发明名称
太阳能电池器件及其制备方法
摘要
一种太阳能电池器件，包括依次层叠的阳极、空穴缓冲层、第一活性层、中间层、第二活性层、电子缓冲层及阴极。第一活性层和第二活性层的材料为聚 3- 乙基噻吩与 6,6- 苯基 -C61- 丁酸甲酯的混合物，中间层包括富勒烯衍生物层、层叠于富勒烯衍生物层表面的锂盐层及层叠于锂盐层表面的掺杂层。富勒烯衍生物层的材料选自足球烯、碳 70、[6,6]- 苯基 -C61- 丁酸甲酯及 [6,6]- 苯基 -C71- 丁酸甲酯中的至少一种，锂盐层的材料选自碳酸锂、氟化锂及氧化锂中的至少一种，掺杂层的材料包括硅的化合物及掺杂在硅的化合物中的空穴传输材料。该太阳能电池器件的能量转换效率较高。此外，还提供了一种太阳能电池器件的制备方法。
1. 一种太阳能电池器件，其特征在于，包括依次层叠的阳极、空穴缓冲层、第一活性层、中间层、第二活性层、电子缓冲层及阴极，所述第一活性层和第二活性层的材料为聚 3-己基噻吩与 6,6'-苯基-C_{60}-丁酸甲酯的混合物，所述中间层包括富勒烯衍生物层，层叠于所述富勒烯衍生物层表面的锂盐层及层叠于所述锂盐层表面的掺杂层，所述富勒烯衍生物层的材料选自聚噻吩、聚噻吩-C_{60}-丁酸甲酯及[6,6]-苯基-C_{71}-丁酸甲酯中的至少一种，所述锂盐层的材料选自碳酸锂、氟化锂及氧化锂中的至少一种，所述掺杂层的材料包括酰胺化合物及掺杂在所述酰胺化合物中的空穴传输材料，所述酰胺化合物选自酰胺类、酰肟类、酰基及酰基胺中的至少一种，所述空穴传输材料选自 2,3,5,6-四氟-7,7',8,8'-四氰二甲基对苯胺、4,4'-三 (N-(1-萘基) -N- 苯基氨基) -三苯胺及 4,4'-三 (N,N-2-苯基氨基) -三苯胺中的至少一种；

2. 根据权利要求 1 所述的太阳能电池器件，其特征在于，所述富勒烯衍生物层的厚度为 40nm ~ 80nm，所述锂盐层的厚度为 50nm ~ 100nm，所述掺杂层的厚度为 30nm ~ 60nm。

3. 根据权利要求 1 所述的太阳能电池器件，其特征在于，所述掺杂层中所述空穴传输材料与所述酰胺化合物的质量比为 1:100 ~ 1:100。

4. 根据权利要求 1 所述的太阳能电池器件，其特征在于，所述空穴缓冲层的材料为聚 3,4-二氧乙烯基侧与聚苯磺酸的混合物。

5. 根据权利要求 1 所述的太阳能电池器件，其特征在于，所述第一活性层及第二活性层中所述聚 3-己基噻吩与 6,6'-苯基-C_{60}-丁酸甲酯的质量比为 1:0.5 ~ 1:4。

6. 一种太阳能电池器件的制备方法，其特征在于，包括以下步骤：
 - 在阳极表面上旋涂制备空穴缓冲层；
 - 在所述空穴缓冲层上旋涂含有聚 3-己基噻吩及 6,6'-苯基-C_{60}-丁酸甲酯的溶液，形成第一活性层；
 - 将含有富勒烯衍生物的悬浮液旋涂在所述第一活性层表面制备富勒烯衍生物层，所述富勒烯衍生物层选自聚噻吩、聚噻吩-C_{60}-丁酸甲酯及[6,6]-苯基-C_{71}-丁酸甲酯中的至少一种；
 - 将含有锂盐的溶液旋涂在所述富勒烯衍生物层的表面制备锂盐层，所述锂盐层选自碳酸锂、氟化锂及氧化锂中的至少一种；
 - 将含有掺杂材料的悬浮液旋涂在所述锂盐层的表面制备掺杂层，所述掺杂材料包括酰胺化合物及掺杂在所述酰胺化合物中的空穴传输材料，所述酰胺化合物选自酰胺类、酰肟类、酰基及酰基胺中的至少一种，所述空穴传输材料选自 2,3,5,6-四氟-7,7',8,8'-四氰二甲基对苯胺、4,4'-三 (N-(1-萘基) -N- 苯基氨基) -三苯胺及 4,4'-三 (N,N-2-苯基氨基) -三苯胺中的至少一种；
 - 在所述掺杂层表面旋涂聚 3-己基噻吩及 6,6'-苯基-C_{60}-丁酸甲酯的溶液，形成第二活性层；
 - 在所述第二活性层的表面依次蒸镀制备电子缓冲层及阴极；

7. 根据权利要求 6 所述的太阳能电池器件的制备方法，其特征在于，所述富勒烯衍生物层的厚度为 40nm ~ 80nm，所述锂盐层的厚度为 50nm ~ 100nm，所述掺杂层的厚度为 30nm ~ 60nm。
8. 根据权利要求 6 所述的太阳能电池器件的制备方法，其特征在于所述掺杂层中所述空穴传输材料与所述酞菁化合物的质量比为 1:100 ～ 10:100。

9. 根据权利要求 6 所述的太阳能电池器件的制备方法，其特征在于所述含有富勒烯衍生物的悬浮液中，所述富勒烯衍生物的浓度为 10mg/mL ～ 30mg/mL。

10. 根据权利要求 6 所述的太阳能电池器件的制备方法，其特征在于所述含有锂盐的溶液中，所述锂盐的浓度为 50mg/ml ～ 100mg/ml。
太阳能电池器件及其制备方法

技术领域
[0001] 本发明涉及一种太阳能电池器件及其制备方法。

背景技术
[0002] 太阳能电池器件由于具有廉价、清洁、可再生等优点而得到了广泛的应用。目前常用的太阳能电池器件结构包括依次层叠的阳极、空穴缓冲层、第一活性层、电子缓冲层及阴极。第一活性层的微子分离产生空穴和电子后，空穴到达阳极，电子到达阴极，从而被电极收集，形成有效的能量转换。目前，传统的太阳能电池的能量转换效率较低。

发明内容
[0003] 基于此，有必要提供一种能量转换效率较高的太阳能电池器件及其制备方法。
[0004] 一种太阳能电池器件，包括依次层叠的阳极、空穴缓冲层、第一活性层、中间层、第二活性层、电子缓冲层及阴极，所述第一活性层和第二活性层的材料为聚 3-己基噻吩与 6, 6'-苯基-C_{60}-丁酸甲酯的混合物，所述中间层包括富勒烯衍生物层、层叠于所述富勒烯衍生物层表面的锂盐层及层叠于所述锂盐层表面的掺杂层，所述富勒烯衍生物层的材料选自足球烯、碳 70、[6, 6]-苯基-C_{60}-丁酸甲酯及 [6, 6]-苯基-C_{71}-丁酸甲酯中的至少一种，所述锂盐层的材料选自碳酸锂、氟化锂或氧化锂中的至少一种，所述掺杂层的材料包括酸锌化合物及掺杂在所述酸锌化合物中的空穴传输材料，所述酸锌化合物选自酸锌铜、酸锌镁、酸锌锌及酸锌钙中的至少一种，所述空穴传输材料选自 2, 3, 5, 6-四氟 -7, 7', 8, 8' -四氮二甲基对苯醌、4, 4', 4''-三 (N-(1-萘基)-N-苯基氨基) 三苯胺、4, 4', 4''-三 (N-(2-萘基)-N-苯基氨基) 三苯胺及 4, 4', 4''-三 (N, N-2'-苯基氨基) 三苯胺中的至少一种。
[0005] 在优选的实施例中，所述富勒烯衍生物层的厚度为 40nm ～ 80nm，所述锂盐层的厚度为 50nm ～ 100nm，所述掺杂层的厚度为 30nm ～ 60nm。
[0006] 在优选的实施例中，所述掺杂层中所述空穴传输材料与所述酸锌化合物的质量比为 1:100 ～ 10:100。
[0007] 在优选的实施例中，所述空穴缓冲层的材料为聚 3, 4-二氧乙烯噻吩与聚苯磺酸盐的混合物。
[0008] 在优选的实施例中，所述第一活性层及第二活性层中所述聚 3-己基噻吩与所述 6, 6'-苯基-C_{60}-丁酸甲酯的质量比为 1:0.5 ～ 1:4。
[0009] 一种太阳能电池器件的制备方法，包括以下步骤：
[0010] 在阳极表面上旋涂制备空穴缓冲层；
[0011] 在所述空穴缓冲层上旋涂含有聚 3-己基噻吩及 6, 6'-苯基-C_{60}-丁酸甲酯的溶液，形成第一活性层；
[0012] 将含有富勒烯衍生物的悬浮液旋涂在所述第一活性层表面制备富勒烯衍生物层，所述富勒烯衍生物选自足球烯、碳 70、[6, 6]-苯基-C_{60}-丁酸甲酯及 [6, 6]-苯基-C_{71}-丁酸甲酯中的至少一种；
[0013] 将含有锂盐的溶液旋涂在所述富勒烯衍生物层的表面制备锂盐层，所述锂盐选自
碳酸锂、氟化锂及氧化锂中的至少一种；
[0014] 将含有掺杂材料的悬浮液旋涂在所述锂盐层的表面制备掺杂层，所述掺杂材
料包括酞菁化合物及掺杂在所述酞菁化合物中的空穴传输材料，所述酞菁化合物选自
酞菁铜、酞菁镁、酞菁锌及酞菁钒中的至少一种，所述空穴传输材料选自 2,3,5,6-四
氟 -7',8,8'-四氮二甲基对苯菲，4’,4”-三 (N- (1-萘基) -N- 萘基氨基) 三苯胺、
4’,4”-三 (N- (2-萘基) -N- 萘基氨基) 三苯胺及 4’,4”-三 (N,N-2-萘基氨基) 三苯
胺中的至少一种；
[0015] 在所述掺杂层表面旋涂含有丙 3-己基噻吩及 6,6-苯基-C60-丁酸甲酯的溶液，形
成第二活性层；及
[0016] 在所述第二活性层的表面依次蒸镀制备电子缓冲层及阴极。
[0017] 在优选的实施例中，所述富勒烯衍生物层的厚度为 40nm ～ 80nm，所述锂盐层的厚
度为 50nm ～ 100nm，所述掺杂层的厚度为 30nm ～ 60nm。
[0018] 在优选的实施例中，所述掺杂层中所述空穴传输材料与所述酞菁化合物的质量比
为 1:100 ～ 10:100。
[0019] 在优选的实施例中，所述含有富勒烯衍生物的悬浮液中，所述富勒烯衍生物的浓
度为 10mg/ml ～ 30mg/ml。
[0020] 在优选的实施例中，所述含有锂盐的溶液中，所述锂盐的浓度为 50mg/ml ～
100mg/ml。
[0021] 上述太阳能电池器件及其制备方法，通过在第一活性层及第二活性层之间制备中
间层，提高太阳能电池器件的第一活性层及第二活性层的光吸收效率，从而提高光电转
换效率；富勒烯衍生物层为 n 型层，富勒烯衍生物是富电子材料，可提高电子的传输速率，同
时，与活性层的富勒烯为一个系列的材料，两者搭配可降低电子的注入势垒，使电子快速达
到中间层，提高中间层收集电荷的效率，而锂盐是易溶于水的金属化合物，来源简单，其中
的金属离子可对光进行散射，提高第二活性层的光吸收效率，掺杂层由酞菁化合物与空穴
传输材料组成，空穴传输材料具有较低的 LUMO 能级，其 LUMO 与第二活性层的 HOMO 比较接
近，由于 LUMO 能级具有空轨道，而 HOMO 能级是满轨道，HOMO 能级上的载流子就可快速的进
入到 LUMO 能级，因此，可提高空穴的注入效率，而酞菁化合物是空穴传输性能的材料，可提
高空穴的传输速率，两者掺杂后形成 p 掺杂，提高了空穴注入与传输速率，提高了中间层的
空穴收集效率，从而提高光电转换效率。

附图说明
[0022] 图 1 为一实施例的太阳能电池器件的结构示意图；
[0023] 图 2 为一实施例的太阳能电池器件的制备方法流程图；
[0024] 图 3 为实施例 1 的太阳能电池器件及传统的太阳能电池器件的电流密度与电压关
系图。

具体实施方式
[0025] 为了便于理解本发明，下面将参照附图对本发明进行更全面的描述。附图中
给出了本发明的实施例。但是，本发明可以以许多不同的形式来实现，并不限于本文所描述的实施例。相反地，提供这些实施例的目的是使对本发明的公开内容更加透彻全面。

[0026] 请参照图1，一实施例的太阳能电池器件10包含依次层叠的阳极10、空穴缓冲层20、第一活性层30、中间层40、第二活性层50、电子缓冲层60及阴极70。

[0027] 阳极10为铟锡氧化物玻璃(ITO)、掺氟的氧化锡玻璃(FTO)、掺铝的氧化锌玻璃(AZO)或掺铟的氧化锌玻璃(IZO)。

[0028] 空穴缓冲层20形成于阳极10表面。空穴缓冲层20的材料为聚3,4-二氧乙烯噻吩(PEDOT)与聚苯磺酸钠(PSS)的混合物。其中PEDOT与PSS的质量比为2:1～6:1，优选为2:1。空穴缓冲层20的厚度为20nm ～ 80nm，优选为60nm。

[0029] 第一活性层30形成于空穴缓冲层20表面。第一活性层30的材料为聚3-乙基噻吩(P3HT)与6,6-苯基-C61-丁酸甲酯(PC61BM)的混合物。其中P3HT:PC61BM的质量为1:0.5 ～ 1:4，优选为1:1。第一活性层30的厚度为100nm ～ 300nm，优选为120nm。

[0030] 中间层40形成于第一活性层30的表面。中间层40包含形成于第一活性层30表面的富勒烯衍生物层42、层叠于富勒烯衍生物层42表面的锂盐层44及层叠于锂盐层44表面的掺杂层46。

[0031] 富勒烯衍生物层42的材料选自足球烯(C60)、碳70(C70)、[6,6]-苯基-C61-丁酸甲酯(PC61BM)及[6,6]-苯基-C71-丁酸甲酯(PC71BM)中的至少一种。富勒烯衍生物层42的厚度为40nm ～ 80nm。

[0032] 锂盐层44的材料选自碳酸锂(Li2CO3)、氟化锂(LiF)及氧化锂(Li2O)中的至少一种。锂盐层44的厚度为50nm ～ 100nm。

[0033] 掺杂层46的材料包括酰胺衍生物及掺杂在酰胺衍生物中的空穴传输材料。酰胺衍生物选自酰胺铜(CuPc)、酰胺镁(MgPc)、酰胺锌(ZnPc)及酰胺镍(VPc)中的至少一种。空穴传输材料选自2,3,5,6-四氟-7,7'，8,8'-四氮二甲基对苯醌(F4-TCNQ)、4,4',4''-三(N-(1-萘基)-N-苯基氨基)三苯胺(1T-NATA)、4,4',4''-三(N-(2-萘基)-N-苯基氨基)三苯胺(2T-NATA)及4,4',4''-三(N,N-2-苯基氨基)三苯胺(NATA)中的至少一种。掺杂层46中空穴传输材料与酰胺衍生物的质量比为1:100 ～ 10:100。掺杂层46的厚度为30nm ～ 60nm。

[0034] 第二活性层50形成于掺杂层46的表面。第二活性层50的材料为聚3-乙基噻吩(P3HT)与6,6-苯基-C61-丁酸甲酯(PC61BM)的混合物。其中P3HT:PC61BM的质量为1:0.5 ～ 1:4，优选为1:1。第二活性层50的厚度为100nm ～ 300nm，优选为120nm。

[0035] 电子缓冲层60形成于第二活性层50表面。电子缓冲层60的材料选自氯化铯(Cs2Cl)、氟化锂(LiF)、碳酸锂(Li2CO3)及碳酸铯(Cs2CO3)中的至少一种，优选为LiF。电子缓冲层60的厚度为0.5nm ～ 10nm，优选为0.7nm。

[0036] 阴极70形成于电子缓冲层60表面。阴极70的材料选自铝(AI)、银(Ag)、金(Au)及铂(Pt)中的至少一种，优选为Al。阴极70的厚度为80nm ～ 300nm，优选为150nm。

[0037] 该太阳能电池器件100，通过在第一活性层30及第二活性层50之间制备中间层40，提高太阳能电池器件10的第一活性层30及第二活性层50的光吸收效率，从而提高光电转换效率；富勒烯衍生物层为n型层，富勒烯衍生物是富电子材料，可提高电子的传输速率，同时，与活性层的富勒烯为一个系列的材料，两者搭配可降低电子的注入势垒，使电
子快速达到中间层，提高中间层收集电荷的效率，而钯盐是易溶于水的金属化合物，来源简单，其中的金属离子可对光进行散射，提高第二活性层的光吸收效率，掺杂层由硫酸化物与空穴传输材料组成，空穴传输材料具有较低的 LUMO 能级，其 LUMO 与第二活性层的 HOMO 比较接近，由于 LUMO 能级具有空轨道，而 HOMO 能级是满轨道，HOMO 能级上的载流子就可以快速的进入空穴 LUMO 能级，因此，可提高空穴的注入效率，而硫酸化物是空穴传输性能的材料，可提高空穴的传输速率，两者掺杂后形成 p 掺杂，提高了空穴注入与传输速率，提高了中间层的空穴收集效率，从而提高光电转换效率。

[0038] 需要说明的是，上述太阳能电池器件 100 还可以根据需要设置其他功能层。

[0039] 请同时参阅图 2，一实施例的太阳能电池器件 100 的制备方法，其包括以下步骤：

[0040] 步骤 S110、在阳极 10 表面涂制备空穴缓冲层 20。

[0041] 阳极 10 为铟锡氧化物玻璃 (ITO)、掺氟的氧化锡玻璃 (FTO)、掺铝的氧化锌玻璃 (AZO) 或掺铟的氧化锌玻璃 (IZO)。

[0042] 本实施方式中，对阳极 10 前处理包括去除阳极 10 表面的有机污染物及对阳极 10 进行等氧离子处理。将阳极 10 采用洗涤剂、去离子水、丙酮、乙醇，异丙酮各超声波清洗 15min，以去除基底 10 表面的有机污染物；对阳极 10 进行等氧离子处理时间为 5min～15min，功率为 10～50W。

[0043] 空穴缓冲层 20 通过在阳极 10 表面涂制含有空穴缓冲材料的溶液制备，旋涂的转速为 2000rpm～6000rpm，时间为 10s～30s，优选的，旋涂的转速为 4000rpm，时间为 15s。空穴缓冲材料为聚 3、4- 乙烯二氧噻吩 (PEDOT) 与聚苯磺酸钠 (PSS) 的混合物。其中 PEDOT 与 PSS 的质量比为 2:1～6:1，优选为 2:1。含有空穴缓冲材料的溶液中 PEDOT 的质量百分含量为 1%～5%，优选为 2%。溶液为水。旋涂后在 100℃～200℃下加热 15 分钟～60 分钟，优选在 200℃下加热 30 分钟。空穴缓冲层 20 的厚度为 20nm～80nm，优选为 70nm。

[0044] 步骤 S120，在空穴缓冲层 20 表面涂制备第一活性层 30。

[0045] 第一活性层 30 由第一活性层溶液涂在空穴缓冲层 20 表面制成。旋涂的转速为 4000rpm～6000rpm，时间为 10s～30s，优选的，旋涂转速为 5000rpm，时间为 10s。第一活性层溶液中第一活性层材料的浓度为 8mg/ml～30mg/ml，优选为 12mg/ml。第一活性层溶液的溶剂选自甲苯、二甲苯、氯苯及氯佛中的至少一种，优选为氯苯。第一活性层材料为聚 3-乙基噻吩 (P3HT) 与 6,6-苯基-C61- 丁酸甲酯 (PC61BM) 的混合物。其中 P3HT:PC61BM 的质量比为 1:0.5～1:4，优选为 1:1。旋涂第一活性层 30 在充分惰性气体的手套箱中进行，之后在 50℃～200℃下退火 5 分钟～100 分钟，优选在 70℃下退火 30 分钟。第一活性层 30 的厚度为 100nm～300nm，优选为 120nm。

[0046] 步骤 S130，在第一活性层 30 表面制备富勒烯衍生物层 42。

[0047] 富勒烯衍生物层 42 的材料选自足球烯 (C60)、碳 70(C70)、[6,6]-苯基-C61- 丁酸甲酯 (PC61BM) 及 [6,6]-苯基-C71- 丁酸甲酯 (P71BM) 中的至少一种。富勒烯衍生物层 42 的厚度为 40nm～80nm。

[0048] 优选的，含有富勒烯衍生物层的悬浮液中，富勒烯衍生物的浓度为 10mg/ml～30mg/ml。悬浮液中的溶剂为氯苯、三氯甲烷、二氯甲烷或对二甲苯。

[0049] 优选的，旋涂的转速为 4000rpm～8000rpm，时间为 10s～30s。旋涂后在 100℃～
200℃下烘干 10 分钟～30 分钟。

[0050] 步骤 S140、将含有铟盐的溶液旋涂在富勒烯衍生物层 42 的表面制备铟盐层 44。
[0051] 铟盐层 44 的材料选自碳酸铟 (Li₂CO₃)、氟化铟 (LiF) 及氧化铟 (Li₂O) 中的至少一种。铟盐层 44 的厚度为 50nm ～ 100nm。
[0052] 优选的，含有铟盐的溶液中，铟盐的浓度为 50mg/ml ～ 100mg/ml。溶液中的溶剂为水、乙醇、异丙醇或正丁醇。
[0053] 优选的，旋涂的转速为 2000rpm ～4000rpm，时间为 10s ～30s。旋涂后在 100℃～200℃下烘干 10 分钟～30 分钟。
[0054] 步骤 S150、将含有掺杂材料的悬浮液旋涂在铟盐层 44 的表面制备掺杂层 46。
[0055] 掺杂层 46 的材料包括酞菁化合物及掺杂在酞菁化合物中的空穴传输材料。酞菁化合物选自酞菁铜 (CuPc)、酞菁镁 (MgPc)、酞菁锌 (ZnPc) 及酞菁钒 (VpC) 中的至少一种。空穴传输材料选自 2, 3, 5, 6-四氟-7, 7′, 8, 8′- 四氧二甲基对苯醌 (F4-TCNO)、4, 4′, 4″- 三 (N- (1- 苯基)-N- 苯基氨基) 三苯胺 (1T-NATA) 及 4, 4′, 4″- 三 (N- (2- 苯基)-N- 苯基氨基) 三苯胺 (2T-NATA) 及 4, 4′, 4″- 三 (N, N-2- 苯基氨基) 三苯胺 (NATA) 中的至少一种。掺杂层 46 中空穴传输材料与酞菁化合物的质量比为 1:100 ～ 1:100。掺杂层 46 的厚度为 30nm ～60nm。
[0056] 优选的，含有掺杂材料的悬浮液中，酞菁化合物的浓度为 1mg/ml ～ 20mg/ml。悬浮液中的溶剂为氯苯、三氯甲烷、二氯甲烷或对二甲苯。
[0057] 优选的，旋涂的转速为 4000rpm ～8000rpm，时间为 10s ～30s。旋涂后在 100℃～200℃下烘干 10 分钟～30 分钟。
[0058] 步骤 S160、在掺杂层 46 表面旋涂制备第二活性层 50。
[0059] 第二活性层 50 由第二活性层溶液旋涂在掺杂层表面制成。旋涂的转速为 4000rpm ～6000rpm，时间为 10s ～30s，优选的，旋涂转速为 5000rpm，时间为 10s。第二活性层溶液中第二活性层材料的浓度为 8mg/ml ～ 30mg/ml，优选为 12mg/ml。第二活性层溶液的溶剂选自甲苯、二甲苯、氯苯及氯仿中的至少一种，优选为氯苯。第二活性层材料为聚 3- 己基噻吩 (P3HT) 与 6, 6′- 苯基-C₆H₄- 丁酸甲酯 (PC₆H₄BM) 的混合物。其中 P3HT: PC₆H₄BM 的质量比为 1:0.5 ～1:4，优选为 1:1。旋涂第二活性层 50 在充满惰性气体的手套箱中进行，之后在 50℃～200℃下退火 5 分钟～100 分钟，优选在 70℃下退火 30 分钟。第二活性层 50 的厚度为 100nm ～300nm，优选为 120nm。
[0060] 步骤 S170、在第二活性层 50 的表面依次蒸镀制备电子缓冲层 60 及阴极 70。
[0061] 电子缓冲层 60 形成于第二活性层 50 表面。电子缓冲层 60 的材料选自氟化铯 (CsF)、氟化铟 (LiF)、碳酸铯 (Li₂CO₃) 及碳酸铯 (Cs₂CO₃) 中的至少一种，优选为 LiF。电子缓冲层 60 的厚度为 0.5nm ～10nm，优选为 0.7nm。蒸镀在真空压力为 3 × 10⁻³ ～ 2 × 10⁻⁵Pa 下进行，蒸镀速率为 0.1nm/s ～ 1nm/s。
[0062] 阴极 70 形成于电子缓冲层 60 表面。阴极 70 的材料选自铝 (Al)、银 (Ag)、金 (Au) 及铂 (Pt) 中的至少一种，优选为 Al。阴极 70 的厚度为 80nm ～300nm，优选为 150nm。蒸镀在真空压力为 3 × 10⁻³ ～ 2 × 10⁻⁵Pa 下进行，蒸镀速率为 1nm/s ～ 10nm/s。
[0063] 上述太阳能电池器件制备方法，制备工艺简单，制备的太阳能电池器件的能量转换效率较高。
以下结合具体实施例对本发明提供的太阳能电池器件的制备方法进行详细说明。

本发明实施例及对比例所用到的制备与测试仪器为：高真空镀膜设备（沈阳科学仪器研制中心有限公司，真空度 < 1×10⁻⁴Pa）、电压 - 电流测试仪（美国 Keithly 公司，型号：2602）、用 500W 白炽灯（Osram）与 AM1.5 的滤光片组合为模拟太阳光的白光光源。

实施例 1

本实施例制备的结构为：ITO/PEDOT:PSS/P3HT:PC₆BM/P71BM/Li₂CO₃/F4-TCNQ：CuPc/P3HT:PC₆BM/LiF/Al，太阳能电池器件。其中，“/”表示层叠结构，“：”表示掺杂或混合，以下实施例相同。

先将 ITO 进行光刻处理，剪裁成所需要的大小，依次用洗洁精、去离子水，丙酮、乙醇、异丙醇各超声 15min，去除玻璃表面的有机污染物，清洗干净后对电极基底进行氧等离子处理，处理时间为 10min，功率为 20W；旋涂制备空穴缓冲层，材料为 PEDOT：PSS 的质量比为 2：1，PEDOT 的质量分数为 2%，旋涂的转速为 4000rpm，时间为 15s；旋涂后在 200℃下加热 30min，厚度为 70nm；旋涂第一活性层，第一活性层由浓度为 12mg/ml 的 P3HT 及 PC₆BM 的溶液旋涂而成，溶剂为氯苯，P3HT 与 PC₆BM 的质量比为 1：1，旋涂的转速为 5000rpm，时间为 10s，旋涂后在 70℃下退火 30 分钟，厚度控制在 120nm。旋涂富勒烯衍生物层，悬浮液包括 P71BM 及溶剂，溶剂为氯苯，P71BM 的浓度为 20mg/ml，旋涂的转速为 5000rpm，时间为 15s，150℃烘干 20min，厚度为 60nm。接着旋涂锂盐层，悬浮液包括 Li₂CO₃ 及溶剂，溶剂为水，Li₂CO₃ 的浓度为 60mg/ml，旋涂的转速为 3000rpm，时间为 15s，150℃烘干 20min，厚度为 80nm。旋涂制备掺杂层，悬浮液包括 F4-TCNQ、CuPc 及溶剂，溶剂为氯苯，CuPc 的浓度为 12mg/ml，F4-TCNQ 与 CuPc 的质量比为 2.5：100，旋涂的转速为 6000rpm，时间为 15s，150℃烘干 20min，厚度为 40nm；然后旋涂第二活性层，第二活性层由浓度为 12mg/ml 的 P3HT 及 PC₆BM 的溶液旋涂而成，溶剂为氯苯，P3HT 与 PC₆BM 的质量比为 1：1，旋涂的转速为 5000rpm，时间为 10s，旋涂后在 70℃下退火 30 分钟，厚度控制在 120nm。然后蒸镀制备电子缓冲层，材料为 LiF，厚度为 0.7nm，蒸镀在真空压力为 5×10⁻⁶Pa 下进行，蒸镀速率为 0.2nm/s；蒸镀阴极，材料为 Al，厚度为 150nm，蒸镀在真空压力为 5×10⁻⁶Pa 下进行，蒸镀速率为 4nm/s。最后得到所要的聚合物太阳能电池器件。

请参照图 3，所示为实施例 1 中制备的结构为 ITO/PEDOT:PSS/P3HT:PC₆BM/P71BM/Li₂CO₃/F4-TCNQ：CuPc/P3HT:PC₆BM/LiF/Al 的太阳电池器件（曲线 1）与传统的结构为 ITO/PEDOT:PSS/P3HT:PCBM/LiF/Al 太阳能电池器件（曲线 2）的电流密度与电压关系，表 1 所示为实施例 1 中制备的结构为 ITO/PEDOT:PSS/P3HT:PC₆BM/P71BM/Li₂CO₃/F4-TCNQ：CuPc/P3HT:PC₆BM/LiF/Al 的太阳电池器件与传统的结构为 ITO/PEDOT:PSS/P3HT:PCBM/LiF/Al 太阳能电池器件的电流密度、电压、能量转换效率（η）及填充因子数据。传统的太阳能电池器件中各层厚度与实施例 1 制备的太阳能电池器件中各层厚度相同。

<table>
<thead>
<tr>
<th>曲线</th>
<th>电流密度（mA/cm²）</th>
<th>电压（V）</th>
<th>η (%)</th>
<th>填充因子</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.48</td>
<td>0.69</td>
<td>6.42</td>
<td>0.38</td>
</tr>
</tbody>
</table>

表 1
从表1和图3可以看出，常用的太阳能电池器件电流密度为15.95mA/cm²，而实施例1制备的太阳能电池器件电流密度提高到了24.48mA/cm²，这说明，本发明的中间层能提高光电转换效率。传统的太阳能电池器件的能量转换效率为3.99%，而实施例1制备的太阳能电池器件的能量转换效率为6.42%。

以下各个实施例的电流密度与电压关系曲线、电流密度、电压、能量转换效率及填充因子与实施例1相类似，各太阳能电池器件也具有类似的能量转换效率，在下面不再赘述。

实施例2
本实施例制备的结构为1ZO/PEDOT:PSS/P3HT:PC₆₀BM/C60/LiF/1T-NATA:MgPc/P3HT:PC₆₀BM/CaCO₃/Au的太阳能电池器件。

先将1ZO进行光刻处理，剪裁成所需要的大，依次用洗洁精，去离子水，丙酮，乙醇，异丙醇各超声15min，去除玻璃表面的有机污染物，清洗干净后对导电基底进行氧等离子处理，处理时间为15min，功率为10W；旋涂制备空穴缓冲层，材料为PEDOT:PSS的质量比为2:1，P3HT的质量分数为5%；旋涂的转速为6000rpm，时间为30s，旋涂后在100℃下加热60min，厚度为20nm；旋涂第一活性层，第一活性层由浓度为8mg/ml的P3HT及PC₆₀BM的溶液旋涂而成，溶剂为甲苯，P3HT与PC₆₀BM的质量比为1:0.5，旋涂的转速为4000rpm，时间为10s，旋涂后在50℃下退火100分钟，厚度控制在300nm。旋涂制备衍生物层，悬浮液包括C60及溶剂，溶剂为三氯甲烷，C60的浓度为10mg/ml，旋涂的转速为8000rpm，时间为30s，100℃烘干30min，厚度为40nm。接着旋涂锂盐层，悬浮液包括LiF及溶剂，溶剂为乙醇，LiF的浓度为50mg/ml，旋涂的转速为2000rpm，时间为10s，100℃烘干30min，厚度为100nm。旋涂制备掺杂层，悬浮液包括1T-NATA、MgPc及溶剂，溶剂为三氯甲烷，MgPc的浓度为20mg/ml，1T-NATA与MgPc的质量比为10:1，旋涂的转速为8000rpm，时间为30s，100℃烘干30min，厚度为30nm；然后旋涂第二活性层，第二活性层由浓度为30mg/ml的P3HT及PC₆₀BM的溶液旋涂而成，溶剂为氯仿，P3HT与PC₆₀BM的质量比为1:4，旋涂的转速为6000rpm，时间为10s，旋涂后在150℃下退火15分钟，厚度控制在100nm。然后蒸镀制备电子缓冲层，材料为CaCO₃，厚度为5nm，蒸镀在真空压力为3×10⁻⁶Pa下进行，蒸镀速率为0.1nm/s；蒸镀阴极，材料为Au，厚度为300nm，蒸镀在真空压力为3×10⁻⁶Pa下进行，蒸镀速率为1nm/s。最后得到所要的聚合物太阳能电池器件。

实施例3
本实施例制备的结构为FTO/PEDOT:PSS/P3HT:PC₆₀BM/C70/Li₂O/2T-NATA:ZnPc/P3HT:PC₆₀BM/Ag的太阳能电池器件。

先将FTO进行光刻处理，剪裁成所需要的大，依次用洗洁精，去离子水，丙酮，乙醇，异丙醇各超声15min，去除玻璃表面的有机污染物，清洗干净后对导电基底进行氧等离子处理，处理时间为5min，功率为50W；旋涂制备空穴缓冲层，材料为PEDOT:PSS的质量比为6:1，P3HT的质量分数为1%；旋涂的转速为2000rpm，时间为10s，旋涂后在200℃下加热15min，厚度为80nm；旋涂第一活性层，第一活性层由浓度为30mg/ml的P3HT及PC₆₀BM的溶液旋涂而成，溶剂为二甲苯，P3HT与PC₆₀BM的质量比为1:4，旋涂的转速为6000rpm，时
间为 30s，旋涂后在 200°C 下退火 5 分钟，厚度控制在 100nm。旋涂富勒烯衍生物层，悬浮液包括 C70 及溶剂，溶剂为二氯甲烷，C70 的浓度为 30mg/ml，旋涂的转速为 4000rpm，时间为 10s，200°C 烘干 10min，厚度为 80nm。接着旋涂锂盐层，悬浮液包括 Li2O 及溶剂，溶剂为异丙醇，Li2O 的浓度为 100mg/ml，旋涂的转速为 4000rpm，时间为 30s，200°C 烘干 10min，厚度为 50nm。旋涂制备掺杂层，悬浮液包括 2T-NATA、ZnPc 及溶剂，溶剂为二氯甲烷，ZnPc 的浓度为 1mg/ml，2T-NATA 与 ZnPc 的质量比为 1:100，旋涂的转速为 4000rpm，时间为 10s，200°C 烘干 10min，厚度为 60nm；然后旋涂第三活性层，第二活性层由浓度为 8mg/ml 的 P3HT 及 P85BM 的溶液旋涂而成，溶剂为二甲苯，P3HT 与 P85BM 的质量比为 1:0.5，旋涂的转速为 4000rpm，时间为 10s，旋涂后在 150°C 下退火 15 分钟，厚度控制在 200nm。然后蒸镀制备电子缓冲层，材料为 Cs2N，厚度为 10nm，蒸镀在真空压力为 2×10⁻⁴Pa 下进行，蒸镀速率为 1nm/s；蒸镀阴极，材料为 Ag，厚度为 80nm，蒸镀在真空压力为 2×10⁻⁵Pa 下进行，蒸镀速率为 10nm/s。最后得到所要的聚合物太阳能电池器件。

[0080] 实施例 4
[0081] 本实施例制备的结构为 IT0/PEDOT:PSS/P3HT:P85BM/PC61BM/Li2CO3/NATA:VPc/P3HT:P85BM/Li2CO3/Pt 的太阳能电池器件。

[0082] 先将 IT0 进行光刻处理，剪裁成所需要的大小，依次用洗洁精清洗，去离子水，丙酮，乙醇，异丙醇逐次超声 15min，去除玻璃表面的有机污染物；清洗干净后对导电基底进行氧等离子处理，处理时间为 10min，功率为 25W；旋涂制备空穴缓冲层，材料为 PEDOT:PSS 的质量比为 3:1，PEDOT 的质量分数为 3.5%，旋涂的转速为 5000rpm，时间为 20s，旋涂后在 150°C 下加热 20min，厚度为 60nm；旋涂第一活性层，第一活性层由浓度为 10mg/ml 的 P3HT 及 P85BM 的溶液旋涂而成，溶剂为氯仿，P3HT 与 P85BM 的质量比为 1:3，旋涂的转速为 5000rpm，时间为 20s，旋涂后在 100°C 下退火 30 分钟，厚度控制在 200nm。旋涂富勒烯衍生物层，悬浮液包括 PC61BM 及溶剂，溶剂为对二甲苯，PC61BM 的浓度为 15mg/ml，旋涂的转速为 7000rpm，时间为 20s，120°C 烘干 25min，厚度为 65nm。接着旋涂锂盐层，悬浮液包括 Li2CO3 及溶剂，溶剂为正丁醇，Li2CO3 的浓度为 60mg/ml，旋涂的转速为 2500rpm，时间为 15s，150°C 烘干 20min，厚度为 70nm。旋涂制备掺杂层，悬浮液包括 NATA, VPc 及溶剂，溶剂为对二甲苯，VPc 的浓度为 5mg/ml，NATA 与 VPc 的质量比为 8:100，旋涂的转速为 5000rpm，时间为 12s，180°C 烘干 15min，厚度为 45nm；然后旋涂第二活性层，第二活性层由浓度为 25mg/ml 的 P3HT 及 P85BM 的溶液旋涂而成，溶剂为甲苯，P3HT 与 P85BM 的质量比为 1:2，旋涂的转速为 4200rpm，时间为 20s，旋涂后在 150°C 下退火 10 分钟，厚度控制在 80nm。然后蒸镀制备电子缓冲层，材料为 Li2CO3，厚度为 1nm，蒸镀在真空压力为 2×10⁻⁴Pa 下进行，蒸镀速率为 0.2nm/s；蒸镀阴极，材料为 Pt，厚度为 100nm，蒸镀在真空压力为 2×10⁻⁵Pa 下进行，蒸镀速率为 4nm/s。最后得到所要的聚合物太阳能电池器件。

[0083] 以上所述实施例仅表达了本发明的几种实施方式，其描述较为具体和详细，但并不能因此而理解为对本发明专利范围的限制。应当指出的是，对于本领域的普通技术人员来说，在不脱离本发明构思的前提下，还可以做出若干变形和改进，这些都属于本发明的保护范围。因此，本发明专利的保护范围应以所附权利要求为准。
在阴极表面旋涂制备空穴缓冲层

在空穴缓冲层表面旋涂制备第一活性层

将含有富勒烯衍生物的悬浮液旋涂在第一活性层表面制备富勒烯衍生物层

将含有锂盐的溶液旋涂在富勒烯衍生物层的表面制备锂盐层

将含有掺杂材料的悬浮液旋涂在锂盐层的表面制备掺杂层

在掺杂层表面旋涂制备第二活性层

在第二活性层的表面依次蒸镀制备电子缓冲层及阴极

图2
图 3