)</td>
<td>0.08</td>
<td>98</td>
<td>1.7</td>
<td>1.1</td>
<td>RF</td>
</tr>
<tr>
<td>比較 3</td>
<td>In₂O₃, ZnO, SnO₂, SiO₂</td>
<td>Sn/(In+Zn+Sn+Si)</td>
<td>0.86</td>
<td>98</td>
<td>1.7</td>
<td>1.1</td>
<td>RF</td>
</tr>
<tr>
<td>比較 4</td>
<td>In₂O₃, ZnO, SnO₂, SiO₂</td>
<td>Si/(In+Zn+Sn+Si)</td>
<td>0.03</td>
<td>98</td>
<td>1.7</td>
<td>1.1</td>
<td>RF</td>
</tr>
</tbody>
</table>

非晶質性はアニール（600℃、Ar 露雰気、30min）を施した成膜サンプルの XRD 測定において 2θ=20~60° の範囲の非晶質ガラス基板に対する最大ピーク強度比で表した。

[0023] 上記の仕上げ加工した6インチφサイズのターゲットを使用して、スパッタリングを行った。スパッタ条件は、RFスパッタ、スパッタパワー1000W、Arガス圧0.5Paとし、目標膜厚1500 Åで成膜した。

成膜サンプルの透過率（波長633nm）％、屈折率（波長633nm）、非晶質性（成膜サンプルのアニール処理（600℃ C×30min、Ar雰囲気）を施した、XRD（Cu-Kα、40kV、30mA）による測定において 2θ=20~60° の範囲の非晶質ガラス基板に対する最大ピーク強度で表した）、さらにスパッタ方式及び成膜速度（Å/sec）の測定した結果等を、まとめて表1に示す。
以上の結果、実施例1-3のスパッタリングターゲットは、いずれも相対密度は90-99%に達し、安定したRFスパッタができた。そして、成膜速度が1.5-3.2Å/secが達成され、極めて良好なスパッタ性を有した。
スパッタ膜の透過率は、92-98%（633nm）に達し、屈折率は1.9-2.2であり、また特定の結晶ピークは見られず、安定した非晶質（1.0-1.2）を有していた。
本実施例のターゲットは、ZnSを使用していないので、硫黄の拡散、汚染による光情報記録媒体の特性劣化は生じない。また、後述する比較例に比べて、成膜サンプルの透過率、屈折率、非晶質の安定性、ターゲット密度、成膜速度がいずれも良好な値を示した。

（比較例1-3）
表1に示すように、本発明の条件とは異なる原料粉の成分及び組成比の材料、特に比較例4においてはZnS原料粉を準備し、これを実施例と同様の条件で、ターゲットを作製し、かつこのターゲットを用いてスパッタ膜を形成した。一部の材料については、DC（直流）スパッタを実施した。
この結果を、同様に表1に示す。

本発明の組成比から逸脱する比較例の成分・組成、例えば比較例1については、Sn酸化物含有量が多く、またSi酸化物含有量が少ないために、成膜速度は速いが、透過率：84％、屈折率2.3及び非晶質性：3.4と悪い結果となった。
比較例2はIn酸化物量が少なく、またSi酸化物量が多いために、高周波スパッタによっても、成膜速度が0.3Å/secと著しく悪い結果となった。
比較例3については、In酸化物量が多いために、非晶質性が4.2と悪い結果となった。
また、特に比較例4はZnSが多く含有されており、硫黄による汚染の危険のある材料であった。

（実施例4-6）
4N相当で5μm以下のIn₃O₅粉、ZnO粉、B₂O₃粉、及び4N相当で平均粒径5μm以下のSnO₂粉を準備し、表2に示す組成となるように調合して、湿式混合し、乾燥後、1100℃で焼焼した。
さらに、この仮焼粉を実施例1～3と同様にしてターゲット形状に仕上げた。このターゲットの構成成分、組成比（In/(In+Zn+Sn+B)、Zn/(In+Zn+Sn+B)、Sn/(In+Zn+Sn+B)、
B/(In+Zn+Sn+B)）を表2に示す。

![Table](attachment:table.png)

非晶質性はアンニール（600℃、Ar雰囲気、30min）を施した成膜サンプルのXRD測定における2θ=20-60°の範囲の非晶質ガラス基板に対する最大ピーク強度比で表した。

上記の仕上げ加工した6インチφサイズのターゲットを使用して、スパッタリングを行った。スパッタ条件は、RFスパッタ、スパッタパワーア1000W、Arガス圧0.5Paとし、
目標膜厚1500Åで成膜した。

成膜サンプルの透過率（波長633nm）%、屈折率（波長633nm）、非晶質性（成膜サンプルのアンニール処理（600℃C×30min、Ar雰囲気）を施した、XRD（Cu-Kα
40kV, 30mA）による測定における2θ = 20-60°の範囲での洗浄ガラス基板に対する最大ビーグ強度で表した）、さらにスパッタ方式及び成膜速度（Å/sec）の測定した結果等を、まとめて表2に示す。

[0030] 以上の結果、実施例4-6のスパッタリングターゲットは、いずれも相対密度は90-95％に達し、安定したRFスパッタができた。そして、成膜速度が0.8-1.9Å/secが達成され、良好かつ安定したスパッタ性を有した。

スパッタ膜の透過率は、93-98％（633nm）に達し、屈折率は1.9-2.1であり、また特定の結晶ピークは見られず、安定した非晶質性（1.0-1.2）を有していた。

本実施例のターゲットは、ZnSを使用していないので、硫黄の拡散・汚染による光情報記録媒体の特性劣化は生じない。また、後述する比較例に比べて、成膜サンプルの透過率、屈折率、非晶質の安定性、ターゲット密度、成膜速度がいずれも良好な値を示した。

[0031] （比較例5-7）

表2に示すように、本発明の条件とは異なる原料粉の成分及び組成比の材料を準備し、これを実施例と同様の条件で、ターゲットを作製し、かつこのターゲットを用いてスパッタ膜を形成した。一部の材料については、DC（直流）スパッタを実施した。

この結果を、同様に表2に示す。

[0032] 本発明の組成比から逸脱する比較例の成分・組成、例えば比較例5については、B₂O₅が規定量よりも少ないとために、成膜速度は速いが、透過率：84％、屈折率2.3及び非晶質性：3.4と悪い結果となった。

比較例6はZn酸化物量及びSn酸化物量が少なく、またB酸化物量が多いために、高周波スパッタによっても、成膜速度が0.4Å/secと著しく悪い結果となった。

比較例7については、Zn酸化物量及びB酸化物量が少なく、Sn酸化物量が多いために、透過率：83％、屈折率2.4及び非晶質性：が3.1と悪い結果となった。

産業上の利用可能性

[0033] 本発明のスパッタリングターゲットを使用して形成された薄膜は、光情報記録媒体の構造の一部を形成し、ZnSを使用していないので、記録層材への硫黄成分の拡散がなくなり、これによる記録層の劣化がなくなるという著しい効果がある。また、隣接する
高反射率で高熱伝導特性を有する純AgまたはAg合金を反射層に用いた場合には、該反射層への硫黄成分の拡散も無くなり、反射層が腐食劣化して特性劣化を引き起こす原因が一掃されるという優れた効果を有する。
さらに、非品質性が安定化するとともにターゲットに導電性が付与され、相対密度を90％以上の高密度化によって、安定したRFスパッタ成膜を可能とする。そして、スパッタの制御性を容易にし、成膜速度を上げ、スパッタリング効率を向上させることができるという著しい効果がある。さらにまた、成膜の際にスパッタ時に発生するバーティクル（発塵）やノジュールを低減し、品質のばらつきが少なく量産性を向上させることができ、光ディスク保護膜をもつ光記録媒体を低コストで安定して製造できるという著しい効果がある。
請求の範囲

[1] SnOを主成分とするInO-ZnO-SnO系複合酸化物に、SiO₂、B₂O₃の何れか1種又は2種の酸化物を添加した材料から成ることを特徴とするスパッタリングターゲット。

[2] SiO₂を添加する場合、それぞれの元素比がIn/(In+Zn+Sn+Si)=0.01〜0.43、
    Zn/(In+Zn+Sn+Si)=0.02〜0.47、Sn/(In+Zn+Sn+Si)=0.19〜0.82、
    Si/(In+Zn+Sn+Si)=0.04〜0.50、で構成される酸化物であることを特徴とする請求項1記載のスパッタリングターゲット。

[3] SiO₂を添加する場合、(Sn+Si)/(In+Zn+Sn+Si)=0.45〜0.90、で構成される酸化物であることを特徴とする請求項1又は2記載のスパッタリングターゲット。

[4] B₂O₃を添加する場合、それぞれの元素比がIn/(In+Zn+Sn+B)=0.01〜0.41、
    Zn/(In+Zn+Sn+B)=0.02〜0.45、Sn/(In+Zn+Sn+B)=0.13〜0.81、B/(In+Zn+Sn+B)=0.09〜0.66、で構成される酸化物であることを特徴とする請求項1記載のスパッタリングターゲット。

[5] B₂O₃を添加する場合、(Sn+B)/(In+Zn+Sn+B)=0.45〜0.90、で構成される酸化物であることを特徴とする請求項1又は2記載のスパッタリングターゲット。

[6] 相対密度が90%以上であることを特徴とする請求項1〜5のいずれかに記載のスパッタリングターゲット。

[7] 請求項1〜6のいずれかに記載のスパッタリングターゲットを使用して、少なくとも薄膜として光情報記録媒体構造の一部を形成することを特徴とする光情報記録媒体及びその製造方法。

[8] 請求項1〜7のいずれかに記載のスパッタリングターゲットを使用して、少なくとも薄膜として光情報記録媒体の構造の一部を形成し、且つ記録層又は反射層と隣接して配置されていることを特徴とする光情報記録媒体及びその製造方法。
# INTERNATIONAL SEARCH REPORT

**International application No.**

PCT/JP2004/010804

## A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl 7 C23C14/34, C04B35/457, G11B7/24, 7/26

According to International Patent Classification (IPC) or to both national classification and IPC

## B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl 7 C23C14/34, C04B35/457, G11B7/24, 7/26

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2004

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Reg, CA(STN), [IN/ELS AND ZN/ELS AND SN/ELS AND O/ELS AND TIS/CI AND TARGET]

## C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2003-105532 A (Mitsui Mining &amp; Smelting Co., Ltd.), 09 April, 2003 (09.04.03), Claims (Family: none)</td>
<td>1-8</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C. 

[T] Latest document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

[X] Document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

[Y] Document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

& Document member of the same patent family

**Date of the actual completion of the international search**

25 October, 2004 (25.10.04)

**Date of mailing of the international search report**

09 November, 2004 (09.11.04)

**Name and mailing address of the ISA/ Japanese Patent Office**

Authorized officer

**Facsimile No.**

Telephone No.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2000-256059 A (Idemitsu Kosan Co., Ltd.), 19 September, 2000 (19.09.00), Claims (Family: none)</td>
<td>1-8</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2000-256061 A (Idemitsu Kosan Co., Ltd.), 19 September, 2000 (19.09.00), Claims (Family: none)</td>
<td>1-8</td>
</tr>
<tr>
<td>E,A</td>
<td>JP 2004-263273 A (Nikko Materials Co., Ltd.), 24 September, 2004 (24.09.04), Full text (Family: none)</td>
<td>1-8</td>
</tr>
<tr>
<td>E,A</td>
<td>WO 2004/079038 A (Nikko Materials Co., Ltd.), 16 September, 2004 (16.09.04), Full text (Family: none)</td>
<td>1-8</td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類（国際特許分類（IPC））

Int. Cl \(^7\) C 23C14/34, C 04B 35/457, G 11B 7/24, 7/26

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. Cl \(^7\) C 23C14/34, C 04B 35/457, G 11B 7/24, 7/26

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1922－1996年
日本国公開実用新案公報 1971－2004年
日本国实用新案登録公報 1996－2004年
日本国登録実用新案公報 1994－2004年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

Reg. CA (STN), [IN/ELS AND ZN/ELS AND SN/ELS AND O/ELS AND TIS/CI AND TARGET]

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー*</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2003－105532 A (三井金属鉱業株式会社)2003.04.09, 特許請求の範囲(ファミリーなし)</td>
<td>1－8</td>
</tr>
</tbody>
</table>

X C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー
「A」特に関連のある文献ではなく、一般的な技術水準を示すもの
「E」国際出願日以前の出願または特許であるが、国際出願日以後に公表されたもの
「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を理由とするために引用する文献（理由を付す）
「O」口頭による開示、使用、展示等に言及すると文献
「P」国際出願日以前でかつ優先権の主張の基準となる出願

国際調査を完了した日 25.10.2004
国際調査報告の発送日 09.11.2004

国際調査機関の名称及びあて先
日本国特許庁（JISA／JP）
郵便番号100－8915
東京都千代田区霞が関三丁目4番3号
特許庁審査官（権限のある職員）
前田 仁志
電話番号 03－3581－1101 内線 3416

様式PCT／ISA／210（第2ページ）（2004年1月）
INTERNATIONAL SEARCH REPORT

**A. CLASSIFICATION OF SUBJECT MATTER**

Int.Cl. C23C14/34, C04B35/457, G11B7/24, 7/26

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl. C23C14/34, C04B35/457, G11B7/24, 7/26

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1922-1996
Jitsuyo Shinan Toroku Koho 1996-2004
Kokai Jitsuyo Shinan Koho 1971-2004
Toroku Jitsuyo Shinan Koho 1994-2004

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Reg, CA (STN), [IN/ELS AND ZN/ELS AND SN/ELS AND O/ELS AND TIS/CI AND TARGET]

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2003-105532 A (Mitsui Mining &amp; Smelting Co., Ltd.), 09 April, 2003 (09.04.03), Claims (Family: none)</td>
<td>1-8</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
  *A* document defining the general state of the art which is not considered to be of particular relevance
  *E* earlier application or patent but published on or after the international filing date
  *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or special reason (as specified)
  *O* document referring to an oral disclosure, use, exhibition or other means of publication prior to the international filing date but later than the priority date claimed

**T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principles or theory underlying the invention

**X** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

**Y** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

**&** document member of the same patent family

**Date of the actual completion of the international search**

25 October, 2004 (25.10.04)

**Date of mailing of the international search report**

09 November, 2004 (09.11.04)

**Name and mailing address of the ISA/ Japanese Patent Office**

Authorized officer

**Facsimile No.**

Telephone No.
### INTERNATIONAL SEARCH REPORT

#### DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2000-256059 A (Idemitsu Kosan Co., Ltd.), 19 September, 2000 (19.09.00), Claims (Family: none)</td>
<td>1-8</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2000-256061 A (Idemitsu Kosan Co., Ltd.), 19 September, 2000 (19.09.00), Claims (Family: none)</td>
<td>1-8</td>
</tr>
<tr>
<td>E,A</td>
<td>JP 2004-263273 A (Nikko Materials Co., Ltd.), 24 September, 2004 (24.09.04), Full text (Family: none)</td>
<td>1-8</td>
</tr>
<tr>
<td>E,A</td>
<td>WO 2004/079038 A (Nikko Materials Co., Ltd.), 16 September, 2004 (16.09.04), Full text (Family: none)</td>
<td>1-8</td>
</tr>
</tbody>
</table>
国際調査報告  国際出願番号 PCT／JP2004／010804

A. 発明の分野の分類（国際特許分類（IPC））
   Int. Cl 7 C23C14／34, C04B35／457, G11B7／24, 7／26

B. 調査を行った分類
   調査を行った最専門資料（国際特許分類（IPC））
   Int. Cl 7 C23C14／34, C04B35／457, G11B7／24, 7／26

最小限資料以外の資料で調査を行った分野に含まれるもの
   日本国出願明細公報 1992－1996年
   日本国出願実用新案公標 1971－2004年
   日本国出願実用新案公標 1996－2004年
   日本国登録実用新案公標 1994－2004年

国際調査で使用した電子データベース（データベースの名前、調査に使用した用語）
   Reg. CA (STN), [IN/ELS AND ZW/ELS AND SN/ELS AND O/ELS AND TIS/CI AND TARGET]

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2003－105532 A（三井金属鉱業株式会社）2003.04.09, 特許請求の範囲 (ファミリーなし)</td>
<td>1－8</td>
</tr>
</tbody>
</table>

図表の続きにも文献が列挙されている。印 標定ファミリーに関する別紙を参照。

※ 引用文献のカテゴリー
   「A」特に関連のある文献ではなく、一般的な技術水準を示すもの
   「E」国際出願日以前の出願または特許であるが、国際出願日以後に公表されたもの
   「L」優先権主張に疑義を抱える文献又は他の文献の発行日若しくは他の特別な理由を確定するために引用する文献（理由を付す）
   「O」口頭による開示、使用、展示等に言及する文献
   「P」国際出願日前で、かつ優先権の主張の基礎となる出願

国際調査を完了した日  25.10.2004
国際調査報告の発送日  09.11.2004

国際調査機関の名称及びあて先
   日本国特許庁（ISA／JP）
   〒100－8515
   東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）
   前田 仁志
   電話番号 03－3581－1101 内線 3416

摘要 PCT／ISA／210（第2ページ）（2004年1月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリ*</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2000-256059 A (出光興産株式会社) 2000.09.19, 特許請求の範囲 (ファミリーなし)</td>
<td>1 - 8</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2000-256061 A (出光興産株式会社) 2000.09.19, 特許請求の範囲 (ファミリーなし)</td>
<td>1 - 8</td>
</tr>
<tr>
<td>E, A</td>
<td>JP 2004-263273 A (株式会社日薬マテリアルズ) 2004.09.24, 全文 (ファミリーなし)</td>
<td>1 - 8</td>
</tr>
<tr>
<td>E, A</td>
<td>WO 2004/079038 A (株式会社日薬マテリアルズ) 2004.09.16, 全文 (ファミリーなし)</td>
<td>1 - 8</td>
</tr>
</tbody>
</table>