a2 United States Patent

US009940215B2

10) Patent No.: US 9,940,215 B2

Gouthaman et al. 45) Date of Patent: *Apr. 10, 2018
(54) AUTOMATIC CORRELATION (52) US. CL
ACCELERATOR CPC ... GOG6F 11/3414 (2013.01); GO6F 11/3672
(2013.01)
(71) Applicant: Accenture Global Services Limited, (58) Field of Classification Search
Dublin (IE) CPC ..o GOG6F 11/3672; GO6F 11/3414
See application file for complete search history.
(72) Inventors: Jothi Gouthaman, Chennai (IN);
Nantha Kumar, Chennai (IN); Vinod (56) References Cited
Kumar Palla, Hyderabad (IN); Jeyaraj
Harimurali, Chennai (IN); Radhika U.S. PATENT DOCUMENTS
Golden, Chennai (IN) 6,427,234 BL* 72002 Chambers GOGF 9/45516
717/140
(73) Assignee: Accenture Global Services Limited, 8,825,447 B2 9/2014 Gouthaman et al.
Dublin (IE) (Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 118 days. India Office Action for Application No. 258/CHE/2011, dated Jan.
This patent is subject to a terminal dis- 19, 2017, 6 pages.
claimer. (Continued)
(21) Appl. No.: 15/080,092 Primary Examiner — Bryan Bui
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.
(22) Filed: Mar. 24, 2016
57 ABSTRACT
(65) Prior Publication Data An automatic correlation accelerator tool may access at least
US 2016/0217055 Al Jul. 28, 2016 a first recording and a second recording of a base script that
defines operations executed in testing performance of a
Related U.S. Application Dat systen. The tool may cause the system to execute the first
clate pplication Data recording of the base script and the second recording of the
(63) Continuation of application No. 14/339,814, filed on base script and store, in electronic storage, dynamic value
Jul. 24, 2014, now Pat. No. 9,336,116, which is a data that describes dynamic values generated during execu-
(Continued) tion of the first recording of the base script and during
execution of the second recording of the base script. The tool
(30) Foreign Application Priority Data automatically, without human intervention, analyzes the
stored dynamic value data to identify candidates for corre-
Jan. 28, 2011 (IN) oo 258CHE2011 lation within the base script and generates a correlated script
based on the identified candidates for correlation and the
(51) Int. CL base script.
GO6F 11/34 (2006.01)
GO6F 11/36 (2006.01) 20 Claims, 9 Drawing Sheets
100
Script Generator |— 108
Automatic Correlation/
Parameterization System
/102

Corelation

12

Parameterization

114

Soript Ready
for Controller

Controller

110

US 9,940,215 B2
Page 2

Related U.S. Application Data

continuation of application No. 13/275,447, filed on
Oct. 18, 2011, now Pat. No. 8,825,447.

(56) References Cited
U.S. PATENT DOCUMENTS

9,336,116 B2* 5/2016 Gouthaman GO6F 11/3672
2010/0269095 Al 10/2010 King et al.
2011/0016457 Al 1/2011 Artzi et al.
2012/0066378 Al 3/2012 Lui et al.
2012/0197595 Al 8/2012 Gouthaman et al.
2014/0336986 Al 11/2014 Gouthaman et al.

OTHER PUBLICATIONS

U.S. Non-Final Office Action for U.S. Appl. No. 13/275,447 dated
Apr. 4, 2014, 6 pages.

U.S. Notice of Allowance for U.S. Appl. No. 13/275,447 dated Jun.
12, 2014, 8 pages.

* cited by examiner

U.S. Patent Apr. 10,2018 Sheet 1 of 9 US 9,940,215 B2

100

108
Script Generator L—

! :

Script
Recording 2

Script
Recording 1

104 106

!

Automatic Correlation/
Parameterization System

Correlation

\112

Parameterization

\114

Script Ready
for Controller

109

110
/

Controller

FIG. 1

U.S. Patent Apr. 10,2018 Sheet 2 of 9 US 9,940,215 B2

200
AUTOMATIC CORRELATION

SYSTEM

INPUT MODULE {210

DATA STORE 1— 220

PROCESSOR | 230

I/0 DEVICES |} 240

MEMORY | 250

FIG. 2

U.S. Patent Apr. 10,2018 Sheet 3 of 9 US 9,940,215 B2

00

ACCESS A FIRST RECORDING OF A BASE SCRIPT | _—310
AND A SECOND RECORDING OF THE BASE SCRIPT

!

CAUSE EXECUTION OF THE FIRST RECORDING OF 320
THE BASE SCRIPT AND THE SECOND RECORDING —
OF THE BASE SCRIPT

|

STORE DYNAMIC VALUE DATA THAT DESCRIBES 330
DYNAMIC VALUES GENERATED DURING —
EXECUTION

]

ANALYZE THE STORED DYNAMIC VALUE DATA TO IDENTIFY | _— 340
CANDIDATES FOR CORRELATION WITHIN THE BASE SCRIPT

!

GENERATE A CORRELATED SCRIPT BASED ON 350
THE IDENTIFIED CANDIDATES FOR CORRELATION —
AND THE BASE SCRIPT

1

360
STORE THE CORRELATED SCRIPT —

FIG. 3

U.S. Patent Apr. 10,2018 Sheet 4 of 9 US 9,940,215 B2

Automatic Correlation Tool

402 404
Open File 1 | | (-

Open File 2 | | ...

400

FIG. 4

US 9,940,215 B2

Sheet 5 of 9

Apr. 10,2018

U.S. Patent

g old
oucﬁm _%mEm 1dtiog — 607 Bo
pazlis) d pale|a.1I0D uone|aII0 uopezUSIsWEE] A sindino
pue pajejp.uod olweukg |00
s A g A L v 4 A
Jaynuap| sa|npo
Jojesouon) Jojeplien [NPON
lozueiouieled | 1= 1duog « uogeiou0d | [1duos |ooL
0cs olg 0lLS
sindu|
1001
v0S Z Buipiooay 1duog Z0S | Buip10oay 1duog

[=!
(=4
0|

U.S. Patent Apr. 10,2018 Sheet 6 of 9

600

US 9,940,215 B2

Number: 1 —— 602
Snapshot of request where candidate found: t6.inf ——— 620

Candidate for Correlation: 5pclDNFxq2jKkzETPfOHYw-- —— 610
rPKSvxPcWyijNpxpF*xJ6w--

Left Boundary: ext-sid= — 612
Right Boundary: \n—— 614
Ordinal: | —— 618

Number: 2 —— 604

Snapshot of request where candidate found: t6.inf
Candidate for Correlation: 0071060017041 — 624
Left Boundary: iviewhandle" value=" —— 622
Right Boundary: ">

Ordinal: 1

Number: 3—— 606

Snapshot of request where candidate found: t6.inf
Candidate for Correlation: 1263883260399 — 628
Left Boundary: wd-tstamp" value=" —— 626

Right Boundary: ">

Ordinal: 1

Number: 4—— 608

Snapshot of request where candidate found: t31.inf
Candidate for Correlation: WDO3EE —— 632
Left Boundary: <a id=" —— 630

Right Boundary: " ct="B" lIsdata="

Ordinal: 3

FIG. 6

U.S. Patent Apr. 10,2018 Sheet 7 of 9 US 9,940,215 B2

Number; 1 —— 702a
Field of occcurence: EVENTQUEUE
Parameter: 32 — 706

— 704

Number: 2 —— 702b
Field of occcurence: EVENTQUEUE
Parameter: 27.06.2010

Number: 3 —— 702¢c
Field of occcurence: eventQueue

Parameter: 156

Number: 4 —— 702d
Field of occcurence: eventQueue

Parameter: 0

Number: 5 —— 702e

Field of occcurence: eventQueue

Parameter: 157

Number: 6 — 702f
Field of occcurence: EVENTQUEUE

Parameter: EnqueueCardinality~1E004single

Number: 7— 7029
Field of occcurence: EVENTQUEUE

Parameter: 5

Number: 8 = 70zh

Field of occcurence: 1
Parameter: 1WID1263883412453

FIG. 7

U.S. Patent

Apr. 10,2018 Sheet 8 of 9

US 9,940,215 B2

[==]
(=]
o

Generated and
Parameterized ScriptA
— Recording 1

802

/ 808

Generated and
Parameterized ScriptA
— Recording 2

814

Temp
Scripts

Automatic Correlation Accelerator

\4 v
Script
Validation
Comparator

Validation
Logs

810

Recording 1 \ 806 Recording 2

Recording 1
Recording 2

Line Filter | |«

Y

816
Recording 2 /

818

Recording 1 Identifier

Log

Correlation Correlation

A 4
Script
. Generator
Recording 1—» & Output ~—— 520

Formatter

Usable Final Script
822

Script | 824
Executor

FIG. 8

804

U.S. Patent Apr. 10,2018 Sheet 9 of 9 US 9,940,215 B2

—= [
-~ =&
—7 0|
=0
[]
=30
O
\Eb
—
Input/Output

N
AN
AN
AN
\ N
\ N
\
Q
\ > L1
\ N
\ _ |
v [o >
\ I
\ u e £ Pl
1 4 B = 5
[oR
1 4 ' 3
M| L Q
3
4 44 F e
1 H
111
14| 1 @
S | O]
14 F 2 | — =
@ — S o
TTT1 |~
111
(0] D)
5] by
§ 3
/ o) § [m]
a)
/ 2 g
/ o S
/ . %

US 9,940,215 B2

1
AUTOMATIC CORRELATION
ACCELERATOR

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation (and claims the benefit
of priority under 35 USC 120) of U.S. patent application Ser.
No. 14/339,814, filed Jul. 24, 2014, which is a continuation
of U.S. patent application Ser. No. 13/275,447, filed Oct. 18,
2011, now U.S. Pat. No. 8,825,447, issued Sep. 2, 2014,
which claims the benefit of Indian Patent Application No.
258/CHE/2011, filed on Jan. 28, 2011. All of these applica-
tions are incorporated herein by reference in their entirety
for all purposes.

FIELD

This disclosure relates to automatic correlation technol-
ogy.

BACKGROUND

Automated processes may be used to performance test a
system. The automated processes may simulate actions
performed on the system by many users to test whether the
system can handle anticipated load and determine statistics
on the quality of use provided by the system under various
test conditions. The automated processes may reference
various scripts of user actions to test a variety of circum-
stances the system may encounter during operation.

SUMMARY

In one aspect, an automatic correlation accelerator tool
includes at least one processor and at least one memory
coupled to the at least one processor having stored thereon
instructions which, when executed by the at least one
processor, causes the at least one processor to perform
operations. The operations include accessing, from elec-
tronic storage, at least a first recording of a base script and
a second recording of the base script. The base script defines
operations executed in testing performance of a system. The
operations also include causing the system to execute the
accessed first recording of the base script and the accessed
second recording of the base script and storing, in electronic
storage, dynamic value data that describes dynamic values
generated during execution of the accessed first recording of
the base script and during execution of the accessed second
recording of the base script. The operations further include
automatically, without human intervention, analyzing the
stored dynamic value data to identify candidates for corre-
lation within the base script, generating a correlated script
based on the identified candidates for correlation and the
base script, and storing, in electronic storage, the correlated
script.

Implementations may include one or more of the follow-
ing features. For example, the operations may include auto-
matically, without human intervention, performing param-
eterization of the correlated script. The operations also may
include generating a correlated and parameterized script
based on the parameterization of the correlated script. The
operations further may include automatically, without
human intervention, causing the system to execute the
correlated and parameterized script. The execution of the
correlated and parameterized script may result in testing
performance of the system. In addition, the operations may

10

15

20

25

30

35

40

45

50

55

60

65

2

include generating performance testing output for the system
based on the execution of the correlated and parameterized
script.

In some implementations, the operations may include
generating and storing a dynamic value list that includes
dynamic values generated during execution of the accessed
first recording of the base script and during execution of the
accessed second recording of the base script. In these
implementations, the operations may include automatically,
without human intervention, generating a correlation log
using the dynamic value list and the accessed first recording
of the base script. Further, in these implementations, the
operations may include generating a correlated script using
the correlation log and the accessed first recording of the
base script.

In some examples, the operations may include automati-
cally, without human intervention, generating a parameter-
ization log using the dynamic value list and the accessed first
recording of the base script. In these examples, the opera-
tions may include automatically, without human interven-
tion, performing parameterization analysis using the param-
eterization log, the correlated script, and the accessed first
recording of the base script. In addition, in these examples,
the operations may include generating a correlated and
parameterized script based on the parameterization analysis
and generating a correlated and parameterized script that is
ready for execution by a performance testing controller.

In some implementations, the operations may include
comparing the accessed first recording of the base script
with the accessed second recording of the base script to
validate the first and second recordings of the base script. In
these implementations, the operations may include generat-
ing and storing a validation log that describes results of the
validation of the first and second recordings of the base
script and filtering lines of the first and second recordings of
the base script using the validation log, the accessed first
recording of the base script, and the accessed second record-
ing of the base script.

In some examples, the operations may include generating,
based on filtering lines of the first and second recordings of
the base script, a first temporary recording of the base script
and a second temporary recording of the base script. In these
examples, the operations may include generating correlation
logs using the first temporary recording of the base script
and the second temporary recording of the base script. In
addition, in these examples, the operations may include
generating a final recording of the base script that is usable
for performance testing by performing script generation and
output formatting using the correlation logs and the first
temporary recording of the base script.

In another aspect, a method includes accessing, by an
automatic correlation accelerator tool and from electronic
storage, at least a first recording of a base script and a second
recording of the base script. The base script defines opera-
tions executed in testing performance of a system. The
method also includes causing, by the automatic correlation
accelerator tool, the system to execute the accessed first
recording of the base script and the accessed second record-
ing of the base script and storing, in electronic storage,
dynamic value data that describes dynamic values generated
during execution of the accessed first recording of the base
script and during execution of the accessed second recording
of the base script. The method further includes automati-
cally, by the automatic correlation accelerator tool and
without human intervention, analyzing the stored dynamic
value data to identify candidates for correlation within the
base script, generating, by the automatic correlation accel-

US 9,940,215 B2

3

erator tool, a correlated script based on the identified can-
didates for correlation and the base script, and storing, in
electronic storage, the correlated script.

In yet another aspect, at least one computer-readable
storage medium is encoded with executable instructions
that, when executed by at least one processor, cause the at
least one processor to perform operations. The operations
include accessing, from electronic storage, at least a first
recording of a base script and a second recording of the base
script. The base script defines operations executed in testing
performance of a system. The operations also include caus-
ing the system to execute the accessed first recording of the
base script and the accessed second recording of the base
script and storing, in electronic storage, dynamic value data
that describes dynamic values generated during execution of
the accessed first recording of the base script and during
execution of the accessed second recording of the base
script. The operations further include automatically, without
human intervention, analyzing the stored dynamic value
data to identify candidates for correlation within the base
script, generating a correlated script based on the identified
candidates for correlation and the base script, and storing, in
electronic storage, the correlated script.

The details of one or more implementations are set forth
in the accompanying drawings and the description, below.
Other potential features and advantages of the disclosure
will be apparent from the description and drawings, and
from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1, 2, and 9 are diagrams of exemplary systems.

FIGS. 3, 5, and 8 are flowcharts of exemplary processes.

FIG. 4 is a diagram illustrating an exemplary user inter-
face.

FIG. 6 is a diagram illustrating an exemplary correlation
log.

FIG. 7 is a diagram illustrating an exemplary parameter-
ization log.

Like reference numbers represent corresponding parts
throughout.

DETAILED DESCRIPTION

In some implementations, an automatic correlation accel-
erator tool reduces the correlation scripting effort for per-
formance, stress, and load testing scripts. In these imple-
mentations, the automatic correlation accelerator tool parses
through response files of a recorded script, compares it with
an identical recording of another script for the same business
flow to identify the correlation parameters, and creates a new
script with the identified correlation parameters. The new
script with the identified correlation parameters may be used
for performance, stress, and load testing.

FIG. 1 illustrates an exemplary system 100 for generating
a correlated script. An automatic correlation and parameter-
ization system 102 takes as input a first script recording 104
and a second script recording 106. The first and second script
recordings 104 and 106 may have been generated, for
example, using a script generator 108 or may have been
coded manually by a developer. The first and second script
recordings 104 and 106 may be accessed from electronic
storage and each may be a recording of a base script which
is used to test performance of a system. The first and second
script recordings 104 and 106 describe acts that a virtual user
may perform during a test scenario. For example, the first
and second script recordings 104 and 106 may include

10

20

25

30

35

40

45

50

55

60

65

4

instructions which simulate a virtual user performing actions
which result in various interactions with one or more serv-
ers.

With some server interactions, a server may return to a
client one or more dynamic values which are unique for each
interaction with the server. For example, a dynamic value
may be a unique identifier, and/or may be a value which is
based on the current date and time. The server sends the
dynamic value to the client so that the server can identify a
subsequent response sent by the client. For a testing scenario
using the base script and virtual users, a correlation and/or
parameterization process may need to be performed so that
the base script is able to identify a dynamic value sent from
a server and to use that dynamic value in subsequent
responses sent to the server. If a correlation and/or param-
eterization process is not performed, executing the base
script may result in an error due to a server not recognizing
a value sent from a client.

Manually identifying dynamic values can be a lengthy
and error-prone process which can require specific knowl-
edge of both a testing tool and of a specific server system.
To reduce an amount of manual effort needed to perform
correlation and parameterization, the automatic correlation
and parameterization system 102 may be used. The auto-
matic correlation and parameterization system 102 is con-
figured to automatically identify dynamic values and to
generate a correlated and parameterized script 109 which
can be executed by a performance testing controller 110 to
test performance of the system to be tested.

In further detail, the automatic correlation and parameter-
ization system 102 includes a correlation component 112
which initiates execution of the first script recording 104 and
the second script recording 106 and stores, in electronic
storage, dynamic value data that describes dynamic values
generated during execution of the first script recording 104
and the second script recording 106. The correlation com-
ponent 112 automatically, without human intervention, ana-
lyzes the stored dynamic value data to identify candidates
for correlation within the base script. For example, the
correlation component 112 may compare dynamic value
data generated during execution of the first script recording
104 to dynamic value data generated during execution of the
second script recording 106.

The correlation component 112 generates the correlated
script 109 based on the identified candidates for correlation
and the base script and may store the correlated script 109
in electronic storage. In some implementations, the auto-
matic correlation system 102 automatically, without human
intervention, initiates the execution of the correlated script
109 by the performance testing controller 110 to test per-
formance of the system to be tested.

The automatic correlation and parameterization system
102 also includes a parameterization component 114. The
parameterization component 114 may be used to create a
script that is parameterized as well as correlated. A script
parameter is a value that may change for every script
execution. Rather than a value corresponding to a server-
generated dynamic value, however, a parameter value may
be supplied by a user, or may be read from electronic storage
accessible from the performance testing controller 110. The
parameterization component 114 may analyze the stored
dynamic value data, may automatically identify parameters
based on the analyzed dynamic value data, and may generate
a correlated and parameterized script which includes the
identified parameters.

Although the example shown in FIG. 1 shows the auto-
matic correlation and parameterization system 102 as per-

US 9,940,215 B2

5

forming parameterization after correlation, other examples
may be used. For instance, the automatic correlation and
parameterization system 102 may perform parameterization
prior to correlation in generating the correlated script 109.

In addition, although the example shown in FIG. 1 shows
the automatic correlation and parameterization system 102
as performing both correlation and parameterization, other
examples may be used. Specifically, correlation and param-
eterization are independent processes that may be performed
by the same system or may be performed by different
systems (e.g., an automatic correlation system that performs
correlation and an automatic parameterization system that
performs parameterization).

Also, as indicated above, correlation and parameterization
may be performed in different orders and at different times
based on configuration of the system. Accordingly, in some
implementations, an automatic correlation system may per-
form correlation prior to an automatic parameterization
system performing parameterization in generating the cor-
related script 109. In other implementations, an automatic
parameterization system may perform parameterization
prior to an automatic correlation system performing corre-
lation in generating the correlated script 109. In further
implementations, only correlation may be performed or only
parameterization may be performed to facilitate generation
of a script that is ready for performance testing.

FIG. 2 illustrates an exemplary automatic correlation
system 200 for generating a correlated script. The system
200 includes an input module 210, a data store 220, one or
more processors 230, one or more /O (Input/Output)
devices 240, and memory 250. The input module 220 may
be used to input any type of information related to gener-
ating a correlated script on the system 200. For example, the
input module 210 may be used to receive a selection of a first
recording of a base script and a second recording of the base
script, where the base script defines operations executed in
testing performance of a system. In some implementations,
data from the input module 210 is stored in the data store
220. The data included in the data store 220 may include, for
example, base scripts, correlation logs, parameterization
logs, dynamic value data, generated correlation scripts, and
multiple recordings of the base script, including temporary
recordings.

In some examples, the data store 220 may be a relational
database that logically organizes data into a series of data-
base tables. Each database table in the data store 220 may
arrange data in a series of columns (where each column
represents an attribute of the data stored in the database) and
rows (where each row represents attribute values). In some
implementations, the data store 220 may be an object-
oriented database that logically or physically organizes data
into a series of objects. Each object may be associated with
a series of attribute values. In some examples, the data store
220 may be a type of database management system that is
not necessarily a relational or object-oriented database. For
example, a series of XML (Extensible Mark-up Language)
files or documents may be used, where each XML file or
document includes attributes and attribute values. Data
included in the data store 220 may be identified by a unique
identifier such that data related to a particular process may
be retrieved from the data store 220.

The processor 230 may be a processor suitable for the
execution of a computer program such as a general or special
purpose microprocessor, and any one or more processors of
any kind of digital computer. In some implementations, the
system 200 includes more than one processor 230. The
processor 230 may receive instructions and data from the

10

15

20

25

30

35

40

45

50

55

60

65

6

memory 250. The memory 250 may store instructions and
data corresponding to any or all of the components of the
system 200. The memory 250 may include read-only
memory, random-access memory, or both.

The I/O devices 240 are configured to provide input to and
output from the system 200. For example, the I/O devices
240 may include a mouse, a keyboard, a stylus, or any other
device that allows the input of data. The 1/O devices 240
may also include a display, a printer, or any other device that
outputs data.

FIG. 3 illustrates a process 300 for generating a correlated
script. The operations of the process 300 are described
generally as being performed by the system 200. In some
implementations, operations of the process 300 may be
performed by one or more processors included in one or
more electronic devices.

The system 200 accesses a first recording of a base script
and a second recording of the base script (310). For example,
the base script may define operations executed in testing
performance of a system. The base script may, for example,
define actions of a virtual user which result in one or more
interactions with one or more server systems.

The system 200 causes execution of the first recording of
the base script and the second recording of the base script
(320). For example, the first recording of the base script and
the second recording of the base script may be executed by
a performance testing controller.

The system 200 stores dynamic value data that describes
dynamic values generated during execution (330). For
example, the system 200 may store dynamic value data
generated during execution of the first recording of the base
script and during execution of the second recording of the
base script. Dynamic value data may include, for example,
dynamic values generated by a server. Dynamic value data
may be stored, for example, in one or more dynamic value
lists.

The system 200 analyzes the stored dynamic value data to
identify candidates for correlation within the base script
(340). For example, the system 200 may compare dynamic
value data generated during execution of the first recording
of the base script to dynamic value data generated during
execution of the second recording of the base script. The
system 200 may automatically, without human intervention,
generate a correlation log using the dynamic value list and
the accessed first recording of the base script. The correla-
tion log may include, for example, a list of candidates for
correlation, and for each candidate, left boundary and right
boundary delimiters which surround the correlation candi-
date in response data received from a server. The correlation
log may include other data associated with each candidate
for correlation.

The system 200 generates a correlated script based on the
identified candidates for correlation and the base script
(350). For example, the system 200 may generate a corre-
lated script by inserting, for each correlation candidate,
instructions into the base script at a location corresponding
to the correlation candidate, to save a dynamic value
received from the server.

The system 200 stores the correlated script (360). For
example, the correlated script may be stored in a data store
(e.g., the data store 220 described above with respect to FIG.
2). The modified base script may be saved in electronic
storage as the correlated script. A copy of the original base
script may be generated and may be stored in electronic
storage.

FIG. 4 illustrates an exemplary user interface 400 for
generating a correlated script. A user may enter file identi-

US 9,940,215 B2

7

fication information for a first script recording using a text
control 402 or may browse for the first script recording using
a browse control 404. Similarly, the user may enter file
identification information for a second script recording using
a text control 406 or may browse for the second script
recording using a browse control 408. The user may initiate
generation of a correlated script based on the first script
recording and the second script recording by selecting a
control 410. In some implementations, the user interface 400
includes a control 420 to configure whether parameterization
is performed as well as correlation to generate a correlated
and parameterized script.

FIG. 5 illustrates a flowchart of an exemplary process 500
for generating a correlated and parameterized script. In some
implementations, operations of the process 500 may be
performed by one or more processors included in one or
more electronic devices. A first script recording 502 and a
second script recording 504 are accessed, such as from
electronic storage, and are used by a script validator sub
process 506 to generate a dynamic value list 508.

For example, the script validator sub process 506 may
include the execution of the first and second script record-
ings 502 and 504 and the comparing of server responses
received from execution of the first script recording 502 to
server responses received from execution of the second
script recording 504. The script validator sub process 506
may include storing identified differences between server
responses for the first script recording 502 and server
responses for the second script recording 504 in the dynamic
value list 508.

A correlation identifier sub process 510 may use the
dynamic value list 508 to generate a parameterization log
512 and a correlation log 514. For example, FIG. 6 illus-
trates an example correlation log 600 and FIG. 7 illustrates
an example parameterization log 700. The example corre-
lation log 600 includes information for correlation candi-
dates 602, 604, 606, and 608. The correlation log 600
includes, for the correlation candidate 602, an associated,
identified dynamic data value 610, a left boundary delimiter
612 and a right boundary delimiter 614. The left boundary
delimiter 612 and the right boundary delimiter 614 surround
the dynamic data value 610 in response data received from
a server. The correlation log 600 may include other infor-
mation for the correlation candidate 602, such as an ordinal
number 618 and an indication 620 of a request snapshot
associated with the correlation candidate. The ordinal num-
ber 618 may be used for data that is part of an array.

A left boundary delimiter may indicate the type of an
associated dynamic data value. For example, the left bound-
ary delimiter 612 indicates that the dynamic data value 610
is an “ext-sid” identifier. A left boundary delimiter 622 may
indicate that a dynamic data value 624 associated with the
correlation candidate 604 is an “iviewhandle” value. A left
boundary delimiter 626 may indicate that a dynamic data
value 628 associated with the correlation candidate 606 is a
timestamp value. A left boundary delimiter 630 may indicate
that a dynamic data value 632 associated with the correlation
candidate 608 is an identifier.

The example parameterization log 700 illustrated in FIG.
7 includes parameter entries 702a-7024. The example
parameterization log includes, for each parameter entry 702,
a field of occurrence and a parameter value. For example, the
parameter entry 702a includes a field of occurrence 704
indicating an EVENTQUEUE field, and a parameter value
706 of thirty two.

Returning to FIG. 5, a script generator sub process 516
may use the correlation log 514 to generate a correlated

10

15

20

25

30

35

40

45

50

55

60

65

8

script 518 and a parameterization sub process 520 may use
the parameterization log 512 and the correlated script 518 to
generate a correlated and parameterized script 522. In some
implementations and for some script generations, the cor-
related and parameterized script 522 is automatically
executed, without human intervention, resulting in perfor-
mance testing of a system to be tested. Based on execution
of the correlated and parameterized script 522, performance
testing output may be generated and may be stored in
electronic storage.

FIG. 8 illustrates a flowchart of an exemplary process 800
for generating a correlated script. In some implementations,
operations of the process 800 may be performed by one or
more processors included in one or more electronic devices.
Afirst script recording 802 and a second script recording 804
are accessed, such as from electronic storage, and are used
by a script validation comparator sub process 806 included
in an automatic correlation accelerator system 808.

For example, the script validation comparator sub process
806 may include the execution of the first and second script
recordings 802 and 804 and the comparing of server
responses received from execution of the first script record-
ing 802 to server responses received from execution of the
second script recording 804. Validation and/or comparison
results may be generated and may be stored in one or more
validation logs 810.

A line filter sub process 812 may use the validation logs
810 and the first script recording 802 and the second script
recording 804 to generate temporary scripts 814 (e.g., the
temporary scripts 814 may include a temporary version of
the first script recording 802 and a temporary version of the
second script recording 804). The line filter sub process 812
may, for example, filter lines from the first script recording
802 and/or from the second script recording 804 to facilitate
correlation and/or parameterization. For example, the first
script recording 802 and/or the second script recording 804
may include extraneous lines which are not related to
correlation or parameterization and which if not filtered
would cause noise or otherwise distract from or complicate
correlation or parameterization processing. The temporary
scripts 814 may include, for example, versions of the first
script recording 802 and the second script recording 814
with lines filtered (e.g., lines removed).

A correlation identifier sub process 816 uses the tempo-
rary scripts 814 and 816 to generate a correlation log 818.
For example, the correlation log 818 may be the correlation
log 600 described above with respect to FIG. 6.

A script generator sub process 820 may use the correlation
log 818 and a temporary version of the first script recording
802 to generate a usable, final script 822. In some imple-
mentations, the usable, final script 822 includes parameters
identified during a parameterization process. The usable,
final script 822 may be executed in a script executor sub
process 824. For example, the script executor sub process
824 may include manual or automatic execution of the final,
usable script 822 in a performance testing controller to test
performance of a system.

FIG. 9 is a schematic diagram of an example of a generic
computer system 900. The system 900 can be used for the
operations described in association with the processes 300,
500, and 800, according to one implementation. For
example, the system 900 may be included in the automatic
correlation system 200.

The system 900 includes a processor 910, a memory 920,
a storage device 930, and an input/output device 940. Each
of'the components 910, 920, 930, and 940 are interconnected
using a system bus 950. The processor 910 is capable of

US 9,940,215 B2

9

processing instructions for execution within the system 900.
In one implementation, the processor 910 is a single-
threaded processor. In another implementation, the proces-
sor 910 is a multi-threaded processor. The processor 910 is
capable of processing instructions stored in the memory 920
or on the storage device 930 to display graphical information
for a user interface on the input/output device 940.

The memory 920 stores information within the system
900. In one implementation, the memory 920 is a computer-
readable medium. In one implementation, the memory 920
is a volatile memory unit. In another implementation, the
memory 920 is a non-volatile memory unit.

The storage device 930 is capable of providing mass
storage for the system 900. In one implementation, the
storage device 930 is a computer-readable medium. In
various different implementations, the storage device 930
may be a floppy disk device, a hard disk device, an optical
disk device, or a tape device.

The input/output device 940 provides input/output opera-
tions for the system 900. In one implementation, the input/
output device 940 includes a keyboard and/or pointing
device. In another implementation, the input/output device
940 includes a display unit for displaying graphical user
interfaces.

The features described can be implemented in digital
electronic circuitry, or in computer hardware, firmware,
software, or in combinations of them. The apparatus can be
implemented in a computer program product tangibly
embodied in an information carrier, e.g., in a machine-
readable storage device, for execution by a programmable
processor; and method steps can be performed by a pro-
grammable processor executing a program of instructions to
perform functions of the described implementations by
operating on input data and generating output. The described
features can be implemented advantageously in one or more
computer programs that are executable on a programmable
system including at least one programmable processor
coupled to receive data and instructions from, and to trans-
mit data and instructions to, a data storage system, at least
one input device, and at least one output device. A computer
program is a set of instructions that can be used, directly or
indirectly, in a computer to perform a certain activity or
bring about a certain result. A computer program can be
written in any form of programming language, including
compiled or interpreted languages, and it can be deployed in
any form, including as a stand-alone program or as a
module, component, subroutine, or other unit suitable for
use in a computing environment.

Suitable processors for the execution of a program of
instructions include, by way of example, both general and
special purpose microprocessors, and the sole processor or
one of multiple processors of any kind of computer. Gen-
erally, a processor will receive instructions and data from a
read-only memory or a random access memory or both. The
elements of a computer are a processor for executing
instructions and one or more memories for storing instruc-
tions and data. Generally, a computer will also include, or be
operatively coupled to communicate with, one or more mass
storage devices for storing data files; such devices include
magnetic disks, such as internal hard disks and removable
disks; magneto-optical disks; and optical disks. Storage
devices suitable for tangibly embodying computer program
instructions and data include all forms of non-volatile
memory, including by way of example semiconductor
memory devices, such as EPROM, EEPROM, and flash
memory devices; magnetic disks such as internal hard disks
and removable disks; magneto-optical disks; and CD-ROM

10

15

20

25

30

35

40

45

50

55

60

65

10

and DVD-ROM disks. The processor and the memory can
be supplemented by, or incorporated in, ASICs (application-
specific integrated circuits).

To provide for interaction with a user, the features can be
implemented on a computer having a display device such as
a CRT (cathode ray tube) or LCD (liquid crystal display)
monitor for displaying information to the user and a key-
board and a pointing device such as a mouse or a trackball
by which the user can provide input to the computer.

The features can be implemented in a computer system
that includes a back-end component, such as a data server,
or that includes a middleware component, such as an appli-
cation server or an Internet server, or that includes a front-
end component, such as a client computer having a graphical
user interface or an Internet browser, or any combination of
them. The components of the system can be connected by
any form or medium of digital data communication such as
a communication network. Examples of communication
networks include, e.g., a LAN, a WAN, and the computers
and networks forming the Internet.

The computer system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a network, such as the described
one. The relationship of client and server arises by virtue of
computer programs running on the respective computers and
having a client-server relationship to each other.

A number of implementations have been described. Nev-
ertheless, it will be understood that various modifications
may be made without departing from the spirit and scope of
the disclosure. Accordingly, other implementations are
within the scope of the following claims.

What is claimed is:

1. A system comprising:

one or more processors; and

a non-transitory computer readable storage medium in

data communication with the processors and storing

instructions executable by the processors and upon

such execution cause the processors to perform opera-

tions comprising:

determining first dynamic value data that describes one
or more first dynamic values generated during a first
execution of a first recording of a base script on a
particular system that includes at least one processor
and at least one memory and second dynamic value
data that describes one or more second dynamic
values generated during a second execution of a
second recording of the base script on the particular
system, the base script defining operations to be
executed in testing performance of the particular
system,

comparing the first dynamic value data and the second
dynamic value data to identify candidate parameters
for correlation within the base script; and

inserting, for each of the identified candidate param-
eters, respective instructions into a copy of the base
script at a location that corresponds to the respective
identified candidate parameter that indicates that a
dynamic value is to be saved during subsequent
performance testing of the particular system using
the copy of the base script.

2. The system of claim 1, wherein inserting, for each of
the identified candidate parameters, the respective instruc-
tions into the copy of the base script at a location that
corresponds to the respective identified candidate parameter
that indicates indicating that a dynamic value is to be saved
during subsequent performance testing of the particular
system using the copy of the base script comprises inserting,

US 9,940,215 B2

11

for each of the identified candidate parameters, the respec-
tive instructions into the copy of the base script at a location
that corresponds to the respective identified candidate
parameter that indicates that a dynamic value is to be saved
during subsequent performance testing of the particular
system using the base script.

3. The system of claim 1, wherein determining the first
dynamic value data that describes the one or more first
dynamic values generated during the first execution of the
first recording of the base script on the particular system and
the second dynamic value data that describes the one or
more second dynamic values generated during the second
execution of the second recording of the base script on the
particular system comprises determining the first dynamic
value data that describes the one or more first dynamic
values stored in a first response file generated during the first
execution of the first recording of the base script on the
particular system and the second dynamic value data that
describes the one or more second dynamic values stored in
a second response file generated during the second execution
of the second recording of the base script on the particular
system.

4. The system of claim 3, the operations comprising:

generating a first temporary file by filtering one or more

first lines from the first response file; and

generating a second temporary file by filtering one or

more second lines from the second response file.

5. The system of claim 4, wherein determining the first
dynamic value data that describes the one or more first
dynamic values stored in the first response file and the
second dynamic value data that describes the one or more
second dynamic values stored in the second response file
comprises:

analyzing the first temporary file and the second tempo-

rary file to determine the first dynamic data and the
second dynamic value data.

6. The system of claim 1, wherein:

determining the first dynamic value data that describes the

one or more first dynamic values generated during the

first execution of the first recording of the base script on

the particular system and the second dynamic value

data that describes the one or more second dynamic

values generated during the second execution of the

second recording of the base script on the particular

system comprises:

determining the first dynamic value data that describes
the one or more first dynamic values received by the
particular system from a first server during the first
execution of the first recording of the base script on
the particular system; and

determining the second dynamic value data that
describes the one or more second dynamic values
received by the particular system from a second
server during the second execution of the second
recording of the base script on the particular system;
and

comparing the first dynamic value data and the second

dynamic value data to identify the candidate parameters
for correlation within the base script comprises com-
paring the first dynamic value data that describes the
one or more first dynamic values received by the
particular system from the first server and the second
dynamic value data that describes the one or more
second dynamic values received by the particular sys-
tem from the second server to identify the candidate
parameters for correlation within the base script.

10

15

20

25

30

35

40

45

50

55

60

65

12

7. The system of claim 6, wherein:

determining the first dynamic value data that describes the
one or more first dynamic values received by the
particular system from the first server during the first
execution of the first recording of the base script on the
particular system comprises determining the first
dynamic value data that describes the one or more first
dynamic values received by the particular system from
a particular server during the first execution of the first
recording of the base script on the particular system;
and

determining the second dynamic value data that describes

the one or more second dynamic values received by the
particular system from the second server during the
second execution of the second recording of the base
script on the particular system comprises determining
the second dynamic value data that describes the one or
more second dynamic values received by the particular
system from the particular server during the second
execution of the second recording of the base script on
the particular system.

8. The system of claim 1, wherein comparing the first
dynamic value data and the second dynamic value data to
identify candidate parameters for correlation within the base
script comprises:

generating a correlation log using the first dynamic value

data and the second dynamic value data.

9. The system of claim 8, wherein generating the corre-
lation log using the first dynamic value data and the second
dynamic value data comprises:

generating the correlation log that includes, for each

identified candidate parameter, a respective dynamic
value from the first dynamic values or the second
dynamic values and a type of the respective dynamic
value.

10. The system of claim 8, wherein generating the cor-
relation log using the first dynamic value data and the second
dynamic value data comprises:

generating the correlation log that includes, for each

identified candidate parameter, left boundary and right
boundary delimiters which surround the correlation
candidate in a first response file generated during the
first execution of the first recording of the base script on
the particular system and a second response file gen-
erated during the second execution of the second
recording of the base script on the particular system.

11. The system of claim 10, wherein generating the
correlation log that includes, for each identified candidate
parameter, left boundary and right boundary delimiters
which surround the correlation candidate in a first response
file generated during the first execution of the first recording
of the base script on the particular system and a second
response file generated during the second execution of the
second recording of the base script on the particular system
comprises:

generating the correlation log that includes, for each

identified candidate parameter, left boundary and right
boundary delimiters which surround the correlation
candidate in the first response file generated during the
first execution of the first recording of the base script on
the particular system using first response data received
from a server and the second response file generated
during the second execution of the second recording of
the base script on the particular system using second
response data received from the server.

US 9,940,215 B2

13

12. The system of claim 1, the operations comprising:

causing the particular system to execute the first recording

of the base script to generate the first dynamic value
data;

causing the particular system to execute the second

recording of the base script again to generate the
second dynamic value data; and

storing a dynamic value list that comprises the first

dynamic value data and the second dynamic value data.

13. The system of claim 12, wherein the first recording is
identical to the second recording and the first recording and
the second recording are for testing a business flow on the
particular system.

14. The system of claim 1, the operations comprising:

causing the particular system to perform the first execu-

tion of the base script to generate the first dynamic
value data; and

causing the particular system to perform the second

execution of the base script to generate the second
dynamic value data.

15. The system of claim 1, wherein the base script
comprises instructions that cause the particular system to
simulate a virtual user interacting with the particular system.

16. The system of claim 1, wherein comparing the first
dynamic value data and the second dynamic value data to
identify the candidate parameters for correlation within the
base script comprises:

determining a dynamic value list that identifies differ-

ences between the first dynamic values and the second
dynamic values.

17. The system of claim 1, the operations comprising:

causing the particular system to execute the copy of the

base script.

18. The system of claim 17, the operations comprising:

generating performance test output for the particular

system based on the particular system’s execution of
the copy of the base script.

19. A method comprising:

determining first dynamic value data that describes one or

more first dynamic values generated during a first
execution of a first recording of a base script on a
particular system that includes at least one processor

10

15

25

30

35

40

14

and at least one memory and second dynamic value
data that describes one or more second dynamic values
generated during a second execution of a second
recording of the base script on the particular system, the
base script defining operations to be executed in testing
performance of the particular system;
comparing the first dynamic value data and the second
dynamic value data to identify candidate parameters for
correlation within the base script; and
inserting, for each of the identified candidate parameters,
respective instructions into a copy of the base script at
a location that corresponds to the respective identified
candidate parameter that indicates that a dynamic value
is to be saved during subsequent performance testing of
the particular system using the copy of the base script.
20. A non-transitory computer-readable medium storing
instructions, the instructions comprising:
one or more instructions that, when executed by one or
more first processors of a device, cause the one or more
first processors to:
determining first dynamic value data that describes one
or more first dynamic values generated during a first
execution of a first recording of a base script on a
particular system that includes at least one processor
and at least one memory and second dynamic value
data that describes one or more second dynamic
values generated during a second execution of a
second recording of the base script on the particular
system, the base script defining operations to be
executed in testing performance of the particular
system,
comparing the first dynamic value data and the second
dynamic value data to identify candidate parameters
for correlation within the base script; and
inserting, for each of the identified candidate param-
eters, respective instructions into a copy of the base
script at a location that corresponds to the respective
identified candidate parameter that indicates that a
dynamic value is to be saved during subsequent
performance testing of the particular system using
the copy of the base script.

#* #* #* #* #*

