

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2011-157971
(P2011-157971A)

(43) 公開日 平成23年8月18日(2011.8.18)

(51) Int.Cl.

FO3D 11/04 (2006.01)

F 1

FO3D 11/04

A

テーマコード(参考)

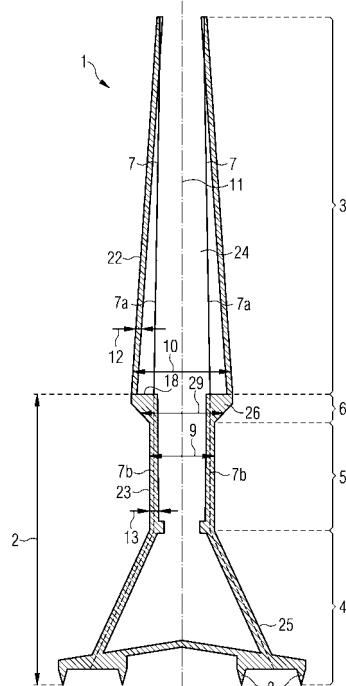
3H078

審査請求 未請求 請求項の数 15 O L 外国語出願 (全 31 頁)

(21) 出願番号 特願2011-21071 (P2011-21071)
 (22) 出願日 平成23年2月2日 (2011.2.2)
 (31) 優先権主張番号 10152435.3
 (32) 優先日 平成22年2月2日 (2010.2.2)
 (33) 優先権主張国 欧州特許庁 (EP)

(71) 出願人 390039413
 シーメンス アクチエンゲゼルシャフト
 S i e m e n s A k t i e n g e s e l l
 I s c h a f t
 ドイツ連邦共和国 D-80333 ミュ
 ンヘン ヴィッテルスバッハ-プラツ
 2
 W i t t e l s b a c h e r p l a t z
 2, D-80333 M u e n c h e n
 , G e r m a n y
 (74) 代理人 100099483
 弁理士 久野 琢也
 (74) 代理人 100061815
 弁理士 矢野 敏雄

最終頁に続く


(54) 【発明の名称】洋上風車を支持するための支持構造体

(57) 【要約】

【課題】洋上風車を支持するための有利な支持構造を提供する。

【解決手段】海底に少なくとも部分的に接触するよう構成された基礎(2)と、タワー(3)の少なくとも一部とを含んでおり、基礎(2)と、タワー(3)の少なくとも一部とが、1つの部分である。

【選択図】図1

【特許請求の範囲】

【請求項 1】

洋上風車を支持するための支持構造(1,100)において、海底に少なくとも部分的に接触するように構成された基礎(2)と、タワー(3)の少なくとも一部とを含んでおり、基礎(2)と、タワー(3)の少なくとも一部とが、1つの部分であることを特徴とする、洋上風車を支持するための支持構造。

【請求項 2】

支持構造(1,100)が、コンクリート及び／又は鋼から成る、請求項1記載の支持構造。

【請求項 3】

前記基礎(2)が、タワー(3)の最大直径(10)よりも小さな直径(9)を有する狭い部分(5)及び／又は下側部分(4)及び／又は変化する直径(29)を有する移行部分(6)を有している、請求項1又は2記載の支持構造。

10

【請求項 4】

前記狭い部分(5)と前記タワー(3)との間に前記移行部分(6)が配置されている、請求項3記載の支持構造。

【請求項 5】

支持構造(1,100)が、前記狭い部分(5)よりも大きな直径を有する移行部分(6)を有している、請求項1から4までのいずれか1項記載の支持構造。

20

【請求項 6】

タワー(3)が外壁(22)を有しており、狭い部分(5)が外壁(23)を有しており、狭い部分(5)の外壁(23)がタワー(3)の外壁(22)よりも厚い、請求項1から5までのいずれか1項記載の支持構造。

【請求項 7】

支持構造(1,100)の少なくとも一部に、ポストストレスが提供されている、請求項1から6までのいずれか1項記載の支持構造。

【請求項 8】

前記狭い部分(5)におけるポストストレスレベルが、タワー(3)におけるストレスレベルと異なる、請求項7記載の支持構造。

30

【請求項 9】

支持構造(1,100)が、少なくとも1つのポストストレス提供手段(7,19,20,21)及び／又は少なくとも1つのポストテンション強化手段(7,19,20,21)を有している、請求項1から8までのいずれか1項記載の支持構造。

【請求項 10】

ポストストレス提供手段(7)及び／又は少なくとも1つのポストテンション強化手段(19,20,21)が、支持構造(1,100)の内部又は支持構造(1,100)の壁部(22,23,25,26)の内部又は構造(1,100)の側部に沿って外側に配置されている、請求項9記載の支持構造。

【請求項 11】

ポストストレス提供手段(7)及び／又は少なくとも1つのポストテンション強化手段(19,20,21)が、タワー(3)において少なくとも部分的に外壁(22)の外側に及び／又はタワー(3)の内部に、及び／又は下側部分(4)においてタワー部分(4)の外壁(25)の内部に及び／又は狭い部分(5)において狭い部分(5)の外壁(23)の内部に、配置されている、請求項9又は10記載の支持構造。

40

【請求項 12】

タワー(3)におけるポストストレス提供手段(7)が、移行部分(6)におけるポストストレス提供手段(7)及び／又は狭い部分(5)におけるポストストレス提供手段(7)及び／又は下側部分(4)におけるポストストレス提供手段(7)に結合されており、及び／又は移行部分(6)におけるポストストレス提供手段(7)が、狭い部分(5)におけるポストストレス提供手段(7)及び／又は下側部分(4)におけるポストストレ

50

ス提供手段(7)に結合されており、及び／又は狭い部分(5)におけるポストストレス提供手段(7)が、下側部分(4)におけるポストストレス提供手段(7)に結合されている、請求項9から11までのいずれか1項記載の支持構造。

【請求項13】

下側部分(4)及び／又は狭い部分(5)及び／又は移行部分(6)及び／又はタワー(3)が中空である、請求項1から12までのいずれか1項記載の支持構造。

【請求項14】

下側部分(4)が、少なくとも1つのスカート(8)を有する、請求項1から13までのいずれか1項記載の支持構造。

【請求項15】

10

請求項1から14までのいずれか1項記載の支持構造(1,100)を有する風車。

【発明の詳細な説明】

【技術分野】

【0001】

本発明は、洋上風車を支持するための支持構造体に関する。本発明はさらに、風車に関する。

【背景技術】

【0002】

洋上風車の基礎は、通常3つのグループに分けられ、重力式基礎、モノパイル式基礎、及び最新式基礎、例えば三脚又はサクションバケット基礎がある。

20

【0003】

重力式基礎は一般的にコンクリートから形成されている。重力式基礎は、中空で、場合によって浮揚エレメントを用いて支持された、設置現場への浮揚のための十分な浮力を有しているか、又ははしけによって輸送され、所定の場所に持ち上げられてよい。基礎自体の重量は、かんらん石等の重いタイプのバラストを積載することによって増大させられる。重力式基礎は、大型風車及び／又は大きな水深の場合に極めて高価となる傾向があるという欠点がある。

【0004】

モノパイル式基礎は、通常4～5mの直径を有する鋼製パイルから成る。パイルは、地下のタイプに応じて約20～30m海底に打ち込まれる。モノパイル式基礎は、ターピンタワーを水中及び海底へ有効に延長させている。

30

【0005】

この基礎の重要な利点は、海底の準備が不要であるということである。その一方で、高荷重くい打ち機が必要とされ、この基礎形式は、海底に多くの大きな巨れきが存在する場所には適していない。また、モノパイル式基礎は、大型風車及び／又は大きな水深の場合に高価となる傾向がある。

【0006】

最も一般的な最新式洋上基礎は、三脚基礎である。この形式の基礎は、オイル産業における周縁洋上フィールドのための軽量かつ費用対効果の高い3脚式鋼製ジャケットに関する経験を生かす。この構造は通常、中央のパイプと、3つの傾斜した脚部とから成る。3つの脚部は、底部において結合されており、中央のパイプにも結合されている。各脚部の端部には、海底に深く打ち込まれた鋼製パイルを取り囲むジャケットとして、短い鉛直のパイプが使用されている。ジャケットの打込みが完了すると、ジャケットに高強度モルタルが噴射され、パイルと脚部との強固な結合が確立される。

40

【0007】

スチール三脚は、極めて要求の厳しい、複雑な、疲労負荷された溶接を備えた物理的に極めて大きな構造であるという欠点を有する。

【0008】

洋上風車のためのこれらの及びほとんどのその他の公知の基礎に共通していることは、ウインドファーム現場に設置された場合に、風車タワーを支持する基礎構造が水面から出

50

るということである。これは、水面下での締結具（ボルト等）を含む結合部の構成が困難かつ危険であるという明白な理由によるものである。

【0009】

1つの例外は、欧州特許第1884598号明細書に開示された基礎である。欧州特許第1884598号明細書には、パイ爾と上部構造とを含む洋上基礎が開示されている。パイ爾は、海底に打ち込まれ、海底から限定された範囲だけしか突出していない。パイ爾は、パイ爾の上部に固定される上部構造のための基礎スタブを提供する。この場合、困難なことは、パイ爾と上部構造との結合を確立すること、つまり、通常は高強度モルタルを噴射することによって行われる作業、である。

【0010】

ほとんど全ての洋上基礎に共通することは、構造の耐荷重部分が、通常、基礎のあらゆる与えられた部分において、圧縮荷重と引張荷重とを受けるということである。なぜならば、風車に対する外部荷重は、全ての方向から来ることができるからである。さらに、運転荷重による応力は、通常、圧縮応力と引張応力との間で振動する。

【0011】

この理由から鋼は好適な材料である。なぜならば、鋼は、変化する応力条件において良好に働くからである。さらに、鋼は、質量当たりの強度が、例えばコンクリートよりも著しく優れているという利点を有する。従って、タワーは、道路輸送を可能にするために、通常は鋼から形成されている。しかしながら、鋼は、コンクリートと比較して3つの主な欠点を有する。第1に、強度に関する価格が著しく大きく、経済の変動に大きく影響される。第2に、風車における鋼のために、疲労はしばしば設計推進要因であり、極端な荷重はコンクリートのためである。コンクリートタワー又は基礎は、従って、適切に扱われるならば自動的により長い寿命を有する。第3に、鋼は、海洋環境における腐食を回避するために極めて慎重な表面処理を必要とする。

【0012】

モノパイ爾式基礎及び風車発電機は、通常、例えば、モノパイ爾、移行部材、2～3つのタワー部分、ナセル、及び翼の部品として、ジャッキアップ船に設置される。通常、基礎及び風車圧電機は2つの工程で設置されるので、ジャッキアップは、各風車発電機位置に2回設置されなければならない。風車は洋上で組み立てられるので、高価な船時間及び人員時間が使用されるので、完全な試験はさらに困難であり、洋上で行われなければならない。さらに、ジャッキアップ船は機器の最新式の部材である。ジャッキアップ船は、例えば、高価なジャッキアップシステムと、多数の可動部分を含む大型の回転クレーンとを有する。

【0013】

1つの例外は、欧州特許第1058787号明細書に開示された基礎であり、この場合、タワーは、ポストテンションケーブルを用いて圧縮した状態に保たれたモジュールから形成されている。この場合、欠点は、ポストテンションケーブルにおいて使用されるような高強度鋼は、腐食及び水素脆性を受けやすいということである。従って、水面下に据え付けられた構造体の外壁におけるチャネルに挿入されたポストテンションケーブルの長期的な一体性は、疑わしい。

【先行技術文献】

【特許文献】

【0014】

【特許文献1】欧州特許第1884598号明細書

【特許文献2】欧州特許第1058787号明細書

【発明の概要】

【発明が解決しようとする課題】

【0015】

本発明の第1の課題は、洋上風車を支持するための有利な支持構造を提供することである。本発明の第2の課題は、有利な風車を提供することである。

【課題を解決するための手段】

【0016】

第1の課題は、請求項1に記載の洋上風車を支持するための支持構造によって解決される。第2の課題は、請求項15に記載の風車によって解決される。従属請求項は、発明の別の発展形を規定している。

【0017】

洋上風車を支持するための本発明の支持構造は、海底及びタワーの少なくとも一部に少なくとも部分的に接触するように構成された基礎を有している。基礎及びタワーの少なくとも一部は1つの部分である。これは、基礎へのタワーの費用のかかる固定がもはや不要であるという利点を有する。

10

【0018】

本発明に関連して、1つの部分とは、基礎とタワー又はタワーの一部とが、一体に形成されている又は1つの部分から形成されていることを意味する。その結果、基礎とタワー又はタワーの一部との間の結合手段、又は基礎の様々な異なる部分の結合手段は設けられていない。

【0019】

本発明の支持構造の一部としてのタワーの少なくとも一部は、タワー部分とも呼ばれる。タワー又はタワー部分は、風車発電機、特に風車ナセルに結合可能であってよい。

【0020】

基礎は、タワーの最大直径よりも小さな直径を有する狭い部分を有することができる。好適には、狭い部分は、支持構造が海底に設置された時に海の波しぶきの生じる部分に配置することができる。タワー又はタワー部分よりも狭い、狭い部分の利点は、狭い部分が波荷重に曝され、タワー又はタワー部分が風荷重に曝されることである。タワー又はタワー部分のより大きな直径は、タワーのより剛性の構造を提供する。

20

【0021】

有利には、支持構造は、コンクリート及び/又は鋼から成ってよい。例えば、支持構造は、45Mpaタイプ又は30Gpaタイプのコンクリートから成ってよい。コンクリートは、比較的安価な材料であるという利点を有する。従って、基礎及び風車のためのコストを低減することができる。

30

【0022】

さらに、基礎は、変化する直径を有する下側部分及び/又は移行部分を有することができる。下側部分は、海底に少なくとも部分的に接触するように構成されていてよい。好適には、下側部分は、例えば洗掘を減じるために、少なくとも部分的に円錐状であってよい。移行部分は、狭い部分とタワー又はタワー部分との間に配置されていてよい。支持構造が海底に設置されると、移行部分を有利には最も高い波の高さよりも上方に配置することができる。好適には、移行部分の直径は、狭い部分からタワー部分まで、例えば連続的に又は段階的に増大し、これにより、プラットフォームを形成し、かつ/又は狭い部分の直径よりも大きな直径を有するタワーを支持する。一般的に、移行部分は、狭い部分よりも大きな直径を有することができる。移行部分は、設置時に支持構造を持ち上げるために使用することができる。

40

【0023】

タワー又はタワー部分は、外壁を有していてよい。狭い部分も、外壁を有していてよい。有利には、狭い部分の外壁は、タワー又はタワー部分の外壁よりも厚くなっていることができる。

【0024】

有利には、支持構造の少なくとも一部に、ポストストレス（後から加えられる応力）を加えることができる。ポストストレスの提供は、特にコンクリートの少なくとも一部において引張応力を低下させるために利用されてよい。例えば、狭い部分におけるポストストレスレベルは、タワーにおける応力レベルと異なることができる。これに関連して、ポストストレスレベルとは、応力提供手段を締め付けるか、活性化するか又はトルク提供した

50

後の特定の構造エレメントにおける応力を意味する。ストレス提供手段は、例えば、ケーブル、ロッド又はワイヤであってよい。支持構造の異なる部分において異なるストレスレベルを提供することは、特定のストレスレベルを、特定の環境条件に適応させることを許容する。例えば、水面の下と上とでは、異なるストレスレベルが好ましい。

【0025】

一般的に、支持構造は、少なくとも1つのポストストレス提供手段及び／又は少なくとも1つのポストテンション強化手段、例えば、ケーブル、ワイヤ又はロッドを有していてよい。少なくとも1つのポストストレス提供手段及び／又は少なくとも1つのポストテンション強化手段は、支持構造の内部又は支持構造の壁部の内部又は構造の側部に沿って外側に配置されていてよい。下側部分及び狭い部分におけるポストストレスは、支持構造、例えばコンクリート支持構造に導入されてよい。タワー又はタワー部分におけるポストストレスは、コンクリート壁部であってよい外壁の外側、例えばタワー又はタワー部分の内部に、少なくとも部分的に加えられてよい。

10

【0026】

少なくとも1つのポストストレス提供手段及び／又は少なくとも1つのポストテンション強化手段は、タワー又はタワー部分に、外壁の外側及び／又はタワー又はタワー部分の内部に少なくとも部分的に配置することができる。さらに、少なくとも1つのポストストレス提供手段及び／又は少なくとも1つのポストテンション強化手段は、下側部分の外壁の内部において下側部分に配置することができる。さらに、少なくとも1つのポストストレス提供手段及び／又は少なくとも1つのポストテンション強化手段は、狭い部分の外壁の内部において狭い部分に配置することができる。

20

【0027】

好適には、タワー又はタワー部分におけるポストストレス提供手段は、移行部分におけるポストストレス提供手段及び／又は狭い部分におけるポストストレス提供手段及び／又は下側部分におけるポストストレス提供手段に結合することができる。さらに、移行部分におけるポストストレス提供手段を、狭い部分におけるポストストレス提供手段及び／又は下側部分におけるポストストレス提供手段に結合することができる。狭い部分におけるポストストレス提供手段を、下側部分におけるポストストレス提供手段に結合することができる。

30

【0028】

ポストテンション強化は、コンクリート構造の内部のダクト内に引っ張られるか、又は構造の側部に沿って外部において引っ張られる。内部ポストテンションに関連して、波形鋼又は少なくとも1つのプラスチックダクトは、両端部におけるアンカと共にコンクリート構造内に成形されてよい。ワイヤは、ダクトに引き通され、例えば液圧式引張ジャッキによって緊張させられてよい。保護材は、ダクト内に充填されてよい。好適には、コンクリート構造内に成形されたダクト壁部にケーブルをロックするために、膨張する高強度グラウトを使用することができる。グリース又はワックス等のその他の保護材料を使用することができ、これら両材料は付加的な緊張を許容し、鋼線の弛緩及びコンクリートの変形に対抗するために好適な形式であることができる。内部強化の利点は、引張ワイヤがコンクリート壁部の内部で十分に保護される、特にグラウト、グリース又はワックスによって湿気から保護されるということである。外部ポストテンションワイヤは、プラスチック被覆されている及び／又はグリースによって保護されていてよい。好適には、外部ポストテンションワイヤは、コンクリート構造に隣接して配置されてよい。

40

【0029】

1つの好適な実施形態において、基礎は、内部でポストストレスを提供されており、ダクトには、腐食から保護するために、保護材料、例えばグラウト、グリース又はワックスを充填することができる。タワー部分のポストテンションは、内部でポストストレスされることができる。ワイヤは、基礎にポストストレスを提供するためにアンカに結合することができる。好適には、基礎部分のためのポストテンションワイヤは、構造の底部から引っ張られ、クレーン作業、プラットフォーム及び足場配置を最小限にするためのこのレベ

50

ルにおいて応力が加えられる。

【0030】

有利には、下側部分及び／又は狭い部分及び／又は移行部分及び／又はタワー又はタワー部分は中空である。この場合、支持構造の少なくとも一部に、バラスト、例えば土壤を充填することができる。これは、支持構造が荷重を受けた時の安定性を高める。

【0031】

下側部分は、例えば支持構造を海底に固定するための少なくとも1つのスカート（垂下部）を有してよい。さらに、スカートは、支持構造と、その下にある土壤との間の結合を確実にするために、洗掘を減じるように、又は下に固定するように構成されることができる。さらに、スカートは、3つ以上のチャンパー（champer）に分割されていてよい。スカートは、基礎を平らにするために使用することができる。

10

【0032】

概して、土壤との境界は、深い又は浅い基礎であることができる。深い基礎は、1つ又は2つ以上のパイルを有することができる。浅い基礎は、重力式又は吸引バケット式であることができる。重力式基礎は、海底準備及び／又は洗掘保護の必要性を低下させるためにスカートを備えて製造されてよい。スカートを備えない重力式基礎が好ましい。

【0033】

本発明による風車、特に洋上風車は、前述のような本発明による支持構造を有している。本発明による風車は、本発明による支持構造が有するのと同じ利点を有している。

20

【0034】

本発明による支持構造又は本発明による風車の全ての構成要素は、設置場所付近の港にある移動ラインにおいて製造することができる。バックル強化は、ローリングネットによって又は強化を回転モデルに回転させることによって、予備製造することができる。ジャンプ成形を良好な表面品質のために使用することができる。

30

【0035】

据付けは、浮きクレーンによって行うことができる。離れた設置場所の場合、はしけ輸送が可能である。浮きクレーンは、中心より高く持ち上がり、これにより持ち上げるときにバラストを移動させる必要がないカタマランとして形成することができる。さらに、浮きクレーンは、安定性を得るために設置中に浮きクレーンをより沈下させるために使用するバラストタンクを備えることができる。はしけ輸送の場合、完成した風車を輸送はしけに積載するために、移動製造ラインを延長させることができる。

40

【0036】

本発明による支持構造及び本発明による風車の利点は、支持構造及び／又は風車を陸上で設置しあつ試験することができるということである。風車及び基礎は一度に設置することができる。これは、構造の比較的低い質量により可能である。設置船上にはジャッキシステムは不要である。設置船上には大型の回転クレーンは不要である。材料、特にコンクリートを選択することにより、支持構造のメンテナンスはほとんど又は全く不要である。支持構造の寿命は、おそらく、約60年である集電システムの寿命に対応することができる。移動製造ラインは、より工業化された製造を提供することになる。地方製造は、地方の仕事を提供することができ、これは、意思決定者にとっての要因であることができる。構造は剛性であり、従って、より深い水に対するポテンシャルを有する。安価なコンクリート、例えば45Mpa及び30Gpa、を使用することができる。従って、本発明は、低コストの洋上風車基礎及びタワー、並びに低コストの洋上風車を提供する。

【0037】

本発明のその他の特徴、特性及び利点は、添付の図面に関連した実施形態の以下の説明から明らかになるであろう。

【図面の簡単な説明】

【0038】

【図1】本発明による支持構造を概略的に示す断面図である。

50

【図2】本発明による支持構造の変化態様を概略的に示す断面図である。

【図3】本発明による風車を概略的に示す図である。

【図4】本発明による風車及び設置船を概略的に示す図である。

【図5】ポストストレス提供ケーブルを備える本発明による支持構造を概略的に示す図である。

【発明を実施するための形態】

【0039】

図1は、洋上風車を支持するための本発明による支持構造を断面図で概略的に示している。支持構造1は、基礎2と、タワー3の少なくとも一部とを含んでいる。支持構造1の中心線は参照符号11で示されている。基礎2とタワー3の少なくとも一部とは、1つの部分である。これは、基礎2とタワー3の少なくとも一部とが、1つの部分から形成されている又は一体に形成されていることを意味する。言い換えれば、支持構造1の様々な部分の間に結合部は存在しない。

【0040】

基礎2は、下側部分4と、狭い部分5と、移行部分6とを有している。下側部分4の後に狭い部分5が続いている。狭い部分5の後に移行部分6が続いている。移行部分6の後にはタワー3若しくはタワー部分3が続いている。

【0041】

下側部分4は、海底に少なくとも部分的に接触するように構成されている。下側部分は、洗掘を減じるために円錐形になっている。下側部分4は、多数のスカート8を有している。スカート8は下側部分4の底部に配置されている。スカート8は、洗掘の低減に適したように形成されており、支持構造1と、その下の土壤との間の結合を確実にするために下側に固定するために使用することができる。さらに、スカート8は、スカートを3つ以上のチャンバーに分割することによって基礎2を水平にするために使用することができる。

【0042】

完成した支持構造1又は少なくとも基礎2又は基礎2の少なくとも一部、例えば下側部分4又は下側部分4の一部は、中空であることができる。中空部分又は中空部分の少なくとも一部に、土壤のようなバラストを充填することができる。図1において、完成した支持構造1は中空であり、内部に中空空間24を有している。

【0043】

タワー3は最大直径10を有している。狭い部分は直径9を有している。タワー3の最大直径10は、狭い部分5の直径9よりも大きい。さらに、タワー3は外壁22を有しており、狭い部分5は外壁23を有している。タワー3の外壁22の厚さ12は、狭い部分5の外壁23の厚さ13よりも薄い。

【0044】

下側部分4は、円錐形であり、底部から狭い区分5まで減少する直径を有している。移行部分6は、狭い部分5からタワー部分3まで連続的に又は段階的に増大する直径29を有している。さらに、移行部分6は、狭い部分5からタワー部分3まで増大する壁厚を有している。移行部分6の後にタワー部分3が続いている、移行部分6の上面には、プラットフォーム18が形成されている。プラットフォームは支持構造1の内部に延びている。

【0045】

タワー3又はタワー部分3は、移行部分6に続いている底部から、風車発電機がタワー3に取り付けられる上部まで、減少する直径を有している。一般的に、タワー部分3又はタワー3は、風車、特に風車ナセルに結合可能である。

【0046】

支持構造1が海底に適切に設置されると、狭い部分5は、波しぶきの領域に配置され、移行部分6は、最も高い波の高さよりも上方に配置される。

【0047】

支持構造1はコンクリートから成る。さらに、支持構造1は、ポストストレス提供手段、例えば、少なくとも1つのケーブル、ワイヤ、ロッド、又は構造又は支持構造1の少な

10

20

30

40

50

くとも一部にポストストレスを提供するためのあらゆるその他の適切な手段を有している。図1において、支持構造1は、少なくとも2つのポストストレス提供ケーブル7を有している。ポストストレス提供ケーブル7は支持構造1の内部に配置されている。具体的には、ポストストレス提供ケーブルの第1の部分7aは、タワー部分3の内部の中空空間24においてタワー部分3の内部に配置されている。ポストストレス提供ケーブルの第1の部分7aは、タワー部分3の上部において又は上部の近くにおいてタワー部分3に結合されている。ポストストレス提供ケーブルの第2の部分7bは、移行部分6と、狭い部分5と、下側部分4との外壁23, 25, 26の内部に配置されている。ポストストレス提供ケーブルの第2の部分7bの端部は、下側部分4の底部において、例えばスカート8の近くで、下側部分4に結合されている。折一的に、ポストストレス提供ケーブル7を別の適切な形式で支持構造1に結合することができる。さらに、ポストストレス提供ケーブル7を、少なくとも部分的に支持構造1の外側に配置することができる。

10

【0048】

支持構造1又は支持構造1の少なくとも一部にポストストレスが提供された場合、狭い部分5のポストストレスレベルは、タワー部分3におけるストレスレベルとは異なることができる。

【0049】

図5は、図1の本発明の支持構造1の変化態様を概略的に示している。分かりやすくするためにスカート8は省略されている。さらに、移行部分6は、図1と比較して多少異なる形状を有している。

20

【0050】

図5は、ポストストレス提供ケーブル7を固定するための固定エレメント19, 20, 21を示している。固定エレメント21は、タワー部分3の外壁22の近くにおいてタワー部分3の上部に配置されている。固定エレメント20は移行部分6のプラットフォーム18に配置されている。ポストストレス提供ケーブルの第1の部分7aは、外壁22の近くにおけるタワー部分3の内部中空空間24において固定エレメント21から固定エレメント22まで伸びている。ポストストレス提供ケーブルの第2の部分7bは、移行部分6における第2の固定エレメント20から第3の固定エレメント19まで伸びている。第3の固定エレメント19は、下側部分4の外壁25の内部において下側部分4の底部の近くに配置されている。ポストストレス提供ケーブルの第2の部分7bは、狭い部分5の外壁23の内部及び/又は下側部分4の外壁25の内部に伸びている。さらに、ポストストレス提供ケーブルの第2の部分7bは、移行部分6の壁部26の内部にも伸びていることができる。

30

【0051】

概して、ポストストレス提供ケーブルの第1の部分7a及びポストストレス提供ケーブルの第2の部分7bに、個別にストレスを提供することができる。これは、タワー部分3と基礎2とにおけるストレスレベルが異なることを意味する。下側部分4と狭い部分5とにおける異なるストレスレベルを提供するために、例えば下側部分4と狭い部分5との間に付加的な固定エレメントを配置することができる。

40

【0052】

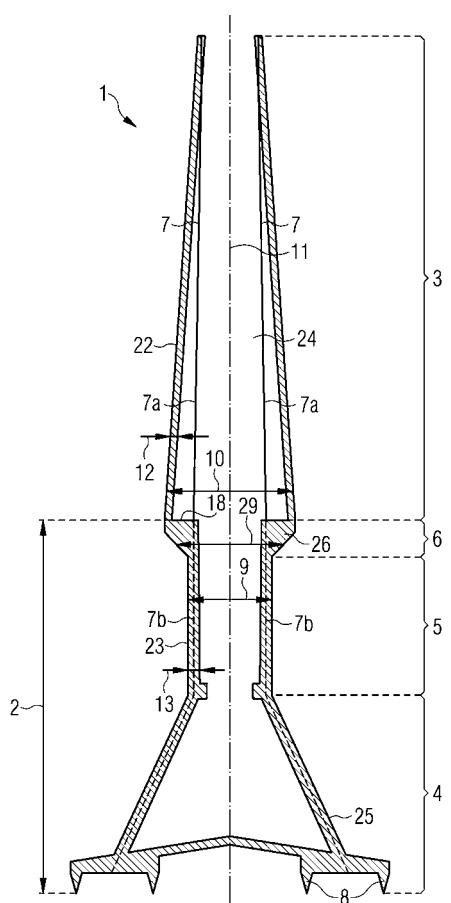
図2は、図1及び図5の支持構造1と僅かに異なる本発明の支持構造100の変化態様を概略的に示している。支持構造100は、狭い部分5と移行部分6との間に第1の中間部分26を有しており、かつ下側部分4と狭い部分5との間に配置された第2の中間部分27を有している点において、支持構造1と異なる。

【0053】

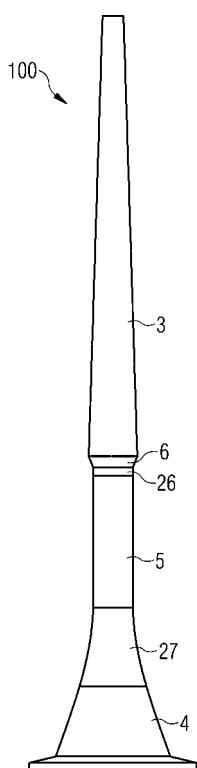
図3は、本発明の風車28を部分的に斜視図で概略的に示している。風車28は、図1、図2及び図5に関連して説明した支持構造100を有している。タワー3の上部にはナセル14が取り付けられている。ナセル14は、複数のロータ翼15を備えるロータを有している。風車は、通常、2つ又は3つのロータ翼15を有している。

【0054】

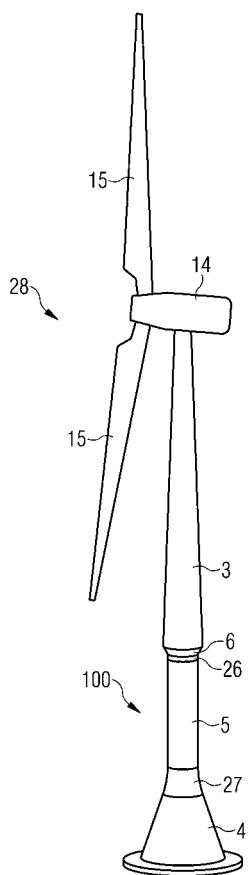
50

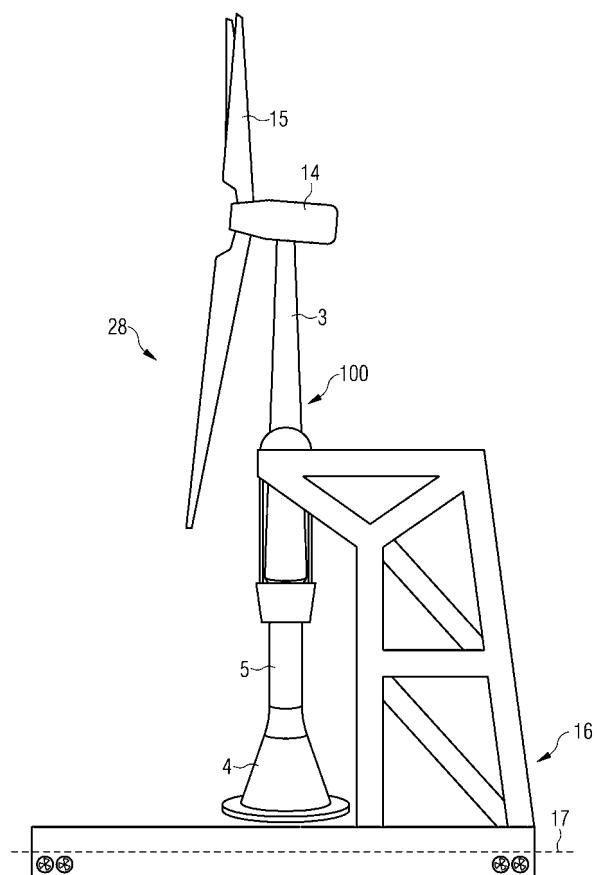

図4は、設置船16に固定された、図3の本発明の風車28を示している。海面は参照符号17によって示されている。設置船16は、持上げクレーンを備えたカタマラン浮きクレーンを含んでよい。例えば、設置船16は、持上げクレーン又は回転クレーンを支持する巨大なフレームによって結合された、2つの自己推進式はしけを含んでよい。この場合、洋上での作業は、予め設置及び試験された風車を備えた支持構造の搬送及び配置のみを含む最小限の作業に減じられている。

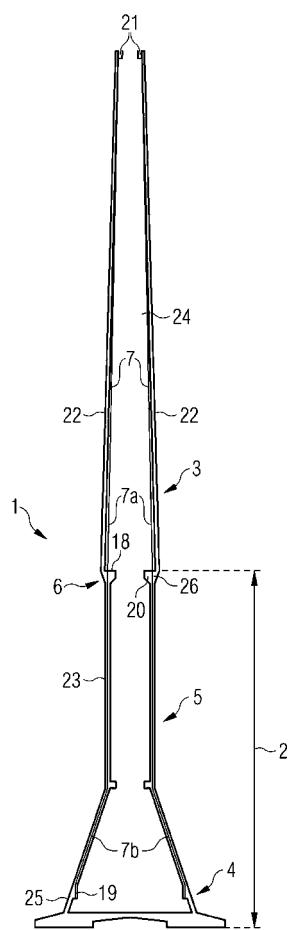
【符号の説明】


【0055】

1 支持構造、 2 基礎、 3 タワー、 4 下側部分、 5 狹い部分、 6 移行部分、 8 スカート、 7, 7a, 7b ポストストレス提供ケーブル、 9 直径、 10 最大直径、 12, 13 厚さ、 18 プラットフォーム、 20 固定エレメント、 21 固定エレメント、 23 外壁、 24 中空空間、 25, 26 外壁、 26, 27 中間部分、 28 風車、 29 増大する直径、 100 支持構造


【図1】


【図2】


【 図 3 】

【 図 4 】

【 図 5 】

フロントページの続き

(74)代理人 100112793
弁理士 高橋 佳大

(74)代理人 100128679
弁理士 星 公弘

(74)代理人 100135633
弁理士 二宮 浩康

(74)代理人 100156812
弁理士 篠 良一

(74)代理人 100114890
弁理士 アインゼル・フェリックス=ラインハルト

(72)発明者 ルーネ ハートコプフ
デンマーク国 ヘアニング ピアク センターパーク 117エフ

F ターム(参考) 3H078 AA02 BB19 BB20 BB21 CC47

【外国語明細書】

Title of Invention

Support structure for supporting an offshore wind turbine

Detailed Explanation of the Invention

The present invention relates to a support structure for supporting an offshore wind turbine. It further relates to a wind turbine.

Offshore wind turbine foundations normally fall into three groups, gravity foundations, mono-pile foundations, and advanced foundations such as tripods or suction bucket foundations.

Gravity foundations are typically made of concrete. They may be made hollow and have sufficient buoyancy for floatation to site, possibly supported with buoyancy elements, or they may be shipped by barge and lifted into place. The weight of the foundation itself is typically increased by ballasting with a heavy type of ballast, such as olivine. Gravity foundations have the disadvantage that they tend to become very expensive for large turbines and/or large water depths.

A mono-pile foundation consists of a steel pile, typically with a diameter of 4-5 metres. The pile is driven some 20-30 metres into the seabed depending on the type of underground. The mono-pile foundation is effectively extending the turbine tower under water and into the seabed.

An important advantage of this foundation is that no preparations of the seabed are necessary. On the other hand, it requires heavy duty piling equipment, and the foundation type is not suitable for locations with many large boulders in the seabed. It also tends to become expensive for large turbines and/or large water depths.

The most common advanced offshore foundation is the tripod foundation. This type of foundation draws on the experiences with light weight and cost efficient three-legged steel jack-

ets for marginal offshore fields in the oil industry. The structure typically consists of a central pipe and three inclined legs. The three legs are connected at the bottom and are also connected to the central pipe. At the end of each leg a short vertical pipe is used as jacket around a steel pile driven deeply into the seabed. After completion of the piling the jackets is injected with high-strength mortar and a firm connection between pile and leg is established.

Steel tripods have the disadvantage that they are physically very large structures with highly demanding, complex, fatigue-loaded welds. Hence, they tend to be very expensive.

Common to these and most other known foundations for offshore wind turbines is that when installed at the wind farm site the foundation structure that will support the wind turbine tower projects above water. This is for the obvious reason that the construction of connections including fasteners (bolts etc) under sea surface may be difficult and dangerous.

One exception is the foundation disclosed in EP 1 884 598. In EP 1 884 598 an offshore foundation is disclosed, which comprises a pile and a superstructure. The pile is rammed down into the seabed and only projects a limited stretch above the seabed. The pile provides a foundation stub for the superstructure, which is fastened on top of the pile. Here a challenge will be to establish the joint between pile and superstructure; a task that will normally be accomplished by injection with high-strength mortar.

Common to almost all offshore foundations is that the load-carrying part of the structure will typically at any given part of the foundation experience both compressive and tensile loading, since the external loads on the turbine can come from all directions. Furthermore, stresses from operating loads will typically oscillate between compressive and tensile stresses.

For that reason steel has been the preferred material, as it works well under changing stress conditions. Further steel has the advantage that the strength per mass is significantly better than for instance concrete. Towers are therefore typical made of steel to allow road transportation. However steel has three major disadvantages compared to concrete. Firstly, the price in relation to the strength is significantly larger, and widely influenced by fluctuations in the economy. Secondly, for steel in wind turbines fatigue is often the design driver, where extreme loads are for concrete. Concrete towers or foundations have therefore automatically longer lifetime if properly treated. Thirdly, steel requires very careful surface treatment to avoid corrosion in a marine environment.

Mono-piles and wind turbine generators are typically installed in pieces with a jack-up vessel, e.g. of mono-pile, transition piece, 2-3 tower sections, nacelle and blades. Typically foundations and wind turbine generators are installed in two steps, thus the jack-up have to install at each wind turbine generator location twice. Because the turbine is assembled offshore expensive vessel time and man hours is used, complete test is further difficult and must be performed offshore. Furthermore, a jack-up vessel is an advanced piece of equipment. It has, for instance, an expensive jack-up system and a large revolving crane including a number of moving parts.

One exception is the foundation disclosed in EP 1 058 787, where the tower is made from modules that are kept in compression using post-tensioning cables. Here the disadvantage is that high-strength steel such as that used in the post-tensioning cables is rather susceptible to corrosion and hydrogen embrittlement. Therefore the long-term integrity of post-tensioning cables inserted into channels in the outer walls of a structure installed below sea level may be questionable.

A first objective of the present invention is to provide an advantageous support structure for supporting offshore wind turbines. A second objective of the present invention is to provide an advantageous wind turbine.

The first objective is solved by a support structure for supporting offshore wind turbines as claimed in claim 1. The second objective is solved by a wind turbine as claimed in claim 15. The depending claims define further developments of the invention.

The inventive support structure for supporting offshore wind turbines comprises a foundation configured to at least partly contact a seabed and at least part of a tower. The foundation and the at least part of the tower are one-piece. This has the advantage that a costly fastening of the tower onto the foundation is no longer necessary.

In the context of the present invention one-piece means that the foundation and the tower or part of the tower are integrally formed or made of one piece. At last, there is no connecting means between the foundation and the tower or part of the tower, or within different sections of the foundation.

The at least part of a tower as part of the inventive support structure is also designated as tower section. The tower or tower section may be connectable to a wind turbine generator, especially to a wind turbine nacelle.

The foundation can comprise a narrow section which has a smaller diameter than the maximum diameter of the tower. Preferably, the narrow section can be located in a splash and spray zone of the sea when the support structure is installed onto the seabed. The advantage of the narrow section being narrower than the tower or tower section is the fact that the narrow section is exposed to wave loads and the tower or tower section is exposed to wind loads. The larger diameter of the tower or tower section gives a stiffer structure of the tower.

Advantageously, the support structure may comprise concrete and/or steel. For example, it may comprise concrete of the type 45 Mpa or 30 Gpa. Concrete has the advantage that it is a relatively cheap material. Therefore the costs for the foundation and for the wind turbine can be reduced.

Furthermore, the foundation can comprise a lower section and/or a transition section having a changing diameter. The lower section may be configured to at least partly contact the seabed. Preferably, the lower section may be at least partly conical, for example to reduce scour. The transition section may be located between the narrow section and the tower or tower section. When the support structure is installed onto the seabed, the transition section can advantageously be located above highest wave level. Preferably the diameter of the transition section increases, for example continuously or stepwise, from the narrow section to the tower section to form a platform and/or to support a tower with a diameter which is greater than the diameter of the narrow section. Generally, the transition section can have a bigger diameter than the narrow section. The transition section can be used to lift the support structure during installation.

The tower or the tower section may comprise an outer wall. The narrow section may also comprise an outer wall. Advanta-

geously, the outer wall of the narrow section can be thicker than the outer wall of the tower or tower section.

Advantageously, at least part of the support structure can be post-stressed. Post stressing may be utilized to lower tensile stress, especially in at least part of the concrete. For example, the post stress level in the narrow section can be different from the stress level in the tower. In this context post stress level means the stress in the particular structure element after tightening, activating or torquing a stressing means. The stressing means may be, for example, a cable, a rod or a wire. To provide different stress levels in the different sections of the support structure allows for adapting the particular stress level to the particular environmental conditions. For example, beneath and above sea level different stress levels may be favourable.

Generally, the support structure may comprise at least one post stressing means and/or at least one post tension reinforcement means, for example a cable, wire or rod. The at least one post stressing means and/or at least one post tension reinforcement means may be placed inside of the support structure or inside of a wall of the support structure or external along the side of the structure. The post stressing in the lower and narrow section may be drawn inside the support structure, for example inside the concrete support structure. The post stressing in the tower or tower section may be drawn at least partly outside of the outer wall, which may be a concrete wall, e.g. inside the tower or tower section.

The at least one post stressing means and/or at least one post tension reinforcement means can be placed in the tower or in the tower section at least partly outside of an outer wall and/or inside of the tower or tower section. Furthermore, the at least one post stressing means and/or at least one post tension reinforcement means can be placed in the lower section inside of an outer wall of the lower section.

Moreover, the at least one post stressing means and/or at least one post tension reinforcement means can be placed in the narrow section inside of an outer wall of the narrow section.

Preferably, the post stressing means in the tower or tower section can be connected to a post stressing means in the transition section and/or to a post stressing means in the narrow section and/or to a post stressing means in the lower section. Furthermore, the post stressing means in the transition section can be connected to a post stressing means in the narrow section and/or to a post stressing means in the lower section. The post stressing means in the narrow section can be connected to a post stressing means in the lower section.

A post tension reinforcement can either be drawn in duct inside the concrete structure or drawn external along the side of the structure. In conjunction with internal post tension corrugated steel or at least one plastic duct may be casted into the concrete construction with anchors in both ends. Wires may be drawn through the ducts and tensioned by means of a hydraulic tension jack, for example. A protection may be filled into the ducts. Preferably, an expanding high strength grout can be used to lock the cables to the duct wall casted into the concrete structure. Other protection materials can be utilized such as grease or wax, which both allow additional tensioning, which can be a preferable way to cope with relaxation in steel wire and deformation of concrete. Internal reinforcement has the advantage that tension wires are well protected inside the concrete wall, especially protected from humidity by grout, grease or wax. An external post tension wire may be plastic sheathed and/or protected by grease. Preferably, the external post tension wire may be placed next to the concrete structure.

In one preferred embodiment the foundation is internal post-stressed, the duct can be filled with protection material e.g. grout, grease or wax for corrosion protection. The post tension of the tower part can be internal post-stressed. Wires can be connected to anchors for foundation post-stressing. Preferably post tension wire for foundation part is drawn from the bottom of the structure, and stressed at this level to minimize crane work, platform and scaffold arrangement.

Advantageously, the lower section and/or the narrow section and/or the transition section and/or the tower or tower section are/is hollow. In this case at least part of the support structure can be filled with ballast, for instance soil. This increases the stability under load of the support structure.

The lower section may comprise at least one skirt, for instance to provide a fixation of the support structure with the seabed. Moreover, the skirt can be configured or to reduce scour or to grout underneath to secure connection between the support structure and underlying soil. Furthermore, the skirt may be split into 3 or more chambers. It can be used to level the foundation.

Generally, the soil interface can be either deep or shallow foundation. A deep foundation can comprise one or more piles. A shallow foundation can be gravity or suction bucket. Gravity foundations may be produced with skirt to lower demand for seafloor preparation and/or scour protection. Gravity without skirt is preferred.

The inventive wind turbine, especially offshore wind turbine, comprises an inventive support structure as previously described. The inventive wind turbine has the same advantages as the inventive support structure has.

All components of the inventive support structure or the inventive wind turbine can be produced on moving lines at a harbour near location. Buckle reinforcement can be prefabricated either by rolling net or by spinning reinforcement on to a revolving model. Jumpforming can be used for good surface quality.

Installation can take place by the means of a floating crane. For distant sites barge transportation is a possibility. Floating crane can be made as a catamaran that lifts above centre and thereby don't need to move ballast when lifting. Further, the floating crane can be made with ballast tanks allowing submerging more of the floating crane during installation to gain stability. For barge transportation the moving production line can be extended to load complete turbines on to transportation barges.

An advantage of the inventive support structure and the inventive wind turbine is that the support structure and/or the wind turbine can be installed and tested onshore. Wind turbine and foundation can be installed at once. This is possible due to the relatively low mass of the structure. No jacking system is necessary on the installation vessel. No large revolving crane is necessary on the installation vessel. Little or no maintenance of the support structure is necessary due to the choice of material, especially concrete. The lifetime of the support structure can probably meet the lifetime of the collector system, which is about 60 years. Moving production lines may create a more industrialised production. Local production can create local jobs which can be a factor for decision makers. The structure is stiff and has therefore potential against deeper water. Inexpensive concrete can be used, e.g. 45 Mpa and 30 Gpa. Therefore, the invention provides a low-cost offshore wind turbine foundation and tower and a low-cost offshore wind turbine.

Further features, properties and advantages of the present invention will become clear from the following description of an embodiment in conjunction with the accompanying drawings.

Brief Explanation of the Drawings

Figure 1 schematically shows an inventive support structure in a sectional view.

Figure 2 schematically shows a variant of an inventive support structure.

Figure 3 schematically shows an inventive wind turbine.

Figure 4 schematically shows an inventive wind turbine and an installation vessel.

Figure 5 schematically shows an inventive support structure with post-stressing cables.

An embodiment of the present invention will now be described with reference to Figures 1 to 5.

Figure 1 schematically shows an inventive support structure for supporting offshore wind turbines in a sectional view. The support structure 1 comprises a foundation 2 and at least part of a tower 3. The centre line of the support structure 1 is designated with reference numeral 11. The foundation 2 and at least part of the tower 3 are one-piece. This means, that the foundation 2 and at least part of the tower 3 are made of one-piece or are integrally formed. In other words, there is no connection between the different sections of the support structure 1.

The foundation 2 comprises a lower section 4, a narrow section 5 and a transition section 6. The lower section 4 is followed by the narrow section 5. The narrow section 5 is followed by the transition section 6. The transition section 6 is followed by the tower 3 or the tower section 3.

The lower section 4 is configured to at least partly contact the seabed. It has a conical shape to reduce score. The lower section 4 comprises a number of skirts 8. The skirts 8 are placed at the bottom of the lower section 4. The skirts 8 are made suitable for reduction of scour and can be used to grout underneath to secure connection between the support structure 1 and underlying soil. Moreover, the skirts 8 can be used to level the foundation 2 by splitting the skirts 8 into three or more champers.

The complete support structure 1 or at least the foundation 2 or at least part of the foundation 2, for example the lower section 4 or part of the lower section 4 can be hollow. The hollow parts or at least part of the hollow sections can be filled with ballast such as soil. In figure 1 the complete support structure 1 is hollow comprising a hollow space 24 inside.

The tower 3 has a maximum diameter 10. The narrow section has a diameter 9. The maximum diameter 10 of the tower 3 is bigger than the diameter 9 of the narrow section 5. Moreover, the tower 3 comprises an outer wall 22 and the narrow section 5 comprises an outer wall 23. The thickness 12 of the outer wall 22 of the tower 3 is thinner than the thickness 13 of the outer wall 23 of the narrow section 5.

The lower section 4 has a conical shape with a decreasing diameter from the bottom to the narrow section 5. The transition section 6 has a continuously or stepwise increasing diameter 29 from the narrow section 5 to the tower section 3. Moreover, the transition section 6 has an increasing wall thickness from the narrow section 5 to the tower section 3. On the upper surface of the transition section 6, where the transition section 6 is followed by the tower section 3, a platform 18 is formed. The platform extends inside of the support structure 1.

The tower 3 or the tower section 3 has a decreasing diameter from the bottom, where it follows the transition section 6, to the top, where a wind turbine generator may be mounted onto the tower 3. Generally, the tower section 3 or the tower 3 is connectable to a wind turbine, especially to a wind turbine nacelle.

When the support structure 1 is properly installed onto the seabed, the narrow section 5 is located in a splash and spray zone and the transition section 6 is located above the highest wave level.

The support structure 1 comprises concrete. Furthermore, the support structure 1 comprises post-stressing means, for example at least one cable, wire, rod or any other suitable means for post-stressing the structure or at least part of the support structure 1. In Figure 1 the support structure 1 comprises at least two post-stressing cables 7. The post-stressing cables 7 are placed inside the support structure 1. More concretely, a first portion of the post-stressing cables 7a is located inside of the tower section 3 in the hollow space 24 inside of the tower section 3. The first portion of the post-stressing cables 7a is connected to the tower section 3 on top or close to the top of the tower section 3. A second portion of the post-stressing cables 7b is located inside of the outer walls 23, 25, 26 of the transition section 6, the narrow section 5 and the lower section 4. The ends of the second portion of the post-stressing cables 7b are connected to the lower section 4 at the bottom of the lower section 4, for example close to the skirts 8. Alternatively, the post-stressing cables 7 can be connected to the support structure 1 in another suitable way. Moreover, the post-stressing cables 7 can be located at least partly outside of the support structure 1.

When the support structure 1 or at least part of the support structure 1 is post-stressed, the post-stress level in the

narrow section 5 can be different from the stress level in the tower section 3.

Figure 5 schematically shows a variation of the inventive support structure 1 of Figure 1. The skirts 8 are omitted for simplification. Moreover, the transition section 6 has a slightly different shape compared to Figure 1.

Figure 5 shows fixing elements 19, 20 and 21 for fixing the post-stressing cables 7. The fixing elements 21 are located on top of the tower section 3 close to the outer wall 22 of the tower section 3. The fixing elements 20 are located at the platform 18 of the transition section 6. The first portions 7a of the post-stressing cables run from the fixing elements 21 to the fixing elements 22 in the inner hollow space 24 of the tower section 3 close to the outer wall 22. The second portions 7b of the post-stressing cables run from the second fixing elements 20 at the transition section 6 to the third fixing elements 19. The third fixing elements 19 are located close to the bottom of the lower section 4 inside of the outer wall 25 of the lower section 4. The second portion 7b of the post-stressing cables runs inside of the outer wall 23 of the narrow section 5 and/or inside of the outer wall 25 of the lower section 4. Moreover, the second portion 7b of the post-stressing cables can also run inside of the wall 26 of the transition section 6.

Generally, the first portion 7a of the post-stressing cable and the second portion 7b of the post-stressing cable can be stressed separately. This means, that the stress level in the tower section 3 and in the foundation 2 can be different. Additional fixing elements can be placed, for example, between the lower section 4 and the narrow section 5 to provide for difference stress levels in the lower section 4 and the narrow section 5.

Figure 2 schematically shows a variant of an inventive support structure 100, which is slightly different from the sup-

port structure 1 of Figure 1 and 5. The support structure 100 differs from the support structure 1 in that it comprises a first intermediate section 26 between the narrow section 5 and the transition section 6 and a second intermediate section 27, which is located between the lower section 4 and the narrow section 5.

Figure 3 schematically shows an inventive wind turbine 28 in a partly perspective view. The wind turbine 28 comprises a support structure 100, which was described in conjunction with Figures 1, 2 and 5. On top of the tower 3 a nacelle 14 is mounted. The nacelle 14 comprises a rotor with a number of rotor blades 15. A wind turbine typically comprises two or three rotor blades 15.

Figure 4 schematically shows the inventive wind turbine 28 of Figure 3, which is fixed to an installation vessel 16. The sea level is designated by reference numeral 17. The installation vessel 16 may comprise a floating catamaran crane with a lifting crane. For example, the installation vessel 16 may comprise two self propellered barges, which may be connected by a giant frame carrying lifting or revolving crane. In this case the offshore work is reduced to a minimum, only including the transport and placement of the support structure with the preinstalled and tested wind turbine.

Claims

1. A support structure (1, 100) for supporting offshore wind turbines comprising a foundation (2) configured to at least partly contact a seabed and at least part of a tower (3), wherein the foundation (2) and the at least part of the tower (3) are one-piece.
2. The support structure (1, 100), as claimed in claim 1, wherein the support structure (1, 100) comprises concrete and/or steel.
3. The support structure (1, 100), as claimed in claim 1 or 2, wherein the foundation (2) comprises a narrow section (5) having a smaller diameter (9) than the maximum diameter (10) of the tower (3) and/or a lower section (4) and/or a transition section (6) having a changing diameter (29).
4. The support structure (1, 100), as claimed in claim 3, wherein the transition section (6) is located between the narrow section (5) and the tower (3).
5. The support structure (1, 100), as claimed in any of the claims 1 to 4, wherein support structure (1, 100) comprises a transition section (6) which has a bigger diameter than the narrow section (5).
6. The support structure (1, 100), as claimed in any of the claims 1 to 5, wherein the tower (3) comprises an outer wall (22) and the narrow section (5) comprises an outer wall (23), the outer wall (23) of the narrow section (5) being thicker than the outer wall (22) of the tower (3).
7. The support structure (1, 100), as claimed in any of the claims 1 to 6,

wherein at least part of the support structure (1, 100) is post-stressed.

8. The support structure (1, 100), as claimed in claim 7, wherein the post stress level in the narrow section (5) is different from the stress level in the tower (3).

9. The support structure (1, 100), as claimed in any of the claims 1 to 8,

wherein the support structure (1, 100) comprises at least one post stressing means (7, 19, 20, 21) and/or at least one post tension reinforcement means (7, 19, 20, 21).

10. The support structure (1, 100), as claimed in claim 9, wherein the post stressing means (7) and/or at least one post tension reinforcement means (19, 20, 21) is placed inside of the support structure (1, 100) or inside of a wall (22, 23, 25, 26) of the support structure (1, 100) or external along the side of the structure (1, 100).

11. The support structure (1, 100), as claimed in claim 9 or 10,

wherein the post stressing means (7) and/or at least one post tension reinforcement means (19, 20, 21) is placed in the tower (3) at least partly outside of an outer wall (22) and/or inside of the tower (3), and/or in the lower section (4) inside of an outer wall (25) of the lower section (4), and/or in the narrow section (5) inside of an outer wall (23) of the narrow section (5).

12. The support structure (1, 100), as claimed in any of the claims 9 to 11,

wherein the post stressing means (7) in the tower (3) is connected to a post stressing means (7) in the transition section (6) and/or to a post stressing means (7) in the narrow section (5) and/or to a post stressing means (7) in the lower section (4); and/or the post stressing means (7) in the transition section (6) is connected to a post stressing means (7)

in the narrow section (5) and/or to a post stressing means (7) in the lower section (4); and/or the post stressing means (7) in the narrow section (5) is connected to a post stressing means (7) in the lower section (4).

13. The support structure (1, 100), as claimed in any of the claims 1 to 12,

wherein the lower section (4) and/or narrow section (5) and/or transition section (6) and/or tower (3) are/is hollow.

14. The support structure (1, 100), as claimed in any of the claims 1 to 13,

wherein the lower section (4) comprises at least one skirt (8).

15. A wind turbine comprising a support structure (1, 100) as claimed in any of the claims 1 to 14.

Abstract

A support structure (1, 100) for supporting offshore wind turbines is provided. It comprises a foundation (2) configured to at least partly contact a seabed and at least part of a tower (3). The foundation (2) and the at least part of the tower (3) are one-piece.

Figure 1

FIG 1

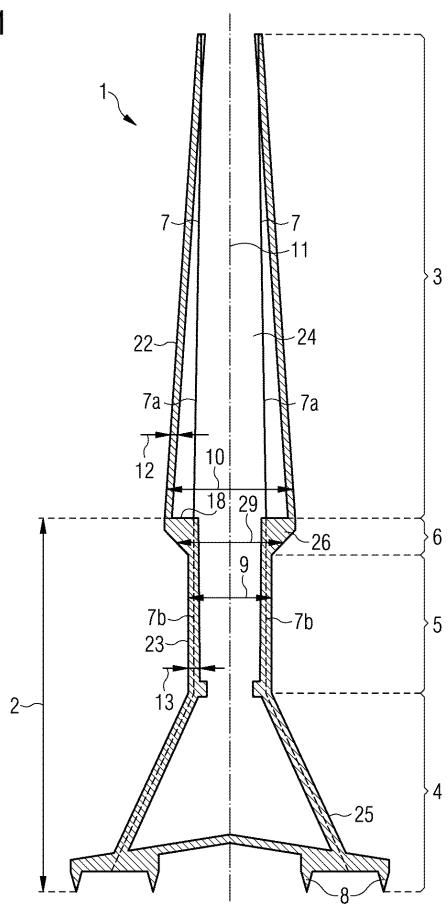


FIG 2

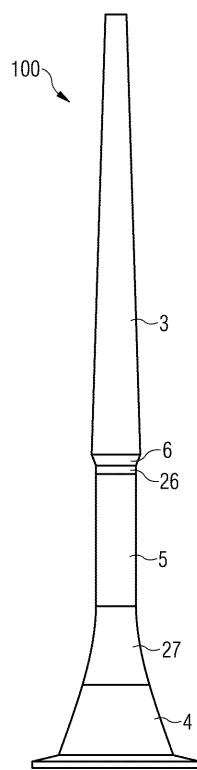


FIG 3

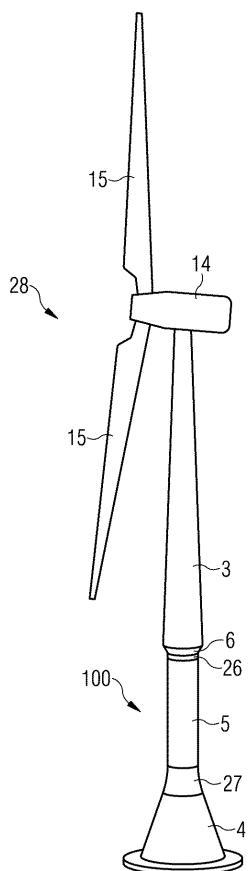


FIG 4

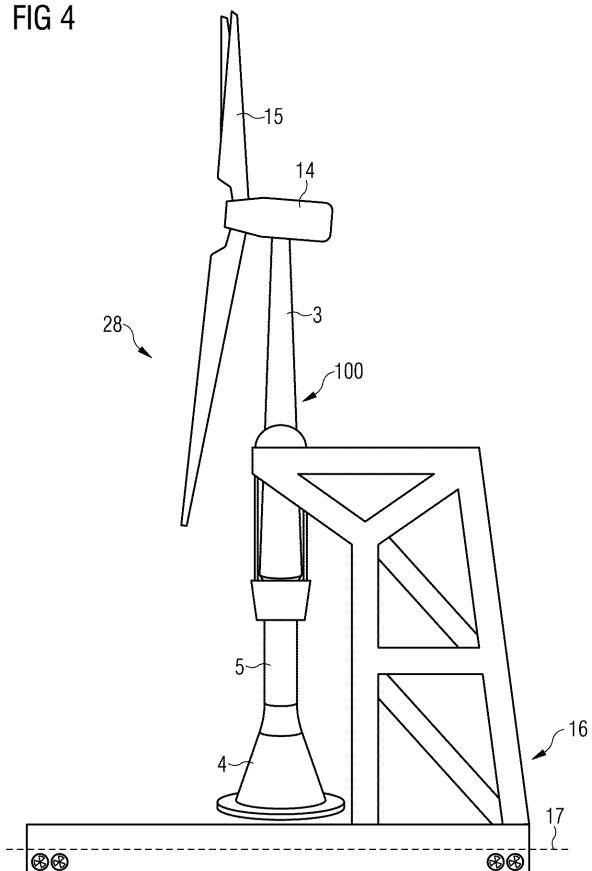
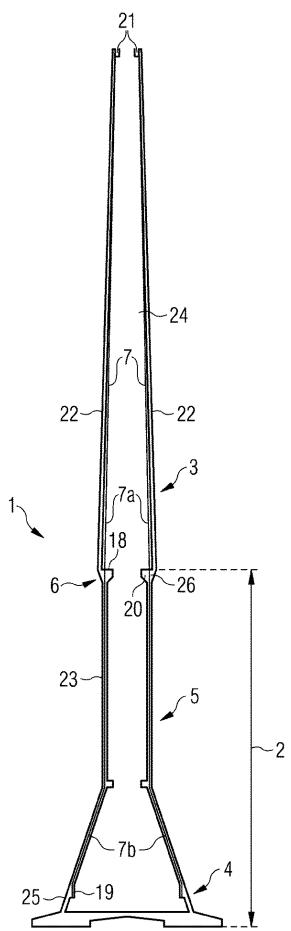



FIG 5

