

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2016/077675 A1

(43) International Publication Date
19 May 2016 (19.05.2016)

(51) International Patent Classification:

C07K 16/28 (2006.01) A61K 39/00 (2006.01)
A61K 39/395 (2006.01)

Road, Tarrytown, NY 10591 (US). **HAMILTON, Jennifer, Davidson**; C/o Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591 (US).

(21) International Application Number:

PCT/US2015/060540

(74) Agents: **VELEMA, James, H.** et al.; Lathrop & Gage LLP, 28 State Street, Boston, MA 02109 (US).

(22) International Filing Date:

13 November 2015 (13.11.2015)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

62/080,092	14 November 2014 (14.11.2014)	US
62/083,821	24 November 2014 (24.11.2014)	US
62/158,832	8 May 2015 (08.05.2015)	US
62/199,305	31 July 2015 (31.07.2015)	US
15306632.9	14 October 2015 (14.10.2015)	EP

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))

WO 2016/077675 A1

(54) Title: METHODS FOR TREATING CHRONIC SINUSITIS WITH NASAL POLYPS BY ADMINISTERING AN IL-4R ANTAGONIST

(57) Abstract: The present invention provides methods for decreasing a nasal polyp score in a subject. The methods include administering to a subject in need thereof a therapeutic composition comprising an interleukin-4 receptor (IL-4R) antagonist such as an anti-IL-4R antibody or antigen binding fragment thereof.

METHODS FOR TREATING CHRONIC SINUSITIS WITH NASAL POLYPS BY ADMINISTERING AN IL-4R ANTAGONIST

5

RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application Nos. 62/080,092, filed November 14, 2014, 62/083,821, filed November 24, 2014, 62/158,832, filed May 8, 2015, and 10 62/199,305, filed July 31, 2015, and EP Application No. EP15306632.9, filed October 14, 2015, each of which is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

[0002] The present invention relates to the field of therapeutic treatments of inflammatory conditions. More specifically, the invention relates to the administration of interleukin-4 receptor 15 (IL-4R) antagonists to decrease nasal polyp score and to treat associated conditions.

BACKGROUND

[0003] Chronic sinusitis (CS), an inflammatory condition of the sinuses, is a common syndrome, with estimates of prevalence as high as 13% in Western populations. This condition 20 is characterized by any combination of specific symptoms including nasal congestion, decreased or lost sense of smell, anterior and/or posterior nasal discharge, facial pain, and/or headache and consequences thereof, often for a period of years. CS can be clinically divided into CS with or without nasal polyps.

[0004] Nasal polyposis (NP) is a clinical condition characterized by the presence of multiple 25 polyps in the upper nasal cavity, originating from the osteomeatal complex. NP is a T helper cell-2 (Th-2) driven inflammatory process affecting the mucosa of the nose and paranasal sinuses. Eosinophils and their products are thought to be a hallmark of nasal polyp-associated inflammation as elevated levels of interleukin-5 (IL-5; promotes eosinophil survival and differentiation), eosinophil cationic protein (ECP), and eotaxin (eosinophil chemoattractant), 30 factors that attract and activate eosinophils, are typically found in nasal polyps. Eosinophils are the predominant inflammatory cell found in the sinuses and nasal polyps, and nasal polyps are also associated with elevated levels of IgE. NP is characterized by long-term symptoms of nasal obstruction and congestion, reduction in or loss of sense of smell, anterior and posterior rhinorrhea, and facial pain. Current treatment options range from local or systemic 35 corticosteroids to functional endoscopic sinus surgery.

[0005] Current medical management of chronic sinusitis with nasal polyps/nasal polyposis (CSwNP) primarily focuses on controlling inflammation, which involves administration of topical and systemic corticosteroids with a goal of reducing polyp mass and number. In case of failure,

surgical excision is indicated. However, disease recurrence is reported to be frequent after surgery, with rates of recurrence approaching 50% in patients with tissue eosinophilia.

BRIEF SUMMARY OF THE INVENTION

5 **[0006]** In one aspect, the invention provides a method for decreasing a nasal polyp score (NPS) of a subject in need thereof comprising determining the NPS of the subject and administering to the subject a pharmaceutical composition comprising an antibody or antigen binding fragment thereof that specifically binds an interleukin-4 receptor (IL-4R), wherein the antibody or antigen binding fragment thereof comprises heavy chain and light chain CDR 10 sequences from the heavy chain variably region (HCVR) and light chain variable region (LCVR) sequence pair of SEQ ID NOs:1 and 2, such that the NPS of the subject is decreased (e.g., by about 10% to about 50%, by about 20% to about 40%, or by about 25% to about 30%). This aspect can alternatively be worded as follows: A pharmaceutical composition comprising an antibody or antigen binding fragment thereof that specifically binds an interleukin-4 receptor (IL- 15 4R) for use in decreasing a nasal polyp score (NPS) of a subject in need thereof (e.g., by about 10% to about 50%, by about 20% to about 40%, or by about 25% to about 30%), wherein the pharmaceutical composition is for administration to a subject whose NPS had been determined; wherein the antibody or antigen binding fragment thereof comprises heavy chain and light chain CDR sequences from the heavy chain variably region (HCVR) and light chain variable region 20 (LCVR) sequence pair of SEQ ID NOs:1 and 2. For example, in one embodiment, the antibody or antigen binding fragment thereof comprises heavy chain CDR sequences of SEQ ID NOs:3, 4 and 5, and light chain CDR sequences of SEQ ID NOs:6, 7 and 8. For example, in one embodiment, the antibody or antigen-binding fragment thereof comprises an HCVR having the amino acid sequence of SEQ ID NO:1 and an LCVR having the amino acid sequence of SEQ ID 25 NO:2. The antibody can have, for example, a heavy chain sequence of SEQ ID NO:9, and a light chain sequence of SEQ ID NO:10.

[0007] In one embodiment, the IL-4R antagonist is dupilumab or an antigen-binding fragment thereof. Other exemplary anti-IL-4R antibodies or antigen-binding fragments thereof are described, for example, in US Patent Nos. 7,605,237 and 7,608,693.

30 **[0008]** A subject suitable for treatment with an IL-4R antagonist may have a total of at least 5 nasal polyps, with two or more nasal polyps present in each nostril prior to the administering step and/or may suffer from one or more conditions selected from the group consisting of sinusitis, rhinitis, asthma, aspirin hypersensitivity, Non-Steroidal Anti-Inflammatory Drug (NSAID) hypersensitivity, and Samter's triad (defined by presence of nasal polyps, asthma, and 35 aspirin and NSAID sensitivity), and/or may have undergone surgery for one or both of nasal polyps and chronic rhinosinusitis. In certain embodiments, a subject suitable for treatment has one or more conditions selected from the group consisting of chronic sinusitis with nasal polyps

(CSwNP), chronic sinusitis with bilateral nasal polyps, and chronic rhinosinusitis with nasal polyps (CRSwNP) (e.g., with or without asthma). The subject suitable for treatment may or may not have asthma. In some embodiments, for a subject suitable for treatment, a first functional endoscopy sinus surgery (FESS) is indicated, a revised surgery is indicated, or surgery is

5 contraindicated.

[0009] In some embodiments, the IL-4R antagonist is indicated for the long-term treatment of adults with chronic sinusitis with bilateral nasal polyposis, who have persistent signs and symptoms despite treatment with intranasal corticosteroids (INCS), or is indicated for the long-term treatment of adults with bilateral nasal polyposis with associated chronic sinusitis who have

10 persistent signs and symptoms despite treatment with INCS, or is indicated for the treatment of adults with bilateral nasal polyposis with persistent signs and symptoms despite treatment with intranasal or oral corticosteroids, or intolerance to oral corticosteroids, or is indicated for the treatment of adults with bilateral nasal polyposis with persistent signs and symptoms despite treatment with intranasal or oral corticosteroids, or intolerance to oral corticosteroids.

15 **[0010]** In some embodiments, the IL-4R antagonist is administered at a dose of between about 100 mg and about 600 mg. In some embodiments, the IL-4R antagonist is administered in an initial dose of between about 400 mg and about 600 mg, and in one or more subsequent doses of between about 200 mg and about 400mg each. In some embodiments, the IL-4R antagonist is administered in an initial dose of about 600 mg, and in one or more subsequent 20 doses of about 300 mg each. In other embodiments, the IL-4R antagonist is administered once every seven days (QW). In certain embodiments, the pharmaceutical composition is administered to the subject systemically or locally. For example, the pharmaceutical composition may be administered subcutaneously, intravenously, or intranasally. In one embodiment, the pharmaceutical composition is administered to the subject subcutaneously at a 25 dose of 300 mg or a dose of 600 mg.

30 **[0011]** In some embodiments, the administering step is followed by an improvement in one or more nasal polyposis-associated parameters selected from the group consisting of loss of smell, runny nose, post nasal drip, and nasal peak inspiratory flow (NPIF). In some embodiments, the improvement in one or more of loss of smell, runny nose, post nasal drip and nasal peak inspiratory flow occurs in the day (AM), at night (PM) or both in the AM and in the PM. In some embodiments, the administering step is followed by a decrease in one or more of serum IgE levels, plasma eotaxin-3 levels and serum thymus and activation-regulated chemokine (TARC) levels. In some embodiments, the administering step is followed by a decrease in one or more of total IgE levels, eotaxin-3 levels, and ECP levels in nasal secretions of the subject.

35 **[0012]** In another aspect, the invention provides a method for decreasing an NPS of a subject in need thereof comprising determining the NPS of the subject, administering to the subject a loading dose of about 400 to about 600 mg of an antibody or antigen binding fragment thereof

that specifically binds an IL-4R, wherein the antibody or antigen binding fragment thereof comprises heavy chain and light chain CDR sequences from the HCVR and LCVR sequence pair of SEQ ID NOs:1 and 2 and administering to the subject one or more maintenance doses of about 200 to about 300 mg each of the antibody or antigen binding fragment thereof, such that

5 the NPS of the subject is decreased (e.g., by about 10% to about 50%, by about 20% to about 40%, or by about 25% to about 30%). This aspect can alternatively be worded as follows: An antibody or antigen binding fragment thereof that specifically binds an IL-4R for use in decreasing an NPS of a subject in need thereof (e.g., by about 10% to about 50%, by about 20% to about 40%, or by about 25% to about 30%), wherein the antibody or the antigen binding

10 fragment thereof is for administration to a subject whose NPS had been determined; wherein the antibody or the antigen binding fragment thereof is for administration in a loading dose of about 400 to about 600 mg; wherein the antibody or the antigen binding fragment thereof comprises heavy chain and light chain CDR sequences from the HCVR and LCVR sequence pair of SEQ ID NOs:1 and 2; and wherein the antibody or the antigen binding fragment thereof is for

15 administration in one or more maintenance doses of about 200 to about 300 mg each. For example, in one embodiment, the antibody or antigen binding fragment thereof comprises heavy chain CDR sequences of SEQ ID NOs:3, 4 and 5, and light chain CDR sequences of SEQ ID NOs:6, 7 and 8. For example, in one embodiment, the antibody or antigen-binding fragment thereof comprises an HCVR having the amino acid sequence of SEQ ID NO:1 and an LCVR

20 having the amino acid sequence of SEQ ID NO:2. The antibody can have, for example, a heavy chain sequence of SEQ ID NO:9, and a light chain sequence of SEQ ID NO:10. In one embodiment, the IL-4R antagonist is dupilumab or an antigen binding fragment thereof.

[0013] In some embodiments, the loading dose of an IL-4R antagonist is about 600 mg and the one or more maintenance doses of an IL-4R antagonist are about 300 mg each. In other 25 embodiments, the IL-4R antagonist is administered once every seven days (QW). In certain embodiments, the pharmaceutical composition is administered to the subject systemically or locally. For example, the pharmaceutical composition may be administered subcutaneously, intravenously, or intranasally. In one embodiment, the pharmaceutical composition is administered to the subject subcutaneously at a dose of 300 mg or a dose of 600 mg.

[0014] A subject suitable for treatment with an IL-4R antagonist may have a total of at least 5 30 nasal polyps, with two or more nasal polyps present in each nostril prior to the administering step and/or may suffer from one or more conditions selected from the group consisting of sinusitis, rhinitis, asthma, aspirin hypersensitivity, NSAID hypersensitivity, and Samter's triad, and/or may have undergone surgery for one or both of nasal polyps and chronic rhinosinusitis. In certain embodiments, a subject suitable for treatment has one or more conditions selected 35 from the group consisting of CSwNP, chronic sinusitis with bilateral nasal polyps, and CRSwNP (e.g., with or without asthma). The subject suitable for treatment may or may not have asthma.

In some embodiments, for a subject suitable for treatment, a FESS is indicated, a revised surgery is indicated, or surgery is contraindicated.

[0015] In some embodiments, the administering steps are followed by an improvement in one or more nasal polyposis-associated parameters selected from the group consisting of loss of

5 smell, runny nose, post nasal drip, and NPIF. In some embodiments, the improvement in one or more of loss of smell, runny nose, post nasal drip and nasal peak inspiratory flow occurs in the AM, in the PM or both in the AM and in the PM. In some embodiments, the administering steps are followed by a decrease in one or more of serum IgE levels, plasma eotaxin-3 levels and serum TARC levels. In some embodiments, the administering step is followed by a decrease in
10 one or more of total IgE levels, eotaxin-3 levels, and ECP levels in nasal secretions of the subject.

[0016] In another aspect, the invention provides a method for decreasing an NPS of a subject in need thereof comprising determining the NPS of the subject, administering to the subject one or more maintenance doses of an ICS, administering to the subject a loading dose of about 400

15 to about 600 mg of an antibody or antigen binding fragment thereof that specifically binds an IL-4R, wherein the antibody or antigen binding fragment thereof comprises heavy chain and light chain CDR sequences from the HCVR and LCVR sequence pair of SEQ ID NOs:1 and 2, and administering to the subject one or more maintenance doses of about 200 to about 300 mg each of the antibody or antigen binding fragment thereof, wherein the ICS is administered for the
20 duration of administration of the antibody or antigen binding fragment thereof, such that the NPS of the subject is decreased (e.g., by about 10% to about 50%, by about 20% to about 40%, or by about 25% to about 30%). This aspect can alternatively be worded as follows: An antibody or antigen binding fragment thereof that specifically binds an IL-4R for use in decreasing an NPS of a subject in need thereof (e.g., by about 10% to about 50%, by about 20% to about 40%, or by
25 about 25% to about 30%); wherein the antibody or the antigen binding fragment thereof is for administration to a subject whose NPS had been determined; wherein the antibody or the antigen binding fragment thereof is for administration to a subject who has received one or more maintenance doses of an ICS; wherein the antibody or the antigen binding fragment thereof is for administration in a loading dose of about 400 to about 600 mg; wherein the antibody or
30 antigen binding fragment thereof comprises heavy chain and light chain CDR sequences from the HCVR and LCVR sequence pair of SEQ ID NOs:1 and 2; wherein the antibody or the antigen binding fragment thereof is for administration in one or more maintenance doses of about 200 to about 300 mg each; and wherein the ICS is for administration for the duration of administration of the antibody or antigen binding fragment thereof. For example, in one
35 embodiment, the antibody or antigen binding fragment thereof comprises heavy chain CDR sequences of SEQ ID NOs:3, 4 and 5, and light chain CDR sequences of SEQ ID NOs:6, 7 and 8. For example, in one embodiment, the antibody or antigen-binding fragment thereof

comprises an HCVR having the amino acid sequence of SEQ ID NO:1 and an LCVR having the amino acid sequence of SEQ ID NO:2. The antibody can have, for example, a heavy chain sequence of SEQ ID NO:9, and a light chain sequence of SEQ ID NO:10. In one embodiment, the IL-4R antagonist is dupilumab or an antigen binding fragment thereof.

5 **[0017]** In some embodiments, the loading dose of an IL-4R antagonist is about 600 mg and the one or more maintenance doses of an IL-4R antagonist are about 300 mg each. In other embodiments, the IL-4R antagonist is administered once every seven days (QW). In certain embodiments, the pharmaceutical composition is administered to the subject systemically or locally. For example, the pharmaceutical composition may be administered subcutaneously, 10 intravenously, or intranasally. In one embodiment, the pharmaceutical composition is administered to the subject subcutaneously at a dose of 300 mg or a dose of 600 mg. In some embodiments, the ICS is mometasone furoate nasal spray (MFNS). In some embodiments, about 100 mg MFNS is administered to each nostril of the subject once or twice a day.

15 **[0018]** A subject suitable for treatment with an IL-4R antagonist may have a total of at least 5 nasal polyps, with two or more nasal polyps present in each nostril prior to the administering step and/or may suffer from one or more conditions selected from the group consisting of sinusitis, rhinitis, asthma, aspirin hypersensitivity, NSAID hypersensitivity, and Samter's triad, and/or may have undergone surgery for one or both of nasal polyps and chronic rhinosinusitis. In certain embodiments, a subject suitable for treatment has one or more conditions selected 20 from the group consisting of CSwNP, chronic sinusitis with bilateral nasal polyps, and CRSwNP (e.g., with or without asthma). The subject suitable for treatment may or may not have asthma. In some embodiments, for a subject suitable for treatment, a FESS is indicated, a revised surgery is indicated, or surgery is contraindicated.

25 **[0019]** In some embodiments, the administering steps are followed by an improvement in one or more nasal polyposis-associated parameters selected from the group consisting of loss of smell, runny nose, post nasal drip, and NPIF. In some embodiments, the improvement in one or more of loss of smell, runny nose, post nasal drip and nasal peak inspiratory flow occurs in the AM, in the PM or both in the AM and in the PM. In some embodiments, the administering steps are followed by a decrease in one or more of serum IgE levels, plasma eotaxin-3 levels and 30 serum TARC levels. In some embodiments, the administering step is followed by a decrease in one or more of total IgE levels, eotaxin-3 levels, and ECP levels in nasal secretions of the subject.

35 **[0020]** In another aspect, the invention provides a method for decreasing an NPS and improving one or more additional nasal polyposis-associated parameters of a subject in need thereof comprising determining the NPS of the subject, determining levels of one or more additional nasal polyposis-associated parameters of the subject, administering to the subject one or more maintenance doses of an ICS, administering to the subject a loading dose of about

400 to about 600 mg of an antibody or antigen binding fragment thereof that specifically binds an IL-4R, wherein the antibody or antigen binding fragment thereof comprises heavy chain and light chain CDR sequences from the HCVR and LCVR sequence pair of SEQ ID NOs:1 and 2, and administering to the subject one or more maintenance doses of about 200 to about 300 mg

5 each of the antibody or antigen binding fragment thereof, wherein the ICS is administered for the duration of administration of the antibody or antigen binding fragment thereof, such that the NPS of the subject is decreased (e.g., by about 10% to about 50%, by about 20% to about 40%, or by about 25% to about 30%) and one or more additional nasal polyposis-associated parameters of the subject are improved. This aspect can alternatively be worded as follows: An antibody or

10 antigen binding fragment thereof that specifically binds an IL-4R for use in decreasing an NPS (e.g., by about 10% to about 50%, by about 20% to about 40%, or by about 25% to about 30%) and for use in improving one or more additional nasal polyposis-associated parameters of a subject in need thereof; wherein the antibody or the antigen binding fragment thereof is for administration to a subject whose NPS had been determined; wherein the antibody or the

15 antigen binding fragment thereof is for administration to a subject whose levels of one or more additional nasal polyposis-associated parameters had been determined; wherein the antibody or the antigen binding fragment thereof is for administration to a subject who has received one or more maintenance doses of an ICS; wherein the antibody or the antigen binding fragment thereof is for administration in a loading dose of about 400 to about 600 mg; wherein the

20 antibody or antigen binding fragment thereof comprises heavy chain and light chain CDR sequences from the HCVR and LCVR sequence pair of SEQ ID NOs:1 and 2; wherein the antibody or the antigen binding fragment thereof is for administration in one or more maintenance doses of about 200 to about 300 mg each; and wherein the ICS is for administration for the duration of administration of the antibody or antigen binding fragment

25 thereof. In one embodiment, the antibody or antigen binding fragment thereof comprises heavy chain CDR sequences of SEQ ID NOs:3, 4 and 5, and light chain CDR sequences of SEQ ID NOs:6, 7 and 8. For example, in one embodiment, the antibody or antigen-binding fragment thereof comprises an HCVR having the amino acid sequence of SEQ ID NO:1 and an LCVR having the amino acid sequence of SEQ ID NO:2. The antibody can have, for example, a heavy

30 chain sequence of SEQ ID NO:9, and a light chain sequence of SEQ ID NO:10. In one embodiment, the IL-4R antagonist is dupilumab or an antigen binding fragment thereof. In one embodiment, one or more additional nasal polyposis-associated parameters are selected from the group consisting of loss of smell, runny nose, post nasal drip, and NPIF.

[0021] In another aspect, the invention provides a method of treating CSwNP, in patients with or without asthma, by administering to the subject a therapeutically effective amount of an anti-IL-4R antibody, or antigen binding fragment thereof. This aspect can alternatively be worded as follows: An anti-IL-4R antibody or antigen binding fragment thereof for use in treating CSwNP in

patients with or without asthma. The antibody can have, for example, a heavy chain sequence of SEQ ID NO:9, and a light chain sequence of SEQ ID NO:10. In some embodiments, the antibody or antigen binding fragment thereof comprises heavy chain and light chain CDR sequences from the HCVR and LCVR sequence pair of SEQ ID NOs:1 and 2. In some 5 embodiments, the antibody or antigen binding fragment is administered as an initial loading dose of about 400 mg to about 600 mg followed by one or more maintenance doses of about 200 mg to about 300 mg each of the antibody or antigen binding fragment thereof, such that one or more symptoms of the CSwNP are decreased. In some embodiments, one or more of 10 endoscopic, radiographic and clinical endpoints of CSwNP are improved. In other embodiments, lung function and disease control in patients with comorbid asthma are improved. In other embodiments, the NPS of the subject with CSwNP is decreased by about 10% to about 50%, by about 20% to about 40%, or by about 25% to about 30%).

[0022] Other embodiments will become apparent from the Figures, tables and detailed description provided herein.

15

BRIEF DESCRIPTION OF THE FIGURES

[0023] **Figures 1** schematically represents an example of background therapy withdrawal time period in the treatment of an asthma patient.

[0024] **Figure 2A-2D** graphically depict Least Square means (LS) change from baseline in 20 bilateral endoscopic nasal polyps score by visit in an Intent To Treat (ITT) population.

[0025] **Figure 3** graphically depicts LS mean change from baseline in bilateral endoscopic nasal polyps score by visit for subgroup of patients with co-morbid asthma in an ITT population.

[0026] **Figure 4** graphically depicts LS mean change from baseline in bilateral endoscopic nasal polyps score by visits for subgroup of patients without co-morbid asthma in an ITT 25 population.

[0027] **Figure 5** graphically depicts LS mean change from baseline in 22-item Sinonasal Outcome Test (SNOT-22) total score in an ITT population.

[0028] **Figure 6** graphically depicts LS mean change from baseline in Visual Analogue Scale (VAS) for rhinosinusitis symptoms severity in an ITT population.

[0029] **Figure 7** graphically depicts LS mean change from baseline in day (AM) symptom score for loss of smell in an ITT population.

[0030] **Figure 8** graphically depicts LS mean change from baseline in night (PM) symptom score for loss of smell in an ITT population.

[0031] **Figure 9** graphically depicts LS mean change from baseline in smell test in an ITT 35 population.

[0032] **Figure 10** graphically depicts LS mean change from baseline in AM symptom score for congestion/obstruction in an ITT population.

[0033] **Figure 11** graphically depicts LS mean change from baseline in PM symptom score for congestion/obstruction in an ITT population.

[0034] **Figure 12** graphically depicts LS mean change from baseline in AM symptom score for runny nose in an ITT population.

5 5 **[0035]** **Figure 13** graphically depicts LS mean change from baseline in PM symptom score for runny nose in an ITT population.

[0036] **Figure 14** graphically depicts LS mean change from baseline in AM symptom score for post nasal drip in an ITT population.

10 10 **[0037]** **Figure 15** graphically depicts LS mean change from baseline in PM symptom score for post nasal drip in an ITT population.

[0038] **Figure 16** graphically depicts LS mean change from baseline in AM Nasal Peak Inspiratory Flow (NPIF) in an ITT population.

[0039] **Figure 17** graphically depicts LS mean change from baseline in PM NPIF in an ITT population.

15 15 **[0040]** **Figure 18** graphically depicts serum total Immunoglobulin E (IgE) mean percent change from baseline by treatment in an ITT population.

[0041] **Figure 19** graphically depicts serum Thymus and Activation-Regulated Chemokine (TARC) mean percent change from baseline by treatment in an ITT population.

20 20 **[0042]** **Figure 20** graphically depicts Fridericia correction (QTc) (MS) mean change from baseline by visit in safety population.

[0043] **Figures 21A-21C** graphically depict the results from subjective secondary endpoints including smell, as assessed by the University of Pennsylvania Smell Identification Test (UPSIT) (A), self-reported morning nasal congestion/obstruction (B), and self-reported morning posterior rhinorrhea (C).

25 25 **[0044]** **Figures 22A-22C** graphically depict end points in patients with asthma. As compared with placebo, dupilumab was associated with a significant improvement in mean Forced Expiratory Volume in 1 second (FEV1) in liters percent predicted (%) and FEV1 (L) (A), Asthma Control Questionnaire, 5-question version (ACQ-5) (B), and endoscopic Nasal Polyp Score (NPS) (C).

30 30 **[0045]** **Figures 23A-23D** graphically depict pharmacodynamic biomarkers expressed in serum. Least squares mean percent change from baseline in total IgE (A), Thymus- and Activation-Regulated Chemokine (TARC) (B), Eotaxin-3 (C) and blood eosinophil counts (D).

[0046] **Figures 24A-24C** graphically depict pharmacodynamic biomarkers expressed in nasal secretions. Least squares mean percent change from baseline in Eotaxin-3 (A), IgE (B), 35 Eosinophil Cationic Protein (ECP) (C).

DETAILED DESCRIPTION

[0047] Before the present invention is described, it is to be understood that this invention is not limited to particular methods and experimental conditions described, as such methods and conditions may vary. It is also to be understood that the terminology used herein is for the 5 purpose of describing particular embodiments only, and is not intended to be limiting.

[0048] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. As used herein, the term "about," when used in reference to a particular recited 10 numerical value, means that the value may vary from the recited value by no more than 1%. For example, as used herein, the expression "about 100" includes 99 and 101 and all values in 15 between (e.g., 99.1, 99.2, 99.3, 99.4, etc.).

[0049] All publications mentioned herein are incorporated herein by reference in their entirety for all purposes.

15 **Methods for Treating Chronic Sinusitis With Nasal Polyps**

[0050] In certain aspects, the present invention provides methods for treating Chronic Sinusitis with Nasal Polyps/ Nasal Polyposis (CSwNP). In other aspects, the present invention provides methods for treating chronic sinusitis without nasal polyps/ nasal polyposis. As used herein, 20 "chronic sinusitis" ("CS") refers to an inflammatory condition of the sinuses characterized by any combination of specific symptoms including, but not limited to, nasal congestion, decreased or lost sense of smell, anterior and/or posterior nasal discharge, facial pain, and/or headache and consequences thereof, often for a period of years. A formal diagnosis is made on the basis of sinus computed tomography (CT) scan and/or sinus endoscopy. Based on endoscopic 25 evaluation, CS can be clinically divided as CS with nasal polyps/nasal polyposis (CSwNP) or CS without nasal polyps/nasal polyposis.

[0051] In certain embodiments, an IL-4R antagonist described herein is indicated for the long-term treatment of adults with chronic sinusitis with bilateral nasal polyposis, who have persistent signs and symptoms despite treatment with intranasal corticosteroids (INCS). In other 30 embodiments, an IL-4R antagonist described herein is indicated for the long-term treatment of adults with bilateral nasal polyposis with associated chronic sinusitis who have persistent signs and symptoms despite treatment with INCS.

[0052] In certain aspects, the present invention provides methods for treating nasal polyps. As used herein, a "nasal polyp" is an overgrowth of tissue in one or more of the nasal cavities. The condition of having nasal polyps is called "nasal polyposis." About 80% of nasal polyps are 35 highly edematous and filled with eosinophils. Nasal polyps can also present as fibrous, glandular or cystic. Nasal polyps are typically teardrop-shaped growths that form in the nose and/r sinuses, obstructing the sinuses and nasal passages.

[0053] In certain aspects, the present invention provides methods for treating Nasal Polyposis (NP). NP is a clinical condition characterized by the presence of multiple polyps in the upper nasal cavity, originating from the osteomeatal complex. NP is a T helper cell-2 (Th-2) driven inflammatory process affecting the mucosa of the nose and paranasal sinuses. Eosinophils and their products are thought to be a hallmark of nasal polyp-associated inflammation as elevated levels of interleukin-5 (IL-5; promotes eosinophil survival and differentiation), ECP, and eotaxin (eosinophil chemoattractant), factors that attract and activate eosinophils, are typically found in nasal polyps. Eosinophils are the predominant inflammatory cell found in the sinuses and nasal polyps, and nasal polyps are also associated with elevated levels of IgE.

5 **[0054]** NP is characterized by long-term symptoms of nasal obstruction and congestion, reduction in or loss of sense of smell, anterior and posterior rhinorrhea, and facial pain. The presence or absence of nasal polyps can be confirmed for example by performing endoscopy, and the presence and extent of sinus and polyp involvement can be confirmed by methods such as coronal computed tomography (CT) scans.

10 **[0055]** As used herein, "bilateral NP" refers to the presence of one or more NPs at each side of the nasal cavity.

[0056] An IL-4R antagonist can be used to treat nasal polyposis associated with a variety of conditions. For example, nasal polyposis is associated with sinusitis (e.g., allergic and non-allergic sinusitis), rhinitis (e.g., allergic and non-allergic rhinitis), rhinosinusitis (e.g., allergic and non-allergic rhinosinusitis), asthma (e.g., moderate-to-severe asthma), NSAID sensitivity (e.g., aspirin sensitivity), and infection, such as bacterial and fungal infection. A subject with nasal polyposis, such as a patient with chronic sinusitis with bilateral nasal polyposis, can have concomitant Samter's triad (defined by present of NP, asthma, and aspirin and NSAID sensitivity). A subject with nasal polyposis can also have concomitant asthma, and/or other Th2 20 concomitant systemic conditions. Bacterial infections include, for example, staphylococcus infections. A subject with nasal polyposis can have a chronic infection, such as a chronic bacterial infection, e.g., a chronic staphylococcus aureus infection. In some embodiments, the subject has recurring nasal polyposis, such as may be associated with recurring sinusitis. In other embodiments, the subject has cystic fibrosis or NARES (Non-Allergic Rhinitis with 25 Eosinophilia Syndrome). In other embodiments, the subject has a relapse of nasal polyposis after receiving surgery to treat the polyps. Risk factors for nasal polyposis include genetic susceptibility, anatomic abnormality, mucociliary impairment, infection, and local immunologic imbalance.

[0057] An IL-4R antagonist can be used to treat nasal polyposis associated with a variety of 30 conditions. For example, nasal polyposis is associated with sinusitis (e.g., allergic or non-allergic sinusitis), rhinitis (e.g., allergic and non-allergic rhinitis), rhinosinusitis (e.g., allergic or non-allergic rhinosinusitis), asthma (e.g., moderate-to-severe asthma), NSAID sensitivity (e.g.,

aspirin sensitivity), and infection, such as bacterial and fungal infection. A subject with nasal polyposis, such as a patient with chronic sinusitis with bilateral nasal polyposis, can have concomitant Samter's triad (defined by present of NP, asthma, and aspirin and NSAID sensitivity). A subject with nasal polyposis can also have concomitant asthma, and/or other Th2 5 concomitant systemic conditions. Bacterial infections include, for example, staphylococcus infections. A subject with nasal polyposis can have a chronic infection, such as a chronic bacterial infection, e.g., a chronic staphylococcus aureus infection. In some embodiments, the subject has recurring nasal polyposis, such as may be associated with recurring sinusitis. In other embodiments, the subject has cystic fibrosis or NARES (Non-Allergic Rhinitis with 10 Eosinophilia Syndrome). In other embodiments, the subject has a relapse of nasal polyposis after receiving surgery to treat the polyps. Risk factors for nasal polyposis include genetic susceptibility, anatomic abnormality, mucociliary impairment, infection, and local immunologic imbalance.

[0058] As used herein, the term "sinusitis" refers to any inflammatory condition characterized 15 by inflammation of the paranasal sinuses, including inflammation of the maxillary, frontal, ethmoid and/or sphenoid paranasal sinuses. An IL-4R antagonist is suitable for treatment of nasal polyposis is associated with acute sinusitis, sub-acute sinusitis, chronic sinusitis and recurrent sinusitis. Acute sinusitis is characterized by a sudden onset of cold-like symptoms such as runny, stuffy nose and facial pain that does not go away after 10 to 14 days. Acute 20 sinusitis typically lasts less than four weeks. Sub-acute sinusitis lasts four to eight weeks. Chronic sinusitis lasts eight weeks or longer, and recurrent sinusitis is characterized by sinusitis episodes that occur three or more times in one year. More than 80% of patients with CSwNP have eosinophilic upper airway inflammation.

[0059] Many patients with chronic sinusitis have "chronic hyperplastic eosinophilic sinusitis," 25 which is characterized by marked inflammation of the sinuses, increased eosinophils and mixed mononuclear cells, and a relative paucity of neutrophils. Some of these patients have one or more of associated nasal polyps, asthma, and aspirin or NSAID sensitivity. In certain embodiments, an IL-4R antagonist can be used to treat nasal polyposis in a subject who has chronic hyperplastic eosinophilic sinusitis.

[0060] As used herein, "allergic sinusitis" refers to sinusitis that occurs when the body's 30 immune system responds to specific, non-infectious irritants such as e.g., plant pollens, molds, dust mites, animal hair, industrial chemicals (including tobacco smoke), foods, medicines, and insect venom.

[0061] As used herein, "non-allergic sinusitis" refers to sinusitis that is not due to an allergic 35 reaction, e.g., from colds, allergies, and tissue irritants (e.g., nasal sprays, cocaine, cigarette smoke and the like). Less commonly, sinuses can become obstructed by tumors or growths.

[0062] The term “rhinitis” refers to an allergic response, such as to a common allergen (“allergic rhinitis,” e.g., perennial allergic rhinitis) or to an environmental irritant (“non-allergic rhinitis”). Symptoms of allergic rhinitis include sneezing; stuffy or runny nose; sinus pressure, and pain or throbbing in the cheeks or nose; and itching in the nose, throat, eyes and ears.

5 **[0063]** As used herein, “allergic rhinitis” refers to rhinitis that occurs when the body’s immune responds to specific, non-infectious irritants.

[0064] As used herein, “non-allergic rhinitis” refers to rhinitis that is not due to an allergic reaction, that can be triggered by factors such as, e.g., cigarette smoke and other pollutants, strong odors, strong chemical environments, alcoholic beverages, cold, blockages in the nose, a 10 deviated septum, infections and over-use of medications such as decongestants and/or nasal sprays. Symptoms of non-allergic rhinitis include constriction or inflammation in the nasal passages which leads to many of the same symptoms of allergic rhinitis.

[0065] As used herein, the term “rhinosinusitis” refers to a condition that has symptoms of both rhinitis and sinusitis. Rhinosinusitis includes acute rhinosinusitis and chronic rhinosinusitis.

15 Acute rhinosinusitis can be caused by an infection, such as a bacterial, viral or fungal infection, or by a chemical irritation. Cigarette-smoke-induced acute rhinosinusitis and chlorine fume-induced chronic rhinosinusitis are examples of acute rhinosinusitis. NP is most commonly associated with chronic rhinosinusitis (CRS), which is characterized by mucosal inflammation of the nasal cavity and paranasal sinuses with symptoms lasting more than 8 weeks. Chronic 20 eosinophilic rhinosinusitis with nasal polyps is a condition that lasts longer than 8 weeks.

[0066] Chronic sinusitis (CS) and chronic rhinosinusitis (CRS) are conditions that last longer than eight weeks. The underlying causes of acute sinusitis and acute rhinosinusitis may lead to chronic sinusitis or chronic rhinosinusitis if the resulting inflammation persists for more than 8 weeks. Chronic rhinosinusitis includes for example, eosinophilic chronic hyperplastic 25 rhinosinusitis.

[0067] Additional subcategories of chronic sinusitis (and chronic rhinosinusitis) include, e.g., superantigen-induced eosinophilic chronic sinusitis (e.g., sinusitis induced by exo- and endo-toxins produced by bacteria such as *Staphylococcus aureus*); allergic fungal sinusitis (e.g., sinusitis induced by fungi such as *Aspergillus* or *Alternaria*); non-allergic fungal eosinophilic 30 chronic sinusitis; and aspirin-exacerbated eosinophilic chronic sinusitis. Rhinosinusitis is further classified as allergic rhinosinusitis and non-allergic rhinosinusitis.

[0068] As used herein, “allergic rhinosinusitis” refers to rhinosinusitis that occurs in response to exposure to one or more allergens.

[0069] As used herein, “non-allergic rhinosinusitis” refers to rhinosinusitis caused by factors 35 including, but not limited to: pregnancy; thyroid disorders as a side effect of certain blood pressure and/or topical OTC decongestant medications; structural abnormalities in the nasal

septum, structural abnormalities in the nasal filtering structures (turbines), and/or structural abnormalities in the sinus drainage tracts; nasal polyps; and eosinophils.

[0070] An IL-4R antagonist can be used to treat nasal polyposis in subjects having any of the disorders described above.

5

Methods for Improving Nasal Polyp-Associated Parameters

[0071] The present invention includes methods for improving one or more nasal polyp-associated parameters in a subject in need thereof, wherein the methods include administering a pharmaceutical composition comprising an interleukin-4 receptor (IL-4R) antagonist to the

10 subject. In alternative wording, the present invention includes a pharmaceutical composition comprising an interleukin-4 receptor (IL-4R) antagonist for use in improving one or more nasal polyp-associated parameters in a subject in need thereof. For example, an IL-4R receptor antagonist can reduce endoscopic Nasal Polyp Score (NPS) in a patient. A nasal polyp score of 0 indicates the presence of no polyps. An NPS of 1 indicates the presence of small polyps in 15 the middle meatus not reaching below the inferior border of the middle turbinate. An NPS of 3 indicates large polyps reaching the lower border of the inferior turbinate or polyps medial to the middle turbinate. An NPS of 4 indicates large polyps causing complete obstruction of the inferior nasal cavity (see Table 15 below). The maximum score is 8 (4 points per nasal cavity). Treatment with an IL-4R antagonist can decrease NPS by about 1 to about 8 points. For 20 example, treatment with an IL-4R antagonist can decrease NPS by about 1 point or more, by about 2 points or more, or by about 3 points or more. In some embodiments, treatment with an IL-4R antagonist can decrease NPS by about 1 point, or a fraction thereof; by 2 points, or a fraction thereof; by 3 points, or a fraction thereof; by 4 points, or a fraction thereof; by 5 points, or a fraction thereof; by 6 points, or a fraction thereof; by 7 points, or a fraction thereof; or by 25 8 points or a fraction thereof.

[0072] Treatment with an IL-4R antagonist can decrease NPS in a patient relative to NPS prior to treatment. In certain aspects, NPS is decreased after treatments with an IL-4R antagonist by about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, about 16%, about 30 17%, about 18%, about 19%, about 20%, about 21%, about 22%, about 23%, about 24%, about 25%, about 26%, about 27%, about 28%, about 29%, about 30, about 31%, about 32%, about 33%, about 34%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, or about 99%, or any ranges between these numbers. Thus, in certain 35 aspects, NPS is decreased after treatments with an IL-4R antagonist by from about 1% to about 99%, or from about 2% to about 98%, or from about 3% to about 97%, or from about 4% to about 96%, or from about 5% to about 95%, or from about 6% to about 90%, or from about 7%

to about 85%, or from about 8% to about 80%, or from about 9% to about 75%, or from about 10% to about 70%, or from about 11% to about 65%, or from about 12% to about 60%, or from about 13% to about 55%, or from about 14% to about 50%, or from about 15% to about 45%, or from about 16% to about 40%, or from about 17% to about 35%, or from about 18% to about 5 34%, or from about 19% to about 33%, or from about 20% to about 32%, or from about 21% to about 31%, or from about 22% to about 30%, or from about 23% to about 29%, or from about 24% to about 28%, or from about 25% to about 27%, or from about 25% to about 26%.

10 [0073] A reduction in NPS may correlate with an improvement in one or more other nasal polyp-associated parameters. Such a correlation, however, is not necessarily observed in all cases.

[0074] Other examples of “nasal polyp-associated parameters” include, but are not limited to: (a) 22-item Sino Nasal Outcome Test (SNOT-22) score; (b) subject-assessed nasal congestion/obstruction, anterior rhinorrhea (runny nose), posterior rhinorrhea (post nasal drip) and loss of sense of smell; (c) number of nocturnal awakenings; (d) Visual Analog Score (VAS) 15 to assess patient-rated rhinosinusitis symptom severity; (e) five-item Asthma Control Questionnaire (ACQ5) score, such as in patients with asthma; (f) Nasal Peak Inspiratory Flow (NPIF); (g) smell test (University of Pennsylvania Smell Identification Test (UPSIT)); (h) physiological parameters, such as measured by nasal endoscopy and CT scan; (i) Lund-Mackay Score; and (j) Three Dimensional volumetric measurement of the maxillary sinus.

20 [0075] 22-Item Sinonasal Outcome Test (SNOT-22) Score. According to certain embodiments, administration of an IL-4R antagonist to a patient results in a decrease from baseline of 22-item Sinonasal Outcome Test (SNOT-22). The SNOT-22 is a questionnaire to assess the impact of chronic rhinosinusitis (CRS) on quality of life. The questionnaire measures items related to sinonasal conditions and surgical treatments. The score ranges from 0 to 110, 25 and higher scores imply greater impact of CRS on Health Related Quality of Life (HRQoL) (Hopkins et al 2009, Clin. Otolaryngol. 34: 447-454).

[0076] The present invention includes therapeutic methods that result in a decrease in SNOT-22 score from baseline of at least 1 point at week 4 to week 16 following administration of the IL-4R antagonist. In alternative wording, the present invention includes an IL-4R 30 antagonist for use in decreasing a SNOT-22 score from baseline of at least 1 point at week 4 to week 16. For example, administration of an IL-4R antagonist will result in a decrease in SNOT-22 score at week 4, week 6, week 8, week 12, or week 16 following initiation of treatment. In some embodiments, administration of an IL-4R antagonist to a subject in need thereof causes a decrease in SNOT-22 score from baseline of about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 points, 35 or more at week 4, week 6, week 8 or week 12. Thus, in one embodiment, administration of an IL-4R antagonist to a subject in need thereof causes a decrease in SNOT-22 score from baseline of about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 points, or more at week 4. In another

embodiment, administration of an IL-4R antagonist to a subject in need thereof causes a decrease in SNOT-22 score from baseline of about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 points, or more at week 6. In a further embodiment, administration of an IL-4R antagonist to a subject in need thereof causes a decrease in SNOT-22 score from baseline of about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 points, or more at week 8. In yet another embodiment, administration of an IL-4R antagonist to a subject in need thereof causes a decrease in SNOT-22 score from baseline of about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 points, or more at week 12.

5 [0077] Individual and Total Nasal Symptom Score. Subject-assessed symptoms are assayed by responding to morning and evening individual rhinosinusitis symptom questions using a 10 0-3 categorical scale (where 0 = no symptoms, 1 = mild symptoms, 2 = moderate symptoms and 3 = severe symptoms), and including the symptoms of congestion and/or obstruction, anterior rhinorrhea, posterior rhinorrhea, and loss of sense of smell. Nasal symptoms can be assayed in the day (AM), at night (PM) or both AM and PM.

15 [0078] A loss of sense of smell can be tracked. Administration of an IL-4R antagonist can result, for example, in a decrease in loss of sense of smell (i.e., achieving a lower number on the scale) from baseline compared to week 4 to week 16 following initiation of treatment with a pharmaceutical composition comprising an anti-IL-4R antagonist. For example, a decrease in loss of sense of smell from baseline (e.g., from about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0) can be detected at week 4, week 6, week 8, week 12, or week 16 following 20 initiation of treatment. Thus, in an example, a decrease in loss of sense of smell from baseline (e.g., from about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0) can be detected at week 4 following initiation of treatment. In a further example, a decrease in loss of sense of smell from baseline (e.g., from about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0) can be detected at week 6 following initiation of treatment. In a further example, a decrease 25 in loss of sense of smell from baseline (e.g., from about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0) can be detected at week 8 following initiation of treatment. In a further example, a decrease in loss of sense of smell from baseline (e.g., from about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0) can be detected at week 12 following initiation of treatment. In a further example, a decrease 30 in loss of sense of smell from baseline (e.g., from about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0) can be detected at week 16 following initiation of treatment. Administration of an IL-4R antagonist to a subject in need thereof can cause a decrease in loss of sense of smell symptom score from baseline by about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0 or more at week 4, week 8, week 12, or week 16, for example.

35 [0079] A decrease in congestion and/or obstruction can be tracked. Administration of an IL-4R antagonist can result, for example, in a decrease in congestion and/or obstruction (i.e., achieving a lower number on the scale) from baseline compared to week 4 to week 16 following

initiation of treatment with a pharmaceutical composition comprising an anti-IL-4R antagonist. For example, a decrease in congestion and/or obstruction from baseline (e.g., from about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0) can be detected at week 4, week 6, week 8, week 12, or week 16 following initiation of treatment. Thus, in an example, a decrease
5 in congestion and/or obstruction from baseline (e.g., from about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0) can be detected at week 4 following initiation of treatment. In a further example, a decrease in congestion and/or obstruction from baseline (e.g., from about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0) can be detected at week 6 following initiation of treatment. In a further example, a decrease in congestion and/or obstruction from
10 baseline (e.g., from about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0) can be detected at week 8 following initiation of treatment. In a further example, a decrease in congestion and/or obstruction from baseline (e.g., from about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0) can be detected at week 12 following initiation of treatment. In a further example, a decrease in congestion and/or obstruction from baseline (e.g., from about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0) can be detected at week 16
15 following initiation of treatment. Administration of an IL-4R antagonist to a subject in need thereof can cause a decrease in congestion and/or obstruction symptom score from baseline by about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0 or more at week 4, week 8, week 12, or week 16, for example.

20 **[0080]** A decrease in runny nose can be tracked. Administration of an IL-4R antagonist can result, for example, in a decrease in runny nose (i.e., achieving a lower number on the scale) from baseline compared to week 4 to week 16 following initiation of treatment with a pharmaceutical composition comprising an anti-IL-4R antagonist. For example, a decrease in runny nose from baseline (e.g., from about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0) can be detected at week 4, week 6, week 8, week 12, or week 16 following initiation
25 of treatment. Thus, in an example, a decrease in runny nose from baseline (e.g., from about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0) can be detected at week 4 following initiation of treatment. In a further example, a decrease in runny nose from baseline (e.g., from about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0) can be detected at week 6 following initiation of treatment. In a further example, a decrease in runny nose from baseline (e.g., from about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0) can be detected at week 8 following initiation of treatment. In a further example, a decrease in runny nose from baseline (e.g., from about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0) can be detected at week 12 following initiation of treatment. In a further example, a decrease in runny
30 nose from baseline (e.g., from about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0) can be detected at week 16 following initiation of treatment. Administration of an IL-4R antagonist to a subject in need thereof can cause a decrease in runny nose symptom score from
35

baseline by about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0 or more at week 4, week 8, week 12, or week 16, for example.

[0081] A decrease in post nasal drip can be tracked. Administration of an IL-4R antagonist can result, for example, in a decrease in runny nose (i.e., achieving a lower number on the scale) from baseline compared to week 4 to week 16 following initiation of treatment with a pharmaceutical composition comprising an anti-IL-4R antagonist. For example, a decrease in post nasal drip from baseline (e.g., from about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0) can be detected at week 4, week 6, week 8, week 12, or week 16 following initiation of treatment. Thus, in an example, a decrease in post nasal drip from baseline (e.g., from about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0) can be detected at week 4 following initiation of treatment. In a further example, a decrease in post nasal drip from baseline (e.g., from about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0) can be detected at week 6 following initiation of treatment. In a further example, a decrease in post nasal drip from baseline (e.g., from about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0) can be detected at week 8 following initiation of treatment. In a further example, a decrease in post nasal drip from baseline (e.g., from about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0) can be detected at week 12 following initiation of treatment. In a further example, a decrease in post nasal drip from baseline (e.g., from about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0) can be detected at week 16 following initiation of treatment.

Administration of an IL-4R antagonist to a subject in need thereof can cause a decrease in post nasal drip symptom score from baseline by about 0.5, about 1.0, about 1.5, about 2.0, about 2.5 or about 3.0 or more at week 4, week 8, week 12, or week 16, for example.

[0082] A measure of night-time awakenings can also be tracked. For example, a measure of night-time awakenings can be assessed according to the following scores based on subject self-assessment: 0= no symptoms, slept through the night; 1= slept well, but some complaints in the morning; 2= woke up once because of rhinosinusitis symptoms (including early awakening); 3= woke up several times because of symptoms (including early awakening); 4= bad night, awake most of the night because of symptoms. Administration of an IL-4R antagonist can result, for example, in a decrease in average number of nighttime awakenings per night from baseline of at least about 0.10 times per night at week 4 to week 16 following initiation of treatment with a pharmaceutical composition comprising an anti-IL-4R antagonist. For example, a decrease in frequency of nighttime awakenings per night from baseline of at least about 0.10 times per night can be detected at week 4, week 6, week 8, week 12, or week 16 following initiation of treatment. Administration of an IL-4R antagonist to a subject in need thereof can cause a decrease in average number of nighttime awakenings per night from baseline by about 0.10 times per night, 0.15 times per night, 0.20 times per night, 0.25 times per night, 0.30 times per night, 0.35 times per night, 0.40 times per night, 0.45 times per night, 0.50 times per night, 0.55

times per night, 0.60 times per night, 0.65 times per night, 0.70 times per night, 0.75 times per night, 0.80 times per night, 0.85 times per night, 0.90 times per night, 0.95 times per night, 1.0 time per night, 2.0 times per night, or more at week 4, week 8, week 12, or week 16, for example. Thus, in one example, administration of an IL-4R antagonist to a subject in need thereof can cause a decrease in average number of nighttime awakenings per night from baseline by about 0.10 times per night, 0.15 times per night, 0.20 times per night, 0.25 times per night, 0.30 times per night, 0.35 times per night, 0.40 times per night, 0.45 times per night, 0.50 times per night, 0.55 times per night, 0.60 times per night, 0.65 times per night, 0.70 times per night, 0.75 times per night, 0.80 times per night, 0.85 times per night, 0.90 times per night, 0.95 times per night, 1.0 time per night, 2.0 times per night, or more at week 4. In a further example, administration of an IL-4R antagonist to a subject in need thereof can cause a decrease in average number of nighttime awakenings per night from baseline by about 0.10 times per night, 0.15 times per night, 0.20 times per night, 0.25 times per night, 0.30 times per night, 0.35 times per night, 0.40 times per night, 0.45 times per night, 0.50 times per night, 0.55 times per night, 0.60 times per night, 0.65 times per night, 0.70 times per night, 0.75 times per night, 0.80 times per night, 0.85 times per night, 0.90 times per night, 0.95 times per night, 1.0 time per night, 2.0 times per night, or more at week 8. In a further example, administration of an IL-4R antagonist to a subject in need thereof can cause a decrease in average number of nighttime awakenings per night from baseline by about 0.10 times per night, 0.15 times per night, 0.20 times per night, 0.25 times per night, 0.30 times per night, 0.35 times per night, 0.40 times per night, 0.45 times per night, 0.50 times per night, 0.55 times per night, 0.60 times per night, 0.65 times per night, 0.70 times per night, 0.75 times per night, 0.80 times per night, 0.85 times per night, 0.90 times per night, 0.95 times per night, 1.0 time per night, 2.0 times per night, or more at week 12. In a further example, administration of an IL-4R antagonist to a subject in need thereof can cause a decrease in average number of nighttime awakenings per night from baseline by about 0.10 times per night, 0.15 times per night, 0.20 times per night, 0.25 times per night, 0.30 times per night, 0.35 times per night, 0.40 times per night, 0.45 times per night, 0.50 times per night, 0.55 times per night, 0.60 times per night, 0.65 times per night, 0.70 times per night, 0.75 times per night, 0.80 times per night, 0.85 times per night, 0.90 times per night, 0.95 times per night, 1.0 time per night, 2.0 times per night, or more at week 16.

[0083] Visual Analog Score (VAS). The VAS is a measure to assess patient-related rhinosinusitis symptom severity on a scale of 1 to 10. Mild symptoms are indicated by a score of 0 to 3, moderate symptoms are indicated by a VAS score of >3 to 7, and severe symptoms are indicated by a VAS score of >7 to 10. Administration of an IL-4R antagonist to a subject in need thereof causes a decrease in VAS score from baseline of about 0.5 point, 1 point, 1.5 points, 2 points, 2.5 points, 3 points, 3.5 points, 4 points, or more at week 4, week 6 or week 12. Thus, in one example, administration of an IL-4R antagonist to a subject in need thereof causes a

decrease in VAS score from baseline of about 0.5 point, 1 point, 1.5 points, 2 points, 2.5 points, 3 points, 3.5 points, 4 points, or more at week 4. In a further example, administration of an IL-4R antagonist to a subject in need thereof causes a decrease in VAS score from baseline of about 0.5 point, 1 point, 1.5 points, 2 points, 2.5 points, 3 points, 3.5 points, 4 points, or more at week 6. In a further example, administration of an IL-4R antagonist to a subject in need thereof causes a decrease in VAS score from baseline of about 0.5 point, 1 point, 1.5 points, 2 points, 2.5 points, 3 points, 3.5 points, 4 points, or more at week 12. The decrease in VAS score can be detected as early as week 4, and as late as week 12 or later following administration of the IL-4R antagonist.

10 **[0084] 5-Item Asthma Control Questionnaire (ACQ) Score.** The ACQ5 measures both the adequacy of asthma control and change in asthma control, which occurs either spontaneously or as a result of treatment. The five questions on the ACQ5 reflect the top-scoring five asthma symptoms: woken at night by symptoms, wake in the mornings with symptoms, limitation of daily activities, shortness of breath and wheeze. Patients respond to the symptom questions on 15 a 7-point scale (0=no impairment, totally controlled; 6= maximum impairment, severely uncontrolled).

20 **[0085]** The present invention includes therapeutic methods which result in a decrease in ACQ5 score from baseline of at least 0.10 point at week 12 following initiation of treatment with a pharmaceutical composition comprising an anti-IL-4R antagonist. For example, according to 25 the present invention, administration of an IL-4R antagonist to a subject in need thereof causes a decrease in ACQ score from baseline of about 0.10 points, 0.15 points, 0.20 points, 0.25 points, 0.30 points, 0.35 points, 0.40 points, 0.45 points, 0.50 points, 0.55 points, 0.60 points, 0.65 points, 0.70 points, 0.75 points, 0.80 points, 0.85 points, or more at week 4, week 6 or week 12. Thus, in one example, administration of an IL-4R antagonist to a subject in need 30 thereof causes a decrease in ACQ score from baseline of about 0.10 points, 0.15 points, 0.20 points, 0.25 points, 0.30 points, 0.35 points, 0.40 points, 0.45 points, 0.50 points, 0.55 points, 0.60 points, 0.65 points, 0.70 points, 0.75 points, 0.80 points, 0.85 points, or more at week 4. In a further example, administration of an IL-4R antagonist to a subject in need thereof causes a decrease 35 in ACQ score from baseline of about 0.10 points, 0.15 points, 0.20 points, 0.25 points, 0.30 points, 0.35 points, 0.40 points, 0.45 points, 0.50 points, 0.55 points, 0.60 points, 0.65 points, 0.70 points, 0.75 points, 0.80 points, 0.85 points, or more at week 6. In a further example, administration of an IL-4R antagonist to a subject in need thereof causes a decrease in ACQ score from baseline of about 0.10 points, 0.15 points, 0.20 points, 0.25 points, 0.30 points, 0.35 points, 0.40 points, 0.45 points, 0.50 points, 0.55 points, 0.60 points, 0.65 points, 0.70 points, 0.75 points, 0.80 points, 0.85 points, or more at week 12. The decrease in ACQ score can be detected as early as week 4, and as late as week 12 or later following administration of the IL-4R antagonist.

[0086] Nasal Peak Inspiratory Flow (NPIF). The Nasal Peak Inspiratory Flow (NPIF) represents a physiologic measure of air flow through both nasal cavities during forced inspiration and/or expiration expressed in liters per minute. Nasal inspiration correlates most with the subjective feeling of obstruction and is used to monitor nasal flow. Administration of an IL-4R antagonist to a subject in need thereof causes an increase in NPIF from baseline by about 0.10 liters per minute, 0.15 liters per minute, 0.20 liters per minute, 0.25 liters per minute, 0.30 liters per minute, 0.35 liters per minute, 0.40 liters per minute, 0.45 liters per minute, 0.50 liters per minute, 0.55 liters per minute, 0.60 liters per minute, 0.65 liters per minute, 0.70 liters per minute, 0.75 liters per minute, 0.80 liters per minute, 0.85 liters per minute, or more at week 4, week 6 or week 12. Thus, in one example, administration of an IL-4R antagonist to a subject in need thereof causes an increase in NPIF from baseline by about 0.10 liters per minute, 0.15 liters per minute, 0.20 liters per minute, 0.25 liters per minute, 0.30 liters per minute, 0.35 liters per minute, 0.40 liters per minute, 0.45 liters per minute, 0.50 liters per minute, 0.55 liters per minute, 0.60 liters per minute, 0.65 liters per minute, 0.70 liters per minute, 0.75 liters per minute, 0.80 liters per minute, 0.85 liters per minute, or more at week 4. In a further example, administration of an IL-4R antagonist to a subject in need thereof causes an increase in NPIF from baseline by about 0.10 liters per minute, 0.15 liters per minute, 0.20 liters per minute, 0.25 liters per minute, 0.30 liters per minute, 0.35 liters per minute, 0.40 liters per minute, 0.45 liters per minute, 0.50 liters per minute, 0.55 liters per minute, 0.60 liters per minute, 0.65 liters per minute, 0.70 liters per minute, 0.75 liters per minute, 0.80 liters per minute, 0.85 liters per minute, or more at week 6. In a further example, administration of an IL-4R antagonist to a subject in need thereof causes an increase in NPIF from baseline by about 0.10 liters per minute, 0.15 liters per minute, 0.20 liters per minute, 0.25 liters per minute, 0.30 liters per minute, 0.35 liters per minute, 0.40 liters per minute, 0.45 liters per minute, 0.50 liters per minute, 0.55 liters per minute, 0.60 liters per minute, 0.65 liters per minute, 0.70 liters per minute, 0.75 liters per minute, 0.80 liters per minute, 0.85 liters per minute, or more at week 12. The increase in NPIF score can be detected as early as week 4, and as late as week 12 or later following administration of the IL-4R antagonist.

[0087] University of Pennsylvania Smell Identification Test (UPSIT). The UPSIT is a method to quantitatively assess human olfactory function. The test consists of samples of odorants, and the subject has to describe the odor. The score is based on the number of correct answers. This test can distinguish patients with a normal sense of smell ("normosmia") from those with different levels of reduction ("mild, moderate and severe microsmia") or loss ("anosmia"). Administration of an IL-4R antagonist to a subject in need thereof causes an increase in UPSIT score from baseline by about 0.5 points, 1 point, 1.5 points, 2 points, 2.5 points, 3 points, 3.5 points or more at week 4, week 6 or week 12. Thus, in one example, administration of an IL-4R antagonist to a subject in need thereof causes an increase in UPSIT score from baseline by

about 0.5 points, 1 point, 1.5 points, 2 points, 2.5 points, 3 points, 3.5 points or more at week 4. In a further example, administration of an IL-4R antagonist to a subject in need thereof causes an increase in UPSIT score from baseline by about 0.5 points, 1 point, 1.5 points, 2 points, 2.5 points, 3 points, 3.5 points or more at week 6. In a further example, administration of an IL-4R 5 antagonist to a subject in need thereof causes an increase in UPSIT score from baseline by about 0.5 points, 1 point, 1.5 points, 2 points, 2.5 points, 3 points, 3.5 points or more at week 12. The increase in UPSIT score can be detected as early as week 4, and as late as week 12 or later following administration of the IL-4R antagonist.

10 [0088] Physiological parameters. Efficacy of an IL-4R antagonist can be assayed by measuring the effect of physiological parameters, such as within the nasal cavities, such as by nasal endoscopy or computed tomography (CT) scan.

15 [0089] Lund-Mackay Score. The Lund-Mackay scoring system is based on localization with points given for degree of opacification: 0 = normal, 1 = partial opacification, 2 = total opacification. These points are then applied to the maxillary, anterior ethmoid, posterior ethmoid, sphenoid, and frontal sinus on each side. The osteomeatal complex is graded as 0 = not occluded, or 2 = occluded deriving a maximum score of 12 per side. For patients in whom the osteomeatal complex (OC) is missing (because of a previous surgery) the location of the former OC is considered and a score is provided, as if the OC was there. Administration of an IL-4R antagonist to a subject in need thereof causes a decrease in Lund-Mackay score from baseline 20 by about 0.10 points, 0.15 points, 0.20 points, 0.25 points, 0.30 points, 0.35 points, 0.40 points, 0.45 points, 0.50 points, 0.55 points, 0.60 points, 0.65 points, 0.70 points, 0.75 points, 0.80 points, 0.85 points, or more at week 4, week 6 or week 12. Thus, in one example, administration of an IL-4R antagonist to a subject in need thereof causes a decrease in Lund-Mackay score from baseline by about 0.10 points, 0.15 points, 0.20 points, 0.25 points, 0.30 25 points, 0.35 points, 0.40 points, 0.45 points, 0.50 points, 0.55 points, 0.60 points, 0.65 points, 0.70 points, 0.75 points, 0.80 points, 0.85 points, or more at week 4. In a further example, administration of an IL-4R antagonist to a subject in need thereof causes a decrease in Lund-Mackay score from baseline by about 0.10 points, 0.15 points, 0.20 points, 0.25 points, 0.30 points, 0.35 points, 0.40 points, 0.45 points, 0.50 points, 0.55 points, 0.60 points, 0.65 points, 30 0.70 points, 0.75 points, 0.80 points, 0.85 points, or more at week 6. In a further example, administration of an IL-4R antagonist to a subject in need thereof causes a decrease in Lund-Mackay score from baseline by about 0.10 points, 0.15 points, 0.20 points, 0.25 points, 0.30 points, 0.35 points, 0.40 points, 0.45 points, 0.50 points, 0.55 points, 0.60 points, 0.65 points, 0.70 points, 0.75 points, 0.80 points, 0.85 points, or more at week 12. The decrease in Lund-Mackay score can be detected as early as week 4, and as late as week 12 or later following 35 administration of the IL-4R antagonist.

[0090] Three-Dimensional volumetric measurement of maxillary sinus. This value is used to calculate the volume of air (mL); the volume of mucosa (mL); the percent sinus occupied by disease; and the thickness of lateral wall in the maxillary sinus. Administration of an IL-4R antagonist to a subject in need thereof causes an increase in the Three-Dimensional volumetric

5 measurement.

[0091] Quality of Life (QoL) Questionnaires. Various QoL Questionnaires can be used to monitor efficacy of an IL-4R antagonist, including Short-Form-36 (SF-36) Questionnaire, the Euroqol-5D (EQ-5D), nasal polyp related resource use questionnaire, and the patient qualitative self-assessment.

10 **[0092]** The SF-36 is a 36 item questionnaire that measures eight multi-item dimensions of health: physical functioning (10 items) social functioning (2 items) role limitations due to physical problems (4 items), role limitations due to emotional problems (3 items), mental health (5 items), energy/vitality (4 items), pain (2 items), and general health perception (5 items). For each dimension, item scores are coded, summed, and transformed on a scale from 0 (worst possible 15 health state measured by the questionnaire) to 100 (best possible health state). Two standardized summary scores can also be calculated from the SF-36; the physical component summary (PCS) and the mental health component summary (MCS).

20 **[0093]** The EQ-5D is a standardized health-related quality of life questionnaire developed by the EuroQol Group in order to provide a simple, generic measure of health for clinical and economic appraisal and inter-disease comparisons. EQ-5D, designed for self-completion by 25 patients, consists of two parts, the EQ-5D descriptive system and the EQ VAS. The EQ-5D descriptive system comprises 5 dimensions: mobility, self-care, usual activities, pain/discomfort and anxiety/depression; and each dimension has 3 levels: no problem, some problems, severe problems. The EQ Visual Analogue Scale (VAS) records the respondent's self-rated health on a vertical visual analogue scale. The EQ VAS 'thermometer' has endpoints of 100 (Best imaginable health state) at the top and 0 (Worst imaginable health state) at the bottom.

25 **[0094]** The nasal polyp related resource use questionnaire is a questionnaire of health care resource utilization for nasal polyposis, including specialist visits, emergency care visits, sick leaves, days off etc.

30 **[0095]** Nasal Polyp-Associated Biomarkers. Examples of nasal polyp-associated biomarkers include, but are not limited to, one or any combination of IgE, TARC, eotaxin-3 and ECP. In certain embodiment of the invention, one or more nasal polyp-associated biomarkers may be detected from a biological sample derived from a subject. A biological sample includes, but is not limited to, one or any combination of materials taken from a patient including cultures, cells, 35 tissues, blood, saliva, nasal secretions, cerebrospinal fluid, pleural fluid, milk, lymph, sputum, semen, needle aspirates, and the like. Biological samples may be obtained using any methods

known in the art. For example, nasal secretion samples may be obtained from smears, blown secretions, imprints, lavage, swabs, brushes and the like.

[0096] A normal IgE level in healthy subjects is less than about 100 kU/L (e.g., as measured using the IMMUNOCAP® assay [Phadia, Inc. Portage, MI]). Thus, the invention includes

5 methods decreasing an elevated serum IgE level, which is a serum IgE level greater than about 100 kU/L, greater than about 150 kU/L, greater than about 500 kU/L, greater than about 1000 kU/L, greater than about 1500 kU/L, greater than about 2000 kU/L, greater than about 2500 kU/L, greater than about 3000 kU/L, greater than about 3500 kU/L, greater than about 4000 kU/L, greater than about 4500 kU/L, or greater than about 5000 kU/L, by administering to the
10 subject a pharmaceutical composition comprising a therapeutically effective amount of an IL-4R antagonist.

[0097] TARC levels in healthy subjects are in the range of 106 ng/L to 431 ng/L, with a mean of about 239 ng/L. (An exemplary assay system for measuring TARC level is the TARC quantitative ELISA kit offered as Cat. No. DDN00 by R&D Systems, Minneapolis, MN.) Thus,

15 the invention includes methods decreasing an elevated serum TARC level, which is a serum TARC (e.g., serum TARC) level greater than about 431 ng/L, greater than about 500 ng/L, greater than about 1000 ng/L, greater than about 1500 ng/L, greater than about 2000 ng/L, greater than about 2500 ng/L, greater than about 3000 ng/L, greater than about 3500 ng/L, greater than about 4000 ng/L, greater than about 4500 ng/L, or greater than about 5000 ng/L, by
20 administering to the subject a pharmaceutical composition comprising a therapeutically effective amount of an IL-4R antagonist.

[0098] Improvement of a nasal polyp-associated parameter, such as a nasal polyp-associated parameter described above, can be expressed as a percentage. For example, a score can be improved by 30% or more, by 40% or more, by 50% or more, by 60% or more, by 70% or more, 25 or by 80% or more.

[0099] Biomarker expression, as discussed above, can be assayed by detection of protein or RNA in serum. In some embodiments, RNA samples are used to determine RNA levels (non-genetic analysis), e.g., RNA levels of biomarkers; and in other embodiments, RNA samples are used for transcriptome sequencing (e.g., genetic analysis).

30 **[00100]** An "improvement in a nasal polyp-associated parameter" means an increase from baseline of one or more of NPIF, UPSIT, and/or a decrease from baseline of one or more of SNOT-22 score, subject-assessed nasal congestion/obstruction, anterior rhinorrhea (runny nose), posterior rhinorrhea (post nasal drip) and loss of sense of smell; number of nocturnal awakenings; VAS score; Lund-Mackay score; and 3D volumetric scores; and ACQ5 score in
35 patients with asthma. As used herein, the term "baseline," with regard to a nasal polyp-associated parameter, means the numerical value of the nasal polyp-associated parameter for a

patient prior to or at the time of administration of a pharmaceutical composition of the present invention.

[00101] To determine whether a nasal polyp-associated parameter has "improved," the parameter is quantified at baseline and at a time point after administration of the pharmaceutical

5 composition of the present invention. For example, a nasal polyp-associated parameter may be measured at day 1, day 2, day 3, day 4, day 5, day 6, day 7, day 8, day 9, day 10, day 11, day 12, day 14, or at week 3, week 4, week 5, week 6, week 7, week 8, week 9, week 10, week 11, week 12, week 13, week 14, week 15, week 16, week 17, week 18, week 19, week 20, week 21, week 22, week 23, week 24, or longer, after the initial treatment with a pharmaceutical 10 composition of the present invention. In some embodiments, the parameter is measured daily (e.g., once or twice per day), weekly, biweekly, or monthly. In other embodiments, the parameter is measured daily and the mean value determined over the course of a month is compared to baseline.

[00102] The difference between the value of the parameter at a particular time point following 15 initiation of treatment and the value of the parameter at baseline is used to establish whether there has been an "improvement" in the nasal associated parameter (e.g., an increase or decrease, as the case may be, depending on the specific parameter being measured).

Interleukin-4 Receptor Antagonists

20 **[00103]** In one embodiment, a subject in need thereof is administered a therapeutic composition comprising an interleukin-4 receptor (IL-4R) antagonist. As used herein, an "IL-4R antagonist" is any agent that binds to or interacts with IL-4R and inhibits the normal biological signaling function of IL-4R when IL-4R is expressed on a cell *in vitro* or *in vivo*. Non-limiting examples of categories of IL-4R antagonists include small molecule IL-4R antagonists, peptide-based IL-4R antagonists (e.g., "peptibody" molecules), and antibodies or antigen-binding 25 fragments of antibodies that specifically bind human IL-4R.

[00104] The term "human IL-4R" (hIL-4R), as used herein, is intended to refer to the IL-4R α subunit, which is a component of the IL-4 receptors Type I and Type II, as well as the IL-13 receptor system. An IL-4R antagonist, such as an anti-IL-4R α antibody or antigen-binding 30 fragment thereof, blocks the function of both IL-4 and IL-13 signal transduction.

[00105] The term "antibody", as used herein, is intended to refer to immunoglobulin molecules comprising four polypeptide chains, two heavy (H) chains and two light (L) chains interconnected by disulfide bonds, as well as multimers thereof (e.g., IgM). Each heavy chain 35 comprises a heavy chain variable region (abbreviated herein as HCVR or V_H) and a heavy chain constant region. The heavy chain constant region comprises three domains, C_H1, C_H2 and C_H3. Each light chain comprises a light chain variable region (abbreviated herein as LCVR or V_L) and a light chain constant region. The light chain constant region comprises one domain (C_L1). The

V_H and V_L regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDRs), interspersed with regions that are more conserved, termed framework regions (FR). Each V_H and V_L is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, 5 FR2, CDR2, FR3, CDR3, FR4. In some embodiments, the FRs of the anti-IL-4R antibody (or antigen-binding portion thereof) may be identical to the human germline sequences, or may be naturally or artificially modified. An amino acid consensus sequence may be defined based on a side-by-side analysis of two or more CDRs.

[00106] The term "antibody," as used herein, also includes antigen-binding fragments of full 10 antibody molecules. The terms "antigen-binding portion" of an antibody, "antigen-binding fragment" of an antibody, and the like, as used herein, include any naturally occurring, enzymatically obtainable, synthetic, or genetically engineered polypeptide or glycoprotein that specifically binds an antigen to form a complex. Antigen-binding fragments of an antibody may be derived, e.g., from full antibody molecules using any suitable standard techniques such as 15 proteolytic digestion or recombinant genetic engineering techniques involving the manipulation and expression of DNA encoding antibody variable and optionally constant domains. Such DNA is known and/or is readily available from, e.g., commercial sources, DNA libraries (including, e.g., phage-antibody libraries), or can be synthesized. The DNA may be sequenced and manipulated chemically or by using molecular biology techniques, for example, to arrange one 20 or more variable and/or constant domains into a suitable configuration, or to introduce codons, create cysteine residues, modify, add or delete amino acids, etc.

[00107] Non-limiting examples of antigen-binding fragments include: (i) Fab fragments; (ii) $F(ab')2$ fragments; (iii) Fd fragments; (iv) Fv fragments; (v) single-chain Fv (scFv) 25 molecules; (vi) dAb fragments; and (vii) minimal recognition units consisting of the amino acid residues that mimic the hypervariable region of an antibody (e.g., an isolated complementarity determining region (CDR) such as a CDR3 peptide), or a constrained FR3-CDR3-FR4 peptide. Other engineered molecules, such as domain-specific antibodies, single domain antibodies, domain-deleted antibodies, chimeric antibodies, CDR-grafted antibodies, diabodies, triabodies, tetrabodies, minibodies, nanobodies (e.g. monovalent 30 nanobodies, bivalent nanobodies, etc.), small modular immunopharmaceuticals (SMIPs), and shark variable IgNAR domains, are also encompassed within the expression "antigen-binding fragment," as used herein.

[00108] An antigen-binding fragment of an antibody will typically comprise at least one variable 35 domain. The variable domain may be of any size or amino acid composition and will generally comprise at least one CDR which is adjacent to or in frame with one or more framework sequences. In antigen-binding fragments having a V_H domain associated with a V_L domain, the V_H and V_L domains may be situated relative to one another in any suitable arrangement. For

example, the variable region may be dimeric and contain V_H - V_H , V_H - V_L or V_L - V_L dimers. Alternatively, the antigen-binding fragment of an antibody may contain a monomeric V_H or V_L domain.

[00109] In certain embodiments, an antigen-binding fragment of an antibody may contain at least one variable domain covalently linked to at least one constant domain. Non-limiting, exemplary configurations of variable and constant domains that may be found within an antigen-binding fragment of an antibody include: (i) V_H - C_H1 ; (ii) V_H - C_H2 ; (iii) V_H - C_H3 ; (iv) V_H - C_H1 - C_H2 ; (v) V_H - C_H1 - C_H2 - C_H3 ; (vi) V_H - C_H2 - C_H3 ; (vii) V_H - C_L ; (viii) V_L - C_H1 ; (ix) V_L - C_H2 ; (x) V_L - C_H3 ; (xi) V_L - C_H1 - C_H2 ; (xii) V_L - C_H1 - C_H2 - C_H3 ; (xiii) V_L - C_H2 - C_H3 ; and (xiv) V_L - C_L . In any configuration of variable and constant domains, including any of the exemplary configurations listed above, the variable and constant domains may be either directly linked to one another or may be linked by a full or partial hinge or linker region. A hinge region may consist of at least 2 (e.g., 5, 10, 15, 20, 40, 60 or more) amino acids which result in a flexible or semi-flexible linkage between adjacent variable and/or constant domains in a single polypeptide molecule. Moreover, an antigen-binding fragment of an antibody may comprise a homo-dimer or hetero-dimer (or other multimer) of any of the variable and constant domain configurations listed above in non-covalent association with one another and/or with one or more monomeric V_H or V_L domain (e.g., by disulfide bond(s)).

[00110] As with full antibody molecules, antigen-binding fragments may be monospecific or multispecific (e.g., bispecific). A multispecific antigen-binding fragment of an antibody will typically comprise at least two different variable domains, wherein each variable domain is capable of specifically binding to a separate antigen or to a different epitope on the same antigen. Any multispecific antibody format, including the exemplary bispecific antibody formats disclosed herein, may be adapted for use in the context of an antigen-binding fragment of an anti-IL-4R antibody using routine techniques available in the art.

[00111] The constant region of an antibody is important in the ability of an antibody to fix complement and mediate cell-dependent cytotoxicity. Thus, the isotype of an antibody may be selected on the basis of whether it is desirable for the antibody to mediate cytotoxicity.

[00112] The term "human antibody", as used herein, is intended to include antibodies having variable and constant regions derived from human germline immunoglobulin sequences. The human antibodies featured in the invention may nonetheless include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis *in vitro* or by somatic mutation *in vivo*), for example in the CDRs and in particular CDR3. However, the term "human antibody", as used herein, is not intended to include antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.

[00113] The term "recombinant human antibody", as used herein, is intended to include all human antibodies that are prepared, expressed, created or isolated by recombinant means,

such as antibodies expressed using a recombinant expression vector transfected into a host cell (described further below), antibodies isolated from a recombinant, combinatorial human antibody library (described further below), antibodies isolated from an animal (e.g., a mouse) that is transgenic for human immunoglobulin genes (see e.g., Taylor et al. (1992) *Nucl. Acids Res.* 20:6287-6295) or antibodies prepared, expressed, created or isolated by any other means that involves splicing of human immunoglobulin gene sequences to other DNA sequences. Such recombinant human antibodies have variable and constant regions derived from human germline immunoglobulin sequences. In certain embodiments, however, such recombinant human antibodies are subjected to *in vitro* mutagenesis (or, when an animal transgenic for

5 human Ig sequences is used, *in vivo* somatic mutagenesis) and thus the amino acid sequences of the V_H and V_L regions of the recombinant antibodies are sequences that, while derived from and related to human germline V_H and V_L sequences, may not naturally exist within the human antibody germline repertoire *in vivo*.

10

[00114] Human antibodies can exist in two forms that are associated with hinge heterogeneity.

15 In one form, an immunoglobulin molecule comprises a stable four chain construct of approximately 150-160 kDa in which the dimers are held together by an interchain heavy chain disulfide bond. In a second form, the dimers are not linked via inter-chain disulfide bonds and a molecule of about 75-80 kDa is formed composed of a covalently coupled light and heavy chain (half-antibody). These forms have been extremely difficult to separate, even after affinity

20 purification.

[00115] The frequency of appearance of the second form in various intact IgG isotypes is due to, but not limited to, structural differences associated with the hinge region isotype of the antibody. A single amino acid substitution in the hinge region of the human IgG4 hinge can significantly reduce the appearance of the second form (Angal et al. (1993) *Molecular Immunology* 30:105) to levels typically observed using a human IgG1 hinge. The instant invention encompasses antibodies having one or more mutations in the hinge, C_H2 or C_H3 region which may be desirable, for example, in production, to improve the yield of the desired antibody form.

[00116] An "isolated antibody," as used herein, means an antibody that has been identified and

30 separated and/or recovered from at least one component of its natural environment. For example, an antibody that has been separated or removed from at least one component of an organism, or from a tissue or cell in which the antibody naturally exists or is naturally produced, is an "isolated antibody." An isolated antibody also includes an antibody *in situ* within a recombinant cell. Isolated antibodies are antibodies that have been subjected to at least one purification or isolation step. According to certain embodiments, an isolated antibody may be substantially free of other cellular material and/or chemicals.

35

[00117] The term "specifically binds," or the like, means that an antibody or antigen-binding

fragment thereof forms a complex with an antigen that is relatively stable under physiologic conditions. Methods for determining whether an antibody specifically binds to an antigen are well known in the art and include, for example, equilibrium dialysis, surface plasmon resonance, and the like. For example, an antibody that "specifically binds" IL-4R, as used herein, includes 5 antibodies that bind IL-4R or portion thereof with a K_D of less than about 1000 nM, less than about 500 nM, less than about 300 nM, less than about 200 nM, less than about 100 nM, less than about 90 nM, less than about 80 nM, less than about 70 nM, less than about 60 nM, less than about 50 nM, less than about 40 nM, less than about 30 nM, less than about 20 nM, less than about 10 nM, less than about 5 nM, less than about 4 nM, less than about 3 nM, less than 10 10 about 2 nM, less than about 1 nM or less than about 0.5 nM, as measured in a surface plasmon resonance assay. Unless specified otherwise, K_D is determined at a specific temperature, e.g., 20°C, 25°C, 30°C, 37°C or 42°C. An isolated antibody that specifically binds human IL-4R may, however, have cross-reactivity to other antigens, such as IL-4R molecules from other (non-human) species.

15 [00118] The anti-IL-4R antibodies useful for the methods featured herein may include one or more amino acid substitutions, insertions and/or deletions in the framework and/or CDR regions of the heavy and light chain variable domains as compared to the corresponding germline sequences from which the antibodies were derived. Such mutations can be readily ascertained by comparing the amino acid sequences disclosed herein to germline sequences available from, 20 for example, public antibody sequence databases. The present invention includes methods involving the use of antibodies, and antigen-binding fragments thereof, which are derived from any of the amino acid sequences disclosed herein, wherein one or more amino acids within one or more framework and/or CDR regions are mutated to the corresponding residue(s) of the germline sequence from which the antibody was derived, or to the corresponding residue(s) of 25 another human germline sequence, or to a conservative amino acid substitution of the corresponding germline residue(s) (such sequence changes are referred to herein collectively as "germline mutations"). A person of ordinary skill in the art, starting with the heavy and light chain variable region sequences disclosed herein, can easily produce numerous antibodies and antigen-binding fragments which comprise one or more individual germline mutations or 30 combinations thereof. In certain embodiments, all of the framework and/or CDR residues within the V_H and/or V_L domains are mutated back to the residues found in the original germline sequence from which the antibody was derived. In other embodiments, only certain residues are mutated back to the original germline sequence, e.g., only the mutated residues found within the first 8 amino acids of FR1 or within the last 8 amino acids of FR4, or only the mutated 35 residues found within CDR1, CDR2 or CDR3. In other embodiments, one or more of the framework and/or CDR residue(s) are mutated to the corresponding residue(s) of a different germline sequence (i.e., a germline sequence that is different from the germline sequence from

which the antibody was originally derived). Furthermore, the antibodies may contain any combination of two or more germline mutations within the framework and/or CDR regions, e.g., wherein certain individual residues are mutated to the corresponding residue of a particular germline sequence while certain other residues that differ from the original germline sequence 5 are maintained or are mutated to the corresponding residue of a different germline sequence. Once obtained, antibodies and antigen-binding fragments that contain one or more germline mutations can be easily tested for one or more desired property such as, improved binding specificity, increased binding affinity, improved or enhanced antagonistic or agonistic biological properties (as the case may be), reduced immunogenicity, etc. The use of antibodies and 10 antigen-binding fragments obtained in this general manner are encompassed within the present invention.

[00119] The present invention also includes methods involving the use of anti-IL-4R antibodies comprising variants of any of the HCVR, LCVR, and/or CDR amino acid sequences disclosed herein having one or more conservative substitutions. For example, the present invention 15 includes the use of anti-IL-4R antibodies having HCVR, LCVR, and/or CDR amino acid sequences with, e.g., 10 or fewer, 8 or fewer, 6 or fewer, 4 or fewer, etc. conservative amino acid substitutions relative to any of the HCVR, LCVR, and/or CDR amino acid sequences disclosed herein.

[00120] The term "surface plasmon resonance", as used herein, refers to an optical 20 phenomenon that allows for the analysis of real-time interactions by detection of alterations in protein concentrations within a biosensor matrix, for example using the BIACore™ system (Biacore Life Sciences division of GE Healthcare, Piscataway, NJ).

[00121] The term " K_D ", as used herein, is intended to refer to the equilibrium dissociation 25 constant of a particular antibody-antigen interaction.

[00122] The term "epitope" refers to an antigenic determinant that interacts with a specific antigen binding site in the variable region of an antibody molecule known as a paratope. A single antigen may have more than one epitope. Thus, different antibodies may bind to different areas on an antigen and may have different biological effects. Epitopes may be either 30 conformational or linear. A conformational epitope is produced by spatially juxtaposed amino acids from different segments of the linear polypeptide chain. A linear epitope is one produced by adjacent amino acid residues in a polypeptide chain. In certain circumstance, an epitope may include moieties of saccharides, phosphoryl groups, or sulfonyl groups on the antigen.

[00123] According to certain exemplary embodiments of the present invention, the IL-4R antagonist is an anti-IL-4R α antibody, or antigen-binding fragment thereof comprising a heavy 35 chain variable region (HCVR), light chain variable region (LCVR), and/or complementarity determining regions (CDRs) comprising any of the amino acid sequences of the anti-IL-4R antibodies as set forth in US Patent Nos. 7,608,693 and 7,605,237. In certain exemplary

embodiments, the anti-IL-4R α antibody or antigen-binding fragment thereof that can be used in the context of the methods of the present invention comprises the heavy chain complementarity determining regions (HCDRs) of a heavy chain variable region (HCVR) comprising the amino acid sequence of SEQ ID NO:1 and the light chain complementarity determining regions (LCDRs) of a light chain variable region (LCVR) comprising the amino acid sequence of SEQ ID NO:2. According to certain embodiments, the anti-IL-4R α antibody or antigen-binding fragment thereof comprises three HCDRs (HCDR1, HCDR2 and HCDR3) and three LCDRs (LCDR1, LCDR2 and LCDR3), wherein the HCDR1 comprises the amino acid sequence of SEQ ID NO:3; the HCDR2 comprises the amino acid sequence of SEQ ID NO:4; the HCDR3 comprises the amino acid sequence of SEQ ID NO:5; the LCDR1 comprises the amino acid sequence of SEQ ID NO:6; the LCDR2 comprises the amino acid sequence of SEQ ID NO:7; and the LCDR3 comprises the amino acid sequence of SEQ ID NO:8. In yet other embodiments, the anti-IL-4R antibody or antigen-binding fragment thereof comprises an HCVR comprising SEQ ID NO:1 and an LCVR comprising SEQ ID NO:2. In certain exemplary embodiments of the present invention, 10 the IL-4R antagonist is an anti-IL-4R α antibody, or antigen-binding fragment thereof comprising a heavy chain sequence of SEQ ID NO:9 and a light chain sequence of SEQ ID NO:10. According to certain exemplary embodiments, the methods of the present invention comprise 15 the use of the anti-IL-4R α antibody referred to and known in the art as dupilumab, or a bioequivalent thereof.

20 [00124] The term “bioequivalent” as used herein, refers to a molecule having similar bioavailability (rate and extent of availability) after administration at the same molar dose and under similar conditions (e.g., same route of administration), such that the effect, with respect to both efficacy and safety, can be expected to be essentially same as the comparator molecule. Two pharmaceutical compositions comprising an IL-4R antagonist are bioequivalent if they are 25 pharmaceutically equivalent, meaning they contain the same amount of active ingredient (e.g., IL-4R antagonist), in the same dosage form, for the same route of administration and meeting the same or comparable standards. Bioequivalence can be determined, for example, by an *in vivo* study comparing a pharmacokinetic parameter for the two compositions. Parameters commonly used in bioequivalence studies include peak plasma concentration (C_{max}) and area 30 under the plasma drug concentration time curve (AUC).

[00125] Other anti-IL-4R α antibodies that can be used in the context of the methods of the present invention include, e.g., the antibody referred to and known in the art as AMG317 (Corren *et al.*, 2010, *Am J Respir Crit Care Med.*, 181(8):788-796), or any of the anti-IL-4R α antibodies as set forth in US Patent No. 7,186,809, or US Patent No. 8,092,804.

35 [00126] The anti-IL-4R α antibodies used in the context of the methods of the present invention may have pH-dependent binding characteristics. For example, an anti-IL-4R α antibody for use in the methods of the present invention may exhibit reduced binding to IL-4R α at acidic pH as

compared to neutral pH. Alternatively, an anti-IL-4R α antibody of the invention may exhibit enhanced binding to its antigen at acidic pH as compared to neutral pH. The expression "acidic pH" includes pH values less than about 6.2, e.g., about 6.0, 5.95, 5.9, 5.85, 5.8, 5.75, 5.7, 5.65, 5.6, 5.55, 5.5, 5.45, 5.4, 5.35, 5.3, 5.25, 5.2, 5.15, 5.1, 5.05, 5.0, or less. As used herein, the 5 expression "neutral pH" means a pH of about 7.0 to about 7.4. The expression "neutral pH" includes pH values of about 7.0, 7.05, 7.1, 7.15, 7.2, 7.25, 7.3, 7.35, and 7.4.

[00127] In certain instances, "reduced binding to IL-4R α at acidic pH as compared to neutral pH" is expressed in terms of a ratio of the K_D value of the antibody binding to IL-4R α at acidic pH to the K_D value of the antibody binding to IL-4R α at neutral pH (or vice versa). For example, an 10 antibody or antigen-binding fragment thereof may be regarded as exhibiting "reduced binding to IL-4R α at acidic pH as compared to neutral pH" for purposes of the present invention if the antibody or antigen-binding fragment thereof exhibits an acidic/neutral K_D ratio of about 3.0 or greater. In certain exemplary embodiments, the acidic/neutral K_D ratio for an antibody or antigen-binding fragment of the present invention can be about 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 15 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 20.0, 25.0, 30.0, 40.0, 50.0, 60.0, 70.0, 100.0 or greater.

[00128] Antibodies with pH-dependent binding characteristics may be obtained, e.g., by screening a population of antibodies for reduced (or enhanced) binding to a particular antigen at acidic pH as compared to neutral pH. Additionally, modifications of the antigen-binding domain 20 at the amino acid level may yield antibodies with pH-dependent characteristics. For example, by substituting one or more amino acids of an antigen-binding domain (e.g., within a CDR) with a histidine residue, an antibody with reduced antigen-binding at acidic pH relative to neutral pH may be obtained. As used herein, the expression "acidic pH" means a pH of 6.0 or less.

25 **Pharmaceutical Compositions**

[00129] The present invention includes methods which include administering an IL-4R antagonist to a patient, where the IL-4R antagonist is contained within a pharmaceutical composition. The pharmaceutical compositions featured in the invention are formulated with suitable carriers, excipients, and other agents that provide suitable transfer, delivery, tolerance, 30 and the like. A multitude of appropriate formulations can be found in the formulary known to all pharmaceutical chemists: Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, PA. These formulations include, for example, powders, pastes, ointments, jellies, waxes, oils, lipids, lipid (cationic or anionic) containing vesicles (such as LIPOFECTINTM), DNA conjugates, anhydrous absorption pastes, oil-in-water and water-in-oil emulsions, emulsions 35 carbowax (polyethylene glycols of various molecular weights), semi-solid gels, and semi-solid mixtures containing carbowax. See also Powell et al. "Compendium of excipients for parenteral formulations" PDA (1998) J Pharm Sci Technol 52:238-311.

[00130] The dose of antibody administered to a patient may vary depending upon the age and the size of the patient, symptoms, conditions, route of administration, and the like. The preferred dose is typically calculated according to body weight or body surface area. Depending on the severity of the condition, the frequency and the duration of the treatment can be adjusted.

5 Effective dosages and schedules for administering pharmaceutical compositions comprising anti-IL-4R antibodies may be determined empirically; for example, patient progress can be monitored by periodic assessment, and the dose adjusted accordingly. Moreover, interspecies scaling of dosages can be performed using well-known methods in the art (e.g., Mordenti *et al.*, 1991, *Pharmaceut. Res.* 8:1351).

10 **[00131]** Various delivery systems are known and can be used to administer a pharmaceutical composition containing an IL-4R antagonist, including encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the mutant viruses, receptor mediated endocytosis (see, e.g., Wu *et al.*, 1987, *J. Biol. Chem.* 262:4429-4432). Methods of administration include, but are not limited to, intradermal, intramuscular, 15 intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The composition may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents.

20 **[00132]** A pharmaceutical composition can be delivered subcutaneously or intravenously with a standard needle and/or syringe (e.g., a prefilled needle and/or syringe or a needle and/or syringe filled from a vial). In addition, with respect to subcutaneous delivery, a pen delivery device readily has applications in delivering a pharmaceutical composition. Such a pen delivery device, including an auto-injection pen delivery device, can be reusable or disposable. A 25 reusable pen delivery device generally utilizes a replaceable cartridge that contains a pharmaceutical composition. Once all of the pharmaceutical composition within the cartridge has been administered and the cartridge is empty, the empty cartridge can readily be discarded and replaced with a new cartridge that contains the pharmaceutical composition. The pen delivery device can then be reused. In a disposable pen delivery device, there is no replaceable 30 cartridge. Rather, the disposable pen delivery device comes prefilled with the pharmaceutical composition held in a reservoir within the device. Once the reservoir is emptied of the pharmaceutical composition, the entire device is discarded.

[00133] Numerous reusable pen and autoinjector delivery devices have applications in the subcutaneous delivery of a pharmaceutical composition. Examples include, but are not limited 35 to AUTOPEN™ (Owen Mumford, Inc., Woodstock, UK), DISETRONIC™ pen (Disetronic Medical Systems, Bergdorf, Switzerland), HUMALOG MIX 75/25™ pen, HUMALOG™ pen, HUMALIN 70/30™ pen (Eli Lilly and Co., Indianapolis, IN), NOVOPEN™ I, II and III (Novo

Nordisk, Copenhagen, Denmark), NOVOPEN JUNIOR™ (Novo Nordisk, Copenhagen, Denmark), BD™ pen (Becton Dickinson, Franklin Lakes, NJ), OPTIPEN™, OPTIPEN PRO™, OPTIPEN STARLET™, and OPTICLIK™ (Sanofi-Aventis, Frankfurt, Germany), to name only a few. Examples of disposable pen delivery devices having applications in subcutaneous delivery

5 of a pharmaceutical composition include, but are not limited to the SOLOSTAR™ pen (Sanofi-Aventis), the FLEXPEN™ (Novo Nordisk), and the KWIKPEN™ (Eli Lilly), the SURECLICK™ Autoinjector (Amgen, Thousand Oaks, CA), the PENLET™ (Haselmeier, Stuttgart, Germany), the EPIPEN (Dey, L.P.), and the HUMIRA™ Pen (Abbott Labs, Abbott Park IL), to name only a few.

10 **[00134]** For direct administration to the sinuses, the pharmaceutical compositions containing IL-4R antagonists may be administered using, e.g., a microcatheter (e.g., an endoscope and microcatheter), an aerosolizer, a powder dispenser, a nebulizer or an inhaler.

15 **[00135]** In certain situations, the pharmaceutical composition can be delivered in a controlled release system. In one embodiment, a pump may be used (see Langer, *supra*; Sefton, 1987, *CRC Crit. Ref. Biomed. Eng.* 14:201). In another embodiment, polymeric materials can be used; see, *Medical Applications of Controlled Release*, Langer and Wise (eds.), 1974, CRC Pres., Boca Raton, Florida. In yet another embodiment, a controlled release system can be placed in proximity of the composition's target, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, 1984, in *Medical Applications of Controlled Release*, *supra*, vol. 2, pp. 115-138).

20 Other controlled release systems are discussed in the review by Langer, 1990, *Science* 249:1527-1533.

25 **[00136]** The injectable preparations may include dosage forms for intravenous, subcutaneous, intracutaneous and intramuscular injections, drip infusions, etc. These injectable preparations may be prepared by known methods. For example, the injectable preparations may be prepared, e.g., by dissolving, suspending or emulsifying the antibody or its salt described above in a sterile aqueous medium or an oily medium conventionally used for injections. As the aqueous medium for injections, there are, for example, physiological saline, an isotonic solution containing glucose and other auxiliary agents, etc., which may be used in combination with an appropriate solubilizing agent such as an alcohol (e.g., ethanol), a polyalcohol (e.g., propylene glycol, polyethylene glycol), a nonionic surfactant [e.g., polysorbate 20, polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct of hydrogenated castor oil)], etc. As the oily medium, there are employed, e.g., sesame oil, soybean oil, etc., which may be used in combination with a solubilizing agent such as benzyl benzoate, benzyl alcohol, etc. The injection thus prepared is typically filled in an appropriate ampoule.

30 **[00137]** A pharmaceutical composition can be delivered intranasally. As used herein, "intranasal" administration refers to administration of a pharmaceutical compound to the nasal cavity. Intranasal delivery can be performed using any method known in the art, including, but

not limited to, inhalation, spraying, liquid stream lavage, nebulizing, atomizing or nasal irrigation. A pharmaceutical composition can be delivered intranasally using a syringe, a dropper, a squeeze bottle or a spray (atomizer) device (e.g., a syringe-driven atomizer or a pump-driven atomizer). Suitable pre-fillable syringes that can be used for intranasal delivery include, but are

5 not limited to, CarpujectTM (Hospira), Accuspray (BD Pharmaceutical Systems), Direct-Haler (Direct-Haler A/S), Go-Pump, mucosal atomization devices, Veridoser (Mystic Pharmaceuticals), OptiNose (OptiNose US), ViaNaseTM (Kurve technology), Nebu-Laser and the like.

[00138] Advantageously, the pharmaceutical compositions for oral or parenteral use described above are prepared into dosage forms in a unit dose suited to fit a dose of the active 10 ingredients. Such dosage forms in a unit dose include, for example, tablets, pills, capsules, injections (ampoules), suppositories, etc.

Dosage

[00139] The amount of IL-4R antagonist (e.g., anti-IL-4R antibody, or antigen binding fragment thereof) administered to a subject according to the methods featured herein is generally a therapeutically effective amount. As used herein, the phrase "therapeutically effective amount" means a dose of IL-4R antagonist that results in a detectable improvement in one or more symptoms associated with nasal polyps, or a dose of IL-4R antagonist that inhibits, prevents, lessens, or delays the progression of nasal polyps or a condition associated with nasal polyps.

20 In the case of an anti-IL-4R antibody, a therapeutically effective amount can be from about 0.05 mg to about 600 mg, e.g., about 0.05 mg, about 0.1 mg, about 1.0 mg, about 1.5 mg, about 2.0 mg, about 10 mg, about 20 mg, about 30 mg, about 40 mg, about 50 mg, about 60 mg, about 70 mg, about 80 mg, about 90 mg, about 100 mg, about 110 mg, about 120 mg, about 130 mg, about 140 mg, about 150 mg, about 160 mg, about 170 mg, about 180 mg, about 190 mg, about

25 200 mg, about 210 mg, about 220 mg, about 230 mg, about 240 mg, about 250 mg, about 260 mg, about 270 mg, about 280 mg, about 290 mg, about 300 mg, about 310 mg, about 320 mg, about 330 mg, about 340 mg, about 350 mg, about 360 mg, about 370 mg, about 380 mg, about 390 mg, about 400 mg, about 410 mg, about 420 mg, about 430 mg, about 440 mg, about 450 mg, about 460 mg, about 470 mg, about 480 mg, about 490 mg, about 500 mg, about 510 mg,

30 about 520 mg, about 530 mg, about 540 mg, about 550 mg, about 560 mg, about 570 mg, about 580 mg, about 590 mg, or about 600 mg, of the anti-IL-4R antibody or antigen binding fragment.

For example, a therapeutically effective amount can be from about 0.1 mg to about 590 mg, or from about 1.0 mg to about 580 mg, or from about 1.5 mg to about 570 mg, or from about 2.0 mg to about 570 mg, or from about 10 mg to about 560 mg, or from about 20 mg to about 550

35 mg, or from about 30 mg to about 540 mg, or from about 40 mg to about 530 mg, or from about 50 mg to about 520 mg, or from about 60 mg to about 510 mg, or from about 70 mg to about 500 mg, or from about 80 mg to about 490 mg, or from about 90 mg to about 480 mg, or from

about 100 mg to about 470 mg, or from about 110 mg to about 460 mg, or from about 120 mg to about 450 mg, or from about 130 mg to about 440 mg, or from about 140 mg to about 430 mg, or from about 150 mg to about 420 mg, or from about 160 mg to about 410 mg, or from about 170 mg to about 400 mg, or from about 180 mg to about 390 mg, or from about 190 mg to about 5 380 mg, or from about 200 mg to about 380 mg, or from about 210 mg to about 370 mg, or from about 220 mg to about 360 mg, or from about 230 mg to about 350 mg, or from about 240 mg to about 340 mg, or from about 250 mg to about 330 mg, or from about 260 mg to about 320 mg, or from about 270 mg to about 310 mg, or from about 280 mg to about 300 mg, or from about 290 mg to about 300 mg, of the anti-IL-4R antibody or antigen binding fragment.

10 [00140] The amount of IL-4R antagonist contained within the individual doses may be expressed in terms of milligrams of antibody per kilogram of patient body weight (*i.e.*, mg/kg). For example, the IL-4R antagonist may be administered to a patient at a dose of about 0.0001 to about 10 mg/kg of patient body weight.

15 **Combination Therapies**

[00141] The methods, according to certain embodiments, include administering to the subject one or more additional therapeutic agents in combination with the IL-4R antagonist. In other words, certain embodiments include one or more additional therapeutic agents in combination with the IL-4R antagonist for use in treating a subject. As used herein, the expression "in 20 combination with" means that the additional therapeutic agents are administered before, after, or concurrent with the pharmaceutical composition comprising the IL-4R antagonist. For example, when administered "before" the pharmaceutical composition comprising the IL-4R antagonist, the additional therapeutic agent may be administered about 72 hours, about 60 hours, about 48 hours, about 36 hours, about 24 hours, about 12 hours, about 10 hours, about 8 hours, about 6 25 hours, about 4 hours, about 2 hours, about 1 hour, about 30 minutes, about 15 minutes or about 10 minutes prior to the administration of the pharmaceutical composition comprising the IL-4R antagonist. When administered "after" the pharmaceutical composition comprising the IL-4R antagonist, the additional therapeutic agent may be administered about 10 minutes, about 15 minutes, about 30 minutes, about 1 hour, about 2 hours, about 4 hours, about 6 hours, about 8 30 hours, about 10 hours, about 12 hours, about 24 hours, about 36 hours, about 48 hours, about 60 hours or about 72 hours after the administration of the pharmaceutical composition comprising the IL-4R antagonist. Administration "concurrent" with the pharmaceutical composition comprising the IL-4R antagonist means that the additional therapeutic agent is administered to the subject in a separate dosage form within less than 5 minutes (before, after, 35 or at the same time) of administration of the pharmaceutical composition comprising the IL-4R antagonist, or administered to the subject as a single combined dosage formulation comprising both the additional therapeutic agent and the IL-4R antagonist.

[00142] The additional therapeutic agent may be, e.g., another IL-4R antagonist, an IL-1 antagonist (including, e.g., an IL-1 antagonist as set forth in US Patent No. 6,927,044), an IL-6 antagonist, an IL-6R antagonist (including, e.g., an anti-IL-6R antibody as set forth in US Patent No. 7,582,298), an IL-13 antagonist, a TNF antagonist, an IL-8 antagonist, an IL-9 antagonist, 5 an IL-17 antagonist, an IL-5 antagonist, an IgE antagonist, a CD48 antagonist, an antibiotic (e.g., doxycycline), an anti-fungal agent, a leukotriene, an antihistamine, an α -adrenergic decongestant, a mucolytic, an NSAID, a long-acting beta₂ agonist (e.g., salmeterol or formoterol), a short-acting beta₂ agonist, a steroid (e.g., an oral steroid), a corticosteroid, such 10 as an intranasal corticosteroid (e.g., mometasone furoate (MFNS; e.g., Nasonex[®])), or an inhaled corticosteroid (e.g., fluticasone or budesonide), an allergen immunotherapy, or 15 combinations thereof. For example, in certain embodiments, the pharmaceutical composition comprising an IL-4R antagonist is administered in combination with a combination comprising a long-acting beta₂ agonist and an inhaled corticosteroid (e.g., fluticasone + salmeterol [e.g., Advair[®] (GlaxoSmithKline)]; or budesonide + formoterol [e.g., Symbicort[®] (Astra Zeneca)]).

[00143] In some embodiments, the IL-4R antagonist is administered after a subject receives surgery to treat nasal polyposis.

Administration Regimens

[00144] According to certain embodiments, multiple doses of an IL-4R antagonist may be 20 administered to a subject over a defined time course. The methods include, for example, sequentially administering to a subject multiple doses of an IL-4R antagonist. As used herein, "sequentially administering" means that each dose of IL-4R antagonist is administered to the subject at a different point in time, e.g., on different days separated by a predetermined interval (e.g., hours, days, weeks or months). The present invention includes methods which comprise 25 sequentially administering to the patient a single initial dose of an IL-4R antagonist, followed by one or more secondary doses of the IL-4R antagonist, and optionally followed by one or more tertiary doses of the IL-4R antagonist.

[00145] The terms "initial dose," "secondary doses," and "tertiary doses," refer to the temporal sequence of administration of the IL-4R antagonist. Thus, the "initial dose" is the dose which is 30 administered at the beginning of the treatment regimen (also referred to as the "baseline dose"); the "secondary doses" are the doses which are administered after the initial dose; and the "tertiary doses" are the doses which are administered after the secondary doses. The initial, secondary, and tertiary doses may all contain the same amount of IL-4R antagonist, but will generally differ from one another in terms of frequency of administration. In certain 35 embodiments, however, the amount of IL-4R antagonist contained in the initial, secondary and/or tertiary doses will vary from one another (e.g., adjusted up or down as appropriate) during the course of treatment.

[00146] In one exemplary embodiment, each secondary and/or tertiary dose is administered 1 to 14 (e.g., 1, 1½, 2, 2½, 3, 3½, 4, 4½, 5, 5½, 6, 6½, 7, 7½, 8, 8½, 9, 9½, 10, 10½, 11, 11½, 12, 12½, 13, 13½, 14, 14½, or more) weeks after the immediately preceding dose. For example, each secondary is administered between 1 to 14½ weeks, or between 1½ and 14 weeks, or 5 between 2 and 13½ weeks, or between 2½ and 13 weeks, or between 3 and 12½ weeks, or between 3½ and 12 weeks, or between 4 and 11½ weeks, or between 4½ and 11 weeks, or between 5 and 10½ weeks, or between 5½ and 10 weeks, or between 6 and 9½ weeks, or between 6½ and 9 weeks, or between 7 and 8½ weeks, or between 7½ and 8 weeks after the immediately preceding dose. For example, each tertiary dose is administered between 1 to 14½ weeks, or between 1½ and 14 weeks, or between 2 and 13½ weeks, or between 2½ and 13 weeks, or between 3 and 12½ weeks, or between 3½ and 12 weeks, or between 4 and 11½ weeks, or between 4½ and 11 weeks, or between 5 and 10½ weeks, or between 5½ and 10 weeks, or between 6 and 9½ weeks, or between 6½ and 9 weeks, or between 7 and 8½ weeks, or between 7½ and 8 weeks after the immediately preceding dose. The phrase "the 10 immediately preceding dose," as used herein, means, in a sequence of multiple administrations, the dose of IL-4R antagonist which is administered to a patient prior to the administration of the very next dose in the sequence with no intervening doses.

[00147] These methods may include administering to a patient any number of secondary and/or tertiary doses of an IL-4R antagonist. For example, in certain embodiments, only a single 20 secondary dose is administered to the patient. In other embodiments, two or more (e.g., 2, 3, 4, 5, 6, 7, 8, or more) secondary doses are administered to the patient. Likewise, in certain embodiments, only a single tertiary dose is administered to the patient. In other embodiments, two or more (e.g., 2, 3, 4, 5, 6, 7, 8, or more) tertiary doses are administered to the patient.

[00148] In embodiments involving multiple secondary doses, each secondary dose may be 25 administered at the same frequency as the other secondary doses. For example, each secondary dose may be administered to the patient 1 to 2 weeks after the immediately preceding dose. Similarly, in embodiments involving multiple tertiary doses, each tertiary dose may be administered at the same frequency as the other tertiary doses. For example, each tertiary dose may be administered to the patient 2 to 4 weeks after the immediately preceding dose. Alternatively, the frequency at which the secondary and/or tertiary doses are 30 administered to a patient can vary over the course of the treatment regimen. The frequency of administration may also be adjusted during the course of treatment by a physician depending on the needs of the individual patient following clinical examination.

[00149] In certain embodiments, the initial dose (e.g., a "loading dose") is higher than either or 35 both of the secondary and tertiary doses. For example, the initial dose can be a loading dose, which is 1.5x, 2x, 2.5x, 3x or more greater than the secondary dose.

Treatment Populations

[00150] The methods featured in the present invention including administering to a subject in need thereof a therapeutic composition comprising an IL-4R antagonist. As used herein, the expression "a subject in need thereof" means a human or non-human animal that exhibits one

5 or more symptoms or indications of (i) nasal polyposis, (ii) chronic sinusitis with nasal polyps, (iii) allergic or non-allergic rhinitis, or (iv) allergic or non-allergic rhinosinusitis, or a subject who has been diagnosed with one of these conditions. For example, in one embodiment, a subject in need thereof has bilateral nasal polyps, and a nasal polyp score of at least 4 out of a maximum of 8 for both nostrils, with at least a score of 2 for each nostril. In certain embodiments, the
10 polyps are in the middle meatus. In certain embodiments, the presence of nasal polyps is confirmed by endoscopy. In some embodiments, the subject also has bilateral mucosal disease, which is confirmed by a method such as CT scan. As used herein "bilateral mucosal disease" is an infection of the mucous lining of the sinus cavities, e.g., the maxillary sinus cavities. In some embodiments, bilateral nasal polyposis (e.g., a nasal polyp score of at least 4
15 out of a maximum of 8 for both nostrils, with at least a score of 2 for each nostril) persists even after a treatment regimen of inhaled corticosteroids (INCS), such as where the INCS was administered for at least 6 weeks, at least 7 weeks, at least 8 weeks, or longer.

[00151] A subject in need thereof may further have been diagnosed with nasal polyposis or a condition associated with nasal polyposis, such as chronic sinusitis with nasal polyps, allergic or
20 non-allergic rhinitis, or allergic or non-allergic rhinosinusitis. The diagnosis may be on the basis of one or more of the following: (a) 22-item Sino Nasal Outcome Test (SNOT-22) score; (b) subject-assessed nasal congestion/obstruction, anterior rhinorrhea, posterior rhinorrhea and loss of sense of smell; (c) number of nocturnal awakenings; (d) Visual Analog Score (VAS) to assess patient-rated rhinosinusitis symptom severity; (e) five-item Asthma Control Questionnaire
25 (ACQ5) score in patients with asthma; (f) Nasal Polyp Score (NPS); (g) Nasal Peak Inspiratory Flow (NPIF); (h) smell test (University of Pennsylvania Smell Identification Test (UPSIT); (i) physiological parameters, such as measured by nasal endoscopy and CT scan; (j) Lund-Mackay Score; and (k) Three Dimensional volumetric measurement of the maxillary sinus.

[00152] A subject in need thereof may further have been diagnosed with chronic sinusitis with
30 nasal polyps on the basis of one or more of the following: (a) 22-item Sino Nasal Outcome Test (SNOT-22) score; (b) subject-assessed nasal congestion/obstruction, anterior rhinorrhea, posterior rhinorrhea and loss of sense of smell; (c) number of nocturnal awakenings; (d) Visual Analog Score (VAS) to assess patient-rated rhinosinusitis symptom severity; (e) five-item Asthma Control Questionnaire (ACQ5) score in patients with asthma; (f) Nasal Peak Inspiratory Flow (NPIF); (g) smell test (University of Pennsylvania Smell Identification Test (UPSIT); (h) physiological parameters, such as measured by nasal endoscopy and CT scan; (i) Lund-Mackay Score; and (k) Three Dimensional volumetric measurement of the maxillary sinus.

[00153] For example, in certain embodiments, a "subject in need thereof" is a human patient with chronic symptoms of sinusitis, which are the presence of at least two of the following symptoms: nasal blockade/obstruction/congestion or nasal discharge (anterior/posterior nasal drip); facial pain/pressure; and reduction or loss of smell.

5 **[00154]** In certain embodiments, a "subject in need thereof" is a human patient with a SNOT-22 score of greater than about 7, greater than about 10, greater than about 15, greater than about 20, greater than about 25, greater than about 30, greater than about 35, greater than about 40, greater than about 45, or greater than about 50. A "subject in need thereof" may also be a human patient who exhibits a Lund-Mackay score of greater than about 4, greater than about 5, 10 greater than about 6, greater than about 7, greater than about 8, greater than about 9, greater than about 10, greater than about 11, greater than about 12, or greater than about 13.

15 **[00155]** In a related embodiment, a "subject in need thereof" may be a subject who, prior to receiving an IL-4R antagonist, has been prescribed or is currently taking another medication, "a background therapy." The background therapy can be, for example, an intranasal corticosteroid (INCS, or ICS), such as Mometasone furoate nasal spray (MFNS; Nasonex®). In some embodiments, a "subject in need thereof" is an asthma patient who prior to receiving an IL-4R antagonist, has been prescribed or is currently taking an INCS in combination with a long-acting beta₂-adrenergic antagonist (LABA). Examples of INCS/LABA therapies include fluticasone/salmeterol combination therapy and budesonide/formoterol combination therapy. In 20 some embodiments, the background therapy is a nasal saline, a topical decongestant, a topical anesthetic, a leukotriene antagonist or a systemic antihistamine. In some embodiments, the "subject in need thereof" continues the background therapy after the subject receives the IL-4R antagonist, and in other embodiments, the subject in need thereof stops receiving the background therapy (e.g., at once or gradually) before receiving the IL-4R antagonist.

25

EXAMPLES

[00156] The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the methods and compositions featured in the invention, and are not intended to limit the scope of what the 30 inventors regard as their invention. Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperature, etc.) but some experimental errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, molecular weight is average molecular weight, temperature is in degrees Centigrade, and pressure is at or near atmospheric.

35

Example 1: Clinical Trial of Subcutaneously Administered Anti-IL-4R Antibody (mAb1) In Patients with Persistent Moderate-to-Severe Eosinophilic Asthma, Including Asthma Patients with Chronic Hyperplastic Eosinophilic Sinusitis

A. Study Objectives and Overview

5 [00157] A randomized, placebo-controlled, double-blind, parallel group study was conducted with once-a-week subcutaneous administration of either 300 mg dupilumab (“mAb1”) or placebo for 12 weeks to patients with persistent moderate-to-severe eosinophilic asthma who were partially controlled/uncontrolled by inhaled corticosteroid (ICS) and long-acting beta2 agonist (LABA) therapy. Dupilumab is an anti-IL-4R antibody having a heavy chain variable region of
10 SEQ ID NO:1, and a light chain variable region of SEQ ID NO:2. In certain exemplary embodiments, Dupilumab comprises a heavy chain sequence of SEQ ID NO:9 and a light chain sequence of SEQ ID NO:10. Dupilumab is described in US 7,608,693.

15 [00158] The primary objective of the study was to investigate the effects of mAb1 administered subcutaneously once weekly for 12 weeks as compared to placebo on reducing the incidence of asthma exacerbations in patients with persistent moderate-to-severe eosinophilic asthma. The secondary objectives of the study were to assess the safety and tolerability of mAb1 administered subcutaneously once weekly for 12 weeks in patients with persistent moderate to severe eosinophilic asthma, and to assess mAb1 serum concentrations following once weekly subcutaneous dosing for 12 weeks in patients with persistent moderate to severe eosinophilic
20 asthma.

[00159] Prior to screening, patients were required to be on a stable dose of any of the following doses and formulations of ICS/LABA combination therapy (also called “background therapy”) for at least 1 month:

Fluticasone/salmeterol combination therapy

25 - Advair® Diskus – dry powder inhaler (DPI): 250/50 µg BID or 500/50 µg BID; or
- Advair® HFA – metered dose inhaler (MDI): 230/42 µg BID or 460/42 µg BID; or

Budesonide/formoterol combination therapy (Symbicort® 160/9 µg BID or 320/9 µg BID); or

Mometasone/formoterol combination therapy (Dulera® 200/10 µg BID or 400/10 µg BID)

[00160] Patients who were on budesonide/formoterol or mometasone/formoterol were switched
30 to an equivalent dose of fluticasone/salmeterol at randomization (Day 1) and patients who had been on fluticasone/salmeterol remained on the same as background therapy.

[00161] Patients who satisfied the inclusion and exclusion criteria (see below) were randomized to one of the following treatments: 300 mg of mAb1 administered subcutaneously once weekly for 12 weeks; or placebo administered subcutaneously once weekly for 12 weeks.

35 [00162] The study comprised a 2-week screening period, a 12-week treatment period comprising a 4-week background therapy stable phase and an 8-week background therapy withdrawal phase post-randomization, followed by an 8-week post-treatment follow-up period.

Algorithm for background therapy (ICS/LABA) withdrawal:

[00163] Patients remained on BID fluticasone/salmeterol background therapy for 4 weeks after starting add-on therapy or treatment of 300 mg mAb1 (or placebo). At 4 weeks post-randomization, patients were switched from the BID fluticasone/salmeterol combination therapy 5 to an equivalent ICS dose of fluticasone monotherapy (comprising either FLOVENT® Diskus – DPI formulation of 250ug or 500 µg BID; or FLOVENT® HFA – MDI formulation of 220 µg or 440 µg BID). The LABA component (i.e., salmeterol) was discontinued. At subsequent visits, beginning with week 6, the fluticasone dose was reduced by approximately 50%, provided the patient did not meet any of the criteria for an asthma exacerbation (as defined below). If no 10 asthma exacerbations occurred, the ICS withdrawal proceeded according to the dosing schedule set forth in Table 1.

Table 1. Dosing schedule.

Background therapy stable phase	Background therapy withdrawal phase				
	Week 4	Week 6	Week 7	Week 8	Week 9
Fluticasone/salmeterol (DPI): 250/50 µg BID	Fluticasone (DPI): 250 µg BID	100 µg BID	50 µg BID	0 µg BID	0 µg BID
Fluticasone/salmeterol (DPI): 500/50 µg BID	Fluticasone (DPI): 500 µg BID	250 µg BID	100 µg BID	50 µg BID	0 µg BID
Fluticasone/salmeterol (MDI): 230/42 µg BID	Fluticasone (MDI): 220 µg BID	110 µg BID	44 µg BID	0 µg BID	0 µg BID
Fluticasone/salmeterol (MDI): 460/42 µg BID	Fluticasone (MDI): 440 µg BID	220 µg BID	110 µg BID	44 µg BID	0 µg BID

[00164] Upon completing 12 weeks of treatment with investigational product (or after early 15 discontinuation), patients were placed on their original dose of fluticasone/salmeterol, budesonide/formoterol, or mometasone/formoterol (dose at study entry) and albuterol or levalbuterol as-needed to control their symptoms for an additional 8 weeks off study medication before a final safety evaluation.

[00165] A schematic of the study protocol is provided in Figure 1.

20 [00166] Adult patients were included in the study based on the following criteria: (1) physician's diagnosis of persistent asthma for at least \geq 12 months based on the Global Initiative for Asthma (GINA) 2009 Guidelines, whose airway inflammation is likely to be eosinophilic; and (2) whose asthma is partially controlled or uncontrolled in inhaled corticosteroids/long acting beta-agonists combination therapy according to the following criteria: (i) stable dose of either

fluticasone/salmeterol combination therapy (DPI formulation: 250/50 µg BID or 500/50 µg BID or MDI formulation: 230/42 µg BID or 460/42 µg BID), or budesonide/formoterol combination therapy (160/9 µg BID or 320/9 µg BID), or mometasone/formoterol combination therapy (200/10 µg BID or 400/10 µg BID) for at least 1 month prior to screening; (ii) blood eosinophils ≥ 5 300 cells/µL or sputum eosinophils ≥ 3% during the screening phase; (iii) Juniper asthma control questionnaire (5-question version, ACQ) score of ≥ 1.5 and ≤ 3.0 at screening; (iv) FEV1 ≥ 50% predicted normal during the screening phase (3 attempts maximum) and on the randomization day prior to the first dose (3 attempts maximum); (v) has had within the 2 years prior to screening either treatment with one or more systemic (oral and/or parenteral) steroid bursts for 10 worsening asthma or in-patient hospitalization or an emergency care visit for worsening asthma; and (vi) documented history of reversibility within 12 months of screening that meets the criterion – at least 12% and 200 mL in FEV1 after 200 µg to 400 µg (2 to 4 inhalations) of albuterol during the screening phase (3 attempts maximum), or documented history of a positive methacholine challenge (PD20 methacholine ≤ 8 mg) within 12 months prior to screening.

15 Patients with moderate-to-severe asthma that is partially controlled or uncontrolled with moderate to high doses of combination therapy with inhaled corticosteroids and long-acting beta agonists (ADVAIR®, SYMBICORT® or DULERA®) and with blood eosinophils greater than or equal to 300 cells per microliter, or sputum eosinophils greater than or equal to 3% during the screening phase, were included in the study.

20 **[00167]** Patients who met all the inclusion criteria were screened for the following exclusion criteria: (1) patients less than 18 years of age or greater than 65 years of age; (2) clinically relevant abnormal laboratory values suggesting an unknown disease and requiring further evaluation; (3) chronic obstructive pulmonary disease (COPD) and/or other lung diseases impairing pulmonary function tests; (4) patients requiring beta-adrenergic receptor blockers for 25 any reason; (5) current smoker or cessation of smoking within the 6 months prior to screening; (6) previous smoking with a smoking history > 10 cigarette pack-years; (7) in-patient hospitalization or emergency care visit due to asthma exacerbation in the 2 months prior to screening; (8) plans to begin allergen immunotherapy within the study period; (9) exposure to another investigative antibody within a time period prior to screening that is less than 5 half-lives 30 of the antibody but not less than 30 days, or if the half-life of the antibody is not known, then a time period prior to screening that is at least 6 months; (10) previous enrollment into the current study; (11) patient was the investigator, his/her family member or an employee at the investigational site; (12) known or suspected non-compliance, alcohol or drug abuse; (13) inability to follow the procedures of the study (e.g., due to language problems or psychological 35 disorders); (14) reversal of sleep pattern (e.g., night shift worker); (15) treatment with drugs known to prolong QTc interval; (16) concomitant severe disease(s) for which the use of ICS (e.g., active or inactive pulmonary tuberculosis) or LABA (e.g., diabetes, cardiovascular

diseases, hypertension, hyperthyroidism, thyrotoxicosis, etc.) are contra-indicated; (17) use of injectable glucocorticosteroids or oral systemic glucocorticosteroids within 2 months prior to screening or more than 3 courses within the 6 months prior to screening; (18) pre-treatment with variable doses of ICS, either alone or in combination with a non-steroidal controller (other than fluticasone/salmeterol combination therapy, budesonide/formoterol combination therapy, or mometasone/formoterol combination therapy); (19) patients receiving prohibited concomitant medications (listed below); (20) known allergy to doxycycline or related compounds; (21) pregnancy or intention to become pregnant during the course of the study, breast feeding or unwillingness to use an effective method of contraception; and (22) recent history of a parasitic infection or travel to a parasitic endemic area within 6 months prior to screening.

[00168] Patients remained on a constant dose of the background asthma therapy for the first four weeks of the study after which the dose of background therapy was reduced gradually. First, the long-acting beta agonist component of the background therapy was withdrawn at week 4, and then the inhaled corticosteroid dose was reduced by half every 2 weeks until week 12. Patients continued on study treatment until the end of the study or until they were withdrawn due to an asthma exacerbation or for any other reason.

B. Study Treatments

[00169] Investigational medicinal product(s): Dupilumab or Matching Placebo. Formulation: Sterile dupilumab 150 mg/mL solution for SC injection, provided in 5 mL glass vials. Each vial contains a withdrawable volume of 2 mL. Sterile placebo provided in identically matched glass 5 mL vials. Route(s) of administration: Subcutaneous (SC) injection. Dose regimen: Dupilumab 600 mg SC (loading dose) on D1 followed by weekly 300 mg SC injection for 15 weeks. Placebo SC loading dose on D1 followed by weekly SC injection for 15 weeks.

[00170] Non-investigational medicinal product(s) (if applicable): Formulation: Mometasone furoate (NASONEX®) 50 micrograms/actuation nasal spray contained in a bottle, that contained 18g (140 actuations) of product formulation. Route of administration: Nasal spray. Dose regimen: After the screening visit (V1), all patients received mometasone furoate (NASONEX®) 50 µg /actuation nasal spray 2 actuations (50µg/actuation) in each nostril twice daily (total daily dose of 400 µg), or once daily (total daily dose of 200µg) until end of post-treatment observation period.

[00171] The following concomitant medications were not allowed during the duration of the study: any other inhaled steroid other than fluticasone/salmeterol combination therapy or fluticasone administered per the protocol (or budesonide/formoterol or mometasone/formoterol during the screening period); systemic or ocular steroids; LABAs other than the salmeterol component of the fluticasone/salmeterol combination therapy administered per the protocol; any other ICS/LABA combination products other than those given above; any inhaled anti-

cholinergic agents (e.g., Ipratropium bromide or tiotropium); methylxanthines (theophylline, aminophyllines); cromones; anti-IgE therapy; lipoxygenase inhibitors; and leukotriene receptor antagonists or leukotriene synthesis inhibitors.

5 **C. Efficacy of treatment**

[00172] The primary endpoint of this study was the occurrence of an exacerbation of asthma as defined by any of the following: (1) a 30% or greater reduction from baseline in morning peak expiratory flow (PEF) on two consecutive days; or (2) six or more additional reliever puffs of albuterol or levalbuterol in a 24 hour period (compared to baseline) on 2 consecutive days; or (3) 10 deterioration of asthma, as determined by the Investigator, requiring: (a) systemic (oral and/or parenteral) steroid treatment, or (b) an increase in ICS ≥ 4 times the last dose received prior to discontinuation from the study, or (c) hospitalization.

[00173] Secondary endpoints of the study included mean changes from baseline of the following parameters: (1) Forced expiratory volume in 1 second (FEV1) in liters measured at every visit; (2) Morning and evening peak expiratory flow rate (AM PEF and PM PEF) in liters/minute measured daily; (3) Daily Albuterol/Levalbuterol use in inhalations/day; (4) Five-item Asthma Control Questionnaire (ACQ5) score at every visit; and (5) Nighttime awakenings (no. of times per night) measured daily and (6) a 22-item Sino-Nasal Outcome Test (SNOT-22), evaluated at baseline and end of treatment (at Week 12), to assess upper airway symptoms.

20 Secondary endpoints also included proportion of patients with a composite asthma event defined by a 30% or greater reduction from baseline in morning PEF on two consecutive days together with ≥ 6 additional reliever puffs of albuterol or levalbuterol in a 24-hour period (compared to baseline) on 2 consecutive days. PEF, ACQ5, asthma symptoms scores, nocturnal awakenings, and reliever medication use were captured in an electronic daily diary.

25 Mean daily nocturnal awakenings, ranging from 0-10, were averaged from the previous 7 days. Morning and evening asthma symptom scores consisted of a non-validated patient-reported outcome assessed on a 5-point Likert-type scale, with higher scores indicating worse outcomes (Table 2). Patients recorded overall symptom scores twice a day prior to measuring PEF. Data were described as the average for the 7 days prior to the specified time point.

30

Table 2: Asthma Symptom Score Assessment

A) Morning symptom score:

- 0 = No asthma symptoms, slept through the night
- 1 = Slept well, but some complaints in the morning. No nighttime awakenings
- 2 = Woke up once because of asthma (including early awakening)
- 3 = Woke up several times because of asthma (including early awakening)
- 4 = Bad night, awake most of the night because of asthma

B) Evening symptom score:

- 0 = Very well, no asthma symptoms

1 = One episode of wheezing, cough, or breathlessness
2 = More than one episode of wheezing, cough, or breathlessness without interference of normal activities
3 = Wheezing, cough, or breathlessness most of the day, which interfered to some extent with normal activities
4 = Asthma very bad. Unable to carry out daily activities as usual

D. Adverse Events Monitoring

[00174] Safety was assessed throughout the study by monitoring Adverse Events and Serious Adverse Events.

5 **[00175]** An Adverse Event (AE) is any untoward medical occurrence in a subject or clinical investigation subject administered a pharmaceutical product. An AE can, therefore, be any unfavorable and unintended sign (including abnormal laboratory finding), symptom, or disease temporally associated with the use of a medicinal product, whether or not considered related to the medicinal (investigational) product. AEs also include: any worsening (i.e., any clinically 10 significant change in frequency and/or intensity) of a pre-existing condition that is temporally associated with the use of the study drug; abnormal laboratory findings considered by the Investigator to be clinically significant; and any untoward medical occurrence.

15 **[00176]** A Serious Adverse Event (SAE) is any untoward medical occurrence that at any dose results in death; is life-threatening; requires in-patient hospitalization or prolongation of existing hospitalization; results in persistent or significant disability/ incapacity; is a congenital anomaly/ birth defect; or is an important medical event.

E. Statistical methods

20 **[00177]** For the primary analysis of proportion of patients experiencing an asthma exacerbation, a logistic regression model was used to compare SAR group with placebo. The model included terms for treatment and stratification factor (prior ICS/LABA combination therapy dose). The primary analysis was performed based on modified intent-to-treat (mITT) population which included all randomized patients who received at least one dose of mAb1. A stratified chi-square test was also used to corroborate the primary analysis.

25 **[00178]** For secondary efficacy endpoints except SNOT-22, the change from baseline was analyzed using a mixed-effect model with repeated measures (MMRM) approach. The model included change from baseline values up to week 12 as response variables, and factors (fixed effects) for treatment, stratification factor, visit, treatment-by-visit interaction, baseline value, and baseline-by-visit interaction. Statistical inferences on treatment comparisons for the change from 30 baseline at week 12 were derived from the mixed-effect model. Change from baseline in SNOT-22 was analyzed using an analysis of covariance (ANCOVA), with end of treatment measurements used to impute missing data. Pharmacodynamic effects were evaluated using MMRM models in a *post hoc* fashion. No adjustments were made for multiplicity, since there

was only one primary endpoint and analysis. Safety variables including AEs, laboratory parameter, vital signs, ECG, clinical laboratory observations and physical examinations were summarized using descriptive statistics.

[00179] Demographic and clinical characteristics were summarized using descriptive characteristics. Plots of secondary and pharmacodynamic variables are presented as mean change from baseline over time with standard error. Comparison of treatment effects from the MMRM analyses are based on least square mean change (95% confidence intervals [CI]) from baseline at Week 12.

10 F. Results

[00180] The results observed with all 104 randomized patients (from 491 screened) who either completed or discontinued the treatment phase of the study are summarized below. All randomized patients were exposed to study treatment and included in the mITT population. Baseline characteristics were similar between groups. The demographic and clinical characteristics were also similar between the two groups (Table 3). As noted above, patients were treated either with 300 mg subcutaneous mAb1 once a week, or with placebo. The study treatment period was completed by 86.5% and 67.3% of the mAb1 and placebo patients, respectively. The most common cause of discontinuation was lack of efficacy, which was more frequent with placebo (21.2%) than mAb1 (1.9%).

20

Table 3. Baseline Demographic and Clinical Characteristics of Treatment Groups.*

Variable	Placebo (N = 52)	mAb1 300 mg (N = 52)
Age (yr)	41.6 ± 13.1	37.8 ± 13.2
Male sex, no. (%)	26 (50.0)	26 (50.0)
Race or ethnic group, no. (%)		
White	38 (73.1)	45 (86.5)
Black or African American	9 (17.3)	5 (9.6)
Asian	3 (5.8)	1 (1.9)
Other	2 (3.8)	1 (1.9)
Body mass index		
Mean (kg/m ²)	31.6 ± 7.0	31.3 ± 8.0
≥ 30, no. (%)	25 (48.1)	24 (46.2)
Duration of asthma (yr)	26.9 ± 14.8	24.2 ± 12.6
Number of asthma exacerbations in prior 2 years	1.4 ± 1.3	1.4 ± 1.0
Prior ICS/LABA combination therapy dose, no. (%)		
High Dose	41 (78.8)	42 (80.8)
Low Dose	11 (21.2)	10 (19.2)
Blood eosinophils (x10 ⁻⁹ /l)	0.47 ± 0.21	0.55 ± 0.19
FEV ₁ (l)	2.54 ± 0.66	2.47 ± 0.65
FEV ₁ (% of predicted value)	72.0 ± 12.7	72.0 ± 12.6
PEF (l/min)		
Morning	406.9 ± 110.7	393.0 ± 101.1

Variable	Placebo (N = 52)	mAb1 300 mg (N = 52)
Evening	416.6 ± 116.8	414.6 ± 102.3
ACQ5 score	2.1 ± 0.5	2.1 ± 0.5
Asthma symptom score		
Morning	0.73 ± 0.63	0.75 ± 0.81
Evening	1.12 ± 0.73	0.92 ± 0.71
Nocturnal awakenings per day	0.21 ± 0.50	0.44 ± 0.80
SNOT-22	26.2 ± 15.6	30.9 ± 14.8
Inhalations of albuterol or levalbuterol/24-hour period	2.0 ± 1.8	2.2 ± 2.4
FeNO (ppb)	35.0 ± 27.1	37.6 ± 28.1
TARC (pg/ml)	470.5 ± 204.7	496.1 ± 342.4
Eotaxin-3 (pg/ml)	117.3 ± 349.2	75.4 ± 44.0
IgE (IU/ml)	694.7 ± 1837.8	657.7 ± 1482.3

*Plus-minus values are means ± SD, except as otherwise noted. ACQ5 denotes the Asthma Control Questionnaire (5 question version), FeNO fraction of exhaled nitric oxide, FEV₁ forced expiratory volume in 1 second, IgE immunoglobulin E, PEF peak expiratory volume, SNOT-22 the 22-item Sinonasal Outcome Test,

5 and TARC thymus and activation regulated chemokine.

(i) Primary Efficacy Endpoint

10 [00181] The incidence of asthma exacerbations in the placebo and mAb1 treatment groups is presented in Table 4.

Table 4. Incidence of Asthma Exacerbations in mITT population

	Placebo (N=52)	mAb1 (N=52)
Patients With No Asthma Exacerbations	29 (55.8%)	49 (94.2%)
Patients With Asthma Exacerbations	23 (44.2%)	3 (5.8%)
Odds Ratio vs Placebo (95% CI)	--	0.077 (0.021, 0.279)

15 [00182] There were a total of 26 asthma exacerbations during the treatment period, and no patients were hospitalized for asthma exacerbations. There were 23 patients (44.2%) who experienced an asthma exacerbation in the placebo group, whereas only 3 patients (5.8%) experienced an asthma exacerbation in the mAb1 treatment group. The odds ratio is 0.077 (p <0.0001) and the relative risk reduction is approximately 87%.

20 [00183] Out of the 26 asthma exacerbations experienced during this study, 9 were considered severe as demonstrated by a need for immediate intervention in the form of treatment with either systemic corticosteroids or with inhaled corticosteroids at 4 or more times the dose taken prior to the event. A summary of the incidence of severe asthma exacerbations is presented in Table 5.

Table 5. Incidence of Severe Asthma Exacerbations in mITT population

	Placebo (N=52)	mAb1 (N=52)
Patients With No Asthma Exacerbations	29 (55.8%)	49 (94.2%)
Patients With Severe Asthma Exacerbations	8 (15.4%)	1 (1.9%)
Patients With Non-Severe Asthma Exacerbations	15 (28.8%)	2 (3.8%)

[00184] As shown in Table 5, eight severe asthma exacerbations were observed in the placebo group, and only 1 severe asthma exacerbation was observed in the mAb1 treatment group. The remaining 15 asthma exacerbations in the placebo group and 2 in the mAb1 group

5 met the protocol definition of exacerbation based on decreased morning PEF and/or increased albuterol/levalbuterol use. Within the active treatment group, a sustained improvement versus baseline was observed during the course of the study for all parameters, despite steroid withdrawal.

Table 6. Exacerbation Events

Outcome	Placebo (N = 52)	mAb1 (N = 52)
≥ 30% reduction from baseline in morning PEF in a 24-hr period on 2 consecutive days	10* (19.2)	1 (1.9)
≥ 6 additional inhalations of albuterol/levalbuterol in a 24-hr period on 2 consecutive days	10 (19.2)	1 (1.9)
Systemic steroid treatment	5 (9.6)	1 (1.9)
≥ 4-fold increase in ICS from the previous dose	3 (5.8)	0
Hospitalization	0	0

10 *4 Placebo patients met both PEF and systemic steroid treatment criteria, and 1 placebo patient met both PEF and additional albuterol/levalbuterol use.

[00185] With mAb1, the time to exacerbation was longer, and the risk of exacerbation was 15 reduced relative to placebo (hazard ratio 0.10; 95% CI 0.03, 0.34; P< 0.001). An analysis of the time to asthma exacerbation by Kaplan-Meier Plot revealed that the effect of treatment with mAb1 is sustained over time, including after 8 weeks when patients are at higher risk of developing exacerbations due to steroid withdrawal.

[00186] Only 1 patient from the placebo group had a composite asthma event. A composite 20 asthma event is defined as a 30% or greater reduction from baseline in morning PEF on 2

consecutive days together with ≥ 6 additional reliever puffs of albuterol or levalbuterol in a 24-hour period (compared to baseline) on 2 consecutive days.

(ii) Other Efficacy Endpoints

[00187] Lung function parameters (FEV1, AM PEF and PM PEF), asthma symptom-based endpoints (ACQ score, nighttime awakenings) and albuterol use were assessed for each patient at each visit. In addition, the SNOT-22 score was assessed at baseline and at the end of treatment. For all parameters, the baseline and Week 12 (LOCF) mean values along with the mean difference between treatment groups (ANOVA model for SNOT-22) are summarized in Table 7. In Table 7, the column labeled "Difference vs. Placebo" reflects the placebo-corrected value from baseline which takes into account changes that are observed in the value of the parameter as compared to the changes that were observed for that parameter in the placebo-treated group.

Table 7. Secondary Parameters of Lung Function and Symptom Scores

	N	Baseline Mean (SD)	Least-Squared Mean Change (SD)	Difference vs. Placebo	p value
FEV1 (L)					
Placebo	52	2.54 (0.66)	-0.22 (0.06)	--	
mAb1	52	2.47 (0.65)	0.05 (0.06)	0.27 (0.11, 0.42)	0.0009
AM PEF (L/min)					
Placebo	52	406.9 (110.7)	-20.7 (9.1)	--	
mAb1	51	393.0 (101.1)	13.9 (8.8)†	34.6 (10.6, 58.5)	0.0051
PM PEF (L/min)					
Placebo	51	416.6 (116.8)	-18.4 (8.9)†	--	
mAb1	52	414.6 (102.3)	4.3 (8.5)	22.7 (-0.7, 46.0)	0.0567
Albuterol Use (Puffs/Day)					
Placebo	52	2.0 (1.8)	0.7 (0.3)	--	
mAb1	50	2.2 (2.4)	-1.3 (0.3)‡	-2.0 (-2.9, -1.2)	<0.0001
ACQ Score					
Placebo	52	2.08 (0.52)	-0.27 (0.16)	--	
mAb1	52	2.09 (0.46)	-1.00 (0.16)	-0.73 (-1.15, -0.30)	0.0011
Night-time Awakenings (No. of times/night)					
Placebo	52	0.2 (0.5)	0.1 (0.1)	--	
mAb1	52	0.4 (0.8)	-0.2 (0.1)	-0.2 (-0.5, -0.0)	0.0518
SNOT22 Average Score					

Placebo	51	26.24 (15.62)	0.23 (2.15)†	--	
mAb1	50	30.92 (14.77)	-8.26 (2.20)‡	-8.49 (-13.96, -3.03)	0.0027

† 51 patients with at least 1 post-baseline assessment.

‡ 50 patients with at least 1 post-baseline assessment.

5 **[00188]** Treatment with mAb1 resulted in a significant change from baseline in FEV1 at Week 1, which was maintained through Week 12 despite LABA and ICS withdrawal, with a small decrease in FEV1 at Week 5 coinciding with LABA withdrawal. Similar improvements were observed in morning PEF, but less so in evening PEF. The least-squared (LS) mean change from baseline to week 12 in FEV1 was -0.22 L for placebo and 0.05 L for the mAb1 group. (p=0.0009).

10 **[00189]** ACQ5 score improved in both treatment groups at Week 1. However, while ACQ5 improved further with mAb1 between Weeks 1 and 4, the placebo effect stabilized, maintaining the difference through Week 12.

15 **[00190]** Morning symptom scores increased from baseline to Week 12 with placebo. With mAb1, there was an initial decrease which remained below baseline through Week 12. A similar pattern (with greater variability) was observed for evening asthma symptom scores.

20 **[00191]** Nocturnal awakenings were stable from the placebo group through Week 6, then increased from Weeks 6 to 12. In contrast, nocturnal awakenings decreased in the mAb1 group by Week 1 and remained improved versus baseline through Week 12.

25 **[00192]** Changes in albuterol/levalbuterol use were similar to other secondary endpoints: an initial decrease followed by a return towards baseline with placebo. With mAb1, the initial decrease was maintained over time.

30 **[00193]** There was a non-significant difference at baseline between the SNOT-22 values with the mean placebo score at 26.24 and the mean mAb1 score at 30.02. At week 12, the LS mean change was a slight increase of 0.23 points for the placebo group and a mean decrease (improvement) of 8.26 points for the mAb1 group. This represented a magnitude of improvement of 8.49 points for the mAb1 group (p=0.0027).

Table 8. Secondary Endpoints

Outcome	Placebo (N = 52)	mAb1 (N = 52)	Difference Placebo (95% CI)**	P Value
Kaplan-Meier estimate at 12 weeks	46.0 (31.8, 60.2)	5.8 (0.0, 2.1)	0.10 (0.03 to 0.34)	<0.001
Change in morning asthma symptom scores, baseline to week 12	0.3 ± 0.1	-0.4 ± 0.1	-0.7 (-0.9 to -0.4)	<0.001
Change in evening asthma symptom scores, baseline to week 12	0.1 ± 0.1	-0.6 ± 0.1	-0.7 (-0.9 to -0.4)	<0.001

Table 9. Change From Baseline at Week 12 in SNOT-22 Items Relevant to Upper Airway Disease.

SNOT-22 Subscale	Least-Squares Mean Change \pm Standard Error		Difference vs Placebo (95% CI)	P Value
	Placebo (N = 52)	mAb1 (N = 52)		
Need to blow nose	-0.25 \pm 0.17*	0.95 \pm 0.17†	-0.70 (-1.13, -0.26)	0.002
Nasal blockage	-0.20 \pm 0.19*	-0.94 \pm 0.19†	0.75 (-1.22, -0.28)	0.002
Decreased sense of smell/taste	0.04 \pm 0.18*	-1.13 \pm 0.18†	-1.16 (-1.62, -0.71)	< 0.001

*51 and †50 patients with at least 1 post-baseline assessment respectively

5 [00194] For all secondary endpoints, Week 12 measurements favored mAb1 treatment and were significant except for evening PEF and nocturnal awakenings (Table 7 and 8). Significant improvements with mAb1 were also observed for the three SNOT-22 items relevant to upper airway disease (Table 9)

10 (iii) Safety

[00195] mAb1 was generally safe and well tolerated. Treatment-emergent adverse events (TEAEs) were reported similarly by 40 (76.9%) of placebo-treated patients and by 42 (80.8%) of mAb1-treated patients (Table 10). TEAEs were non-specific, generally mild to moderate in intensity and the majority recovered by the end of the study. An increased reporting of the 15 following TEAEs was observed for mAb1 in comparison with placebo: injection site reactions were reported by 15 (28.8%) mAb1 patients and by 5 (9.6%) placebo patients; nasopharyngitis was reported by 7 (13.5%) mAb1 patients and 2 (3.8%) placebo patients; headache was reported by 6 (11.5%) mAb1 patients and 3 (5.85) placebo patients and nausea was reported by 4 (7.7%) mAb1 patients and 1 (1.9%) placebo patients.

20

Table 10. Adverse Events.

Adverse event	Placebo (N = 52)	mAb1 300 mg (N = 52)
	no. of patients (%)	
Any adverse event	40 (76.9)	42 (80.8)
Any serious adverse event	3 (5.8)	1 (1.9)
Study discontinuation owing to adverse event	3 (5.8)	3 (5.8)
Death	0	0
Most common AEs*		
Injection site reactions†	5 (9.6)	15 (28.8)
Nasopharyngitis	2 (3.8)	7 (13.5)
Upper respiratory tract infection	9 (17.3)	7 (13.5)
Headache	3 (5.8)	6 (11.5)
Nausea	1 (1.9)	4 (7.7)
Arthropod bite	0	3 (5.8)

Adverse event	Placebo (N = 52)	mAb1 300 mg (N = 52)
<i>no. of patients (%)</i>		
Muscle spasms	0	3 (5.8)
Nasal congestion	1 (1.9)	3 (5.8)
Rash	1 (1.9)	3 (5.8)
Urticaria	0	3 (5.8)
Viral upper respiratory tract infection	0	3 (5.8)

*≥ 3 patients in any treatment group by Preferred Term

†Injection site reaction includes events reported as: injection site pain, injection site reaction, injection site erythema, injection site rash, injection site hematoma, injection site urticaria, injection site dermatitis, injection sites inflammation, injection site nodule, injection site pruritus and injection site swelling.

[00196] There were no deaths reported during the study period. Of the 4 treatment emergent serious adverse events (SAEs) reported: 1 mAb1 patient experienced bipolar disorder and 3

10 placebo patients experienced SAEs of asthma with pneumonia, gunshot wound with left pneumothorax, and right ankle fracture. None of these SAEs were considered as related to the mAb1 and all but the recent ankle fracture were recovered by the end of the study. There were no deaths.

[00197] A total of 6 patients discontinued the study due to a TEAE: 3 patients in the mAb1

15 group (bipolar disorder, asthma with wheezing, and angioedema) and 3 patients in the placebo group (upper respiratory tract infection, psoriasis and asthma). The TEAE of angioedema occurred in a 42-year old African-American female after the ninth study treatment dose as a pruritic, popular rash observed at, and distant to, the injection site. It persisted for one week, resolved after study treatment discontinuation, and prednisone and diphenhydramine treatment.

20 It was deemed treatment-related. This AE was subsequent to milder rashes at the injection site after the first and sixth study treatment doses.

[00198] Among the most common AEs occurring in ≥3 patients in any treatment group (Table

10), injection site reactions, nasopharyngitis, nausea, and headache occurred more frequently with mAb1 than placebo. No clinically significant changes in vital signs, physical examination, 25 clinical laboratory or ECG findings were reported in either group.

G. Conclusion

[00199] Significant improvements were observed for lung function and other asthma control parameters. Efficacy was observed early and sustained despite background therapy

30 withdrawal. A relative reduction of approximately 87% (p <0.0001) in the primary endpoint of the incidence of asthma exacerbations in persistent, moderate-to-severe asthma patients with eosinophilia was observed after 12-week treatment with 300mg of mAb1 once weekly (5.8%) compared with placebo (44.2%). As shown in Table 7, clinically meaningful and statistically

significant (without multiplicity adjustment) improvements with treatment compared with placebo were observed in lung function parameters (FEV1, PEF AM), asthma symptom scores (ACQ) and albuterol use. Positive trends were observed for PEF PM ($p=0.0567$) and nocturnal awakenings ($p=0.0518$). A statistically significant (without multiplicity adjustment) improvement 5 was also observed for the SNOT-22 score. Within the active treatment group, a sustained improvement versus baseline was observed during the course of study for all parameters, despite LABA and ICS withdrawal. mAb1 was generally safe and well tolerated.

Example 2: Biomarker studies

10 **[00200]** Biomarker analysis was conducted on samples taken from subjects who participated in clinical trials of mAb1 (see Example 1 above). In particular, serum/plasma biomarkers associated with TH2 inflammation such as thymus and activation chemokine (TARC; CCL17), Immunoglobulin E (IgE), eotaxin-3, periostin, carcinoembryonic antigen (CEA), YKL-40 and blood eosinophils were measured in samples from patients at baseline and at different time 15 points following initiation of study treatment(s). Baseline levels of these biomarkers were assessed for potential predictive value for treatment response. In addition, the fraction of exhaled NO (FeNO) and induced sputum eosinophils and neutrophils were measured as biomarkers of bronchial inflammation. Exhaled nitric oxide assessment was conducted prior to spirometry and following a fast of at least 1 hour using a NIOX instrument (Aerocrine AB, Solna, 20 Sweden). Biomarkers were analyzed using a mixed model and the least square mean derived from the model are reported below.

[00201] Asthma subjects (N=104) were administered either mAb1 (300 mg) or placebo subcutaneously, on days 1, 8, 15, 22, 29, 36, 43, 50, 57, 64, 71 and 78 of the study (*i.e.*, 12 weekly doses) (see Example 1, above). Samples for biomarker analysis were collected from the 25 antibody- and placebo-treated subjects at week 0, 1, 4, 8 and 12. Antigen-specific IgE was detected using the Phadiatop® test.

[00202] TARC, eotaxin-3 and IgE remained unchanged in response to placebo. In contrast, a rapid reduction in TARC (mean % change -22.7% vs +0.3%; $p= 0.0003$) and eotaxin-3 (mean % change -39.62% vs 12.69%; $p<0.0001$) was observed within one week in patients treated with 30 mAb1 and persisted until week 12: TARC: -26.0% vs +7.6% placebo ($p=0.0005$); Eotaxin-3: -45.67% vs +5.13% placebo ($p<0.0001$).

[00203] TARC levels responded within a week following exposure to mAb1 at 300 mg administered subcutaneously. TARC levels plateau at approximately 50% of the baseline level in mAb1-treated subjects, regardless of ICS withdrawal. The data suggest that TARC expression is more directly linked to IL-4R signaling, than FEV1 changes (which drop in parallel to ICS withdrawal [after Week 4]) and that IL-4R blockage induces a shift towards a TH1 35 signature, as observed with, for example, IFN γ administration. It might be possible to titrate the

mAb1 dose using TARC (and for example CXCL10) in particular in patients requiring long term treatment and at risk for TH1 type immune diseases.

[00204] Total serum IgE also decreased following mAb1 treatment. Total serum IgE response was more heterogeneous and delayed compared to TARC response. Mean (SD) baseline IgE

5 levels were 694.68 IU/L (1837.82) for the placebo group (n=52) and 657.66 (1482.25) for the mAb1 group (n=52), whereas median was 169.95 for the placebo group and 206.15 for the mAb1 group. Despite this heterogeneity, a trend towards IgE decrease in mAb1-exposed patients compared with placebo was observed – however, starting at week 4 only. Serum IgE was significantly reduced in the mAb1 group compared with placebo (mean % change, -10.1% 10 vs +13.5%; p=0.0325) starting from week 4 and continued to decrease until week 12 (mean % change, -36.8% for mAb1 vs -5.5% for placebo; p<0.0001).

[00205] Changes from baseline and placebo at Week 12 for FeNO, TARC, eotaxin-3, and IgE all favored mAb1 (all P< 0.001) (Table 11). No differences from baseline or between treatments were observed in YKL-40 or CEA.

15

Table 11. Percent Change From Baseline at Week 12 in Pharmacodynamic Endpoints.

Outcome	Least-Squares Change \pm Standard Error		Percent P Value
	Placebo (N = 52)	mAb1 (N = 52)	
FeNO	35.0 \pm 10.8	28.7 \pm 11.2	< 0.001
TARC	7.6 \pm 6.9	-26.0 \pm 6.9	< 0.001
Eotaxin-3	5.1 \pm 4.7	-45.7 \pm 4.7	< 0.001
IgE	5.5 \pm 3.6	-36.8 \pm 3.6	< 0.001
Blood eosinophils	2.7 \pm 15.8	41.6 \pm 15.7	0.078

[00206] There was a transient decrease in periostin levels, followed by an increase with

20 LABA/ICS withdrawal. Administration of mAb1 delayed the increase, but did not prevent the increase above baseline. No consistent treatment effect was observed with CEA and YKL-40. The number of blood eosinophils remained unchanged through Week 6, but then increased at Weeks 8 and 12. Peripheral blood eosinophil numbers were unchanged on placebo throughout treatment. The difference between the treatments was not significant, with the borderline 25 increase driven by larger blood eosinophil elevations in only a few patients treated with mAb1. Little or no increases were observed in the majority of patients.

30

Table 12. Proportions of Patients Achieving Thresholds of Change in Blood Eosinophil Levels.

Change in eosinophils	Number (%) of patients	
	Placebo (n = 52)	mAb1 (n = 52)
> 15% Decrease	13 (30.2)	21 (47.7)
15% Decrease – 0% change	7 (16.3)	6 (13.6)
0%-15% Increase	8 (18.6)	4 (9.1)
15% - 100% Increase	13 (30.2)	6 (13.6)
100% - 200% increase	2 (4.7)	3 (6.8)
> 200% increase	0	4 (9.1)

[00207] Since only 3 mAb1 patients experienced asthma exacerbation during the study, no 5 conclusion could be drawn regarding the association between baseline biomarker levels and asthma exacerbations.

[00208] mAb1 treatment was also associated with a significant decrease from baseline in FeNO at week 4, and FeNO remained below baseline through Week 12, regardless of ICS withdrawal (mean % change at week 12: -28.7 for mAb1 vs 35.0 for placebo; p<0.0001). In contrast, 10 placebo FeNO values remained stable through week 8, followed by an increase at week 12 coincident with ICS withdrawal.

[00209] Forced expiratory volume in 1 second (FEV₁) improvement significantly correlated with 15 FeNO reduction ($r=-0.408$, $p=0.009$) at week 12. Similarly, improvements in AM-PEF and PM-PEF correlated with FeNO reduction. Other correlations with FeNO were not significant. See Table 13.

Table 13. Correlation between FEV₁ and PD Endpoints.

Outcome	Correlation	P Value
FeNO	-0.408	<0.009
TARC	-0.248	0.10
Eotaxin-3	-0.146	0.34
IgE	-0.279	0.06
Blood eosinophils	0.165	0.28

[00210] Scatter plot analysis of baseline eosinophils versus change from baseline in FEV1 at week 12 did not seem to suggest association of baseline eosinophils and treatment effect, as measured by change from baseline in FEV1 at week 12 in the study population (baseline eosinophils ≥ 0.3 Giga/L). Baseline eosinophils correlated with decreased ACQ and decreased albuterol/levalbuterol use. Periostin and YKL-40 at baseline correlated with decreased ACQ. 20

[00211] The FEV1 change from baseline at week 12 was compounded by the withdrawal of ICS (starting at week 4). Similar analyses did not suggest association between baseline TARC or IgE and change from baseline in FEV1 at week 12 in the study population (baseline eosinophils ≥ 0.3 Giga/L). 25

Summary

[00212] These results show that mAb1 significantly reduced serum biomarkers associated with Th2 inflammation (TARC, eotaxin-3 and IgE) and bronchial inflammation (FeNO) in adult asthma patients. The correlation between FeNO reduction and FEV₁ improvement suggests a 5 relationship between IL-4/IL-13 mediated anti-inflammatory activity and improvement in pulmonary function in moderate-to-severe, uncontrolled asthma.

Example 3. Clinical Trial of Subcutaneously Administered Anti-IL-4R Antibody (mAb1) In Patients with Bilateral Nasal Polypsis and Chronic Symptoms of Sinusitis

10 A. Study Objectives and Overview

[00213] The positive effect of mAb1 on the SNOT-22 test described in Example 1 suggested that the anti-IL-4R antibody might also be effective for treating chronic sinusitis with nasal polyps. Further, nasal polyps are most commonly eosinophilic/TH2 driven, and mAb1 significantly reduced biomarkers associated with Th2 inflammation (see Example 2). A clinical 15 trial was therefore designed to test the therapeutic effect of mAb1 on chronic sinusitis with nasal polyps.

[00214] A randomized, double-blind, phase 2, placebo controlled, 2 arm study was performed to evaluate mAb1 administered once a week (QW) subcutaneously (SC) for 16 weeks in patients having chronic sinusitis with nasal polyps (bilateral nasal polypsis and chronic 20 symptoms of sinusitis).

[00215] The primary efficacy evaluation was the change from baseline at week 16 in bilateral endoscopic Nasal Polyp Score (NPS) in an intent to treat (ITT) population using an MMRM analysis. The main secondary efficacy analyses included the SNOT-22 score, loss of sense of smell (daily AM/PM daily evaluations), smell test (UPSIT), subject-assessed symptoms of rhinitis 25 (daily AM/PM evaluations), Lund-Mackay sinus CT scan score (central reading), nasal peak inspiratory flow (daily AM/PM evaluations) and a responder analysis (defined as 1 or 2-point improvement in total NPS at week 16 compared to baseline).

[00216] mAb1 was administered concomitantly with Mometasone Furoate Nasal Spray (MFNS) (2 actuations of NASONEX® 50 micrograms/actuation per nostril twice daily). There is high co- 30 morbidity of NP with asthma, aspirin/ nonsteroidal anti-inflammatory drug (NSAID) hypersensitivity and previous surgeries, and therefore patients were allowed to enter the study unless they presented any of the exclusion criteria described below. 60 patients were randomized into 2 treatment groups of 30 patients per group. To ensure at least 30 patients with co-morbid asthma were included in the study, recruitment of NP patients without co-morbid 35 asthma stopped when approximately 30 patients without asthma were randomized. Ultimately, there were 35 patients with asthma who participated in the study, and 25 patients without

asthma who participated. Both the patient and the investigator were blinded to the assigned treatment group.

[00217] The study consisted of three periods: 1) a four week screening run in period on MFNS (Visit 1); (2) a 16 week randomized mAb1 or placebo treatment period (visits 2-18); and (3) a 16 week post-treatment period to assay pharmacokinetics, immunogenicity, safety and efficacy (visits 19-22). The total duration of the study is up to 36 weeks.

[00218] The primary endpoint was the change from baseline at week 16 in bilateral NPS.

[00219] Numerous secondary efficacy endpoints were measured to more comprehensively evaluate the efficacy of mAb1. The study explored improvements in SNOT-22 score, loss of sense of smell (daily AM/PM daily evaluations), smell test (UPSIT), subject-assessed symptoms of rhinitis (daily AM/PM evaluations), Lund-Mackay sinus CT scan score (central reading), nasal peak inspiratory flow (daily AM/PM evaluations) and a responder analysis (defined as 1 or 2-point improvement in total NPS at week 16 compared to baseline).

[00220] These endpoints, together with exploratory sub-group analysis and biomarkers provided the information on the therapeutic value of mAb1 to reduce nasal polyp score and to improve symptoms in NP and its subsets. The sustainability of the effect was also explored through the 4-month post-treatment evaluation period.

[00221] The 300 mg QW dose regimen saturated apparent target mediated clearance level (10-15 mg/L). This regimen was tested and provided statistically significant and clinically relevant response in two previous proof of concept studies performed with mAb1 in asthma and atopic dermatitis (see, e.g., Example 1 above, USSN 61/805797 and USSN 61/816191). The first dose employed a loading dose of 600 mg in order to achieve faster steady-state concentration. This loading dose range is supported by the acceptable safety profile of the highest loading dose (600 mg) demonstrated in a prior study conducted in Japanese healthy subjects.

[00222] In addition, given that the Cmax after 600 mg loading dose is around 70 mg/L and that the steady state Ctrough of 300 mg QW is around 150 mg/L, the Cmax after the proposed dosing regimen (i.e., 600 mg loading dose followed by 300 mg QW) was below the mean Cmax of 12 mg/kg IV dose (421 mg/L), the highest single dose tested in healthy subjects that was well tolerated, providing additional confidence that this dose regimen should have an acceptable safety profile.

[00223] Patient inclusion criteria included (i) a physician endoscopic diagnosis of bilateral nasal polyposis (i.e., a minimum bilateral nasal polyp score of 5 out of a maximum score of 8 for both nostrils, with at least a score of 2 for each nostril, despite completion of a prior Intranasal Corticosteroid (INCS) treatment) for at least 8 weeks before screening, and (ii) chronic symptoms of sinusitis, which are the presence of at least two of the following symptoms prior to screening: nasal blockade/obstruction/congestion or nasal discharge (anterior/posterior nasal drip); facial pain/pressure; and reduction or loss of smell.

[00224] Patients met these criteria were screened for the following exclusion criteria: age <18 or >65 years; any technical/administrative reason that made it impossible to randomize the patient in the study; previous participation in any clinical trial of mAb1; a SNOT22 score <7; receipt of any other investigational drug or prohibited therapy for this study within 2 months 5 before screening or 5 half-lives, whichever was longer; receipt of oral corticosteroids (OCS) or intranasal corticosteroid drops within 2 months or 1 month before screening or scheduled to receive OCS during the study period for another condition; treatment with mAb or immunosuppressive therapy; treatment with an anti-immunoglobulin E (IgE) therapy (e.g., omalizumab) within 130 days of visit 1; treatment with a leukotriene antagonist / modifier for 10 patients who were not on a continuous treatment for ≥30 days prior to visit 1; initiation of allergen immunotherapy within 3 months prior to visit 1 or a plan to begin therapy during the screening period or the randomized treatment period; any nasal surgery within six months before screening or have had more than five sinonal surgeries in the past of which maximal two were surgeries changing the lateral wall structure of the nose; or a condition/concomitant 15 disease that makes a patient non-evaluable for the primary efficacy endpoint (e.g., antrochoanal polyps; nasal septal deviation that would occlude at least one nostril; acute sinusitis, nasal infection or upper respiratory infection at screening or in the two weeks before screening; ongoing rhinitis medicamentosa; Churg-Strauss syndrome, Young's syndrome, Kartagener's syndrome or dyskinetic ciliary syndromes, Cystic fibrosis; signs or a CT scan suggestive of 20 allergic fungal rhinosinusitis). Patients with co-morbid asthma were excluded if: the patient had a forced expiratory volume (FEV1) of 60% or less; an exacerbation requiring systemic (oral and/or parenteral) steroid treatment or hospitalization (>24h) for treatment of asthma, had occurred within 3 months prior screening; or the patient was receiving a dose higher than 1000 µg fluticasone or the equivalent of inhaled corticosteroids. Other exclusion criteria included 25 patients with short life expectancy (less than 6 months); patients receiving concomitant treatment prohibited in the study; women who were pregnant or intend to become pregnant during the study, or breast-feeding women. Other exclusion criteria included concomitant severe diseases (e.g., active and inactive pulmonary tuberculosis, Diabetes mellitus etc.); diagnosed active parasitic infection; suspected or high risk of parasitic infection; history of 30 human immunodeficiency virus (HIV) infection or positive HIV screen at visit 1; evidence of acute or chronic infection; known or suspected immunosuppression, including history of invasive opportunistic infections (e.g., tuberculosis, histoplasmosis, listeriosis, coccidioidomycosis, pneumocystosis, aspergillosis), despite infection resolution; live vaccinations within 12 weeks prior to visit 1 or planned vaccinations during the study; patients with active autoimmune disease 35 or patients using immunosuppressive therapy for autoimmune disease (e.g., Hashimoto's thyroiditis, Graves' disease, inflammatory bowel disease, primary biliary cirrhosis, systemic lupus erythematosus, multiple sclerosis, psoriasis vulgaris, rheumatoid arthritis); patients with

positive or indeterminate hepatitis B surface antigen (HBsAg), hepatitis B core antibody (HBcAb), or hepatitis C antibody at visit 1; and patients with liver injury related criteria (e.g., underlying hepatobiliary disease, or ALT>3 ULN).

5 **B. Study Treatments**

[00225] Investigational Product: Sterile mAb1 of various concentrations were provided in 5 mL glass vials. Each vial contained a withdrawable volume of 2 mL: 150 mg/mL solution (300 mg dose/ 2 mL). Sterile placebo was provided in identically matched glass 5 mL vials, where each vial contained a deliverable volume of 2 mL.

10 **[00226]** mAb1 was administered every 7 ± 2 days (QW). The doses of mAb1 were separated by ≥ 5 days to avoid an overdose. At Visit 2 (V2), 2 injections were performed. After V2, one injection of mAb1 was performed weekly at the investigational site throughout the randomized treatment period. The mAb1 was administered following clinic procedures and blood collection. Patients were monitored for at least 1 hour after each administration for any signs or symptoms 15 of a local site injection or hypersensitivity reaction. Subcutaneous injection sites were alternated among the 4 quadrants of the abdomen (avoiding navel and waist areas) or upper thighs so that the same site was not injected for two consecutive times/weeks.

[00227] On a daily basis throughout the study, the subject used an electronic diary to record daily use of Mometasone Furoate (MFNS). MFNS (NASONEX ®) 50 micrograms/actuation 20 nasal spray, was contained in a bottle, that contained 18 g (140 actuations) of product formulation.

[00228] Screening Period: Prior to screening, subjects were on a stable dose of intranasal corticosteroids (INCS) for ≥ 2 month prior to Visit 1 (V1). If the patient was using an alternative 25 INCS product other than MFNS prior to the screening visit, at V1, the patient was switched to MFNS. After V1, all patients entered a run-in period of 4 weeks where they received MFNS: 2 actuations (50 μ g/actuation) in each nostril twice daily (BID) (total daily dose of 400 μ g), unless they were intolerant to BID INCS in which case, they stayed on the lower dose (QD) regimen. To be accepted for the study, patients also had the presence of at least two of the following 30 symptoms prior to screening: nasal blockade/obstruction/congestion or nasal discharge (anterior/posterior nasal drip); +/- facial pain/pressure or +/- reduction or loss of smell

[00229] Treatment Period: The treatment period proceeded as indicated in the study flowchart at Table 14.

Table 14.

	Screening period	Randomized treatment period																		Post-treatment period						
		RDN	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	EO T ^a	EO S
VISIT	1																									
Week (DAY)	W-4(D-28)	W0 (D1)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22		
Inclusion Criteria including Informed Consent (s)	X	X																								
Exclusion Criteria	X	X																								
Patient Demography	X																									
Medical/Surgical History	X																									
Prior Medication History ^b	X																									
Physical Examination	X																				X				X	
Spirometry ^c		X			X			X											X			X				
Randomization	X																									
Treatment:																										
mAb1 weekly SC administration ^d		X (loading)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X							
Call IVRS	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X			X	
Dispense or download electronic diary/NPIF ^e	X	X			X			X			X					X					X	X	X	X	X	
NIMP (MFNS)																										
Record concomitant medication																										
Efficacy																										
Nasal endoscopy ^f	X	X				X			X			X			X			X			X				X	
CT scan ^g		X																								X
Smell test (UPSIT)		X										X														X
SNOT- 22	X	X			X			X			X			X			X			X					X	
Visual analogue scale (VAS)		X			X			X			X			X			X			X					X	
QoL (SF-36, EQ-5D)		X			X			X			X			X			X			X					X	
Nasal polyp related resource use questionnaire		X			X			X			X			X			X			X					X	
ACQ-5 ^h		X			X			X			X			X			X			X					X	
Safety																										
AE /SAE recording (if any)																										
Vital Signs	X	X			X			X			X			X			X			X	X	X	X	X		
ECG	X										X			X			X			X					X	

	Screening period	Randomized treatment period																Post-treatment period							
		RDN	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	EO S		
VISIT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22			
Week (DAY)	W-4(D-28)	W0 (D1)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	24	28	32
Laboratory Testing																									
Clinical laboratory testing ⁱ	X	X				X				X				X				X		X		X			
Urinalysis (dipstick)	X									X								X				X			
Pregnancy test (for WOCPB) ^j	X	X				X			X			X			X			X				X			
PK/Anti-drug antibody sampling PK ^k		X		X	X			X				X					X	X	X	X	X	X			
Serum Biomarker sampling		X		X	X			X			X			X			X	X				X			
Archival nasal secretion sampling ^m		X			X			X			X			X			X	X							
Polyp biopsy ⁿ		X																X							
Stored DNA sampling		X																							
Stored whole blood RNA sampling ^o		X		X														X				X			

The Screening Period is 28 days in duration to run in any patient on MFNS, and to collect baseline data. V2 will take place 28days+/-2 day window after V1

5 a No mAb1 administration during this visit. Patients who discontinue treatment early will be assessed as soon as possible using the procedures normally planned for the End-of-treatment Visit and the 4 Post-treatment Period Visits.

b Prior to screening, patients must be on a stable dose of INCS for more than 8 weeks

c Spirometry: all patients should have FEV1 anytime during Screening Period (before V2) and at the other scheduled visits during the Randomized treatment period

10 d Weekly mAb1 administrations starting from V2 at the site investigational site must be separated by at least 5 days.

e Electronic diary/NPIF meter is used for daily recording of MFNS use, nocturnal awakenings, morning and evening NPIF and rhinosinusitis symptom scores 1) nasal congestion/obstruction 2) anterior rhinorrhea (runny nose), 3) posterior rhinorrhea (post nasal drip), and 4) loss of sense of smell, scored using a 0-3 categorical scale where 0 = no symptoms, 1 = mild symptoms, 2 = moderate symptoms and 3 = severe symptoms); This device is dispensed at Visit 1 and information is downloaded from this device on the other indicated days. The average of the last 7 days before V2 is needed to determine the baseline value

15 f Nasal endoscopy: endoscopy (including use of decongestants before the procedure) will be performed after all other efficacy assessments have been completed for each visit; Standard video sequences will be downloaded by the investigator to the central reader's secured Internet site. For eligibility central reading of V1 will be used. At V2 investigator review V1 results from central reader to confirm entry criteria and reconfirm eligibility based on review of Inclusion/Exclusion Criteria and the V2 endoscopy local reading

20 g CT scan should be performed anytime during Screening Period before a first administration of mAb1 and at EOT. Central reading will be used for comparison baseline (BL) to EOT

25

h Only for patients with co-morbid asthma, ACQ-5 is completed in the patient's electronic diary during clinic visits.

5 i Hematology: hemoglobin, hematocrit, platelet count, total white blood cell count with five-part differential count, differential count, and total red blood cell count. Serum chemistry (Obtain fasting at planned visits but V2): creatinine, blood urea nitrogen, glucose, uric acid, total cholesterol, total protein, albumin, total bilirubin, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, electrolytes (sodium, potassium, chloride), bicarbonate, and creatine phosphokinase. Clinical laboratory testing at Visit 1 includes hepatitis screen (hepatitis B surface antigen (HBsAg), Hepatitis B IgM core antibody (HBcAb-IgM), hepatitis C antibodies (HC Ab), HIV screen (Anti-HIV-1 and HIV-2 antibodies), anti-nuclear antibody (ANA). Clinical laboratory testing at Visit 2 is limited to hematology and a separate hematology sample obtained for local analysis. Note: Anti-ds DNA antibody will be tested if ANA is positive ($\geq 1:160$ titer). Clinical lab testing at Visit 2 consists of hematology only

10 j Serum pregnancy test at Visit 1 and urine pregnancy tests at other visits. A negative result must be obtained at Visits 1 and 2 prior to randomization visits

15 k Serum pharmacokinetic samples, immune response assessment (ADA) samples and optional whole blood RNA samples will be collected prior to administration of investigational product during the Randomized Treatment Period. During the post-treatment period PK samples will be collected at all visits and ADA samples only at EOS visit. Patients with titers >1000 of the ADA at last visit may be followed after the study. Blood samples for PK and ADA assessment will be collected at any time in case an SAE occurs.

20 m Nasal secretion samples will be collected and stored for potential future discovery efforts to identify predictors of treatment response

n Optional polyp biopsies will be collected in selected clinical centers

25 o Samples will be collected prior to administration of investigational product during the Randomized Treatment Period

[00230] During the treatment period, patients continued the stable dose of mometasone furoate: two actuations of MFNS in each nostril BID or QD (in case patient cannot tolerate the high dose). At Visit 2, patients were administered the SNOT-22 test, VAS and QoL 30 questionnaires (SF-36, EQ-5D, Nasal polyp related resource use questionnaire), the smell test, and the ACQ-5 in patients with asthma.

[00231] Clinical laboratory testing at Visit 2 was limited to hematology, pharmacokinetics, anti-drug antibodies, biomarkers in serum and plasma, allergen-specific IgE panel sampling. Blood samples were taken prior to administration of mAb1. Nasal secretion sampling for biomarkers.

35 For those patients who had signed a specific informed consent form, a blood sample was collected for DNA and RNA sampling (prior to administration of investigational product during the randomized treatment period).

[00232] Temporary treatment discontinuation was considered by the investigator because of suspected Adverse Events (AEs). Re-initiation of treatment with mAb1 was done under close 40 and appropriate clinical/and or laboratory monitoring once the investigator had considered according to his/her best medical judgment that the responsibility of mAb1 in the occurrence of the concerned event was unlikely and if the selection criteria for the study were still met.

[00233] An AE was any untoward medical occurrence in a patient or clinical investigation patient administered a pharmaceutical product and which did not necessarily have to have a causal relationship with the treatment.

[00234] A serious adverse event (SAE) was any untoward medical occurrence that at any dose:

- 5 resulted in death, or was life-threatening, (the term “life-threatening” in the definition of “serious” referred to an event in which the patient was at risk of death at the time of the event; it did not refer to an event which hypothetically might have caused death if it were more severe); required inpatient hospitalization or prolongation of existing hospitalization, or resulted in persistent or significant disability/incapacity, or was a congenital anomaly/birth defect; was a medically important event. Medical and scientific judgment was exercised in deciding whether expedited reporting was appropriate in other situations, such as important medical events that were not immediately life-threatening or resulted in death or hospitalization but could have jeopardized the patient or could have required intervention (i.e., specific measures or corrective treatment) to prevent one of the other outcomes listed in the definition above (the following list of medically important events was intended to serve as a guideline for determining which condition had to be considered as a medically important event. The list was not intended to be exhaustive: intensive treatment in an emergency room or at home for: allergic bronchospasm, anaphylaxis, blood dyscrasias (i.e., agranulocytosis, aplastic anemia, bone marrow aplasia, myelodysplasia, pancytopenia, etc.), convulsions (seizures, epilepsy, epileptic fit, absence, etc.), development of 10 drug dependency or drug abuse); ALT >3 x ULN + total bilirubin >2 x ULN or asymptomatic ALT increase >10 x ULN; Suicide attempt or any event suggestive of suicidality; syncope, loss of consciousness (except if documented as a consequence of blood sampling); bullous cutaneous eruptions; cancers diagnosed during the study or aggravated during the study; chronic neurodegenerative diseases (newly diagnosed) or aggravated during the study (only if judged 15 important by the Investigators in studies assessing specifically the effect of a study drug on these diseases).
- 20
- 25

[00235] Post-treatment Period: Upon completing the randomized treatment period (or following early discontinuation of mAb1), patients continued treatment with the stable dose of MFNS maintained over the randomized treatment period, or modified treatment based on 30 medical judgment.

[00236] The following concomitant treatments were not permitted during the screening period and the randomized treatment period: use of intranasal medication that would interfere with the symptoms of diseases (antihistamines, nasal atropine, ipratropium bromide, nasal cromolyn), except nasal saline; INCS drops; systemic corticosteroid; decongestion (topical or systemic),
 5 except before endoscopy; long term use of systemic antibiotics (for 2 weeks or more); lipoxygenase inhibitors; any immunosuppressive treatment including but not limited to methotrexate, cyclosporine, mycophenolate, tacrolimus, gold, penicillamine, sulfasalazine, hydroxychloroquine, azathioprine, cyclophosphamide; anti-immunoglobulin E (IgE) therapy (omalizumab); and aspirin or NSAID in patients with hypersensitivity to aspirin.

10 **[00237]** The following concomitant treatments were allowed: MFNS during the screening and throughout the whole study; nasal normal saline; topical decongestants (e.g., oxymetazoline hydrochloride to reduce the swelling and widen the path for the endoscope), as well as a topical anesthetic, e.g., lidocaine was allowed before endoscopy; short term use of antibiotics (<2 weeks); and for patients with asthma, SABA, LABA, and methylxanthines (e.g., theophylline,
 15 aminophyllines). The following inhaled corticosteroids were allowed for patients on a stable dose \leq 1000 μ g Fluticasone (or the equivalent dose of another inhaled CS; see Table 16) and only for patients that were on a stable dose \geq 30 days prior to visit 1: Leukotriene antagonists / modifiers were permitted during the study, only for patients that were on a continuous treatment for \geq 30 days prior to visit 1; systemic antihistamines; and initiation of allergen immunotherapy
 20 (allergen immunotherapy in place for \geq 3 months prior to visit 1 was permitted).

C. Efficacy of treatment

[00238] The primary endpoint of this study was the change from baseline at week 16 in bilateral endoscopic Nasal Polyp Score. (See Table 15.)

25

<u>Polyp score</u>	<u>Polyp size</u>
0	No polyps
1	Small polyps in the middle meatus not reaching below the inferior border of the middle turbinate
2	Polyps reaching below the lower border of the middle turbinate
3	Large polyps reaching the lower border of the inferior turbinate or polyps medial to the middle turbinate
4	Large polyps causing complete obstruction of the inferior nasal cavity

[00239] Nasal endoscopy was performed at the end of the scheduled visits and preceded by local administration of anesthetic drugs in combination with a decongestant. Standard video sequences were downloaded or sent to a centralized reader. Centralized imaging data

assessments and scoring by an independent physician reviewer for the imaging data was performed for all endoscopies. To confirm eligibility at V2, only the V1 central reading was made available to the site. The final results of central reading were made available after the study.

[00240] For the analysis of the primary endpoint, central reading of V2 was used for 5 comparison with End Of Treatment (EOT) reading. The sites removed subject-identifying information from the imaging data header prior to sending the imaging data to the central reader.

[00241] Secondary endpoints of the study included change from baseline at week 16 in: patient reported symptoms (including SNOT-22); subject-assessed nasal congestion/obstruction, anterior rhinorrhea (runny nose), posterior rhinorrhea (post nasal drip), and loss of sense of 10 smell, (daily AM and PM e-diary) month average; number of nocturnal awakenings; patient-rated rhinosinusitis symptoms severity using a visual analog scale (VAS); 5-item Asthma Control Questionnaire (ACQ-5) in asthma sub-group); Nasal Peak Inspiratory Flow (NPIF); smell test (UPSIT); NPS in patients with co-morbid asthma; CT scan assessments; spirometry (overall and in sub-group with asthma); time to first response (≥ 1 point improvement) in NPS; time to study 15 treatment discontinuation; and incidence of treatment discontinuation due to need for OCS or nasal surgery.

[00242] Quality of life (QoL) end points included change from baseline at week 16 in: 36-item Short Form health survey (SF36); European Quality of life scale (EQ-5D); and nasal polyp related resource use questionnaire.

[00243] Disease-specific efficacy measures included Computed Tomography (CT). CT of the 20 sinuses was performed before V2 and at EOT. For both Lund-Mackay scores and 3D volumetric measurement of the maxillary sinus, the same acquisitions (sequences) were used for centralized imaging data assessments and scoring by an independent physician reviewer for the imaging data. Central reading of V2 was used for comparison with EOT. The final results of 25 central reading were made available after the study.

[00244] For three-dimensional volumetric measurement of the maxillary sinus, central reading before V2 was used for comparison with EOT reading. The sites removed subject-identifying information from the imaging data header prior to sending the imaging data to the central reader. The % change in opacification from BL to EOT was calculated.

[00245] At screening (visit 1), patients were issued an NPIF meter for recording morning (AM) 30 and evening (PM) NPIF. The patients were instructed to record the following variables in the e-diary on a daily basis: AM NPIF performed within 15 minutes after arising (between 6 am and 10 am) prior to taking MFNS; and PM NPIF performed in the evening (between 6 pm and 10 pm) prior to taking MFNS.

[00246] Three NPIF efforts were performed by the patient; all three values were recorded by 35 the patient in the e-diary, and the highest value was used for evaluation. The baseline AM NPIF was the mean AM measurement recorded for the 28 days prior to the first dose of investigational

product, and baseline PM NPIF was the mean PM measurement recorded for the 28 days prior to the first dose of investigational product.

[00247] To assess disease-specific, daily symptoms, the patient used an electronic diary to: respond to the morning and evening individual rhinosinusitis symptom questions using a 0-3

5 categorical scale (where 0 = no symptoms, 1 = mild symptoms, 2 = moderate symptoms and 3 = severe symptoms), and including the symptoms of congestion and/or obstruction, anterior rhinorrhea (runny nose), posterior rhinorrhea (post-nasal drip), and loss of sense of smell. The number of nocturnal awakenings was also recorded.

[00248] The same safety assessments were applied across all arms. Adverse events, including

10 SAEs and Adverse Events of Special Interest (AESI), were collected at every visit.

[00249] Pre-dose blood samples were collected for determination of serum functional mAb1 and anti-mAb1 antibodies as designated in Table 14.

[00250] Optional sampling for exploratory analysis of DNA and RNA, required separate pharmacogenetics informed consent.

15 **[00251]** Pharmacokinetics. Functional mAb1 and anti-mAb1 antibodies in serum were assayed by ELISA. Pre-dose functional mAb1 concentrations in serum at visit 2 (day 1), mAb1 trough concentrations at week 2, week 4, week 8, week 12, week 16, and follow-up serum mAb1 at week 20, week 24, week 28 and week 32 were provided. Anti-mAb1 antibody status (negative or titer value) at visit 2 (day 1), week 2, week 4, week 8, week 12, week 16, and week 32 were 20 also provided. Patients with ADA titers ≥ 1000 at the end of study visit were scheduled to return approximately 6 months later for an additional assessment of ADA titer. Further follow-up was considered based on the overall assessment of antibody titers and clinical presentation.

25 **[00252]** Pharmacodynamics. Since the secretion of certain proteins is dependent, at least in part, on Th2 cytokines and is associated with chronic inflammation of the airway mucosa, including sinus tissue, expression of certain biomarkers were assayed to monitor a therapeutic effect of mAb1. These biomarkers were also assessed for their value in predicting toxicity and/or in documenting the time course of drug response. The values to be used as baselines were those collected on day 1 (pre-dose assessments).

[00232] Nasal secretions were obtained by inserting nasal swabs bilaterally into the nasal cavity

30 for five minutes. The nasal secretions were preserved for possible analysis of additional biomarkers related to nasal polyposis and responses to mAb1 treatment.

[00233] At selected clinical site(s) and with specific informed consent, nasal polyp tissue was optionally obtained by biopsy. A baseline biopsy was obtained at V2 of the study. After randomization, another biopsy of nasal polyp tissue was obtained at the end of treatment visit 35 (week 16).

[00234] The biopsied nasal polyp tissue was assessed for various biomarkers of inflammation and disease process or response. For example, RNA was extracted and used for expression profiling (e.g., microarray, transcriptome sequencing, quantitative RT-PCR or the like).

5 **[00235]** DNA and RNA samples were used to determine a possible relationship between genes and response to treatment with mAb1 and possible side effects to mAb1.

[00236] Analysis of proportion of patients with binary events. The proportion of patients with binary events was assessed for : ≥1 point improvement (reduction) in NPS at week 16 (as read centrally); 10% or more improvement in CT opacification from baseline at week 16; drop-out due to oral CS or surgery; or INCS increase after 8 weeks were analyzed using a logistic model 10 with the above responses, respectively, as the response variable, and treatment group, pooled countries /regions and the stratification factor(s) prior to the study as covariates.

15 **[00237]** Analysis of time to event variables. Time to event (e.g., the first response with ≥1 point improvement (reduction) in NPS, study treatment discontinuation, etc.) was analyzed using a Cox regression model with time to event as the dependent variable, and treatment, pooled countries/regions, asthma comorbidity prior to the study as covariates. The Kaplan-Meier method was used to derive the proportion of patients with an event at week 4, 8, 12 and 16 specific to each treatment group. For analysis during the treatment period, if a patient had no event before treatment discontinuation/completion, then the patient was considered as free of event until the end of treatment period (last dose date + 7 days).

20 **[00238]** Analysis of change from baseline for continuous variables. The change from baseline at week 16 in: NPS for patients with co-morbid asthma; Lund Mackay score; SNOT-22; subject-assessed congestion and/or obstruction score; NPIF; ACQ-5 in patients with co-morbid asthma; QoL measures (SF36, EQ-5D), and VAS was analyzed using MMRM the same as the primary endpoints. Descriptive statistics including number of patients, mean, standard error and LS 25 means was provided. In addition, differences in LS means, the corresponding 95% CI and the p-value was provided for comparisons of each dose against placebo.

30 **[00239]** Analysis of efficacy in baseline biomarker of characteristics defined subsets. To examine baseline biomarkers for their potential value to predict treatment response, analyses of change in NPS were also performed for the following subsets and the entire ITT population by each dose group and selected pooled dose group.

35 **[00240]** Subgroup analysis. To assess the consistency of treatment effects across the subgroup levels and to examine baseline biomarkers for their potential value to predict treatment response, exploratory subgroup analyses were conducted for the change from baseline in NPS with respect to age group, gender, region, race, INCS dose level, baseline NPS, baseline CT scan score, asthma comorbidity, and selected biomarkers prior to the study.

[00241] Listings of anti-mAb1 antibody results (negative or titer value) were presented by patient, time point and treatment groups. ADA titer levels were classified into categories: low,

moderate and high. Low levels of ADA titers were defined as titers below 1000; moderate levels of ADA titers were defined as titers between 1000 and 10,000; high levels of ADA titers were defined as titers >10,000.

[00242] Anti-mAb1 antibody assay results were described categorically. The following summary was provided for patients with any positive ADA assay response during the TEAE period, and patients with treatment-induced positive ADA assay response during the TEAE period. Patients with treatment-induced positive ADA assay response during the TEAE period were further described as patients with transient positive response and patients with persistent positive response. Patients with any positive ADA assay response during the TEAE period were defined as those having at least one sample positive in the ADA assay.

[00243] The treatment-induced positive ADA assay response was defined as: patients with no positive assay response at baseline but with a positive assay response during the TEAE period or patients with a positive ADA assay response at baseline that also had at least a 4-fold increase in titer during the TEAE period.

[00244] A persistent positive was a treatment-induced positive ADA assay response in which at least two consecutive post-baseline samples from a patient were positive in the ADA assay or the last post-baseline sample collected was positive in the ADA assay. A transient positive response was defined as any treatment-induced positive ADA assay response that was not considered persistent.

Table 16. Allowable Inhaled Glucocorticosteroid / Long-Acting Beta2 Agonist Combination Products and Acceptable Dosage Form, Strength and Dosage Schedule

Generic Name	Brand Name	Acceptable Product	Acceptable Dosage Form, Strength and Dosage Schedule
Fluticasone propionate and salmeterol	Advair® Seretide®	/ DPI (250/50 500/50) MDI (115/21 230/21)	DPI: 1 puff twice daily (500/50) DPI: 1 puffs twice daily (250/50) MDI: 2 puffs twice daily (115/21) MDI: 2 puffs twice daily (230/21)
Budesonide and formoterol	Symbicort®	DPI (200/6 400/12) MDI (160/4.5)	DPI: 1 puff twice daily (400/12) DPI: 2 puffs twice daily (200/6) MDI: 2 puffs twice daily (160/4.5)
Mometasone furoate and formoterol	Dulera®	MDI (100/5 200/5)	MDI: 2 puffs twice daily (200/5) MDI: 2 puffs twice daily (100/5)

25 Statistical Analysis

[00245] The pre-specified primary analysis was conducted at the end of the 16-week treatment period. Efficacy analyses were performed using the intent-to-treat (ITT) population, which was

predefined as all patients randomized regardless of receipt of study treatment. Safety analyses were performed using the safety population, predefined as all randomized patients exposed to study medication, regardless of the amount of treatment administered.

[00246] The primary efficacy variable, change in endoscopic NPS over the intervention period,

5 was analyzed using a mixed-effect model with repeated measures (MMRM) approach. The model included change from baseline values up to week 16 as response variables, and incorporated factors for the stratification variables, as well as treatment, visit, treatment-by-visit interaction, baseline NPS value and baseline-by-visit interaction as covariates. Statistical inference on treatment comparison for change from baseline in NPS at week 16 was derived
10 from this model. For all continuous secondary endpoints, with the exception of CT scan data, a similar analytical approach was employed.

[00247] CT scan data were collected both at baseline and at week 16. The change from baseline to week 16 in the Lund-Mackay total score (sum of left and right sinuses) was analyzed using an ANCOVA model. The factors in the model included treatment, stratification factors,

15 and baseline value as covariate. To further evaluate the treatment effect of dupilumab on nasal polyp disease, a responder analysis was performed using logistic regression analysis, including terms for treatment and stratification variables. Two categories of response were defined a priori; reductions of NPS of ≥ 1.0 or ≥ 2.0 units versus baseline at week 16.

[00248] Descriptive statistics were used for demographics, baseline characteristics, and safety

20 variables, including adverse events, vital signs, physical examination, clinical laboratory and ECG findings. Plots of secondary and pharmacodynamic variables were presented as mean change or percent change from baseline over time with standard error. Comparison of treatment effects from the MMRM analyses were based on least squares mean change (95% confidence intervals [CI] and P value) from baseline to Week 16.

25

D. Data

[00249] Demographic and baseline clinical characteristics were similar in the two groups (Table 51). The 16 week treatment period was completed by 23 of 30 placebo patients and 28 of 30 dupilumab patients, respectively. In the placebo group, 5 of 7 patients prematurely discontinued
30 the study due to 1 or more adverse events, and 2 of 7 due to lack of efficacy. In the dupilumab group, 2 of 30 patients did not complete the treatment period, both due to adverse events.

[00250] Primary Endpoint. The primary analysis compared the dupilumab treatment group to the placebo group. The primary efficacy evaluation was the change from baseline at week 16 in bilateral endoscopic NPS in an ITT population using a mixed-effect model with repeated
35 measures (MMRM) analysis.

[00251] The least squares (LS) mean (SE) change from baseline at week 16 was -0.30 (0.34) in the placebo group, and -1.85 (0.30) in the dupilumab group, resulting in a LS mean difference of

-1.55 (95% CI, -2.43 to -0.67, $p=0.0009$), favoring dupilumab (Table 17, Table 52 and Figure 2A). A pre-specified responder analysis indicated that a ≥ 1 point change in the NPS (NPS1 score) was observed in 20% of patients who received placebo versus 70% of those who received dupilumab, with an odds ratio (OR) of 9.5 (95% CI, 2.8 to 31.8, $p=0.0003$). A ≥ 2 point change (NPS 2 score) was observed in 10% of patients who received placebo and 53.3% of those who received dupilumab, yielding an OR = 10.6 (2.6 to 43.6, $p=0.001$) (Table 19). Changes in NPS were sustained at the end of the 16-week follow-up period, during which patients received only MFNS (Table 53).

10 **Table 17.** Mean change from baseline at week 16 in bilateral endoscopic nasal polyp score in an ITT population (MMRM).

NPS	Placebo (N=36)	Dupilumab 300mg q2w (N=30)
Baseline		
Number	30	30
Mean (SD)	5.67 (1.82)	5.87 (1.03)
Median	6.00	6.00
Min : Max	4.0 : 8.0	3.0 : 8.0
Week 16		
Number	23	29
Mean (SD)	3.39 (1.47)	3.97 (1.90)
Median	6.00	4.00
Min : Max	2.0 : 8.0	0.0 : 6.0
Change from baseline		
Number	23	29
Mean (SD)	-0.26 (1.32)	-1.90 (1.76)
Median	0.00	-2.00
Min : Max	-3.0 : 2.0	-6.0 : 1.0
LS Mean (SE) *	-0.30 (0.34)	-1.85 (0.30)
LS Mean Diff, 95% CI *		-1.55 (-2.43, -0.67)
P-value vs placebo *		0.0009

15 ^aAnalysis of a mixed model repeated measures (MMRM) model with treatment groups, stratification factor (asthma, biopsy), visit, treatment-by-visit interaction, baseline-by-visit interaction and baseline as covariates. Baseline for NPS was the central reading at V2, in the event that there was missing data due to image quality, the central reading at V1 was used.

20 **[00252]** The dupilumab effect on bilateral NPS was observed from week 4 (LS mean difference of -1.03; 95% CI [-1.58, -1.03]; $p=0.004$) through week 16. At week 12, however, statistical significance was not demonstrated in the difference in NPS (LS mean [SE] -0.30 [0.34]; -1.08 [0.33] placebo vs dupilumab; $p=0.1011$ (Figure 2).

[00253] The mean change from baseline at week 16 in bilateral NPS was evaluated by the following subgroups: gender, race, age, weight, prior nasal polyp surgery, baseline NPS, co-

morbid asthma and region (Europe and US) (Table 18). Mean decreases in NPS, in the general range of 1 in favor of dupilumab, were demonstrated across most subgroup analyses, with the exception of the subgroup of patients without co-morbid asthma.

[00254] In patients with comorbid asthma, the mean (SD) difference in NPS at week 16 was 0.27 (0.88) vs -2.40 (2.03), respectively, for the placebo and dupilumab treatment groups (Table 18 and Figure 3). In the patients without comorbid asthma, the mean (SD) difference in NPS was -1.25 (1.49) vs -1.36 (1.28), respectively, for the placebo and dupilumab treatment groups (Table 18 and Figure 4).

[00255] Baseline weight < 90 kg ≥ 90 kg did not affect the treatment benefit of dupilumab (Table 18).

Table 18. Descriptive statistics of change from baseline at week 16 in bilateral endoscopic nasal polyp score by subgroups in an ITT population.

	Placebo (N=30)	Dupilumab 300mg qw (N=30)
Gender		
Male		
Number	12	18
Mean (SD)	-0.83 (1.34)	-1.72 (1.90)
Median	0.00	-2.00
Min : Max	-3.0 : 0.0	-6.0 : 1.0

	Placebo (N=30)	Dupilumab 300mg qw (N=30)
Female		
Number	11	11
Mean (SD)	0.36 (1.03)	-2.18 (1.54)
Median	0.00	-2.00
Min : Max	-1.0 : 2.0	-4.0 : 0.0
Race		
Caucasian/White		
Number	23	28
Mean (SD)	-0.26 (1.32)	-1.82 (1.74)
Median	0.00	-2.00
Min : Max	-3.0 : 2.0	-6.0 : 1.0
All other races		
Number	0	1
Mean (SD)		-4.00 (NC)
Median		-4.00
Min : Max		-4.0 : -4.0
Age group (year)		
≥=18 and <45		
Number	6	10
Mean (SD)	0.00 (1.10)	-1.60 (1.90)
Median	0.00	-0.50
Min : Max	-1.0 : 2.0	-4.0 : 0.0
>=45		
Number	17	19
Mean (SD)	-0.35 (1.41)	-2.05 (1.72)
Median	0.00	-2.00
Min : Max	-3.0 : 2.0	-6.0 : 1.0
Baseline weight (kg)		
<90		
Number	15	21
Mean (SD)	-0.33 (1.29)	-1.71 (1.68)
Median	0.00	-1.00
Min : Max	-3.0 : 2.0	-4.0 : 1.0
≥=90		
Number	8	8
Mean (SD)	-0.13 (1.46)	-2.38 (2.00)
Median	0.00	-2.00
Min : Max	-3.0 : 2.0	-6.0 : 0.0

[00256]

	Placebo (N=30)	Dupilumab 300mg qw (N=30)
Previous surgery for nasal polyposis (yes or no)		
Yes		
Number	14	16
Mean (SD)	-0.29 (1.33)	-2.56 (1.75)
Median	0.00	-2.00
Min : Max	-3.0 : 2.0	-6.0 : 0.0
No		
Number	9	13
Mean (SD)	-0.22 (1.39)	-1.08 (1.44)
Median	0.00	-1.00
Min : Max	-3.0 : 2.0	-4.0 : 1.0
Baseline NPS		
<5		
Number	3	3
Mean (SD)	1.33 (1.15)	-2.33 (0.58)
Median	2.00	-2.00
Min : Max	0.0 : 2.0	-3.0 : -2.0
5 to 6		
Number	18	22
Mean (SD)	-0.56 (1.25)	-1.59 (1.71)
Median	0.00	-1.00
Min : Max	-3.0 : 1.0	-4.0 : 1.0
7 to 8		
Number	2	4
Mean (SD)	0.09 (0.66)	-3.25 (2.22)
Median	0.00	-3.00
Min : Max	0.0 : 0.0	-6.0 : -1.0
Co-morbid asthma		
Yes		
Number	15	15
Mean (SD)	0.27 (0.88)	-2.40 (2.03)
Median	0.00	-2.00
Min : Max	-1.0 : 2.0	-6.0 : 1.0

[00257]

	Placebo (N=30)	Dupilumab 300mg qw (N=30)
No.	8	14
Number		
Mean (SD)	-1.25 (1.49)	-1.36 (1.28)
Median	-0.50	-1.50
Min : Max	-3.0 : 0.0	-4.0 : 0.0
Region		
Europe		
Number	19	19
Mean (SD)	-0.32 (1.42)	-1.58 (1.64)
Median	0.00	-2.00
Min : Max	-3.0 : 2.0	-4.0 : 1.0
US		
Number	4	10
Mean (SD)	0.00 (0.82)	-2.50 (1.90)
Median	0.00	-3.00
Min : Max	-1.0 : 1.0	-6.0 : 0.0

[00258] To further evaluate the treatment effect of dupilumab on nasal polyp disease, a responder analysis was performed. Two categories of response were defined a priori; NPS reduction of ≥ 1.0 from baseline at week 16 (NPS 1 response) and NPS reduction of ≥ 2.0 from baseline at week 16 (NPS 2 response).

Table 19. Responder (reduction in NPS score from baseline at week 16) analysis in an ITT population.

	Placebo (N=30)	Dupilumab 300mg qw (N=30)
NPS reduction ≥ 1.0 from baseline at Week 16		
Responders	6 (20.0%)	21 (70.0%)
Non-responders	24 (80.0%)	9 (30.0%)
OR, 95% CI vs placebo ^a		9.48 (2.83, 31.77)
P-value vs placebo ^a		0.0003
NPS reduction ≥ 2.0 from baseline at Week 16		
Responders	3 (10.0%)	16 (53.3%)
Non-responders	27 (90.0%)	14 (46.7%)
OR, 95% CI vs placebo ^a		10.56 (2.56, 43.58)
P-value vs placebo ^a		0.0011

OR: Odds ratio. Note: Patients are considered non-responders if the central NPS are missing at week 16. Percentages were calculated using the number of ITT patients in the corresponding treatment group as denominator. ^aAnalysis of a logistic model with treatment groups, stratification factor (asthma, biopsy) and baseline as covariates.

[00259] In patients with comorbid asthma, the responder analysis results demonstrated statistically significant NPS 1 response (75%) at week 16 in the dupilumab treatment group, compared to placebo (10.5%), $p=0.0009$. The NPS 2 response also numerically favored dupilumab (56.3%) compared to placebo (0) (Table 20).

5

Table 20. Responder (reduction in NPS score from baseline at week 16) analysis for subgroup of patients with co-morbid asthma in an ITT population.

	Placebo (N=19)	Dupilumab 300mg qw (N=16)
NPS reduction ≥ 1.0 from baseline at Week 16		
Responders	2 (10.5%)	12 (75.0%)
Non-responders	17 (89.5%)	4 (25.0%)
OR, 95% CI vs placebo ^a		26.05 (3.78, 179.31)
P-value vs placebo ^a		0.0009
NPS reduction ≥ 2.0 from baseline at Week 16		
Responders	0	9 (56.3%)
Non-responders	19 (100%)	7 (43.8%)
OR, 95% CI vs placebo ^a		NA
P-value vs placebo ^a		NA

10 10 OR: Odds ratio. Note: Patients are considered non-responders if the central NPS are missing at week 16. Percentages were calculated using the number of ITT patients in the corresponding treatment group as denominator. ^aAnalysis of a logistic model with treatment groups, stratification factor (asthma, biopsy) and baseline as covariates.

15 15 **[00260]** In patients without comorbid asthma, the responder analysis similarly numerically favored dupilumab for both NPS 1 and NPS 2 responses (64.3% and 50%, respectively), however, the placebo group showed responder rates of 36.4% and 27.3%, respectively (Table 21), thus the numerical differences between the 2 treatment groups for NPS 1 and NPS 2 responses were less in patients without comorbid asthma, compared to patients with comorbid 20 asthma.

25

Table 21. Responder (reduction in NPS score from baseline at week 16) analysis for subgroup of patients without co-morbid asthma in an ITT population.

	Placebo (N=11)	Dupilumab 300mg qw (N=14)
NPS reduction ≥ 1.0 from baseline at Week 16		
Responders	4 (36.4%)	9 (64.3%)
Non-responders	7 (63.6%)	5 (35.7%)
OR, 95% CI vs placebo ^a		3.17 (0.57, 17.56)
P-value vs placebo ^a		0.1869
NPS reduction ≥ 2.0 from baseline at Week 16		
Responders	3 (27.3%)	7 (50.0%)
Non-responders	8 (72.7%)	7 (50.0%)
OR, 95% CI vs placebo ^a		2.49 (0.44, 14.08)
P-value vs placebo ^a		0.3025

5 OR: Odds ratio. Note: Patients are considered non-responders if the central NPS are missing at week 16. Percentages were calculated using the number of ITT patients in the corresponding treatment group as denominator. ^aAnalysis of a logistic model with treatment groups, stratification factor (asthma, biopsy) and baseline as covariates.

Sino Nasal Outcome Test (SNOT-22)

10 [00261] SNOT-22 was used by patients in the study to evaluate the impact of rhinosinusitis on quality of life. Higher scores indicated worse disease; the total maximum score being 110. The results demonstrated statistical significance at week 16 in favor of dupilumab; the LS mean (SE) change from baseline at week 16 was -9.17 (2.96) in the placebo group, and -27.28 (2.71) in the dupilumab group, resulting in a LS mean difference of -18.11 (95% CI, -25.62 to -10.60, p<0.0001) (Table 22). The effect of dupilumab on SNOT-22 score was observed from week 4

15 through week 16 (Figure 5).

Table 22. Mean change from baseline at week 16 in SNOT-22 total score in an ITT population (MMRM).

SNOT-22 Total Score	Placebo	Dupilumab
	(N=30)	300mg qw (N=30)
Baseline		
Number	30	30
Mean (SD)	40.57 (19.91)	41.43 (18.20)
Median	40.50	40.50
Min : Max	8.0 : 81.0	12.0 : 91.0
Week 16		
Number	23	29
Mean (SD)	30.17 (19.59)	12.76 (10.99)
Median	26.00	11.00
Min : Max	1.0 : 79.0	0.0 : 42.0
Change from baseline		
Number	23	29
Mean (SD)	-8.26 (17.63)	-29.10 (19.90)
Median	-4.00	-27.00
Min : Max	-51.0 : 13.0	-85.0 : 10.0
LS Mean (SE) ^a	-9.17 (2.96)	-27.28 (2.71)
LS Mean Diff, 95% CI ^a		-18.11 (-25.62, -10.60)
P-value vs placebo ^a		<.0001

^aAnalysis of a mixed model repeated measures (MMRM) model with treatment groups, stratification factor (asthma, biopsy), visit, treatment-by-visit interaction, baseline-by-visit interaction and baseline as covariates.

5 [00262] Additional patient reported outcomes included the visual analog scale (1-10 cm) that patients used to rate rhinosinusitis symptom severity, daily (AM/PM) loss of sense of smell ratings (0-3 point scale), the smell test (UPSIT), and typical symptoms of rhinitis ratings (nasal 10 obstruction/congestion, runny nose and post-nasal drip) (0-3 point scale).

10 [00263] The Visual Analogue Scale (VAS) for rhinosinusitis symptoms severity results demonstrated statistical significance at week 16; the LS mean (SE) change from baseline at week 16 was -2.19 (0.65) in the placebo group, and -4.32 (0.55) in the dupilumab group, resulting in a LS mean difference of -2.13 (95% CI, -3.68 to -0.58, p=0.0082) (Table 23). The 15 effect of dupilumab on VAS score was observed from week 4 through week 16 (Figure 6).

Table 23. Mean change from baseline at week 16 in VAS for rhinosinusitis symptoms severity-ITT population (MMRM).

VAS for rhinosinusitis symptoms severity	Placebo	Dupilumab
	(N=30)	300mg qw (N=30)
Baseline		
Number	25	29
Mean (SD)	6.42 (2.73)	6.43 (2.74)
Median	7.30	7.50
Min : Max	0.1 : 10.0	0.0 : 9.9
Week 16		
Number	23	29
Mean (SD)	4.34 (3.08)	2.16 (2.74)
Median	4.80	0.80
Min : Max	0.0 : 9.3	0.0 : 10.0
Change from baseline		
Number	19	28
Mean (SD)	-1.84 (3.60)	-4.32 (2.75)
Median	-0.60	-4.35
Min : Max	-7.6 : 3.6	-8.7 : 0.1
LS Mean (SE) ^a	-2.19 (0.65)	-4.32 (0.55)
LS Mean Diff. 95% CI ^a		-2.13 (-3.68, -0.58)
P-value vs placebo ^a		0.0082

^aAnalysis of a mixed model repeated measures (MMRM) model with treatment groups, stratification factor (asthma, biopsy), visit, treatment-by-visit interaction, baseline-by-visit interaction and baseline as covariates.

[00264] The results of the patient-reported evaluations for loss of smell (daily AM/PM e-diary records and the smell test score using University of Pennsylvania's Smell Identification Test (UPSIT) smell test) demonstrated statistical significance in favor of dupilumab at week 16 (Tables 24-26). Better ability to smell was demonstrated in the dupilumab treatment arm at the earliest evaluation time point in the study for each of these patient-reported outcomes (Figures 7-9). Significant improvements were also observed for the secondary endpoints of morning anterior rhinorrhea, subjective sense of smell, evening symptoms, and nocturnal awakenings (Table 54). Changes in symptom-based endpoints were sustained at the end of the 16-week follow-up period (Table 53).

Table 24. Mean change from baseline at week 16 in AM symptom score for loss of smell in an ITT population (MMRM).

AM loss of smell	Placebo	Dupilumab
	(N=30)	300mg qw (N=30)
Baseline		
Number	30	30
Mean (SD)	2.82 (0.49)	2.41 (0.91)
Median	3.00	3.00
Min : Max	0.8 : 3.0	0.2 : 3.0
Week 16		
Number	26	30
Mean (SD)	2.53 (0.78)	1.11 (1.07)
Median	2.92	1.00
Min : Max	0.0 : 3.0	0.0 : 3.0
Change from baseline		
Number	26	30
Mean (SD)	-0.26 (0.56)	-1.31 (1.08)
Median	0.00	-1.00
Min : Max	-1.9 : 0.2	-3.0 : 0.5
LS Mean (SE) ^a	-0.12 (0.16)	-1.34 (0.16)
LS Mean Diff, 95% CI ^a		-1.22 (-1.66, -0.77)
P-value vs placebo ^a		<.0001

5 ^aAnalysis of a mixed model repeated measures (MMRM) model with treatment groups, stratification factor (asthma, biopsy), visit, treatment-by-visit interaction, baseline-by-visit interaction and baseline as covariates.

Table 25. Mean change from baseline at week 16 in PM symptom score for loss of smell in an ITT population (MMRM).

	Placebo (N=30)	Dupilumab 300mg qw (N=30)
PM loss of smell		
Baseline		
Number	30	30
Mean (SD)	2.81 (0.49)	2.40 (0.88)
Median	3.00	3.00
Min : Max	0.8 : 3.0	0.1 : 3.0
Week 16		
Number	26	30
Mean (SD)	2.51 (0.80)	1.07 (1.07)
Median	3.00	0.95
Min : Max	0.0 : 3.0	0.0 : 3.0
Change from baseline		
Number	26	30
Mean (SD)	-0.27 (0.58)	-1.32 (1.08)
Median	0.00	-1.00
Min : Max	-2.0 : 0.3	-3.0 : 0.3
LS Mean (SE) ^a	-0.16 (0.16)	-1.38 (0.16)
LS Mean Diff. 95% CI ^a		-1.22 (-1.67, -0.77)
P-value vs placebo ^a		<.0001

⁵Analysis of a mixed model repeated measures (MMRM) model with treatment groups, stratification factor (asthma, biopsy), visit, treatment-by-visit interaction, baseline-by-visit interaction and baseline as covariates.

Table 26. Mean change from baseline at week 16 in smell test score (UPSIT) in an ITT population (MMRM).

Smell test (UPSIT)	Placebo	Dupilumab
	(N=30)	300mg qw (N=30)
Baseline		
Number	30	30
Mean (SD)	15.63 (7.92)	12.77 (8.28)
Median	12.00	10.00
Min : Max	9.0 : 35.0	3.0 : 33.0
Week 16		
Number	23	28
Mean (SD)	16.17 (8.68)	28.71 (8.20)
Median	12.00	30.00
Min : Max	7.0 : 38.0	6.0 : 39.0
Change from baseline		
Number	23	28
Mean (SD)	-0.17 (5.10)	15.36 (9.61)
Median	0.00	16.50
Min : Max	-12.0 : 14.0	-5.0 : 29.0
LS Mean (SE) ^a	-0.69 (1.53)	14.09 (1.35)
LS Mean Diff, 95% CI ^a		14.78 (10.90, 18.65)
P-value vs placebo ^a		<.0001

5 ^aAnalysis of a mixed model repeated measures (MMRM) model with treatment groups, stratification factor (asthma, biopsy), visit, treatment-by-visit interaction, baseline-by-visit interaction and baseline as covariates.

[00265] The typical symptoms of rhinitis (nasal obstruction/congestion, runny nose and post-nasal drip) were evaluated daily (AM/PM e-diary records) by the patients. The results demonstrated statistical significance in favor of dupilumab at week 16 across all these 10 evaluations (Tables 27-32). Improvement in rhinosinusitis symptoms was observed from week 4 through week 16 in the dupilumab treatment arm for each of these patient-reported outcomes (Figures 10-15).

Table 27. Mean change from baseline at week 16 in AM symptom score for congestion/obstruction in an ITT population (MMRM).

AM congestion/obstruction	Placebo	Dupilumab 300mg qw (N=30)
	(N=30)	
Baseline		
Number	30	30
Mean (SD)	1.69 (0.69)	1.66 (0.73)
Median	1.71	1.57
Min : Max	0.6 : 3.0	0.6 : 3.0
Week 16		
Number	26	30
Mean (SD)	1.37 (0.67)	0.75 (0.70)
Median	1.21	0.68
Min : Max	0.0 : 3.0	0.0 : 2.3
Change from baseline		
Number	26	30
Mean (SD)	-0.22 (0.67)	-0.91 (0.86)
Median	-0.09	-0.82
Min : Max	-1.6 : 1.0	-3.0 : 0.3
LS Mean (SE) ^a	-0.19 (0.13)	-0.87 (0.13)
LS Mean Diff, 95% CI ^a		-0.68 (-1.03, -0.32)
P-value vs placebo ^a		0.0004

5 [00266] ^aAnalysis of a mixed model repeated measures (MMRM) model with treatment groups, stratification factor (asthma, biopsy), visit, treatment-by-visit interaction, baseline-by-visit interaction and baseline as covariates.

10

15

Table 28. Mean change from baseline at week 16 in PM symptom score for congestion/obstruction in an ITT population (MMRM).

PM congestion/obstruction	Placebo (N=30)	Dupilumab 300mg qw (N=30)	
		30	30
Baseline			
Number	30	30	
Mean (SD)	1.62 (0.69)	1.59 (0.80)	
Median	1.39	1.71	
Min : Max	0.8 : 3.0	0.0 : 3.0	
Week 16			
Number	26	30	
Mean (SD)	1.32 (0.67)	0.65 (0.63)	
Median	1.12	0.56	
Min : Max	0.1 : 3.0	0.0 : 2.2	
Change from baseline			
Number	26	30	
Mean (SD)	-0.22 (0.65)	-0.94 (0.86)	
Median	-0.05	-0.83	
Min : Max	-2.0 : 1.0	-3.0 : 0.2	
LS Mean (SE) ^a	-0.19 (0.13)	-0.89 (0.12)	
LS Mean Diff, 95% CI ^a		-0.70 (-1.04, -0.36)	
P-value vs placebo ^a		0.0001	

5 [00267] ^aAnalysis of a mixed model repeated measures (MMRM) model with treatment groups, stratification factor (asthma, biopsy), visit, treatment-by-visit interaction, baseline-by-visit interaction and baseline as covariates.

Table 29. Mean change from baseline at week 16 in AM symptom score for runny nose in an ITT population (MMRM).

	Placebo (N=30)	Dupilumab 300mg qw (N=30)
AM runny nose		
Baseline		
Number	30	30
Mean (SD)	1.14 (0.77)	1.02 (0.91)
Median	1.07	0.90
Min : Max	0.0 : 3.0	0.0 : 2.8
Week 16		
Number	26	30
Mean (SD)	1.03 (0.78)	0.42 (0.53)
Median	1.00	0.18
Min : Max	0.0 : 3.0	0.0 : 2.0
Change from baseline		
Number	26	30
Mean (SD)	-0.09 (0.56)	-0.60 (0.88)
Median	-0.14	-0.25
Min : Max	-1.8 : 1.0	-2.5 : 0.9
LS Mean (SE) ^a	-0.05 (0.11)	-0.63 (0.10)
LS Mean Diff, 95% CI ^b		-0.58 (-0.88, -0.29)
P-value vs placebo ^c		0.0002

⁵Analysis of a mixed model repeated measures (MMRM) model with treatment groups, stratification factor (asthma, biopsy), visit, treatment-by-visit interaction, baseline-by-visit interaction and baseline as covariates.

10

15

Table 30. Mean change from baseline at week 16 in PM symptom score for runny nose in an ITT population (MMRM).

	Placebo (N=30)	Dupilumab
		300mg qw (N=30)
PM runny nose		
Baseline		
Number	30	30
Mean (SD)	1.23 (0.71)	0.99 (0.87)
Median	1.14	1.00
Min : Max	0.0 : 3.0	0.0 : 2.9
Week 16		
Number	26	30
Mean (SD)	0.99 (0.70)	0.42 (0.48)
Median	1.00	0.22
Min : Max	0.0 : 2.2	0.0 : 1.9
Change from baseline		
Number	26	30
Mean (SD)	-0.25 (0.63)	-0.57 (0.82)
Median	-0.15	-0.18
Min : Max	-1.8 : 1.0	-2.8 : 0.4
LS Mean (SE) ^a	-0.14 (0.11)	-0.63 (0.10)
LS Mean Diff, 95% CI ^b		-0.49 (-0.77, -0.21)
P-value vs placebo ^b		0.0009

⁵Analysis of a mixed model repeated measures (MMRM) model with treatment groups, stratification factor (asthma, biopsy), visit, treatment-by-visit interaction, baseline-by-visit interaction and baseline as covariates.

10

15

Table 31. Mean change from baseline at week 16 in AM symptom score for post nasal drip in an ITT population (MMRM).

	Placebo (N=30)	Dupilumab 300mg qw (N=30)
AM post nasal drip		
Baseline		
Number	30	30
Mean (SD)	1.40 (0.80)	1.05 (0.91)
Median	1.29	1.00
Min : Max	0.0 : 3.0	0.0 : 3.0
Week 16		
Number	26	30
Mean (SD)	1.24 (0.85)	0.58 (0.58)
Median	1.29	0.60
Min : Max	0.0 : 3.0	0.0 : 2.0
Change from baseline		
Number	26	30
Mean (SD)	-0.15 (0.59)	-0.48 (0.77)
Median	0.00	-0.20
Min : Max	-1.7 : 1.0	-2.6 : 0.6
LS Mean (SE) ^a	-0.04 (0.11)	-0.54 (0.11)
LS Mean Diff, 95% CI ^b		-0.50 (-0.80, -0.19)
P-value vs placebo ^b		0.0020

^aAnalysis of a mixed model repeated measures (MMRM) model with treatment groups, stratification factor (asthma, biopsy), visit, treatment-by-visit interaction, baseline-by-visit interaction and baseline as covariates.

10

15

Table 32. Mean change from baseline at week 16 in PM symptom score for post nasal drip in an ITT population (MMRM).

PM post nasal drip	Placebo (N=30)	Dupilumab
		300mg qw (N=30)
Baseline		
Number	30	30
Mean (SD)	1.41 (0.79)	1.03 (0.90)
Median	1.24	1.00
Min : Max	0.0 : 3.0	0.0 : 3.0
Week 16		
Number	26	30
Mean (SD)	1.15 (0.76)	0.54 (0.55)
Median	1.10	0.41
Min : Max	0.0 : 2.4	0.0 : 2.0
Change from baseline		
Number	26	30
Mean (SD)	-0.23 (0.60)	-0.49 (0.80)
Median	-0.07	-0.16
Min : Max	-1.5 : 1.0	-3.0 : 0.6
LS Mean (SE) ^a	-0.05 (0.11)	-0.53 (0.10)
LS Mean Diff, 95% CI ^b		-0.47 (-0.76, -0.18)
P-value vs placebo ^c		0.0018

^aAnalysis of a mixed model repeated measures (MMRM) model with treatment groups, stratification factor (asthma, biopsy), visit, treatment-by-visit interaction, baseline-by-visit interaction and baseline as covariates.

[00268] The nasal peak inspiratory flow (NPIF) was assessed with NPIF meters to evaluate the impact of nasal polyposis disease on forced AM/PM inspiration and expiration through the nasal cavity (L/min). Normal NPIF rates are approximately 140 L/min and above, whereas, severely limited flow rates are in the range of 110 – 120 L/min. The results of AM/PM NPIF rates demonstrated statistical significance at week 16 in favor of dupilumab (p=0.0073 and p=0.0064, respectively) (Table 33 and Table 34). The effect of dupilumab on AM/PM NPIF was observed from week 4 through week 16 (Figure 16 and Figure 17). Changes in AM NPIF were sustained at the end of the 16 week follow-up period (Table 53).

15

20

Table 33. Mean change from baseline at week 16 in AM NPIF in an ITT population (MMRM).

AM NPIF	Placebo (N=30)	Dupilumab
		300mg qw (N=30)
Baseline		
Number	30	30
Mean (SD)	109.22 (46.77)	98.44 (48.45)
Median	100.54	101.79
Min : Max	44.3 : 232.9	0.0 : 186.7
Week 16		
Number	26	30
Mean (SD)	141.92 (59.27)	157.38 (55.75)
Median	142.36	156.63
Min : Max	43.3 : 251.3	36.9 : 385.8
Change from baseline		
Number	26	30
Mean (SD)	30.01 (34.94)	58.94 (44.56)
Median	19.57	54.53
Min : Max	-18.9 : 114.3	-14.6 : 148.5
LS Mean (SE) ^a	28.64 (7.66)	57.90 (7.49)
LS Mean Diff, 95% CI ^a		29.25 (8.23, 50.28)
P-value vs placebo ^a		0.0073

^aAnalysis of a mixed model repeated measures (MMRM) model with treatment groups, stratification factor (asthma, biopsy), visit, treatment-by-visit interaction, baseline-by-visit interaction and baseline as covariates.

5

10

15

20

Table 34. Mean change from baseline at week 16 in PM NPIF in an ITT population (MMRM).

PM NPIF	Placebo (N=30)	Dupilumab
		300mg qw (N=30)
Baseline		
Number	30	30
Mean (SD)	121.29 (51.77)	105.23 (52.46)
Median	115.95	101.00
Min : Max	44.3 : 241.4	0.0 : 218.8
Week 16		
Number	26	30
Mean (SD)	149.62 (63.80)	164.19 (57.62)
Median	148.51	167.82
Min : Max	51.2 : 275.5	48.7 : 322.7
Change from baseline		
Number	26	30
Mean (SD)	27.37 (33.60)	58.96 (46.56)
Median	24.82	51.51
Min : Max	-26.0 : 102.9	-3.4 : 155.1
LS Mean (SE) ^a	26.69 (7.84)	57.28 (7.65)
LS Mean Diff, 95% CI ^a		30.59 (8.95, 52.23)
P-value vs placebo ^a		0.0064

^aAnalysis of a mixed model repeated measures (MMRM) model with treatment groups, stratification factor (asthma, biopsy), visit, treatment-by-visit interaction, baseline-by-visit interaction and baseline as covariates.

[00269] CT scans of the sinuses were used to evaluate nasal polyposis and associated sinus inflammation. The Lund-Mackay total score evaluates the patency of each sinus using a 0 – 2 scale (0=complete lucency and 2 = complete opacity; 0-24 point range). The CT results demonstrated statistical significance at week 16 in favor of dupilumab; the LS mean (SE) change from baseline at week 16 was -0.23 (0.95) in the placebo group, and -9.07 (0.81) in the dupilumab group, resulting in a LS difference of -8.84 (95% CI, -11.07 to -6.61, p<0.0001) (Table 24).

Table 35. Mean change from baseline at week 16 in Lund-Mackay score in an ITT population.

Lund-Mackay score	Placebo	Dupilumab 300mg qw (N=30)
	(N=30)	(N=30)
Baseline		
Number	30	29
Mean (SD)	18.73 (5.52)	18.62 (5.00)
Median	20.50	20.00
Min : Max	1.0 : 24.0	7.0 : 24.0
Week 16		
Number	26	30
Mean (SD)	17.92 (5.69)	9.43 (5.10)
Median	21.00	9.50
Min : Max	1.0 : 24.0	0.0 : 24.0
Change from baseline		
Number	26	29
Mean (SD)	-0.23 (3.74)	-9.24 (4.58)
Median	0.00	-9.00
Min : Max	-16.0 : 6.0	-18.0 : 0.0
LS Mean (SE) ^a	-0.23 (0.95)	-9.07 (0.81)
LS Mean Diff, 95% CI ^a		-8.84 (-11.07, -6.61)
P-value vs placebo ^a		<.0001

^aAnalysis of covariance (ANCOVA) model with treatment groups, stratification factor (asthma, biopsy) as fixed effects and baseline value as a covariate.

5 [00270] Pharmacodynamic measurements included serum total immunoglobulin E (IgE), thymus and activation regulated chemokine (TARC), plasma eotaxin-3 and blood eosinophils. Safety and tolerability assessments were based on the incidence of adverse events (AEs) and serious AEs (SAEs), as well as vital signs, physical examination, clinical laboratory evaluation and 12-lead electrocardiogram (ECG) findings.

10 [00271] Levels of serum total IgE, TARC and eotaxin-3 (Figures 23A-23D) decreased in patients who received dupilumab plus mometasone but remained unchanged in patients who received placebo plus mometasone. The observed reductions in IgE progressed over the course of the 16-week treatment period, whereas TARC and eotaxin-3 levels decreased significantly by week 2 and remained reduced throughout the treatment period. Mean peripheral-blood eosinophil levels remained unchanged with both placebo and dupilumab throughout the treatment period (Figure 23D).

15 [00272] Serum total IgE at baseline was overall normal or modestly elevated in the study population (mean 140 IU/mL for dupilumab group vs 195 IU/mL for the placebo group). Total IgE progressively declined during treatment with dupilumab (mean percent change from baseline at week 16: -48.0% dupilumab vs +7.6% placebo) (Figure 18).

[00273] Baseline mean (SD) Thymus and Activation-Regulated Chemokine (TARC) levels for placebo and dupilumab, respectively, were 449.31 (376.77) pg/mL and 469.65 (298) pg/mL. During dupilumab treatment, serum TARC concentration declined by week 4 and remained suppressed through week 16 (mean percent change from baseline at week 4: -26.5% dupilumab

5 vs +5.0% placebo and at week 16: -23.0% dupilumab vs -2.5% placebo) (Figure 19).

[00274] In nasal secretions (saline eluates), Th2 biomarkers were significantly (or borderline significantly) lower after dupilumab (DPL) vs placebo (PBO) (mean % change from baseline) treatment: eotaxin-3 from week 8 (-32.4 DPL vs +74.4 PBO p=0.017) through week 16 (-38.5 DPL vs +183.0 PBO p=0.040), ECP at week 12 (-2.5 DPL vs +102.6 PBO p=0.055) and week 10 16 (+7.2 DPL vs +120.2 PBO p=0.072), and total IgE from week 8 (-15.7 DPL vs +60.1 PBO p=0.043) through week 16 (-15.9 DPL vs +43.8 PBO p=0.025) (Figures 24A, 24C, and 24D, respectively). The mean serum ECP, unlike the mean NS ECP, did not show a decrease during dupilumab treatment. After dupilumab, there were transient increases in blood eosinophil count (Eos) (mean percent change from baseline) (W4: +49 DPL vs +0.2 PBO) that resolved during treatment (W16: -5.8 DPL vs +3.8 PBO) (Figure 23D). The mean absolute changes from baseline in nasal secretion biomarkers at Week 16 are shown below in Table 56.

[00275] Trial endpoints are summarized in Table 52.

[00276] Safety was assessed by the evaluation of AE reporting, physical examination findings, ECGs and laboratory test results.

[00277] In the dupilumab treatment group 29 of 30 patients reported a Treatment-Emergent Adverse Event (TEAE) compared to 25 of 30 patients in the placebo group with 2 dupilumab and 4 placebo patients reporting serious TEAEs, respectively. No patient died during the treatment period. One patient in the dupilumab and 5 patients in the placebo group discontinued from treatment due to a TEAE (Table 36).

25

Table 36. Overview of adverse event profile: TEAEs in a safety population.

n(%)	Dupilumab	
	Placebo (N=30)	300mg qw (N=30)
Patients with any TEAE	25 (83.3%)	29 (96.7%)
Patients with any treatment emergent SAE	4 (13.3%)	2 (6.7%)
Patients with any TEAE leading to death	0	0
Patients with any TEAE leading to permanent treatment discontinuation	5 (16.7%)	1 (3.3%)

SAE: Serious Adverse Event. n (%) = number and percentage of patients with at least one TEAE.

[00278] The most frequently affected system organ classes (SOC) were: infections and infestations (56.7% in placebo and 70.0% in dupilumab); general disorders and administration site conditions (6.7% in placebo and 43.3% in dupilumab); respiratory, thoracic and mediastinal

disorders (33.3% in placebo and 43.3 in dupilumab); nervous system disorders (20.0% in placebo and 36.7% in dupilumab); gastrointestinal disorders (20.0% each in placebo and dupilumab); and musculoskeletal and connective tissue disorders (3.3% in placebo and 26.7% in dupilumab) (Table 37).

5

Table 37. Number (%) of patients with TEAE(s) by primary SOC and PT in a safety population.

Primary System Organ Class Preferred Term n(%)	Dupilumab	
	Placebo (N=30)	300mg qw (N=30)
Any Class	25 (83.3%)	29 (96.7%)
Infections and infestations		
Nasopharyngitis	17 (56.7%)	21 (70.0%)
Upper respiratory tract infection	10 (33.3%)	11 (36.7%)
Sinusitis	0	3 (10.0%)
Acute sinusitis	0	2 (6.7%)
Bronchitis	0	1 (3.3%)
Bronchopneumonia	4 (13.3%)	1 (3.3%)
Ear infection	1 (3.3%)	1 (3.3%)
Fungal skin infection	0	1 (3.3%)
Furuncle	0	1 (3.3%)
Gastroenteritis viral	0	1 (3.3%)
Gastrointestinal infection	0	1 (3.3%)
Herpes zoster	0	1 (3.3%)
Influenza	0	1 (3.3%)
Laryngitis fungal	0	1 (3.3%)
Oral herpes	0	1 (3.3%)
Pharyngitis	0	1 (3.3%)
Rhinitis	0	1 (3.3%)
Skin infection	0	1 (3.3%)
Urinary tract infection	0	1 (3.3%)
Viral upper respiratory tract infection	0	1 (3.3%)
Conjunctivitis	1 (3.3%)	0
Laryngitis	1 (3.3%)	0
Otitis media	1 (3.3%)	0
Respiratory tract infection	1 (3.3%)	0
Neoplasms benign, malignant and unspecified (incl cysts and polyps)	1 (3.3%)	0
Uterine cancer	1 (3.3%)	0
Uterine leiomyoma	1 (3.3%)	0
Blood and lymphatic system disorders	2 (6.7%)	0
Anaemia	1 (3.3%)	0
Neutropenia	1 (3.3%)	0

Primary System Organ Class Preferred Term n(%)	Placebo (N=30)	Dupilumab 300mg qw (N=30)
Immune system disorders	1 (3.3%)	1 (3.3%)
Drug hypersensitivity	0	1 (3.3%)
Hypersensitivity	1 (3.3%)	0
Psychiatric disorders	1 (3.3%)	1 (3.3%)
Insomnia	0	1 (3.3%)
Sleep disorder	1 (3.3%)	0
Nervous system disorders	6 (20.0%)	11 (36.7%)
Headache	5 (16.7%)	6 (20.0%)
Dizziness	1 (3.3%)	3 (10.0%)
Hypoesthesia	0	1 (3.3%)
Migraine	0	1 (3.3%)
Mononeuropathy	0	1 (3.3%)
Paraesthesia	0	1 (3.3%)
Sinus headache	1 (3.3%)	1 (3.3%)
Tension headache	1 (3.3%)	1 (3.3%)
Transient ischaemic attack	1 (3.3%)	0
Ear and labyrinth disorders	1 (3.3%)	2 (6.7%)
Ear discomfort	1 (3.3%)	1 (3.3%)
Vertigo	0	1 (3.3%)
Cardiac disorders	1 (3.3%)	4 (13.3%)
Arrhythmia	0	1 (3.3%)
Atrioventricular block first degree	0	1 (3.3%)
Palpitations	0	1 (3.3%)
Ventricular extrasystoles	0	1 (3.3%)
Bundle branch block left	1 (3.3%)	0
Vascular disorders	2 (6.7%)	0
Hypertension	2 (6.7%)	0
Respiratory, thoracic and mediastinal disorders	10 (33.3%)	13 (43.3%)
Oropharyngeal pain	2 (6.7%)	7 (23.3%)
Epistaxis	2 (6.7%)	6 (20.0%)
Cough	1 (3.3%)	2 (6.7%)
Rhinalgia	0	2 (6.7%)
Rhinitis allergic	0	2 (6.7%)
Asthma	3 (10.0%)	1 (3.3%)
Haemoptysis	0	1 (3.3%)

Primary System Organ Class Preferred Term n(%)	Placebo (N=30)	Dupilumab 300mg qw (N=30)
Nasal discomfort	0	1 (3.3%)
Nasal obstruction	0	1 (3.3%)
Nasal polyps	3 (10.0%)	1 (3.3%)
Rhinorrhoea	1 (3.3%)	1 (3.3%)
Wheezing	0	1 (3.3%)
Bronchial secretion retention	1 (3.3%)	0
Nasal congestion	1 (3.3%)	0
Upper-airway cough syndrome	3 (10.0%)	0
 Gastrointestinal disorders	 6 (20.0%)	 6 (20.0%)
Abdominal pain upper	0	1 (3.3%)
Constipation	0	1 (3.3%)
Diarrhoea	1 (3.3%)	1 (3.3%)
Gastritis	0	1 (3.3%)
Gastrointestinal hypermotility	0	1 (3.3%)
Odynophagia	0	1 (3.3%)
Abdominal pain	2 (6.7%)	0
Faeces soft	1 (3.3%)	0
Gastrooesophageal reflux disease	1 (3.3%)	0
Haematochezia	1 (3.3%)	0
Vomiting	1 (3.3%)	0
 Skin and subcutaneous tissue disorders	 0	 1 (3.3%)
Pruritus	0	1 (3.3%)
 Musculoskeletal and connective tissue disorders	 1 (3.3%)	 8 (26.7%)
Back pain	0	3 (10.0%)
Arthralgia	1 (3.3%)	2 (6.7%)
Bursitis	0	1 (3.3%)
Muscle spasms	0	1 (3.3%)
Musculoskeletal chest pain	0	1 (3.3%)
Osteoarthritis	0	1 (3.3%)
Pain in extremity	0	1 (3.3%)
Temporomandibular joint syndrome	0	1 (3.3%)
Tendon disorder	0	1 (3.3%)
 Reproductive system and breast disorders	 1 (3.3%)	 1 (3.3%)
Menorrhagia	0	1 (3.3%)
Premenstrual headache	0	1 (3.3%)
Vaginal haemorrhage	1 (3.3%)	0

Primary System Organ Class	Preferred Term n(%)	Placebo (N=30)	Dupilumab 300mg qw (N=30)
Congenital, familial and genetic disorders		1 (3.3%)	0
Gilbert's syndrome		1 (3.3%)	0
General disorders and administration site conditions		2 (6.7%)	13 (43.3%)
Injection site reaction		2 (6.7%)	12 (40.0%)
Injection site pain		0	1 (3.3%)
Puncture site pain		0	1 (3.3%)
Pyrexia		0	1 (3.3%)
Fatigue		1 (3.3%)	0
Investigations		1 (3.3%)	0
Blood creatine phosphokinase increased		1 (3.3%)	0
Injury, poisoning and procedural complications		3 (10.0%)	2 (6.7%)
Joint injury		1 (3.3%)	1 (3.3%)
Tendon rupture		1 (3.3%)	1 (3.3%)
Limb injury		1 (3.3%)	0
Upper limb fracture		1 (3.3%)	0
Surgical and medical procedures		1 (3.3%)	1 (3.3%)
Endodontic procedure		0	1 (3.3%)
Inguinal hernia repair		1 (3.3%)	0

TEAE: Treatment emergent adverse event, SOC: System organ class, PT: Preferred term. MEDDRA 17.0. n (%) = number and percentage of patients with at least one TEAE. Note: Table sorted by SOC internationally agreed order and decreasing percentage of PT in dupilumab 300 mg group.

[00279] The most frequently reported TEAEs were nasopharyngitis (10 (33.3%) in placebo and 11 (36.7%) in dupilumab) and headache (5 (16.7%) in placebo and 6 (20.0%) in dupilumab), which were both balanced between the two treatment groups, while injection site reaction, was 10 predominantly reported for the dupilumab group (2 (6.7%) in placebo and 12 (40.0%) in dupilumab). In addition, two patients each reported injection and puncture site pain, respectively (6.7% overall). Other frequently reported TEAEs that were also reported at a higher percentage in the dupilumab than in the placebo group were oropharyngeal pain (2 (6.7%) in placebo and 7 (23.3%) in dupilumab), epistaxis (2 (6.7%) in placebo and 6 (20.0%) in dupilumab), and upper 15 respiratory infection and back pain (both 0 in placebo and 3 (10.0%) in dupilumab, respectively). There were only a few events that were reported more frequently by patients in the placebo group or by 2 or 3 patients overall. The majority of TEAEs were reported only by single patients in both the placebo and the dupilumab groups.

[00280] Four patients in the placebo and two patients in the dupilumab group reported serious TEAEs. There was no pattern of TEAEs. No patient died during the treatment period. One patient died during screening due to the rupture of an aneurysm of the aorta without having received study medication (non-TEAE) (Table 38).

5

Table 38. Number (%) of patients with treatment emergent SAEs by primary SOC, HLGT, HLT AND PT in a safety population.

PRIMARY SYSTEM ORGAN CLASS		Dupilumab	
HLGT: High Level Group Term	Preferred Term n(%)	Placebo (N=30)	300mg qw (N=30)
Any class		4 (13.3%)	2 (6.7%)
INFECTIONS AND INFESTATIONS		0	1 (3.3%)
HLGT: Viral infectious disorders		0	1 (3.3%)
HLT: Herpes viral infections		0	1 (3.3%)
Herpes zoster		0	1 (3.3%)
NEOPLASMS BENIGN, MALIGNANT AND UNSPECIFIED (INCL CYSTS AND POLYPS)		1 (3.3%)	0
HLGT: Reproductive neoplasms female malignant and unspecified		1 (3.3%)	0
HLT: Uterine neoplasms malignant NEC		1 (3.3%)	0
Uterine cancer		1 (3.3%)	0
NERVOUS SYSTEM DISORDERS		1 (3.3%)	1 (3.3%)
HLGT: Central nervous system vascular disorders		1 (3.3%)	0
HLT: Transient cerebrovascular events		1 (3.3%)	0
Transient ischaemic attack		1 (3.3%)	0
HLGT: Neurological disorders NEC		0	1 (3.3%)
HLT: Paraesthesia and dysaesthesia		0	1 (3.3%)
Hypoaesthesia		0	1 (3.3%)
HLGT: Peripheral neuropathies		0	1 (3.3%)
HLT: Mononeuropathies		0	1 (3.3%)
Mononeuropathy		0	1 (3.3%)
CARDIAC DISORDERS		0	1 (3.3%)
HLGT: Cardiac arrhythmias		0	1 (3.3%)
HLT: Rate and rhythm disorders NEC		0	1 (3.3%)
Arrhythmia		0	1 (3.3%)
RESPIRATORY, THORACIC AND MEDIASTINAL DISORDERS		2 (6.7%)	0
HLGT: Bronchial disorders (excl neoplasms)		1 (3.3%)	0
HLT: Bronchospasm and obstruction		1 (3.3%)	0
Asthma		1 (3.3%)	0

PRIMARY SYSTEM ORGAN CLASS		Dupilumab 300mg qw (N=30)
HLGT: High Level Group Term	Placebo (N=30)	Dupilumab 300mg qw (N=30)
HLT: High Level Term		
Preferred Term n(%)		
HLGT: Upper respiratory tract disorders (excl infections)	1 (3.3%)	0
HLT: Nasal disorders NEC	1 (3.3%)	0
Nasal polyps	1 (3.3%)	0
MUSCULOSKELETAL AND CONNECTIVE TISSUE DISORDERS	0	1 (3.3%)
HLGT: Musculoskeletal and connective tissue disorders NEC	0	1 (3.3%)
HLT: Musculoskeletal and connective tissue pain and discomfort	0	1 (3.3%)
Pain in extremity	0	1 (3.3%)

SAE: Serious adverse event, SOC: System organ class, HLT: High level group term, HLT: High level term, PT: Preferred term. MEDDRA 17.0. n (%) = number and percentage of patients with at least one treatment emergent SAE. Note: Table sorted by SOC internationally agreed order and HLT, HLT, PT by alphabetic order.

5

[00281] A total of 6 patients discontinued the study due to TEAEs, 5 in the placebo group and 1 in the dupilumab group. With the exception of asthma, which was reported by 2 placebo patients, all other terms were only reported once (Table 39).

10 **Table 39.** Number (%) of patients with TEAE(s) leading to permanent treatment discontinuation by primary SOC, HLT, HLT and PT in a safety population.

PRIMARY SYSTEM ORGAN CLASS		Dupilumab 300mg qw (N=30)
HLGT: High Level Group Term	Placebo (N=30)	Dupilumab 300mg qw (N=30)
HLT: High Level Term		
Preferred Term n(%)		
Any class	5 (16.7%)	1 (3.3%)
INFECTIONS AND INFESTATIONS		
HLGT: Infections - pathogens unspecified	2 (6.7%)	0
HLT: Ear infections	2 (6.7%)	0
Otitis media	1 (3.3%)	0
HLT: Lower respiratory tract and lung infections	1 (3.3%)	0
Bronchitis	1 (3.3%)	0

PRIMARY SYSTEM ORGAN CLASS		Placebo (N=30)	Dupilumab 300mg qw (N=30)
HLGT: High Level Group Term			
HLT: High Level Term			
Preferred Term n(%)			
IMMUNE SYSTEM DISORDERS		1 (3.3%)	0
HLGT: Allergic conditions		1 (3.3%)	0
HLT: Allergic conditions NEC		1 (3.3%)	0
Hypersensitivity		1 (3.3%)	0
NERVOUS SYSTEM DISORDERS		1 (3.3%)	0
HLGT: Headaches		1 (3.3%)	0
HLT: Headaches NEC		1 (3.3%)	0
Headache		1 (3.3%)	0
VASCULAR DISORDERS		1 (3.3%)	0
HLGT: Vascular hypertensive disorders		1 (3.3%)	0
HLT: Vascular hypertensive disorders NEC		1 (3.3%)	0
Hypertension		1 (3.3%)	0
RESPIRATORY, THORACIC AND MEDIASTINAL DISORDERS		2 (6.7%)	0
HLGT: Bronchial disorders (excl neoplasms)		2 (6.7%)	0
HLT: Bronchospasm and obstruction		2 (6.7%)	0
Asthma		2 (6.7%)	0
GASTROINTESTINAL DISORDERS		1 (3.3%)	1 (3.3%)
HLGT: Gastrointestinal motility and defaecation conditions		0	1 (3.3%)
HLT: Gastrointestinal atonic and hypomotility disorders NEC		0	1 (3.3%)
Constipation		0	1 (3.3%)
HLGT: Gastrointestinal signs and symptoms		1 (3.3%)	0
HLT: Gastrointestinal and abdominal pains (excl oral and throat)		1 (3.3%)	0
Abdominal pain		1 (3.3%)	0

MEDDRA 17.0. n (%) = number and percentage of patients with at least one TEAE leading to permanent treatment discontinuation. Note: Table sorted by SOC internationally agreed order and HLGT, HLT, PT by alphabetic order.

5 [00282] Adverse Events of Special Interest (AESIs) were defined as: ALT increase; anaphylactic reactions or acute allergic reactions that require immediate treatment; severe injection site reactions that last longer than 24 hours; severe infections including parasitic infections; pregnancy; and overdose (Table 40).

10 **Table 40.** Number (%) of patients with adverse event of special interest reported by investigators in a safety population.

Primary System Organ Class Preferred Term n(%)	Placebo (N=30)	Dupilumab 300mg qw (N=30)
Any Class	0	1 (3.3%)
Infections and infestations	0	1 (3.3%)
Herpes zoster	0	1 (3.3%)

n (%) = number and percentage of patients with at least one AESI. Note: Table sorted by SOC internationally agreed order and PT sorted by decreasing frequency in dupilumab 300 mg group.

5 [00283] There were only few laboratory values which met the criteria of potentially clinically significantly abnormal. Higher numbers of patients, although balanced between the two treatment groups, were recorded for elevated basophil and eosinophil counts (Tables 41-46).

10 **Table 41.** Red blood cells, platelets and coagulation panel showing the number of patients with Potentially Clinically Significant Abnormalities (PCSA) during the TEAE period in a safety population.

Laboratory parameter PCSA criteria n/N1 (%)	Placebo (N=30)	Dupilumab 300mg qw (N=30)
Hemoglobin		
<= 115 g/L (Male); <= 95 g/L (Female)	1/29 (3.4%)	1/30 (3.3%)
>= 185 g/L (Male); >= 165 g/L (Female)	1/29 (3.4%)	0/30
Decrease from baseline >= 20 g/L	1/29 (3.4%)	1/30 (3.3%)
Hematocrit		
<= 0.37 v/v (Male); <= 0.32 v/v (Female)	1/29 (3.4%)	2/30 (6.7%)
>= 0.55 v/v (Male); >= 0.5 v/v (Female)	1/29 (3.4%)	0/30
Erythrocytes		
>= 6 Tera/L	1/29 (3.4%)	0/30
Platelets		
< 100 Giga/L	0/29	0/30
>= 700 Giga/L	0/29	0/30

15 Note: The number (n) represents the subset of the total number of patients who met the criterion in question at least once during treatment. The denominator (/N1) for each parameter within a treatment group is the number of patients for the treatment group who had that parameter assessed post-baseline. For PCSA including condition based only on change from baseline, the denominator is restricted on patients having a baseline and a post-baseline values.

Table 42. White blood cells panel showing the number of patients with abnormalities (PCSA) during the TEAE period in a safety population.

Laboratory parameter PCSA criteria n/N1 (%)	Placebo (N=30)	Dupilumab 300mg qw (N=30)
Leukocytes		
< 3.0 Giga/L (Non-Black); < 2.0 Giga/L (Black)	2/29 (6.9%)	0/30
≥ 16.0 Giga/L	0/29	0/30
Neutrophils		
< 1.5 Giga/L (Non-Black); < 1.0 Giga/L (Black)	2/29 (6.9%)	0/30
Lymphocytes		
≥ 0.5 Giga/L – LLN	1/29 (3.4%)	1/30 (3.3%)
< 0.5 Giga/L	0/29	0/30
≥ 4.0 Giga/L	0/29	1/30 (3.3%)
Monocytes		
≥ 0.7 Giga/L	3/29 (10.3%)	0/30
Basophils		
≥ 0.1 Giga/L	7/29 (24.1%)	11/30 (36.7%)
Eosinophils		
≥ 0.5 Giga/L or ≥ ULN (if ULN ≥ 0.5 Giga/L)	10/29 (34.5%)	13/30 (43.3%)

5 Note: The number (n) represents the subset of the total number of patients who met the criterion in question at least once during treatment. The denominator (/N1) for each parameter within a treatment group is the number of patients for the treatment group who had that parameter assessed post-baseline.

10

15

20

Table 43. Metabolic function panel showing the number of patients with abnormalities (PCSA) during the TEAE period in a safety population.

Laboratory parameter PCSA criteria n/N1 (%)	Placebo (N=30)	Dupilumab 300mg qw (N=30)
Glucose		
<= 3.9 mmol/L and < LLN	2/29 (6.9%)	2/30 (6.7%)
>= 11.1 mmol/L (unfasted); >= 7 mmol/L (fasted)	0/29	3/30 (10.0%)
Cholesterol		
>= 7.74 mmol/L	0/30	0/30
Triglycerides (mmol/L)		
>= 4.6 mmol/L	0/1	0/0
Creatine Kinase		
> 3 ULN	2/29 (6.9%)	1/30 (3.3%)
> 10 ULN	1/29 (3.4%)	0/30
Albumin		
<= 25 g/L	0/29	0/30

5 Note: The number (n) represents the subset of the total number of patients who met the criterion in question at least once during treatment. The denominator (/N1) for each parameter within a treatment group is the number of patients for the treatment group who had that parameter assessed post-baseline.

10

15

20

Table 44. Electrolyte panel showing the number of patients with abnormalities (PCSA) during the TEAE period in a safety population.

Laboratory parameter PCSA criteria n/N1 (%)	Placebo (N=30)	Dupilumab 300mg qw (N=30)	
		0/30	0/30
Sodium			
≤ 129 mmol/L	0/30	0/30	
≥ 160 mmol/L	0/30	0/30	
Potassium			
≤ 3 mmol/L	0/30	0/30	
≥ 5.5 mmol/L	0/30	0/30	
Chloride			
≤ 80 mmol/L	0/30	0/30	
≥ 115 mmol/L	0/30	0/30	

5 Note: The number (n) represents the subset of the total number of patients who met the criterion in question at least once during treatment. The denominator (/N1) for each parameter within a treatment group is the number of patients for the treatment group who had that parameter assessed post-baseline.

10 **Table 45.** Renal function panel showing the number of patients with abnormalities (PCSA) during the TEAE period in a safety population.

Laboratory parameter PCSA criteria n/N1 (%)	Placebo (N=30)	Dupilumab 300mg qw (N=30)	
		0/30	0/30
Creatinine			
≥ 150 µmol/L (Adults)	0/30	0/30	
≥ 30% change from baseline	2/30 (6.7%)	1/29 (3.4%)	
≥ 100% change from baseline	0/30	0/29	
Creatinine Clearance(Cockcroft's Formula) (mL/min)			
≥ 50 - ≤ 80 mL/min (mild renal impairment)	6/30 (20.0%)	5/30 (16.7%)	
≥ 30 - < 50 mL/min (moderate renal impairment)	0/30	0/30	
< 30 mL/min (severe renal impairment)	0/30	0/30	
Blood Urea Nitrogen			
≥ 17 mmol/L	0/30	0/30	
Urate			
< 120 µmol/L	0/30	0/30	
≥ 408 µmol/L	5/30 (16.7%)	5/30 (16.7%)	

Note: The number (n) represents the subset of the total number of patients who met the criterion in question at least once during treatment. The denominator (/N1) for each parameter within a treatment group is the number of patients for the treatment group who had that parameter

assessed post-baseline. For PCSA including condition based only on change from baseline, the denominator is restricted on patients having a baseline and a post-baseline values. For PCSA clearance categories, a patient who experienced one PCSA in several categories is counted only in the worst category.

5

Table 46. Liver function panel showing the number of patients with abnormalities (PCSA) during the TEAE period in a safety population.

Laboratory parameter PCSA criteria n/N1 (%)	Placebo (N=30)	Dupilumab 300mg qw (N=30)
Alanine Aminotransferase		
> 3 ULN	0/29	0/30
Aspartate Aminotransferase		
> 3 ULN	1/29 (3.4%)	0/30
> 5 ULN	1/29 (3.4%)	0/30
> 10 ULN	0/29	0/30
Laboratory parameter PCSA criteria n/N1 (%)	Placebo (N=30)	Dupilumab 300mg qw (N=30)
Alkaline Phosphatase		
> 1.5 ULN	0/30	0/30
Bilirubin		
> 1.5 ULN	0/29	0/30
ALT and total bilirubin		
ALT > 3 ULN and TBIL > 2 ULN	0/29	0/30

10 Note: The number (n) represents the subset of the total number of patients who met the criterion in question at least once during treatment. The denominator (/N1) for each parameter within a treatment group is the number of patients for the treatment group who had that parameter assessed post-baseline. AST or ALT > 5ULN and over are presented only if incidence > 0. There was one AESI of severe infection, herpes zoster, reported for a patient in the dupilumab group.

15

[00284] There were no clinically meaningful differences between the treatment groups regarding any of the vital signs, ECG and physical findings (Table 47, Table 48 and Figure 20).

20

Table 47. Vital signs panel showing the number of patients with abnormalities (PCSA) during the TEAE period in a safety population.

Vital Signs by PCSA criteria n/N1 (%)	Placebo (N=30)	Dupilumab 300mg qw (N=30)
Supine Systolic Blood Pressure (Mmhg)		
≤ 95 mmHg and decrease from baseline ≥ 20 mmHg	0/30	0/30
≥ 160 mmHg and increase from baseline ≥ 20 mmHg	1/30 (3.3%)	0/30
Supine Diastolic Blood Pressure (Mmhg)		
≤ 45 mmHg and decrease from baseline ≥ 10 mmHg	0/30	0/30
≥ 110 mmHg and increase from baseline ≥ 10 mmHg	0/30	0/30
Supine Heart Rate (Beats/Min)		
≤ 50 bpm and decrease from baseline ≥ 20 bpm	0/30	0/30
≥ 120 bpm and increase from baseline ≥ 20 bpm	0/30	0/30
Weight (Kg)		
≥ 5% decrease from baseline	4/30 (13.3%)	4/30 (13.3%)
≥ 5% increase from baseline	4/30 (13.3%)	3/30 (10.0%)

5 Orthostatic = standing – supine. Note: The number (n) represents the subset of the total number of patients who met the criterion in question at least once during treatment. The denominator (N1) for each parameter within a treatment group is the number of patients for the treatment group who had that parameter assessed post-baseline. For PCSA including condition based only on change from baseline, the denominator is restricted on patients having a baseline and a post-baseline values.

10

Table 48. ECG panel showing the number of patients with abnormalities (PCSA) during the TEAE period in a safety population.

ECG parameter PCSA criteria n/N1 (%)	Placebo (N=30)	Dupilumab 300mg qw (N=30)
Heart Rate		
≤ 50 bpm and decrease from baseline ≥ 20 bpm	0/30	0/30
≥ 120 bpm and increase from baseline ≥ 20 bpm	0/30	0/30
PR		
≥ 220ms and increase from baseline ≥ 20 ms	1/30 (3.3%)	1/30 (3.3%)

ECG parameter PCSA criteria n/N1 (%)	Placebo (N=30)	Dupilumab 300mg qw (N=30)
QRS		
≥120ms	3/30 (10.0%)	3/30 (10.0%)
QTc Bazett		
Borderline: 431-450 ms (Male); 451-470 ms (Female)	5/30 (16.7%)	3/30 (10.0%)
Prolonged: > 450 ms (Male); > 470 ms (Female)	1/30 (3.3%)	3/30 (10.0%)
≥ 500 ms	0/30	0/30
QTc Bazett – Change from baseline		
Borderline: Increase versus baseline ≥ 30 and ≤ 60 ms	2/30 (6.7%)	3/30 (10.0%)
Prolonged: Increase versus baseline >60 ms	0/30	0/30
QTc Fridericia		
Borderline: 431-450 ms (Male); 451-470 ms (Female)	3/30 (10.0%)	4/30 (13.3%)
Prolonged: > 450 ms (Male); > 470 ms (Female)	0/30	1/30 (3.3%)
≥ 500 ms	0/30	0/30
QTc Fridericia – Change from baseline		
Borderline: Increase versus baseline ≥ 30 and ≤ 60 ms	2/30 (6.7%)	3/30 (10.0%)
Prolonged: Increase versus baseline >60 ms	0/30	0/30

Note: The number (n) represents the subset of the total number of patients who met the criterion in question at least once during treatment. The denominator (/N1) for each parameter within a treatment group is the number of patients for the treatment group who had that parameter assessed post-baseline. For PCSA including condition based only on change from baseline, the denominator is restricted on patients having a baseline and a post-baseline values. For QTc Bazett and Fridericia, a patient who experienced at least one value greater than 500 ms is counted also in the prolonged category. For other categories of PCSA related to QTc, a patient who experienced one PCSA in several categories is counted only in the worst category.

5 10 [00285] Of the patients with available Anti-Drug Antibodies (ADA) results at baseline, 7/28 and 7/30, respectively, in the placebo and dupilumab treatments groups had pre-existing ADA titers. With the exception of 1 patient in the dupilumab group, the pre-existing ADA titers were not boosted during the treatment period (Table 49).

Table 49. PK panel summarizing pre-existing ADA in a randomized population.

	Placebo (N=30)	Dupilumab 300mg qw (N=30)	All (N=60)
Patients with positive response at baseline ^a	7/28 (25.00%)	7/30 (23.33%)	14/58 (24.14%)
Titer for positive samples			
Number	7	7	14
Mean (SD)	1534.29 (2788.89)	784.29 (1390.98)	1159.29 (2152.73)
SEM	1054.103	525.741	575.342
CV	181.771	177.356	185.695
Geometric Mean	323.02	178.32	240.00
Median	480.00	120.00	300.00
Q1 : Q3	30.00 : 1920.00	30.00 : 960.00	30.00 : 960.00
Min : Max	30.0 : 7680.0	30.0 : 3840.0	30.0 : 7680.0
Patients with negative response at baseline ^a	21/28 (75.00%)	23/30 (76.67%)	44/58 (75.86%)

^aThe denominator is the number of patients with evaluable ADA samples at baseline.

[00286] During the study treatment period, 3 patients on placebo, and 2 patients on dupilumab, respectively, had positive treatment-emergent ADA titers. One dupilumab-treated patient was transiently ADA positive, and after week 8, had a negative ADA titer. The placebo patients had low titers in the range of 30 to 60, whereas, the dupilumab-treated patients titers ranged from 480 to 1920 (Table 50).

10 **Table 50.** PK panel summarizing ADA incidence in an ADA population.

	Placebo (N=30)	Dupilumab 300mg qw (N=30)
ADA negative patients ^a	27/30 (90.00%)	28/30 (93.33%)
Treatment-unaffected ADA positive patients ^a	7/30 (23.33%)	6/30 (20.00%)
ADA positive patients ^a	3/30 (10.00%)	2/30 (6.67%)
Treatment-induced ADA patients ^b	3/23 (13.04%)	1/23 (4.35%)
Transient treatment-induced ADA patients ^b	0/23 (0.00%)	1/23 (4.35%)
Persistent treatment-induced ADA patients ^b	0/23 (0.00%)	0/23 (0.00%)
Indeterminate ^b	3/23 (13.04%)	0/23 (0.00%)
Peak titer for treatment-induced ADA patients		
Number	3	1
Mean (SD)	40.00 (17.32)	480.00 (NC)
SEM	10.000	NC

	Placebo (N=30)	Dupilumab 300mg qw (N=30)
CV	43.301	NC
Geometric Mean	37.80	480.00
Median	30.00	480.00
Q1 : Q3	30.00 : 60.00	480.00 : 480.00
Min : Max	30.0 : 60.0	480.0 : 480.0
 Treatment-boosted ADA patients ^c	 0/7 (0.00%)	 1/7 (14.29%)
Peak titer for treatment-boosted ADA patients		
Number	0	1
Mean (SD)		1920.00 (NC)
SEM		NC
CV		NC
Geometric Mean		1920.00
Median		1920.00
Q1 : Q3		1920.00 : 1920.00
Min : Max		1920.0 : 1920.0
 Ratio of peak post-baseline titer to baseline titer for treatment-boosted ADA patients	 0	 1
Number	0	4.00 (NC)
Mean (SD)		4.00
Median		4.00
Q1 : Q3		4.00 : 4.00
Min : Max		4.0 : 4.0

^aThe denominator is the number of evaluable patients defined as patients with at least 1 evaluable post-baseline ADA sample. ^bThe denominator is the number of evaluable patients that were ADA negative or non-evaluable at baseline. ^cThe denominator is the number of evaluable patients that were ADA positive at baseline.

5

[00287] No definitive conclusions could be made with respect to ADA response since the study was ongoing at the time of interim analysis, and the final assessment of ADA response will be made at the conclusion of the study.

10 D. Summary of Results

[00288] Baseline characteristics were similar between groups. Least squares (LS) mean change in NPS was -0.30 in the placebo/mometasone group, and -1.85 in the dupilumab/mometasone group (LS mean difference (95% CI) of -1.55; p=0.0009). Significant changes favoring dupilumab were also observed for the Lund-Mackay CT score (difference of -8.84; p<0.0001), percent of the maxillary sinus volume with disease (difference of -32.24%; p<0.0001), SNOT-22 (difference of -18.1; p<0.0001), sense of smell, and all other secondary

end points. In patients with asthma (n=16), dupilumab improved FEV1 % predicted (7.2% increase, p=0.04) and asthma control (1.1 unit reduction in ACQ5; p<0.0001). Injection site reactions, headache, and nasopharyngitis were the most frequently reported adverse events with dupilumab.

5 **[00289]** In patients refractory to nasal corticosteroids, the addition of dupilumab improved endoscopic, radiographic and clinical endpoints of Chronic Sinusitis with Nasal Polyps (CSwNP), while improving lung function and disease control in patients with comorbid asthma.

10 **[00290]** Dupilumab delivered positive results in a proof of concept study in patients with nasal polyposis and chronic symptoms of sinusitis. With respect to CSwNP, strong efficacy of dupilumab 300 mg QW was observed vs. placebo, when added to NASONEX®. Rapid, clinically and significant reduction size of nasal polyposis was observed. Consistent improvement in measures of sinusitis by CT scan, nasal air flow and patient-reported symptoms were observed.

15 **[00291]** The most frequently reported TEAEs were nasopharyngitis, headache and injection site reaction, with injection site reaction being more frequently reported in the dupilumab treatment group. Other frequently reported TEAEs that were also reported at a higher percentage in the dupilumab treatment group, compared to the placebo group, were oropharyngeal pain, epistaxis, upper respiratory infection and back pain. There were no other clinically meaningful safety findings or differences in safety parameters between the treatment groups.

20 **[00292]** A low incidence of treatment emergent anti-drug antibody response was observed in both dupilumab and placebo treatment groups. No definitive conclusions were made with respect to ADA response since the study was ongoing at the time of interim analysis and the final assessment of ADA response will be made at the conclusion of the study.

25 **[00293]** The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications in addition to those described herein will become apparent to those skilled in the art from the foregoing description and the accompanying figure. Such modifications are intended to fall within the scope of the appended claims.

Table 51. Baseline demographic and clinical characteristics of the patients.

	Placebo + Mometasone (N=30)	Dupilumab + Mometasone (N=30)
Age (yr)	49.3 ± 9.1	47.4 ± 9.8
Male, n (%)	16 (53.3)	18 (60.0)
Body mass index (BMI)		
Mean (kg/m ²)	26.8 ± 3.9	28.1 ± 4.2
< 30, n (%)	24 (80.0)	22 (73.3)
Bilateral endoscopic nasal polyp score (NPS)	5.7 ± 0.9	5.9 ± 1.0

CT: Lund McKay Score (total)	18.7 ± 5.5	18.6 ± 5.0
CT: % maxillary sinus volume occupied by disease	76.3 ± 23.9	71.0 ± 26.2
AM Nasal peak inspiratory flow (NPIF)	109.2 ± 46.8	98.4 ± 48.5
SNOT-22 total score	40.6 ± 19.9	41.4 ± 18.2
VAS rhinosinusitis	6.4 ± 2.7	6.4 ± 2.7
Smell test (UPSIT)	15.6 ± 7.9	12.8 ± 8.3
Congestion/obstruction, AM	1.7 ± 0.7	1.7 ± 0.7
Loss of smell, AM	2.8 ± 0.5	2.4 ± 0.9
Anterior rhinorrhea, AM	1.1 ± 0.8	1.0 ± 0.9
Posterior rhinorrhea, AM	1.4 ± 0.8	1.1 ± 0.9
≥ 1 prior surgery, n (%)	19 (63.3)	16 (53.3)
Duration of nasal polyposis (yr)	11.5 ± 8.7	7.6 ± 6.1
Aspirin sensitivity, n (%)	9 (30)	6 (20)
Comorbid Asthma, n (%)	19 (63)	16 (53)
Duration of asthma (yr)	20.2 ± 17.4	15.5 ± 12.1
FEV1 (L) – total population	3.0 ± 0.9	3.2 ± 0.9
FEV1 (% predicted) - total population	86.5 ± 18.4	87.9 ± 18.9
FEV1 (L) - asthma	2.7 ± 0.9	2.7 ± 0.7
FEV1 (% predicted) - asthma	79.8 ± 14.6	82.2 ± 17.7
ACQ – 5 in participants with asthma	1.5 ± 0.9	1.6 ± 1.1
Total IgE (IU/ml)	195.3 ± 251.5	139.7 ± 136.2
TARC (pg/ml)	449.3 ± 376.8	469.7 ± 298.0
Eotaxin-3 (pg/ml)	61.6 ± 48.4	64.0 ± 29.8
Blood eosinophils ($10^9/L$)	0.45 ± 0.67	0.41 ± 0.24

[00294] Table 52. Trial endpoints.

	Placebo + Mometasone (N=30)	Dupilumab + Mometasone (N=30)	Difference vs Placebo + Mometasone (95% CI)	P value
Primary end point				
Bilateral endoscopic NPS score	-0.3 (0.3)	-1.9 (0.3)	-1.6 (-2.4 to -0.7)	0.0009
Secondary end points				
CT: Lund McKay Score (total)	-0.2 (1.0)	-9.1 (0.8)	-8.8 (-11.1 to -6.6)	<.0001
CT: % maxillary sinus volume occupied by disease	-4.2 (4.7)	-36.4 (4.0)	-32.2 (-43.1 to -21.4)	<.0001

NPIF (AM)	+28.6 (7.7)	+57.9 (7.5)	+29.3 (8.2 to 50.3)	0.0073
SNOT-22	-9.2 (3.0)	-27.3 (2.7)	-18.1 (-25.6 to -10.6)	<.0001
VAS rhinosinusitis	-2.2 (0.7)	-4.3 (0.6)	-2.1 (-3.7 to -0.6)	0.0082
UPSIT	-0.7 (1.5)	+14.1 (1.4)	+14.8 (10.9 to 18.7)	<.0001
Congestion/obstruction (AM)	-0.2 (0.1)	-0.9 (0.1)	-0.7 (-1.0 to -0.3)	0.0004
Loss of smell (AM)	-0.1 (0.2)	-1.4 (0.2)	-1.3 (-1.7 to -0.8)	<0.0001
Anterior rhinorrhea (AM)	-0.0 (0.1)	-0.7 (0.1)	-0.6 (-0.9, -0.3)	0.0001
Posterior rhinorrhea (AM)	-0.0 (0.1)	-0.5 (0.1)	-0.5 (-0.8 to -0.2)	0.0019
FEV1 (L), in patients with asthma	0.08 (0.09)	0.31 (0.10)	0.22 (-0.02 to 0.47)	0.0739
FEV1 (% predicted), in patients with asthma	1.9 (2.8)	9.0 (3.0)	7.2 (0.4 to 13.9)	0.0397
ACQ – 5, in patients with asthma	-0.3 (0.3)	-1.4 (0.4)	-1.1 (-1.5 to -0.6)	<.0001
Total IgE (IU/mL), % change	7.9 (4.5)	-48.4 (4.2)	-56.3 (-68.2 to -44.4)	<.0001
TARC (pg/mL), % change	0.7 (10.3)	-20.5 (9.4)	-21.1 (-48.6 to 6.3)	.1276
Eotaxin-3 (pg/mL), % change	10.0 (4.8)	-35.5 (4.4)	-45.5 (-57.6 to -33.3)	<.0001
Blood eosinophils ($\times 10^9/L$), % change	-2.9 (13.2)	-7.3 (10.9)	-4.5 (-36.2 to 27.3)	.7792
Safety end points				
TEAE, n (%)	25 (83.3)	30 (100)	-	-
TESAE, n (%)	4 (13.3)	2 (6.7)	-	-
TEAE leading to discontinuation, n (%)	5 (16.7)	1 (3.3)	-	-

Table 53. Treatment differences from baseline to 32 weeks, after 16 weeks of dupilumab/MFNS or placebo/MFNS plus 16 weeks of MFNS-only follow-up

	Placebo/MFNS (n = 30)	Dupilumab/MFNS (n = 30)
Bilateral endoscopic NPS	-0.7 (1.4)	-1.7 (1.7)
NPIF (AM)	+33.0 (33.4)	+60.6 (52.0)
SNOT-22	-9.6 (18.8)	-19.6 (20.4)
Nasal congestion/obstruction (AM)	-0.2 (0.6)	-0.8 (0.9)
Anterior rhinorrhea (AM)	-0.1 (0.5)	-0.4 (0.8)
Posterior rhinorrhea (AM)	-0.2 (0.7)	-0.3 (0.9)
Loss of smell (AM)	-0.3 (0.5)	-1.1 (1.1)
Nocturnal awakenings	-0.2 (1.0)	-0.6 (0.7)

All values are mean (SD).

Abbreviations: MFNS, mometasone furoate nasal spray; NPS, nasal polyp score; PNIF, peak nasal inspiratory flow; SNOT-22, 22-item Sinonasal Outcome Test.

Table 54. Additional secondary endpoints

	Placebo/MFNS (n = 30)	Dupilumab/MFNS (n = 30)	Difference (95% CI)	P-value
NPIF (PM)	+25.8 (7.8)	+59.2 (7.5)	+33.4 (12.0, 54.8)	.0028
Loss of smell (AM)	-0.1 (0.2)	-1.4 (0.2)	-1.3 (-1.7, -0.8)	<.0001
Loss of smell (PM)	-0.2 (0.2)	-1.4 (0.2)	-1.3 (-1.7, -0.8)	<.0001
Anterior rhinorrhea (AM)	0 (0.1)	-0.7 (0.1)	-0.6 (-0.9, -0.3)	<.0001
Anterior rhinorrhea (PM)	-0.2 (0.1)	-0.7 (0.1)	-0.5 (-0.8, -0.3)	.0008
Posterior rhinorrhea (PM)	-0.1 (0.1)	-0.5 (0.1)	-0.5 (-0.8, -0.2)	.003
Nocturnal awakenings	-0.2 (0.1)	-0.6 (0.1)	-0.4 (-0.7, -0.1)	.0076

10 All values are LS mean (SE).

Abbreviations: LS, least square; MFNS, mometasone furoate nasal spray; PNIF, peak nasal inspiratory flow.

End points in patients with and without comorbid asthma

15 **[00295]** In the subset of patients with comorbid asthma, treatment with dupilumab was associated with improvements in lung function (Figure 22A) and asthma control (Figure 22B), with a between-treatment group LS mean difference in FEV1 (%) of 7.2% (95% CI, 0.4 to 13.9, p=0.04) and a reduction of the ACQ-5 of 0.3 (0.3) units in the placebo group and 1.4 (0.4) units in the dupilumab group, resulting in a LS mean difference in ACQ score of -1.1 units (95% CI, -1.5 to -0.6, p<0.0001). Additionally, in this subgroup the mean change in bilateral endoscopic nasal polyp score between baseline and week 16 was 0.3 (0.9) in the placebo group, and -2.4 (2.0) in the dupilumab group, resulting in a LS mean difference of -2.3 (95% CI, -3.4 to -1.2, p=0.0002) favoring dupilumab. Patients with asthma also experienced improvements in UPSIT, SNOT-22, and symptoms of congestion with dupilumab/MFNS (Table 55).

20 **[00296]** A ≥ 1 point change in the NPS was observed in 10.5% of patients who received placebo versus 75% of those who received dupilumab, with an odds ratio (OR) of 26.1 (95% CI 3.8 to 179.3, p=0.0009). A ≥ 2 point change was observed in none of the patients who received placebo and 56.3% of those who received dupilumab.

25

[00297] Analysis of the effect of dupilumab/MFNS in patients without asthma did not demonstrate a significant effect of dupilumab versus placebo with regard to endoscopic NPS. However, an effect of dupilumab on UPSIT, SNOT-22, symptoms of congestion, and other clinical and radiographic endpoints was observed in this subgroup (Table 55).

5

Table 55. Efficacy endpoints in patients with and without comorbid asthma

Endpoints	Comorbid asthma		No comorbid asthma	
	Placebo/MFNS (n = 19)	Dupilumab/MFNS (n = 16)	Placebo/MFNS (n = 11)	Dupilumab/MFNS (n = 14)
Primary endpoint				
Bilateral endoscopic NPS				
Mean (SD)	0.3 (0.9)	-2.4 (2.0)	-1.3 (1.5)	-1.4 (1.3)
Median	0.0	-2.0	-0.5	-1.5
Secondary endpoints				
NPS reduction ≥1.0, No. (%)	2 (10.5)	12 (75.0)	4 (36.4)	9 (64.3)
NPS reduction ≥2.0, No. (%)	0	9 (56.3)	3 (27.3)	7 (50.0)
CT: Lund-Mackay score (total), mean (SD)	-0.9 (4.2)	-8.5 (4.8)	1.1 (2.4)	-10.0 (4.4)
NPIF (AM), mean (SD), L/min	21.6 (32.7)	56.8 (37.8)	41.9 (35.5)	67.4 (49.5)
SNOT-22 total score, mean (SD)	-8.1 (18.6)	-29.3 (16.9)	-8.5 (16.8)	-28.9 (23.4)
Sinusitis symptom severity (VAS), mean (SD), cm	-1.6 (3.6)	-4.7 (2.5)	-2.4 (4.0)	-3.9 (3.1)
Smell test (UPSTIT), mean (SD)	0.8 (5.0)	18.5 (9.7)	-2.4 (5.0)	11.8 (8.5)
Nasal congestion/obstruction (AM), mean (SD)	-0.1 (0.6)	-0.8 (0.7)	-0.5 (0.8)	-1.1 (1.0)
Loss of smell (AM), mean (SD)	-0.3 (0.6)	-1.4 (1.2)	-0.4 (0.6)	-1.4 (1.0)
Anterior rhinorrhea (AM), mean (SD)	-0.0 (0.4)	-0.3 (0.8)	-0.2 (0.8)	-1.0 (0.9)
Posterior rhinorrhea (AM), mean (SD)	-0.1 (0.5)	-0.5 (0.8)	-0.3 (0.8)	-0.5 (0.8)
FEV ₁ , mean (SD), L	0.10 (0.30)	0.31 (0.37)	0.14 (0.45)	-0.07 (0.31)
FEV ₁ (% predicted), mean (SD)	3.4 (9.7)	9.6 (13.1)	-3.4 (12.2)	-1.5 (9.0)

Abbreviations: CT, computed tomography; FEV₁, forced expiratory volume in 1 second; MFNS, mometasone furoate nasal spray; NPS, nasal polyp score; PNIF, peak nasal inspiratory flow; SNOT-22, 22-item Sinonasal Outcome Test; UPSIT, University of Pennsylvania Smell Identification Test; VAS, visual analogue scale.

10

Table 56. Mean absolute changes from baseline in nasal secretion biomarkers at Week 16.

15

	Eotaxin-3 (pg/mL)	Total IgE (IU/mL)	ECP (ng/mL)
Dupilumab/MFNS	-38.9	-18.8	-17.4
Placebo/MFNS	+18.9	+4.50	+7.75

Safety

[00298] Adverse events were reported by 25 of 30 patients in the placebo group and 29 of 30 in the dupilumab group (Table 37). Injection site reactions (ISR), headache, and nasopharyngitis were the most frequent adverse events across the entire study population, with ISR seen more frequently with dupilumab treatment. The events were generally nonspecific and of mild-to-moderate intensity.

[00299] Six patients had a serious adverse event: four in the placebo group (uterine cancer, transient ischemic attack, asthma and nasal polyps) and two in the dupilumab group (herpes zoster in one patient and arrhythmia and upper extremity pain/numbness in the other); no serious adverse events were considered by the investigator to be related to the study drug. Five patients in the placebo group experienced adverse events that led to discontinuation of study drug (otitis media, bronchitis, hypersensitivity, headache, hypertension, asthma, and abdominal pain), as did one patient in the dupilumab group (constipation). No clinically significant changes in vital signs or findings on physical examination, clinical laboratory testing, or ECG were reported in either group.

[00300] There were no deaths during the active treatment period; one patient died of a ruptured aortic aneurysm during the screening period, prior to having been randomized to study treatment.

[00301] Administration of dupilumab to patients with chronic sinusitis with nasal polyposis, rapid and significant improvements were observed in endoscopic, clinical, radiographic and pharmacodynamic end points, indicating an important role for IL-4 and IL-13 in the pathogenesis and clinical manifestations of this disorder. Significant efficacy of dupilumab on CSwNP-related outcomes was also observed in analyses restricted to the subset of patients with co-morbid asthma; these patients additionally experienced improvements in lung function and asthma control, important asthma outcomes. These data indicate that attenuation of IL-4 and IL-13-mediated signaling pathways can have broad therapeutic effects in patients with multiple concurrent Th-2 mediated diseases.

[00302] In comparison to other approaches, dupilumab treatment resulted in sustained clinical improvements which, over time, exceeded the clinical improvement observed with systemic glucocorticoids. Furthermore, in this trial dupilumab or placebo were added to the current standard of care for CSwNP and asthma.³ When added to the current standard of care, dupilumab treatment was associated with broad and significant improvement in multiple clinically-relevant CSwNP and asthma parameters.

[00303] Levels of biomarkers of Th2 inflammation, including serum IgE, eotaxin-3, and TARC decreased with dupilumab, correlating with clinical improvements and confirming the biologic activity of the drug on many of these pathways. In this trial, patients with CSwNP who also reported a diagnosis of asthma on average manifested impaired lung function, suboptimal

disease control, and had disease that was of adult onset. The clinical benefit observed in patients with both CSwNP and asthma illustrates that, in at least a subset of patients, a common set of Th2-related inflammatory pathways appear to be shared between asthma and CSwNP and demonstrates that targeting these pathways can lead to clinical improvement in both

5 diseases.

[00304] In summary, this example shows that in patients with CSwNP refractory to nasal corticosteroids, treatment with dupilumab was associated with improvements in endoscopic, radiographic and clinical measures of disease. The efficacy of dupilumab was increased in patients with comorbid asthma, who also experienced concurrent improvements in lung function

10 and disease control. Additional studies will be performed to fully elucidate the impact of targeting IL-4 and IL-13 in patients with multiple concurrent atopic diseases.

What is claimed:

1. A pharmaceutical composition comprising an antibody or antigen binding fragment thereof that specifically binds an interleukin-4 receptor (IL-4R) for use in decreasing a nasal polyp score (NPS) of a subject in need thereof,
5 wherein the pharmaceutical composition is for administration to a subject whose NPS had been determined;
wherein the antibody or antigen binding fragment thereof comprises heavy chain and light chain CDR sequences of SEQ ID NOs:3, 4 and 5, from the heavy chain variably region (HCVR) and
10 light chain variable region (LCVR) sequence pair of SEQ ID NOs:1 and 2.
2. The pharmaceutical composition for use according to claim 1, wherein the subject has a total of at least 5 nasal polyps, with two or more nasal polyps present in each nostril.
- 15 3. The pharmaceutical composition for use according to claim 1 or 2, wherein the pharmaceutical composition is for use in decreasing the NPS by about 10% to about 50%, by about 20% to about 40%, or by about 25% to about 30%.
- 20 4. The pharmaceutical composition for use according to any one of claims 1 to 3, wherein the subject further has one or more conditions selected from the group consisting of sinusitis, rhinitis, asthma, aspirin hypersensitivity, and non-steroidal anti-inflammatory drug (NSAID) hypersensitivity.
- 25 5. The pharmaceutical composition for use according to claim 4, wherein the subject has one or more conditions selected from the group consisting of nasal polyposis, chronic sinusitis with nasal polyps (CSwNP), chronic sinusitis with bilateral nasal polyps, and chronic rhinosinusitis with nasal polyps (CRSwNP).
- 30 6. The pharmaceutical composition for use according to claim 5, wherein the subject has asthma.
7. The pharmaceutical composition for use according to claim 5, wherein the subject does not have asthma.
- 35 8. The pharmaceutical composition for use according to any one of claims 1 to 7, wherein the subject has undergone surgery for one or both of nasal polyps and chronic rhinosinusitis.

9. The pharmaceutical composition for use according to any one of claims 1 to 8, wherein a first functional endoscopy sinus surgery (FESS) is indicated, a revised surgery is indicated, or surgery is contraindicated.

5 10. The pharmaceutical composition for use according to any one of claims 1 to 9, wherein the antibody or antigen binding fragment thereof is for administration in a dose of between about 100 mg and about 600 mg.

10 11. The pharmaceutical composition for use according to any one of claims 1 to 10, wherein the antibody or antigen binding fragment thereof is for administration in an initial dose of between about 400 mg and about 600 mg, and in one or more subsequent doses of between about 200 mg and about 400 mg each.

15 12. The pharmaceutical composition for use according to any one of claims 1 to 11, wherein the antibody or antigen binding fragment thereof is for administration in an initial dose of about 600 mg, and in one or more subsequent doses of about 300 mg each.

13. The pharmaceutical composition for use according to claim 12, wherein the one or more subsequent doses are for administration once every seven days (QW).

20 14. The pharmaceutical composition for use according to any one of claims 1 to 13, wherein the antibody or antigen binding fragment thereof comprises light chain CDR sequences of SEQ ID NOs:6, 7 and 8, and heavy chain CDR sequences of SEQ ID NOs:3, 4 and 5.

25 15. The pharmaceutical composition for use according to any one of claims 1 to 14, wherein the antibody or antigen binding fragment thereof comprises an HCVR having the amino acid sequence of SEQ ID NO:1 and an LCVR having the amino acid sequence of SEQ ID NO:2.

30 16. The pharmaceutical composition for use according to any one of claims 1 to 15, wherein the antibody or antigen binding fragment thereof comprises a heavy chain sequence of SEQ ID NO:9 and a light chain sequence of SEQ ID NO:10.

17. The pharmaceutical composition for use according to any one of claims 1 to 16, wherein the antibody is dupilumab or an antigen binding fragment thereof.

35 18. The pharmaceutical composition for use according to any one of claims 1 to 17, wherein the pharmaceutical composition is further for use in improving one or more nasal polyposis-

associated parameters selected from the group consisting of loss of smell, runny nose, post nasal drip, and nasal peak inspiratory flow (NPIF).

19. The pharmaceutical composition for use according to claim 18, wherein the pharmaceutical
5 composition is for use in improving one or more of loss of smell, runny nose, post nasal drip and

nasal peak inspiratory flow, in the day (AM), at night (PM) or both in the AM and in the PM.

20. The pharmaceutical composition for use according to any one of claims 1 to 19, wherein the pharmaceutical composition is further for use in decreasing one or more of serum IgE levels,
10 plasma eotaxin-3 levels and serum thymus and activation-regulated chemokine (TARC) levels.

21. The pharmaceutical composition for use according to any one of claims 1 to 20, wherein the pharmaceutical composition is further for use in decreasing one or more of total IgE levels, eotaxin-3 levels, and eosinophil cationic protein (ECP) levels in nasal secretions of the subject.
15

22. An antibody or antigen binding fragment thereof that specifically binds an IL-4R for use in decreasing an NPS of a subject in need thereof,
wherein the antibody or the antigen binding fragment thereof is for administration to a subject
whose NPS had been determined;

20 wherein the antibody or the antigen binding fragment thereof is for administration in a loading dose of about 400 to about 600 mg;
wherein the antibody or the antigen binding fragment thereof comprises heavy chain and light

chain CDR sequences from the HCVR and LCVR sequence pair of SEQ ID NOs:1 and 2; and
wherein the antibody or the antigen binding fragment thereof is for administration in one or more
25 maintenance doses of about 200 to about 300 mg each.

23. The antibody or antigen binding fragment thereof for use according to claim 22, wherein the subject has a total of at least 5 nasal polyps, with two or more nasal polyps present in each nostril prior to the administering steps.
30

24. The antibody or antigen binding fragment thereof for use according to claim 22 or 23,
wherein the antibody or antigen binding fragment thereof is for use in decreasing the NPS by
about 10% to about 50%, by about 20% to about 40%, or by about 25% to about 30%.

35 25. The antibody or antigen binding fragment thereof for use according to any one of claims 22 to 24, wherein the subject further has one or more conditions selected from the group consisting of sinusitis, rhinitis, asthma, aspirin hypersensitivity, and NSAID hypersensitivity.

26. The antibody or antigen binding fragment thereof for use according to claim 25, wherein the subject has one or more conditions selected from the group consisting of nasal polyposis, CSwNP, chronic sinusitis with bilateral nasal polyps, and CRSwNP.

5

27. The antibody or antigen binding fragment thereof for use according to claim 26, wherein the subject has asthma.

10 28. The antibody or antigen binding fragment thereof for use according to claim 26, wherein the subject does not have asthma.

29. The antibody or antigen binding fragment thereof for use according to any one of claims 22 to 28, wherein the subject has undergone surgery for one or both of nasal polyps and chronic rhinosinusitis.

15

30. The antibody or antigen binding fragment thereof for use according to any one of claims 22 to 29, wherein a FESS is indicated, a revised surgery is indicated, or surgery is contraindicated.

20 31. The antibody or antigen binding fragment thereof for use according to any one of claims 22 to 30, wherein the loading dose is about 600 mg and the one or more maintenance doses are about 300 mg each.

32. The antibody or antigen binding fragment thereof for use according to claim 31, wherein the one or more maintenance doses are administered QW.

25

33. The antibody or antigen binding fragment thereof for use according to any one of claims 22 to 32, wherein the antibody or antigen binding fragment thereof comprises light chain CDR sequences of SEQ ID NOs:6, 7 and 8, and heavy chain CDR sequences of SEQ ID NOs:3, 4 and 5.

30

34. The antibody or antigen binding fragment thereof for use according to any one of claims 22 to 33, wherein the antibody or antigen binding fragment thereof comprises an HCVR having the amino acid sequence of SEQ ID NO:1 and an LCVR having the amino acid sequence of SEQ ID NO:2.

35

35. The antibody or antigen binding fragment thereof for use according to any one of claims 22 to 34, wherein the antibody or antigen binding fragment thereof comprises a heavy chain sequence of SEQ ID NO:9 and a light chain sequence of SEQ ID NO:10.

5 36. The antibody or antigen binding fragment thereof for use according to any one of claims 22 to 35, wherein the antibody is dupilumab or an antigen binding fragment thereof.

37. The antibody or antigen binding fragment thereof for use according to any one of claims 22 to 36, wherein the antibody or antigen binding fragment thereof is further for use in improving 10 one or more nasal polyposis-associated parameters selected from the group consisting of loss of smell, runny nose, post nasal drip, and NPIF.

15 38. The antibody or antigen binding fragment thereof for use according to claim 37, wherein the antibody or antigen binding fragment thereof is for use in improving one or more of loss of smell, runny nose, post nasal drip and nasal peak inspiratory flow, in the AM, in the PM or both in the AM and in the PM.

20 39. The antibody or antigen binding fragment thereof for use according to any one of claims 22 to 38, wherein the antibody or antigen binding fragment thereof is for use in decreasing one or more of serum IgE levels, plasma eotaxin-3 levels and serum TARC levels.

40. The antibody or antigen binding fragment thereof for use according to any one of claims 22 to 39, wherein the antibody or antigen binding fragment thereof is for use in decreasing one or more of total IgE levels, eotaxin-3 levels, and ECP levels in nasal secretions of the subject.

25 41. An antibody or antigen binding fragment thereof that specifically binds an IL-4R for use in decreasing an NPS of a subject in need thereof;
wherein the antibody or the antigen binding fragment thereof is for administration to a subject whose NPS had been determined;
30 wherein the antibody or the antigen binding fragment thereof is for administration to a subject who has received one or more maintenance doses of an ICS;
wherein the antibody or the antigen binding fragment thereof is for administration in a loading dose of about 400 to about 600 mg;
wherein the antibody or antigen binding fragment thereof comprises heavy chain and light chain 35 CDR sequences from the HCVR and LCVR sequence pair of SEQ ID NOs:1 and 2;
wherein the antibody or the antigen binding fragment thereof is for administration in one or more maintenance doses of about 200 to about 300 mg each; and

wherein the ICS is for administration for the duration of administration of the antibody or antigen binding fragment thereof.

42. The antibody or antigen binding fragment thereof for use according to claim 41, wherein the

5 subject has a total of at least 5 nasal polyps, with two or more nasal polyps present in each nostril prior to the administering steps.

43. The antibody or antigen binding fragment thereof for use according to claim 41 or 42,

wherein the antibody or antigen binding fragment thereof is for use in decreasing the NPS by

10 about 10% to about 50%, by about 20% to about 40%, or by about 25% to about 30%.

44. The antibody or antigen binding fragment thereof for use according to any one of claims 41

to 43, wherein the subject further has one or more conditions selected from the group consisting

of sinusitis, rhinitis, asthma, aspirin hypersensitivity, and NSAID hypersensitivity.

15

45. The antibody or antigen binding fragment thereof for use according to claim 44, wherein the

subject has one or more conditions selected from the group consisting of nasal polyposis,

CSwNP, chronic sinusitis with bilateral nasal polyps, and CRSwNP.

20 46. The antibody or antigen binding fragment thereof for use according to claim 45, wherein the subject has asthma.

47. The antibody or antigen binding fragment thereof for use according to claim 45, wherein the

subject does not have asthma.

25

48. The antibody or antigen binding fragment thereof for use according to any one of claims 41

to 47, wherein the subject has undergone surgery for one or both of nasal polyps and chronic rhinosinusitis.

30 49. The antibody or antigen binding fragment thereof for use according to any one of claims 41 to 48, wherein a first functional endoscopy sinus surgery (FESS) is indicated, a revised surgery is indicated, or surgery is contraindicated.

50. The antibody or antigen binding fragment thereof for use according to any one of claims 41

35 to 49, wherein the loading dose is about 600 mg and the one or more maintenance doses are about 300 mg each.

51. The antibody or antigen binding fragment thereof for use according to claim 50, wherein the one or more maintenance doses are administered QW.

52. The antibody or antigen binding fragment thereof for use according to any one of claim 41
5 to 51, wherein the ICS is mometasone furoate nasal spray (MFNS).

53. The antibody or antigen binding fragment thereof for use according to claim 52, wherein the MFNS is for administration in a dose of about 100 mg to each nostril of the subject once or twice a day.

10 54. The antibody or antigen binding fragment thereof for use according to any one of claims 41 to 53, wherein the antibody or antigen binding fragment thereof comprises light chain CDR sequences of SEQ ID NOs:6, 7 and 8, and heavy chain CDR sequences of SEQ ID NOs:3, 4 and 5.

15 55. The antibody or antigen binding fragment thereof for use according to any one of claims 41 to 54, wherein the antibody or antigen binding fragment thereof comprises an HCVR having the amino acid sequence of SEQ ID NO:1 and an LCVR having the amino acid sequence of SEQ ID NO:2.

20 56. The antibody or antigen binding fragment thereof for use according to any one of claims 41 to 55, wherein the antibody or antigen binding fragment thereof comprises a heavy chain sequence of SEQ ID NO:9 and a light chain sequence of SEQ ID NO:10.

25 57. The antibody or antigen binding fragment thereof for use according to any one of claims 41 to 56, wherein the antibody is dupilumab or an antigen binding fragment thereof.

30 58. The antibody or antigen binding fragment thereof for use according to any one of claims 41 to 57, wherein the antibody or antigen binding fragment thereof is further for use in improving one or more nasal polyposis-associated parameters selected from the group consisting of loss of smell, runny nose, post nasal drip, and NPIF.

35 59. The antibody or antigen binding fragment thereof for use according to claim 58, wherein the antibody or antigen binding fragment thereof is for use in improving one or more of loss of smell, runny nose, post nasal drip and nasal peak inspiratory flow, in the AM, in the PM or both in the AM and in the PM.

60. The antibody or antigen binding fragment thereof for use according to any one of claims 41 to 59, wherein the antibody or antigen binding fragment thereof is for use in decreasing one or more of serum IgE levels, plasma eotaxin-3 levels and serum TARC levels.

5 61. The antibody or antigen binding fragment thereof for use according to any one of claims 41 to 60, wherein the antibody or antigen binding fragment thereof is for use in decreasing one or more of total IgE levels, eotaxin-3 levels, and ECP levels in nasal secretions of the subject.

10 62. An antibody or antigen binding fragment thereof that specifically binds an IL-4R for use in decreasing an NPS and for use in improving one or more additional nasal polyposis-associated parameters of a subject in need thereof;

wherein the antibody or the antigen binding fragment thereof is for administration to a subject whose NPS had been determined;

15 wherein the antibody or the antigen binding fragment thereof is for administration to a subject whose levels of one or more additional nasal polyposis-associated parameters had been determined;

wherein the antibody or the antigen binding fragment thereof is for administration to a subject who has received one or more maintenance doses of an ICS;

20 wherein the antibody or the antigen binding fragment thereof is for administration in a loading dose of about 400 to about 600 mg;

wherein the antibody or antigen binding fragment thereof comprises heavy chain and light chain CDR sequences from the HCVR and LCVR sequence pair of SEQ ID NOs:1 and 2;

wherein the antibody or the antigen binding fragment thereof is for administration in one or more maintenance doses of about 200 to about 300 mg each; and

25 wherein the ICS is for administration for the duration of administration of the antibody or antigen binding fragment thereof.

30 63. The antibody or antigen binding fragment thereof for use according to claim 62, wherein the one or more additional nasal polyposis-associated parameters are selected from the group consisting of loss of smell, runny nose, post nasal drip, and NPIF.

35 64. A pharmaceutical composition comprising an antibody or antigen binding fragment thereof that specifically binds IL-4R for use in treating nasal polyposis in a subject in need thereof; wherein the antibody or antigen binding fragment thereof comprises heavy chain and light chain CDR sequences from the HCVR and LCVR sequence pair of SEQ ID NOs:1 and 2.

65. The pharmaceutical composition for use according to claim 64, wherein the pharmaceutical composition is for use in decreasing NPS by about 10% to about 50%, by about 20% to about 40%, or by about 25% to about 30% in the subject.

5 66. The pharmaceutical composition for use according to claim 64 or 65, wherein the subject has asthma.

67. The pharmaceutical composition for use according to claim 66, wherein one or both of lung function and asthma control are improved.

10 68. The pharmaceutical composition for use according to claim 64 or 65, wherein the subject does not have asthma.

15 69. The pharmaceutical composition for use according to any one of claims 64 to 68, wherein the pharmaceutical composition is for use in improving one or more nasal polyposis endpoints selected from the group consisting of endoscopic endpoints, radiographic endpoints and clinical endpoints.

20 70. The pharmaceutical composition for use according to any one of claims 64 to 69, wherein the antibody or antigen binding fragment thereof is for administration in an initial dose of between about 400 mg and about 600 mg, and in one or more maintenance doses of between about 200 mg and about 300 mg each.

25 71. A pharmaceutical composition comprising an antibody or antigen binding fragment thereof that specifically binds IL-4R for use in treating CSwNP in a subject in need thereof; wherein the antibody or antigen binding fragment thereof comprises heavy chain and light chain CDR sequences from the HCVR and LCVR sequence pair of SEQ ID NOs:1 and 2.

30 72. The pharmaceutical composition for use according to claim 71, wherein the pharmaceutical composition is for use in decreasing NPS by about 10% to about 50%, by about 20% to about 40%, or by about 25% to about 30% in the subject.

73. The pharmaceutical composition for use according to claim 71 or 72, wherein the subject has asthma.

35 74. The pharmaceutical composition for use according to claim 73, wherein one or both of lung function and asthma control are improved.

75. The pharmaceutical composition for use according to claim 71 or 72, wherein the subject does not have asthma.

5 76. The pharmaceutical composition for use according to any one of claims 71 to 75, wherein the pharmaceutical composition is for use in improving one or more CSwNP endpoints selected from the group consisting of endoscopic endpoints, radiographic endpoints and clinical endpoints.

10 77. The pharmaceutical composition for use according to any one of claims 71 to 76, wherein the antibody or antigen binding fragment thereof is for administration in an initial dose of between about 400 mg and about 600 mg, and in one or more maintenance doses of between about 200 mg and about 300 mg each.

15 78. A method for decreasing a nasal polyp score (NPS) of a subject in need thereof comprising:
(i) determining the NPS of the subject; and
(ii) administering to the subject a pharmaceutical composition comprising an antibody or antigen binding fragment thereof that specifically binds an interleukin-4 receptor (IL-4R), wherein the antibody or antigen binding fragment thereof comprises heavy chain and light chain CDR sequences of SEQ ID NOs:3, 4 and 5, from the heavy chain variably region (HCVR) and light chain variable region (LCVR) sequence pair of SEQ ID NOs:1 and 2,
20 such that the NPS of the subject is decreased.

25 79. The method of claim 78, wherein the subject has a total of at least 5 nasal polyps, with two or more nasal polyps present in each nostril prior to the administering step.

80. The method of claim 78 or 79, wherein the NPS is decreased by about 10% to about 50%, by about 20% to about 40%, or by about 25% to about 30%.

30 81. The method of any one of claims 78 to 80, wherein the subject further has one or more conditions selected from the group consisting of sinusitis, rhinitis, asthma, aspirin hypersensitivity, and non-steroidal anti-inflammatory drug (NSAID) hypersensitivity.

35 82. The method of claim 81, wherein the subject has one or more conditions selected from the group consisting of nasal polyposis, chronic sinusitis with nasal polyps (CSwNP), chronic sinusitis with bilateral nasal polyps, and chronic rhinosinusitis with nasal polyps (CRSwNP).

83. The method of claim 82, wherein the subject has asthma.

84. The method of claim 82, wherein the subject does not have asthma.

5 85. The method of any one of claims 78 to 84, wherein the subject has undergone surgery for one or both of nasal polyps and chronic rhinosinusitis.

86. The method of any one of claims 78 to 85, wherein a first functional endoscopy sinus surgery (FESS) is indicated, a revised surgery is indicated, or surgery is contraindicated.

10 87. The method of any one of claims 78 to 86, wherein the antibody or antigen binding fragment thereof is administered in a dose of between about 100 mg and about 600 mg.

15 88. The method of any one of claims 78 to 87, wherein the antibody or antigen binding fragment thereof is administered in an initial dose of between about 400 mg and about 600 mg, and in one or more subsequent doses of between about 200 mg and about 400 mg each.

20 89. The method of any one of claims 78 to 88, wherein the antibody or antigen binding fragment thereof is administered in an initial dose of about 600 mg, and in one or more subsequent doses of about 300 mg each.

90. The method of claim 89, wherein the one or more subsequent doses are administered once every seven days (QW).

25 91. The method of any one of claims 78 to 90, wherein the antibody or antigen binding fragment thereof comprises light chain CDR sequences of SEQ ID NOs:6, 7 and 8, and heavy chain CDR sequences of SEQ ID NOs:3, 4 and 5.

30 92. The method of any one of claims 78 to 91, wherein the antibody or antigen binding fragment thereof comprises an HCVR having the amino acid sequence of SEQ ID NO:1 and an LCVR having the amino acid sequence of SEQ ID NO:2.

35 93. The method of any one of claims 78 to 92, wherein the antibody or antigen binding fragment thereof comprises a heavy chain sequence of SEQ ID NO:9 and a light chain sequence of SEQ ID NO:10.

94. The method of any one of claims 78 to 93, wherein the antibody is dupilumab or an antigen binding fragment thereof.

95. The method of any one of claims 78 to 94, wherein the administering step is followed by an improvement in one or more nasal polyposis-associated parameters selected from the group consisting of loss of smell, runny nose, post nasal drip, and nasal peak inspiratory flow (NPIF).

96. The method of claim 95, wherein the improvement in one or more of loss of smell, runny nose, post nasal drip and nasal peak inspiratory flow occurs in the day (AM), at night (PM) or both in the AM and in the PM.

97. The method of any one of claims 78 to 96, wherein the administering step is followed by a decrease in one or more of serum IgE levels, plasma eotaxin-3 levels and serum thymus and activation-regulated chemokine (TARC) levels.

98. The method of any one of claims 78 to 97, wherein the administering step is followed by a decrease in one or more of total IgE levels, eotaxin-3 levels, and eosinophil cationic protein (ECP) levels in nasal secretions of the subject.

99. A method for decreasing an NPS of a subject in need thereof comprising:

(i) determining the NPS of the subject;

(ii) administering to the subject a loading dose of about 400 to about 600 mg of an antibody or antigen binding fragment thereof that specifically binds an IL-4R, wherein the antibody or antigen binding fragment thereof comprises heavy chain and light chain CDR sequences from the HCVR and LCVR sequence pair of SEQ ID NOs:1 and 2; and

(iii) administering to the subject one or more maintenance doses of about 200 to about 300 mg each of the antibody or antigen binding fragment thereof,
such that the NPS of the subject is decreased.

100. The method of claim 99, wherein the subject has a total of at least 5 nasal polyps, with two or more nasal polyps present in each nostril prior to the administering steps.

101. The method of claim 99 or 100, wherein the NPS is decreased by about 10% to about 50%, by about 20% to about 40%, or by about 25% to about 30%.

102. The method of any one of claims 99 to 101, wherein the subject further has one or more conditions selected from the group consisting of sinusitis, rhinitis, asthma, aspirin hypersensitivity, and NSAID hypersensitivity.

5 103. The method of claim 102, wherein the subject has one or more conditions selected from the group consisting of CSwNP, chronic sinusitis with bilateral nasal polyps, and CRSwNP.

104. The method of claim 103, wherein the subject has asthma.

10 105. The method of claim 103, wherein the subject does not have asthma.

106. The method of any one of claims 99 to 105, wherein the subject has undergone surgery for one or both of nasal polyps and chronic rhinosinusitis.

15 107. The method of any one of claims 99 to 106, wherein a FESS is indicated, a revised surgery is indicated, or surgery is contraindicated.

108. The method of any one of claims 99 to 107, wherein the loading dose is about 600 mg and the one or more maintenance doses are about 300 mg each.

20 109. The method of claim 108, wherein the one or more maintenance doses are administered QW.

25 110. The method of any one of claims 99 to 109, wherein the antibody or antigen binding fragment thereof comprises light chain CDR sequences of SEQ ID NOs:6, 7 and 8, and heavy chain CDR sequences of SEQ ID NOs:3, 4 and 5.

30 111. The method of any one of claims 99 to 110, wherein the antibody or antigen binding fragment thereof comprises an HCVR having the amino acid sequence of SEQ ID NO:1 and an LCVR having the amino acid sequence of SEQ ID NO:2.

112. The method of any one of claims 99 to 111, wherein the antibody or antigen binding fragment thereof comprises a heavy chain sequence of SEQ ID NO:9 and a light chain sequence of SEQ ID NO:10.

35 113. The method of any one of claims 99 to 112, wherein the antibody is dupilumab or an antigen binding fragment thereof.

114. The method of any one of claims 99 to 113, wherein the administering steps are followed by an improvement in one or more nasal polyposis-associated parameters selected from the group consisting of loss of smell, runny nose, post nasal drip, and NPIF.

5

115. The method of claim 114, wherein the improvement in one or more of loss of smell, runny nose, post nasal drip and nasal peak inspiratory flow occurs in the AM, in the PM or both in the AM and in the PM.

10 116. The method of any one of claims 99 to 115, wherein the administering steps are followed by a decrease in one or more of serum IgE levels, plasma eotaxin-3 levels and serum TARC levels.

15 117. The method of any one of claims 99 to 116, wherein the administering step is followed by a decrease in one or more of total IgE levels, eotaxin-3 levels, and ECP levels in nasal secretions of the subject.

118. A method for decreasing an NPS of a subject in need thereof comprising:

(i) determining the NPS of the subject;

(ii) administering to the subject one or more maintenance doses of an ICS;

20 (iii) administering to the subject a loading dose of about 400 to about 600 mg of an antibody or antigen binding fragment thereof that specifically binds an IL-4R, wherein the antibody or antigen binding fragment thereof comprises heavy chain and light chain CDR sequences from the HCVR and LCVR sequence pair of SEQ ID NOs:1 and 2; and

(iv) administering to the subject one or more maintenance doses of about 200 to about

25 300 mg each of the antibody or antigen binding fragment thereof,

wherein the ICS is administered for the duration of administration of the antibody or antigen binding fragment thereof,

such that the NPS of the subject is decreased.

30 119. The method of claim 118, wherein the subject has a total of at least 5 nasal polyps, with two or more nasal polyps present in each nostril prior to the administering steps.

120. The method of claim 118 or 119, wherein the NPS is decreased by about 10% to about 50%, by about 20% to about 40%, or by about 25% to about 30%.

35

121. The method of any one of claims 118 to 120, wherein the subject further has one or more conditions selected from the group consisting of sinusitis, rhinitis, asthma, aspirin hypersensitivity, and NSAID hypersensitivity.

5 122. The method of claim 121, wherein the subject has one or more conditions selected from the group consisting of nasal polyposis, CSwNP, chronic sinusitis with bilateral nasal polyps, and CRSwNP.

123. The method of claim 122, wherein the subject has asthma.

10 124. The method of claim 122, wherein the subject does not have asthma.

125. The method of any one of claims 118 to 124, wherein the subject has undergone surgery for one or both of nasal polyps and chronic rhinosinusitis.

15 126. The method of any one of claims 118 to 125, wherein a first functional endoscopy sinus surgery (FESS) is indicated, a revised surgery is indicated, or surgery is contraindicated.

20 127. The method of any one of claims 118 to 126, wherein the loading dose is about 600 mg and the one or more maintenance doses are about 300 mg each.

128. The method of claim 127, wherein the one or more maintenance doses are administered QW.

25 129. The method of any one of claim 118 to 128, wherein the ICS is mometasone furoate nasal spray (MFNS).

130. The method of claim 129, wherein about 100 mg MFNS is administered to each nostril of the subject once or twice a day.

30 131. The method of any one of claims 118 to 130, wherein the antibody or antigen binding fragment thereof comprises light chain CDR sequences of SEQ ID NOs:6, 7 and 8, and heavy chain CDR sequences of SEQ ID NOs:3, 4 and 5.

35 132. The method of any one of claims 118 to 131, wherein the antibody or antigen binding fragment thereof comprises an HCVR having the amino acid sequence of SEQ ID NO:1 and an LCVR having the amino acid sequence of SEQ ID NO:2.

133. The method of any one of claims 118 to 132, wherein the antibody or antigen binding fragment thereof comprises a heavy chain sequence of SEQ ID NO:9 and a light chain sequence of SEQ ID NO:10.

5

134. The method of any one of claims 118 to 133, wherein the antibody is dupilumab or an antigen binding fragment thereof.

10 135. The method of any one of claims 118 to 134, wherein the administering steps are followed by an improvement in one or more nasal polyposis-associated parameters selected from the group consisting of loss of smell, runny nose, post nasal drip, and NPIF.

15 136. The method of claim 135, wherein the improvement in one or more of loss of smell, runny nose, post nasal drip and nasal peak inspiratory flow occurs in the AM, in the PM or both in the AM and in the PM.

137. The method of any one of claims 118 to 136, wherein the administering steps are followed by a decrease in one or more of serum IgE levels, plasma eotaxin-3 levels and serum TARC levels.

20

138. The method of any one of claims 118 to 137, wherein the administering step is followed by a decrease in one or more of total IgE levels, eotaxin-3 levels, and ECP levels in nasal secretions of the subject.

25 139. A method for decreasing an NPS and improving one or more additional nasal polyposis-associated parameters of a subject in need thereof comprising:

(i) determining the NPS of the subject;

(ii) determining levels of one or more additional nasal polyposis-associated parameters of the subject;

30

(iii) administering to the subject one or more maintenance doses of an ICS;

(iv) administering to the subject a loading dose of about 400 to about 600 mg of an antibody or antigen binding fragment thereof that specifically binds an IL-4R, wherein the antibody or antigen binding fragment thereof comprises heavy chain and light chain CDR sequences from the HCVR and LCVR sequence pair of SEQ ID NOs:1 and 2; and

35

(v) administering to the subject one or more maintenance doses of about 200 to about 300 mg each of the antibody or antigen binding fragment thereof,

wherein the ICS is administered for the duration of administration of the antibody or antigen binding fragment thereof,

such that the NPS of the subject is decreased one or more additional nasal polyposis-associated parameters of the subject are improved.

5

140. The method of claim 139, wherein one or more additional nasal polyposis-associated parameters are selected from the group consisting of loss of smell, runny nose, post nasal drip, and NPIF.

10 141. A method for treating nasal polyposis in a subject in need thereof comprising administering to the subject a pharmaceutical composition comprising an antibody or antigen binding fragment thereof that specifically binds IL-4R, wherein the antibody or antigen binding fragment thereof comprises heavy chain and light chain CDR sequences from the HCVR and LCVR sequence pair of SEQ ID NOs:1 and 2, such that one or more symptoms of the nasal polyposis in the
15 subject are decreased.

142. The method of claim 141, wherein NPS is decreased by about 10% to about 50%, by about 20% to about 40%, or by about 25% to about 30% in the subject.

20 143. The method of claim 141 or 142, wherein the subject has asthma.

144. The method of claim 143, wherein one or both of lung function and asthma control are improved.

25 145. The method of claim 141 or 142, wherein the subject does not have asthma.

146. The method of any one of claims 141 to 145, wherein one or more nasal polyposis endpoints selected from the group consisting of endoscopic endpoints, radiographic endpoints and clinical endpoints are improved.

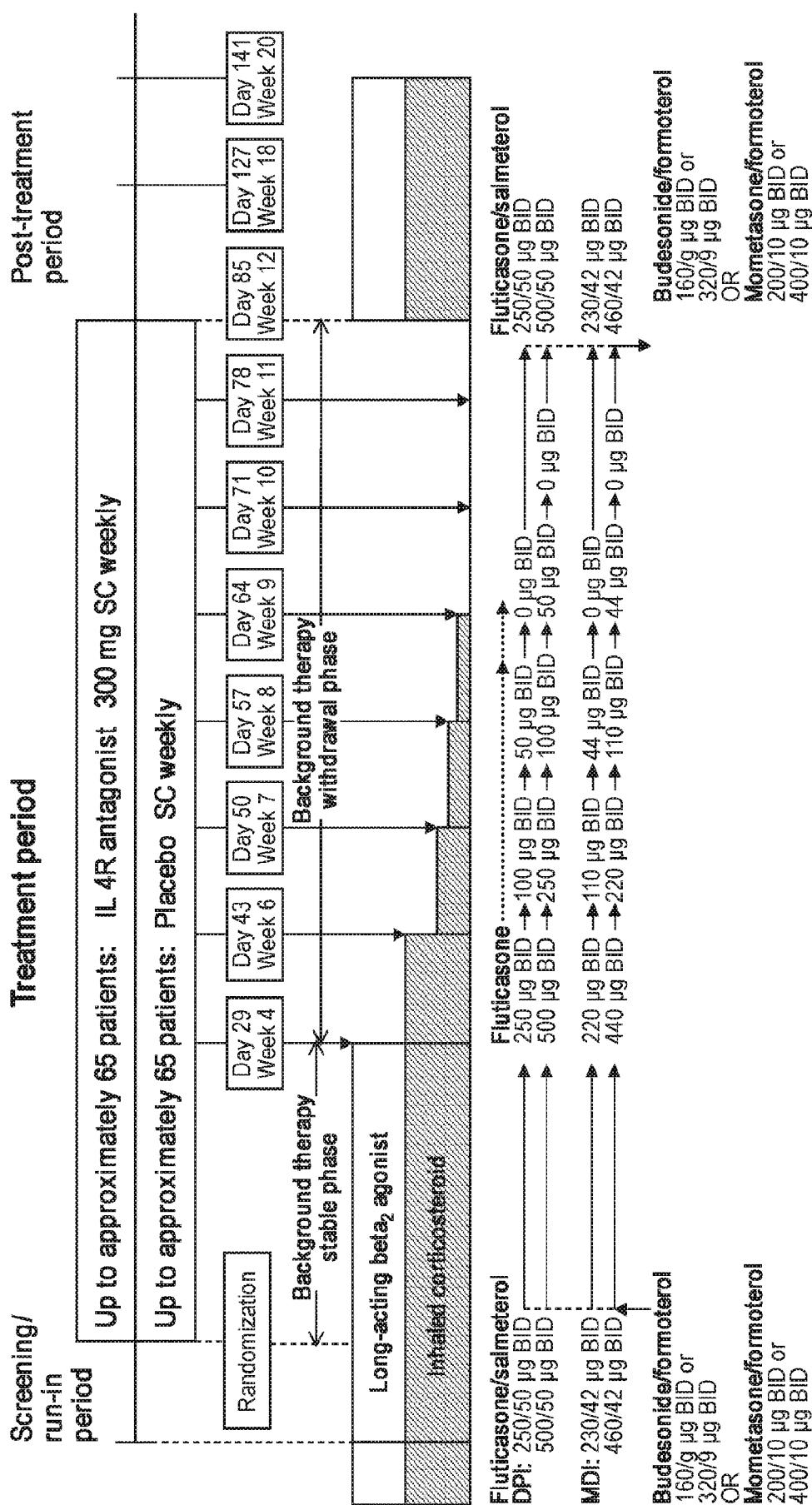
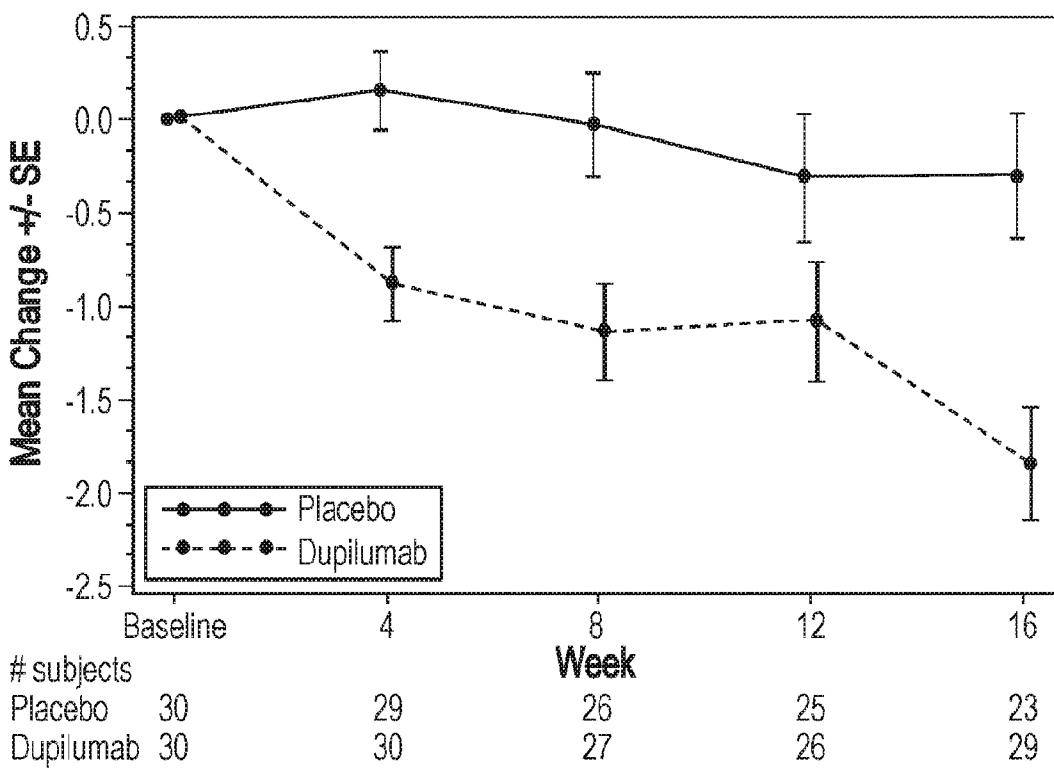
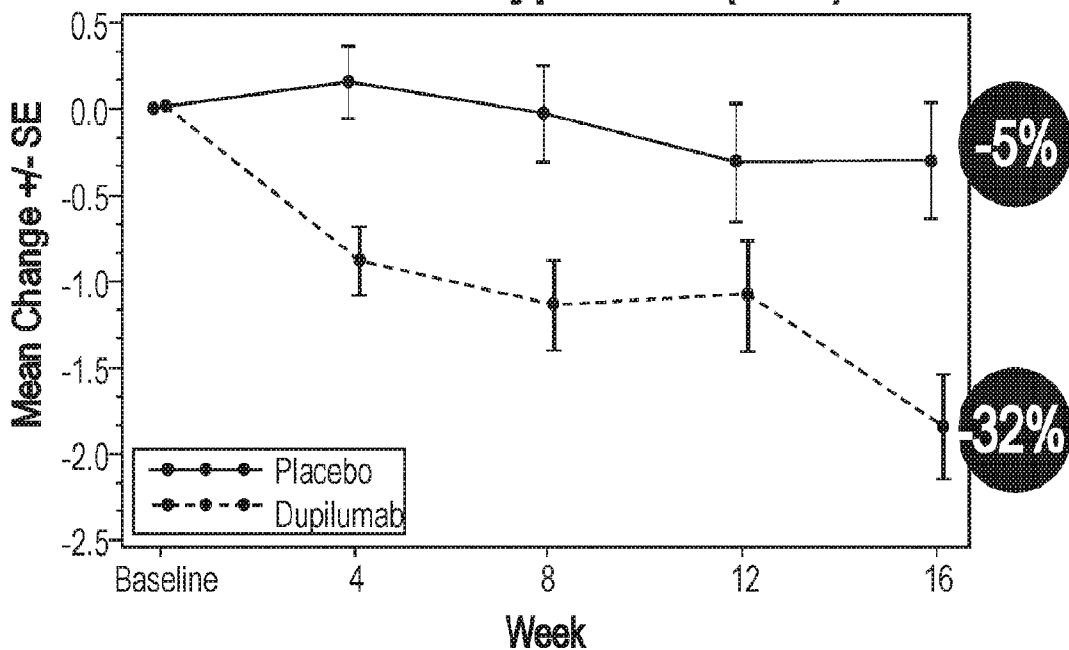
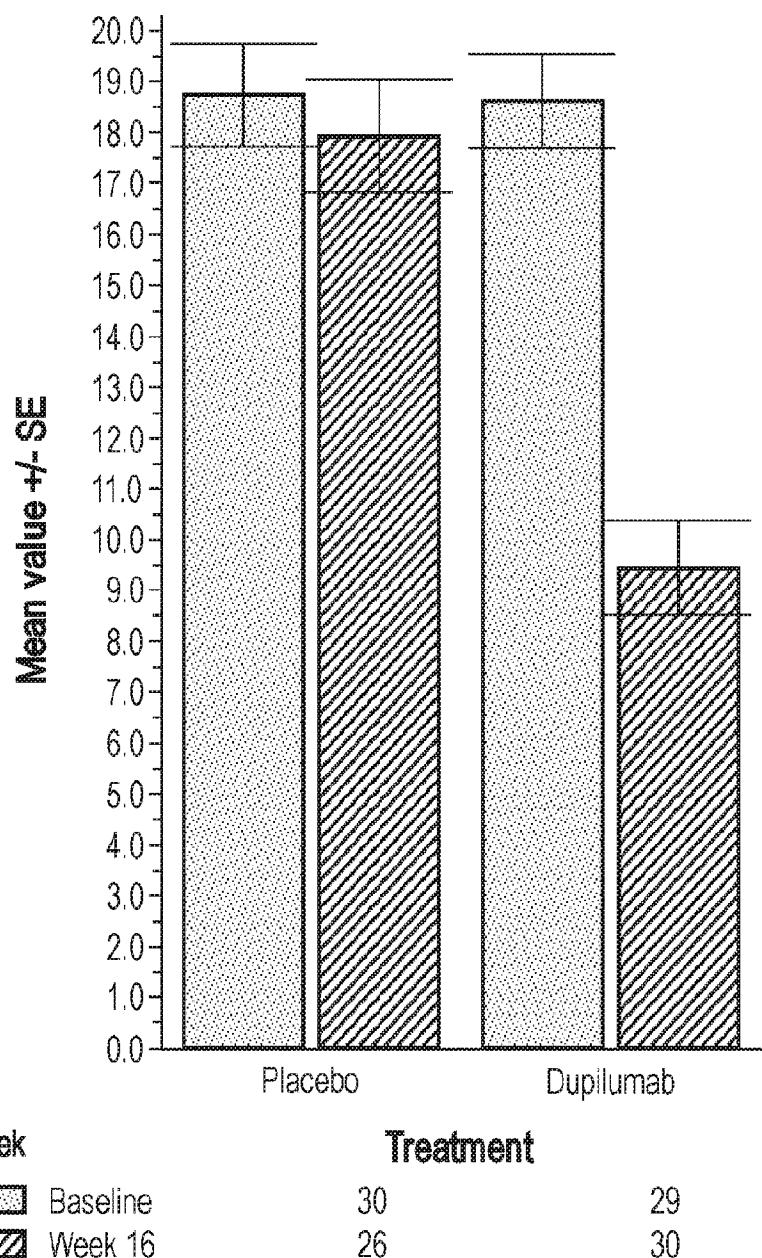
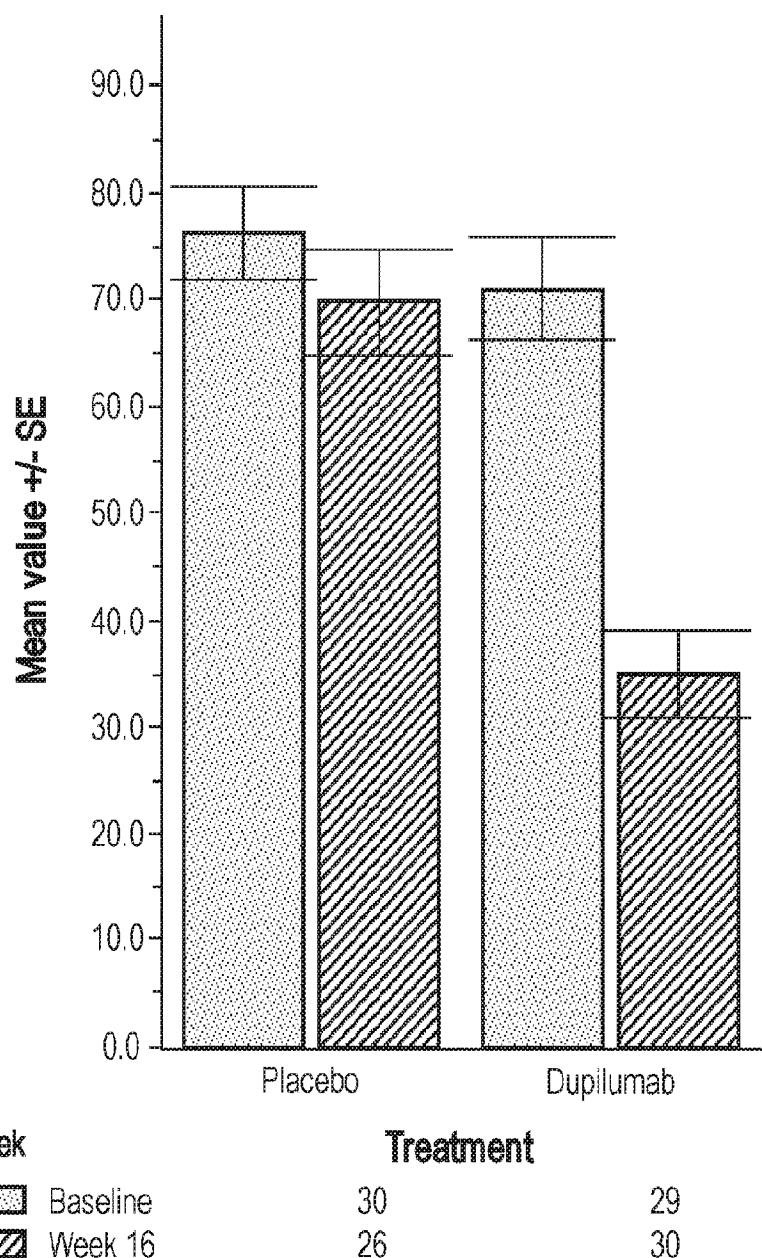
30

147. The method of any one of claims 141 to 146, wherein the antibody or antigen binding fragment thereof is administered in an initial dose of between about 400 mg and about 600 mg, and in one or more maintenance doses of between about 200 mg and about 300 mg each.

35 148. A method for treating CSwNP in a subject in need thereof comprising administering to the subject a pharmaceutical composition comprising an antibody or antigen binding fragment thereof that specifically binds IL-4R, wherein the antibody or antigen binding fragment thereof

comprises heavy chain and light chain CDR sequences from the HCVR and LCVR sequence pair of SEQ ID NOs:1 and 2, such that one or more symptoms of the CSwNP in the subject are decreased.

- 5 149.The method of claim 148, wherein NPS is decreased by about 10% to about 50%, by about 20% to about 40%, or by about 25% to about 30% in the subject.
- 150.The method of claim 148, wherein the subject has asthma.
- 10 151.The method of claim 150, wherein one or both of lung function and asthma control are improved.
- 152.The method of claim 148, wherein the subject does not have asthma.
- 15 153.The method of claim 148, wherein one or more CSwNP endpoints selected from the group consisting of endoscopic endpoints, radiographic endpoints and clinical endpoints are improved.
- 20 154.The method of claim 148, wherein the antibody or antigen binding fragment thereof is administered in an initial dose of between about 400 mg and about 600 mg, and in one or more maintenance doses of between about 200 mg and about 300 mg each.

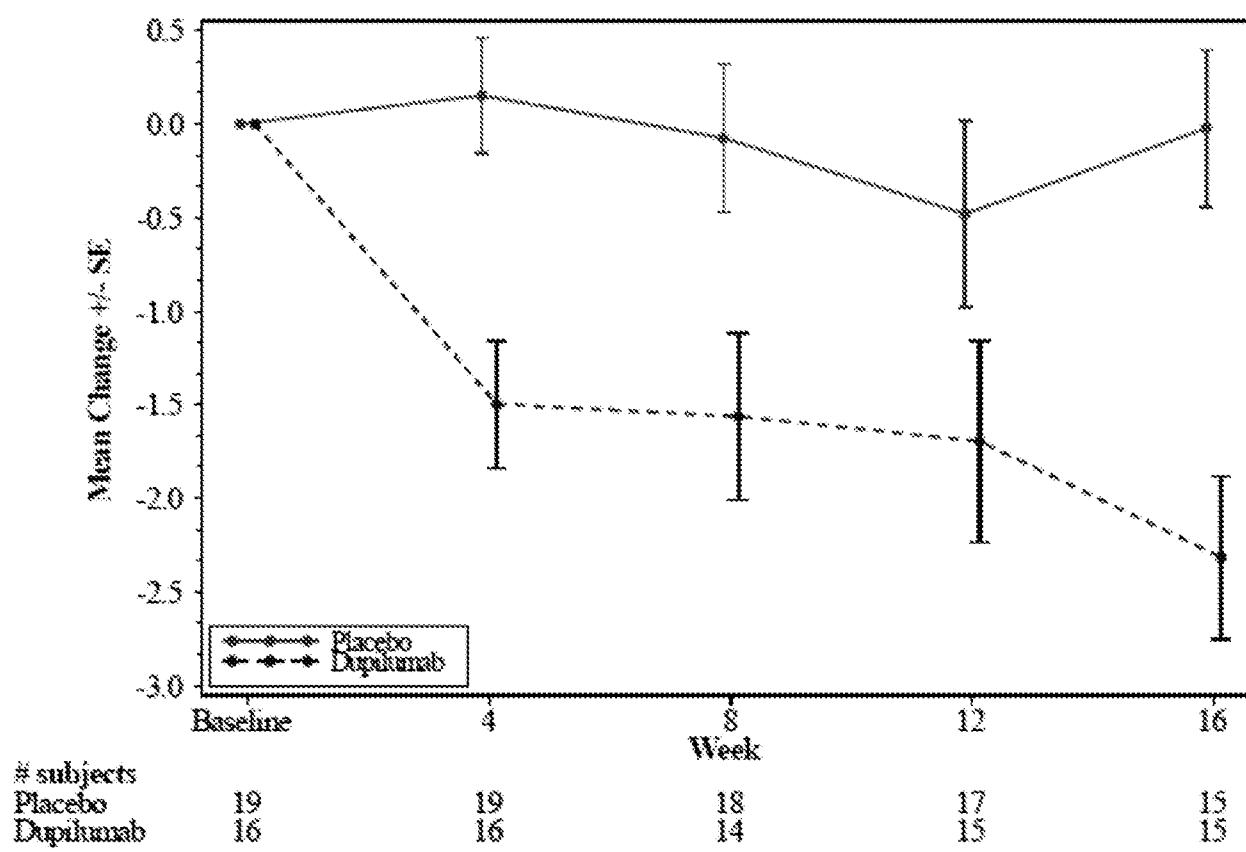

Figure 1

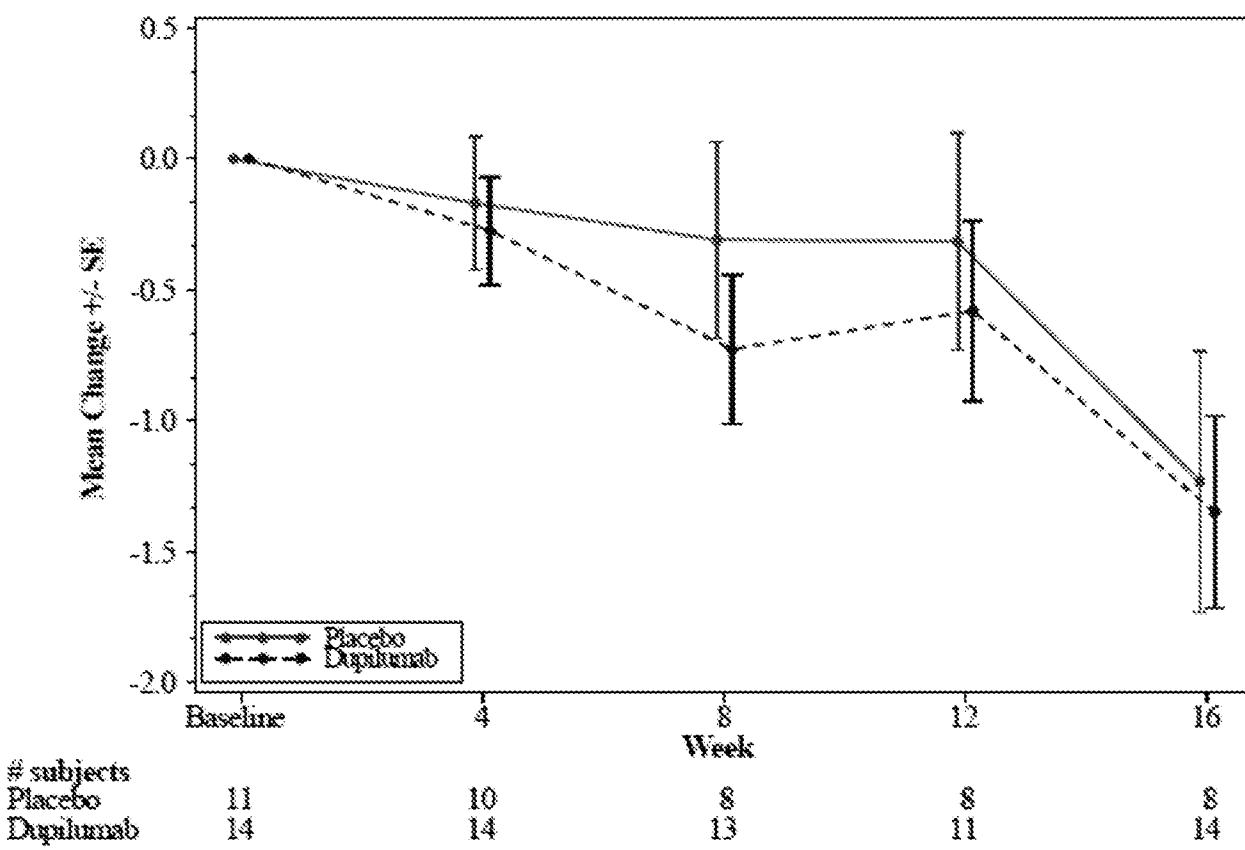
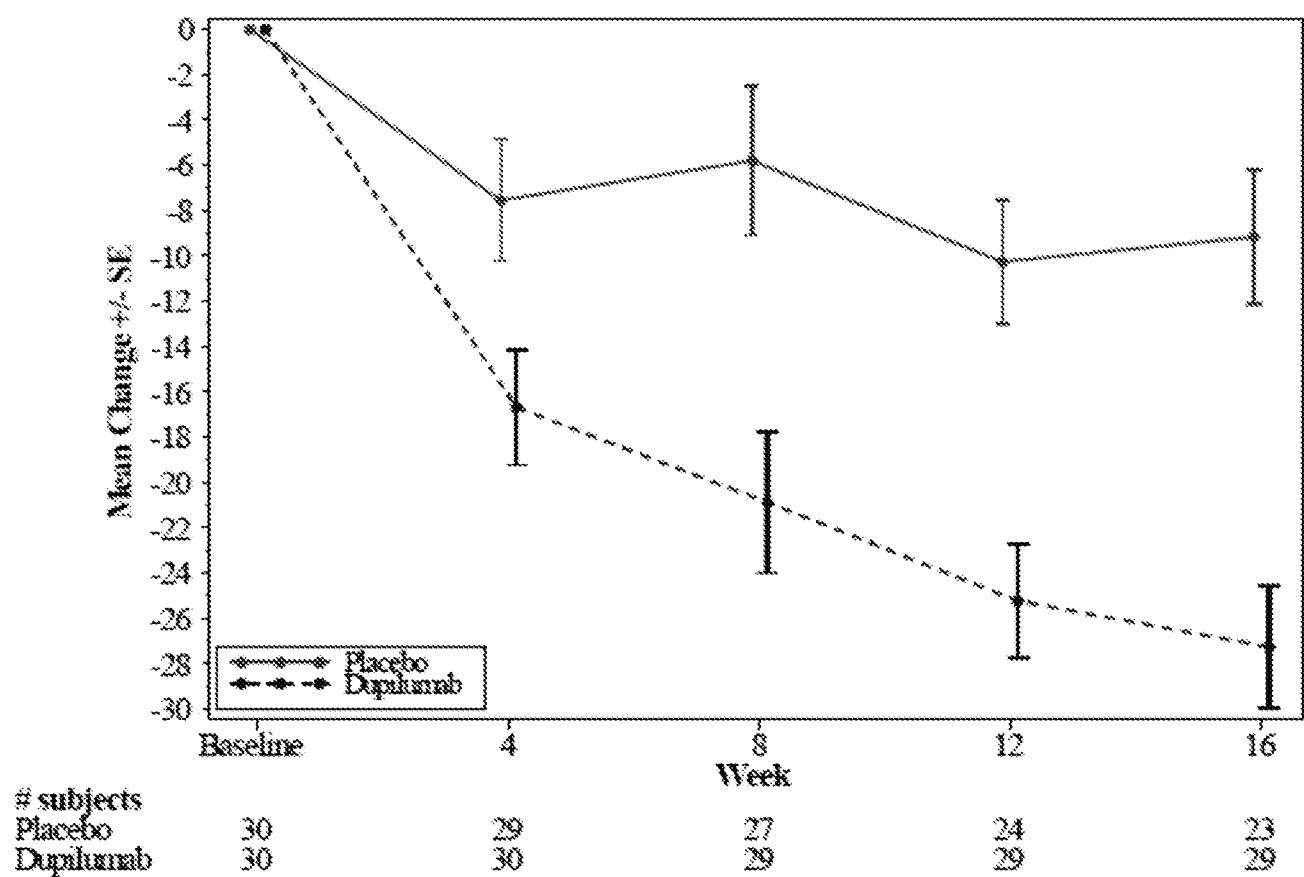
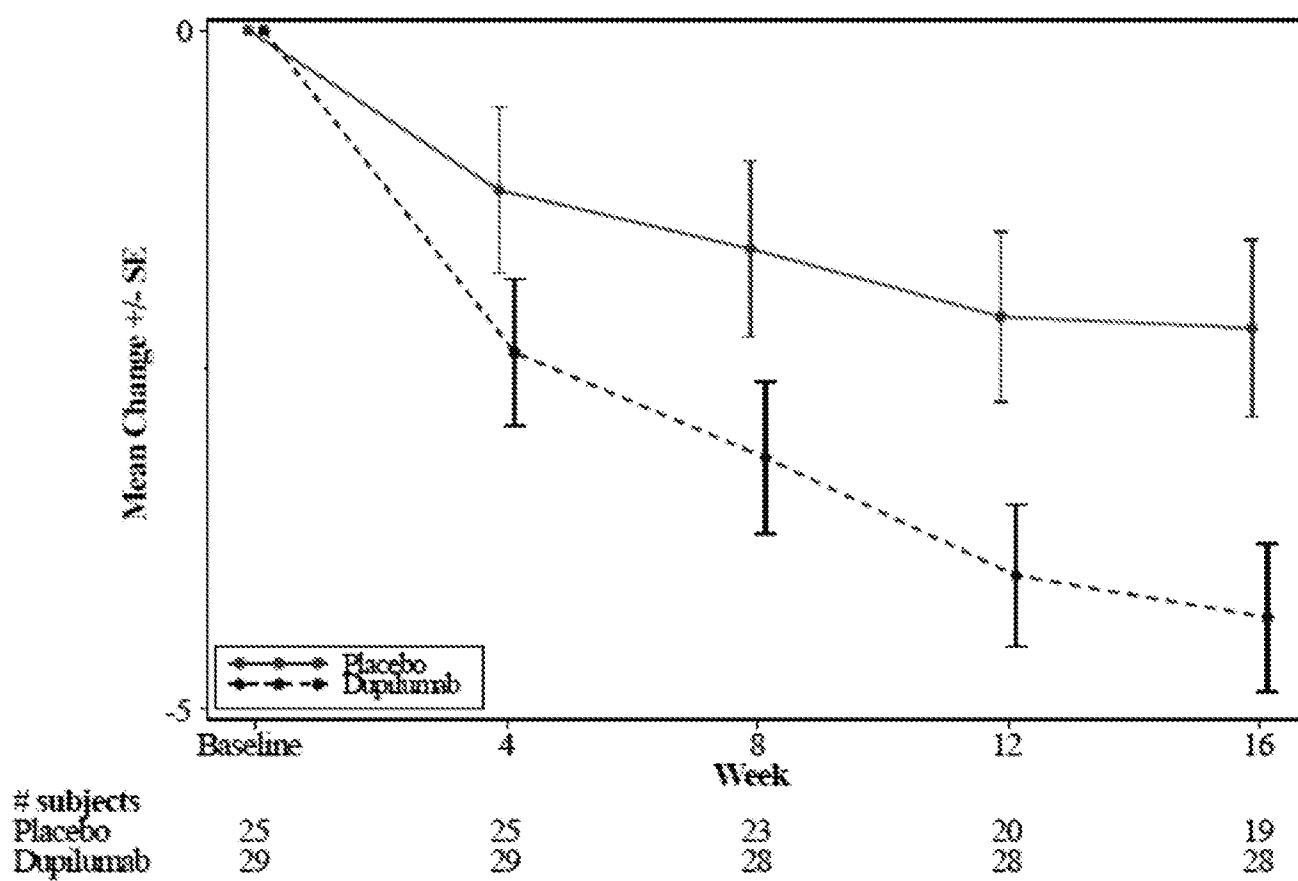
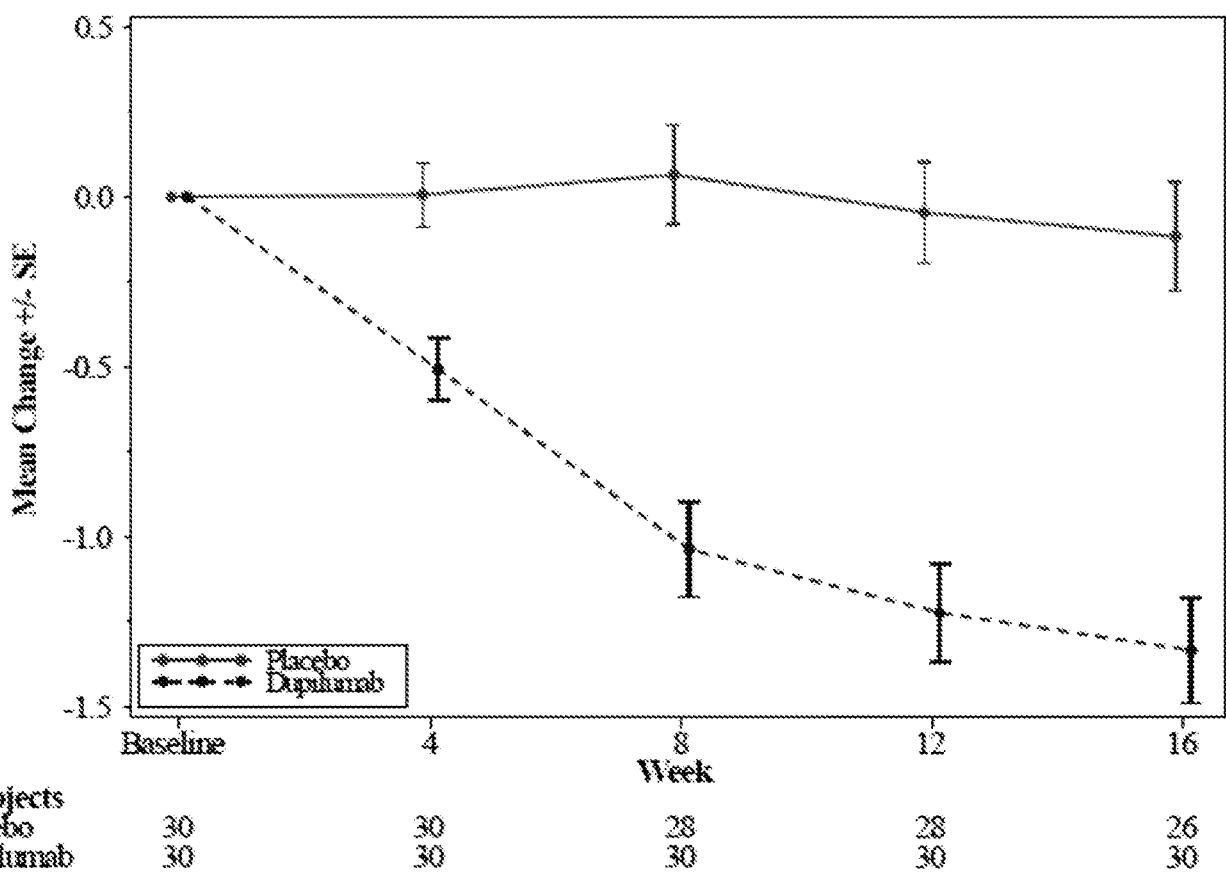
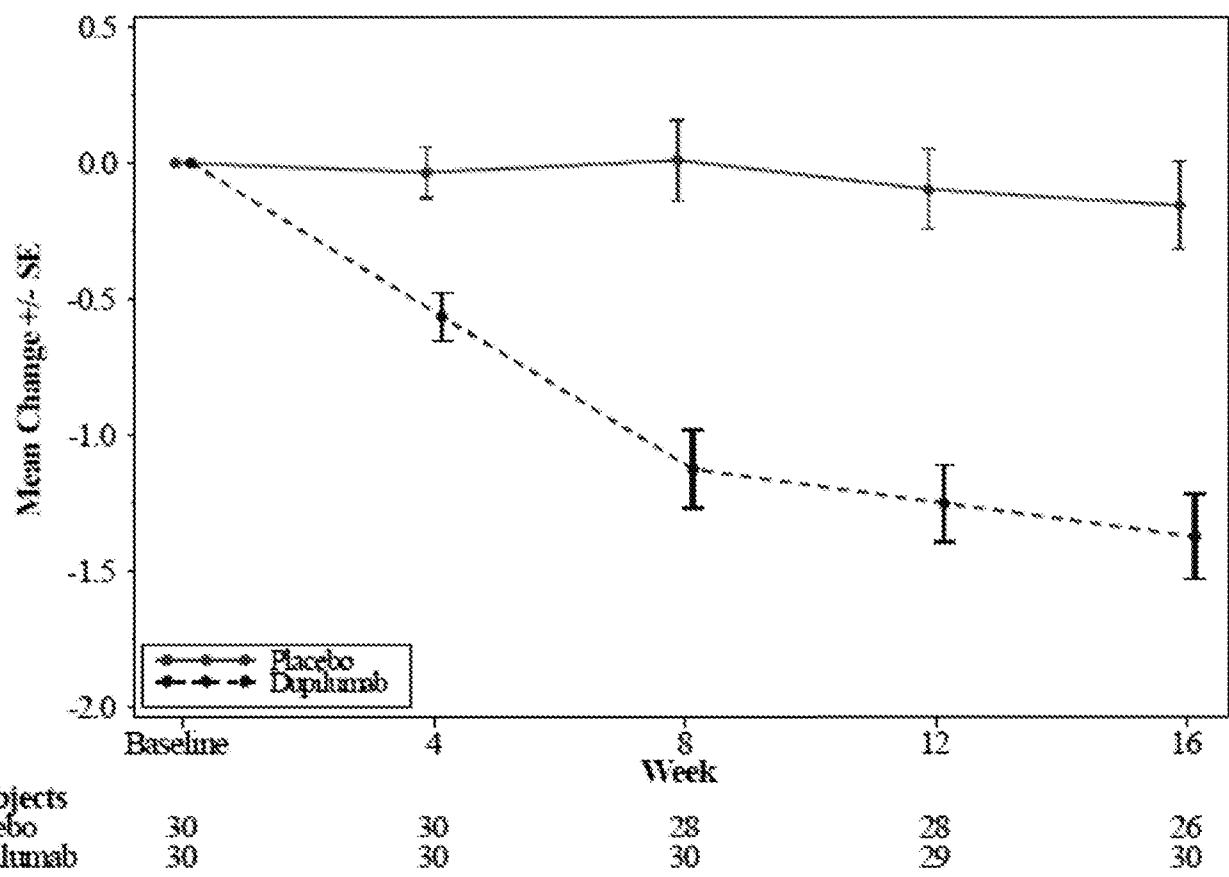
Figure 2A**Figure 2B**
Nasal Polyp Score (NPS)**Figure 2**
SUBSTITUTE SHEET (RULE 26)

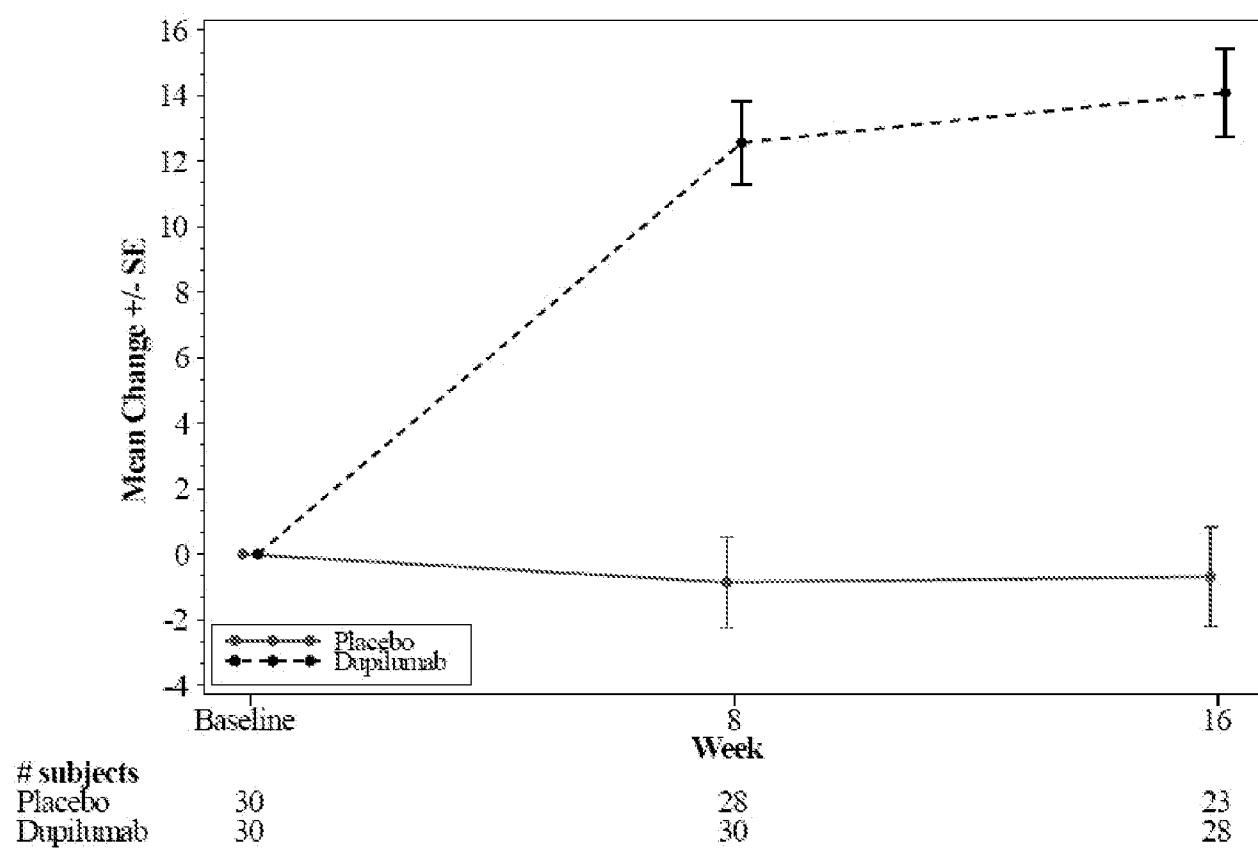
Figure 2C

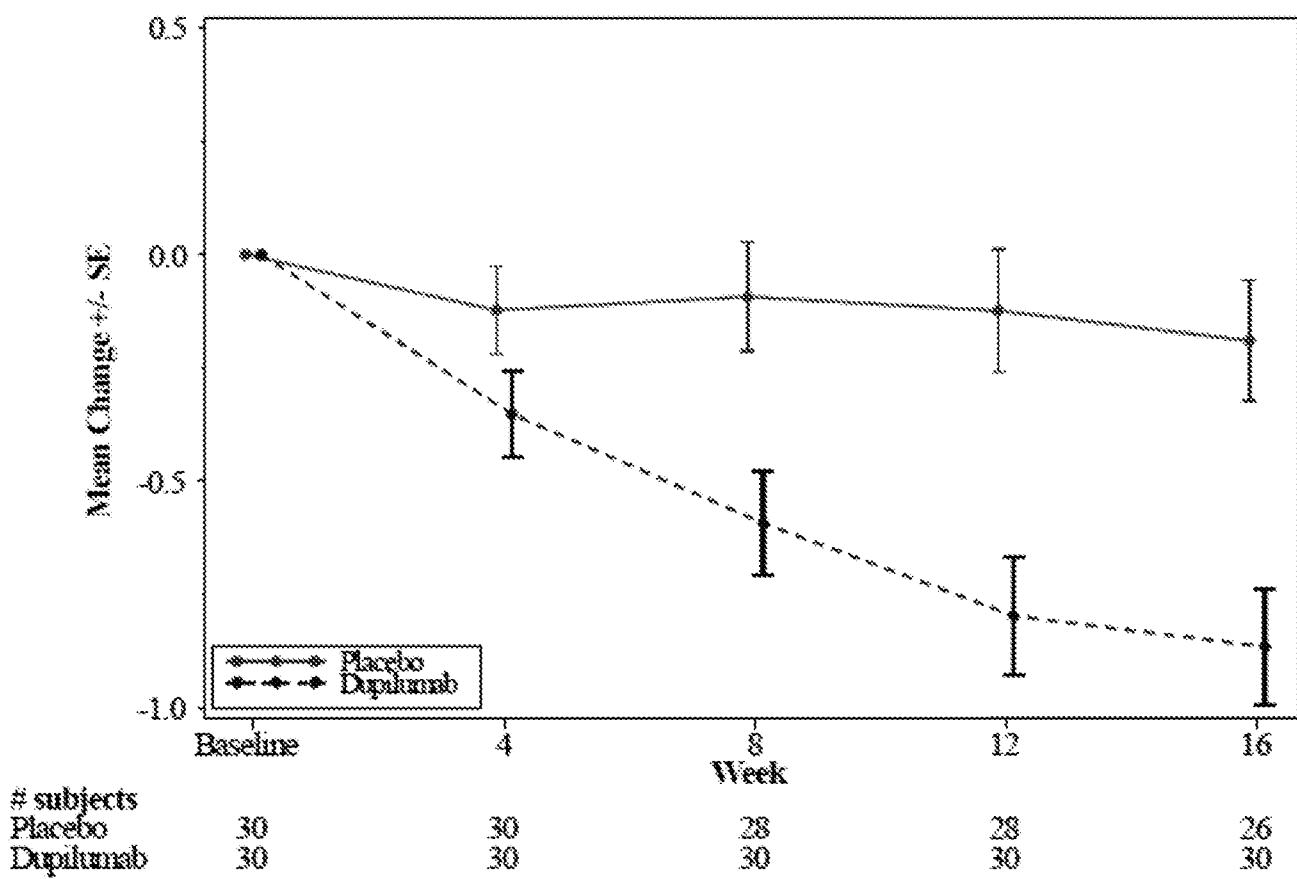
Figure 2 (Cont.)
SUBSTITUTE SHEET (RULE 26)

Figure 2D**Figure 2 (Cont.)**
SUBSTITUTE SHEET (RULE 26)

Figure 3


Figure 4


Figure 5

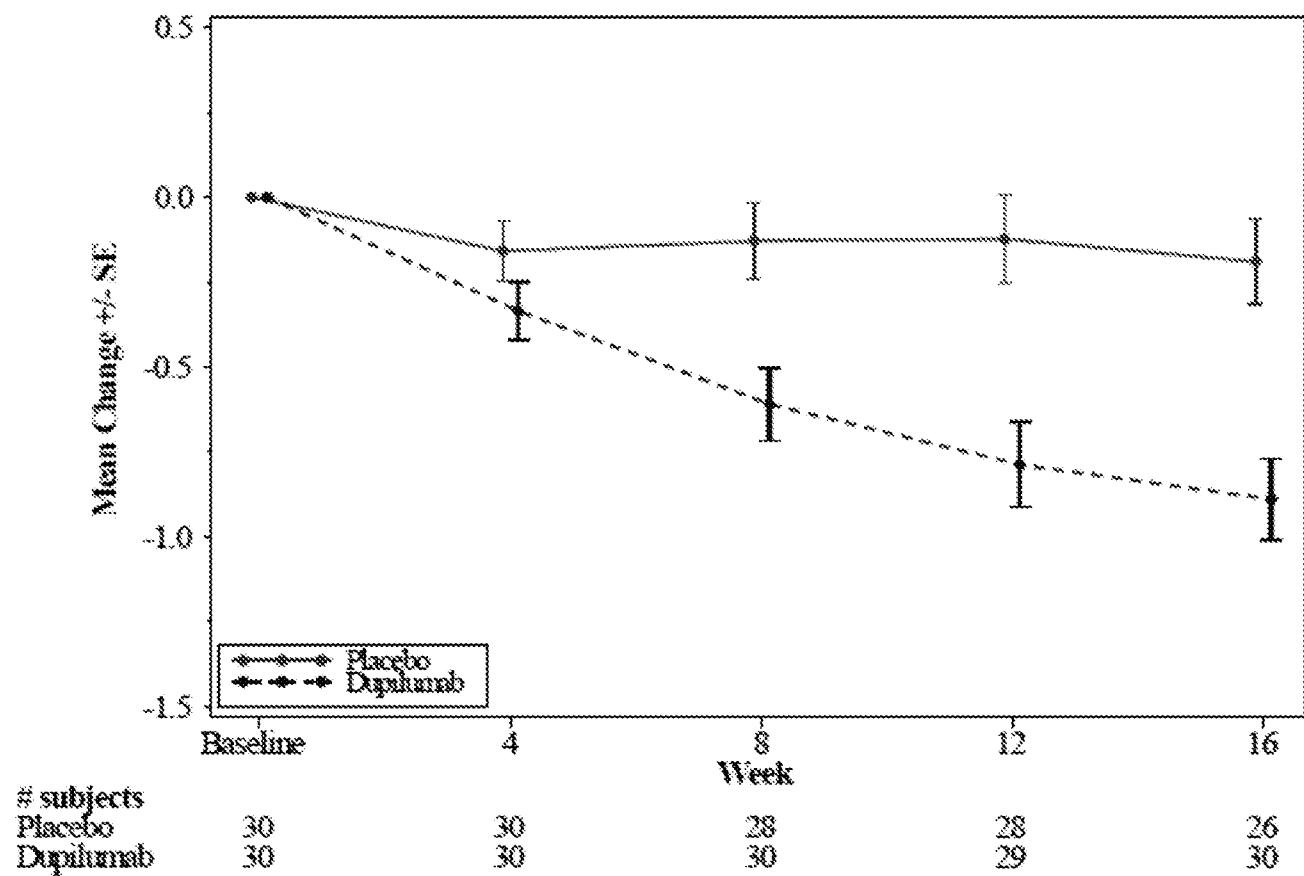

Figure 6

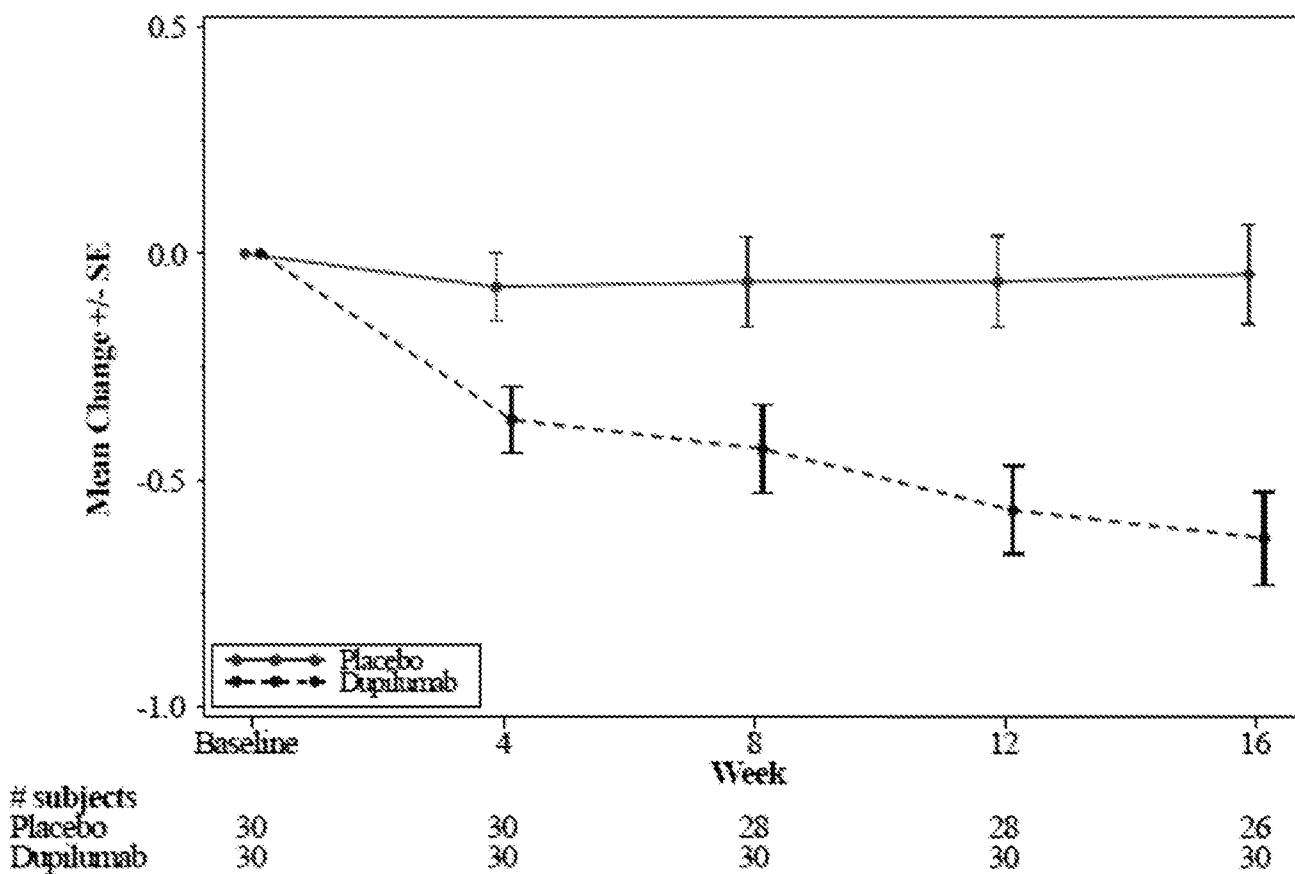
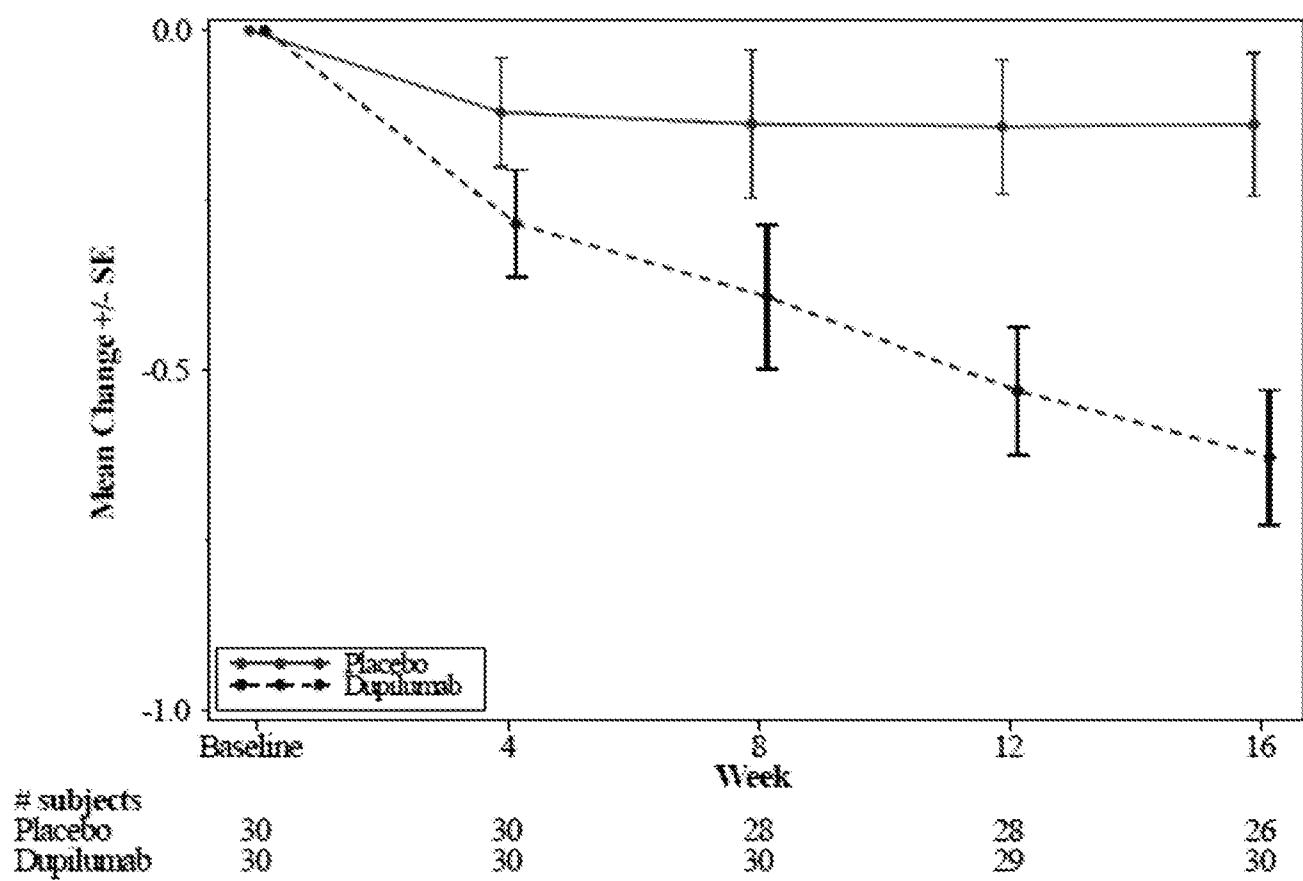
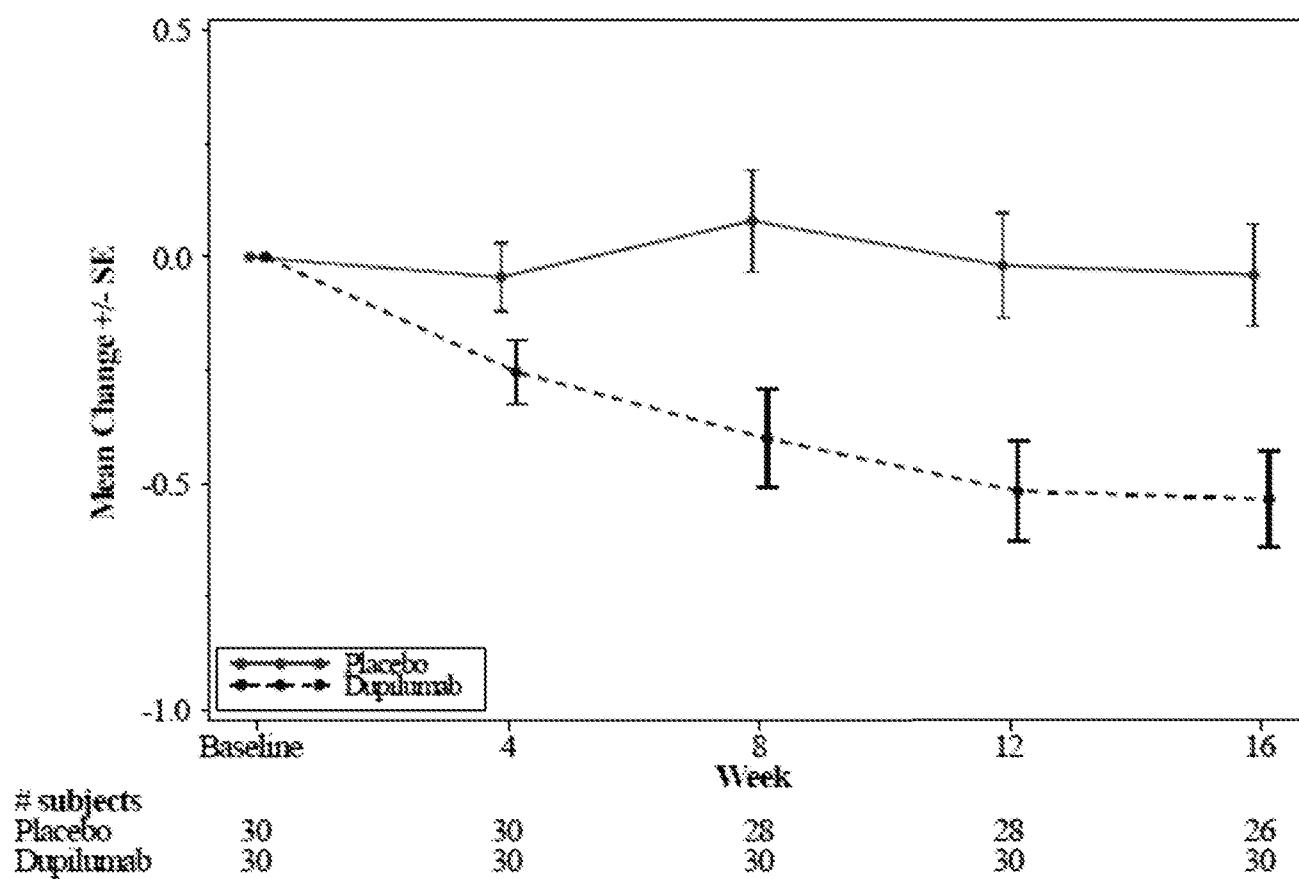
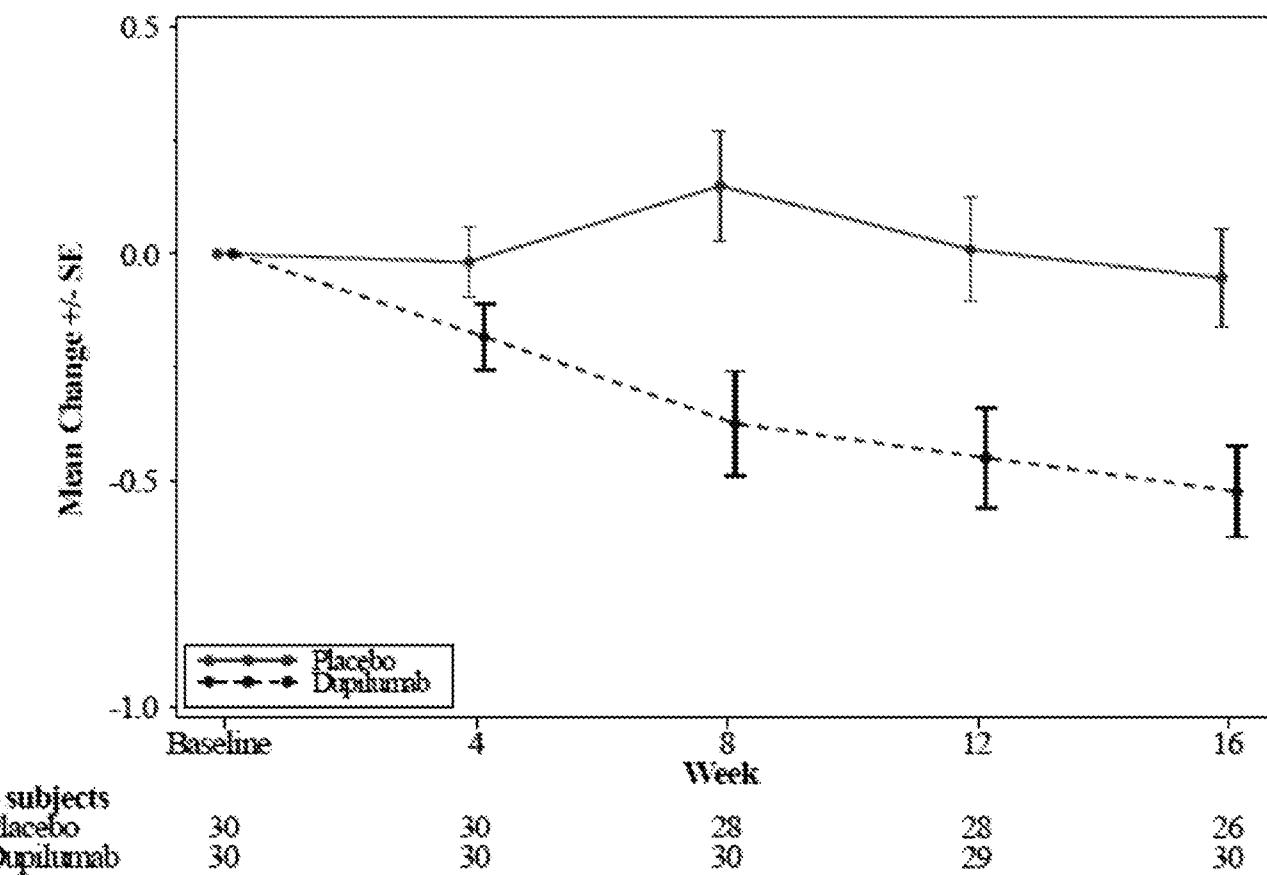
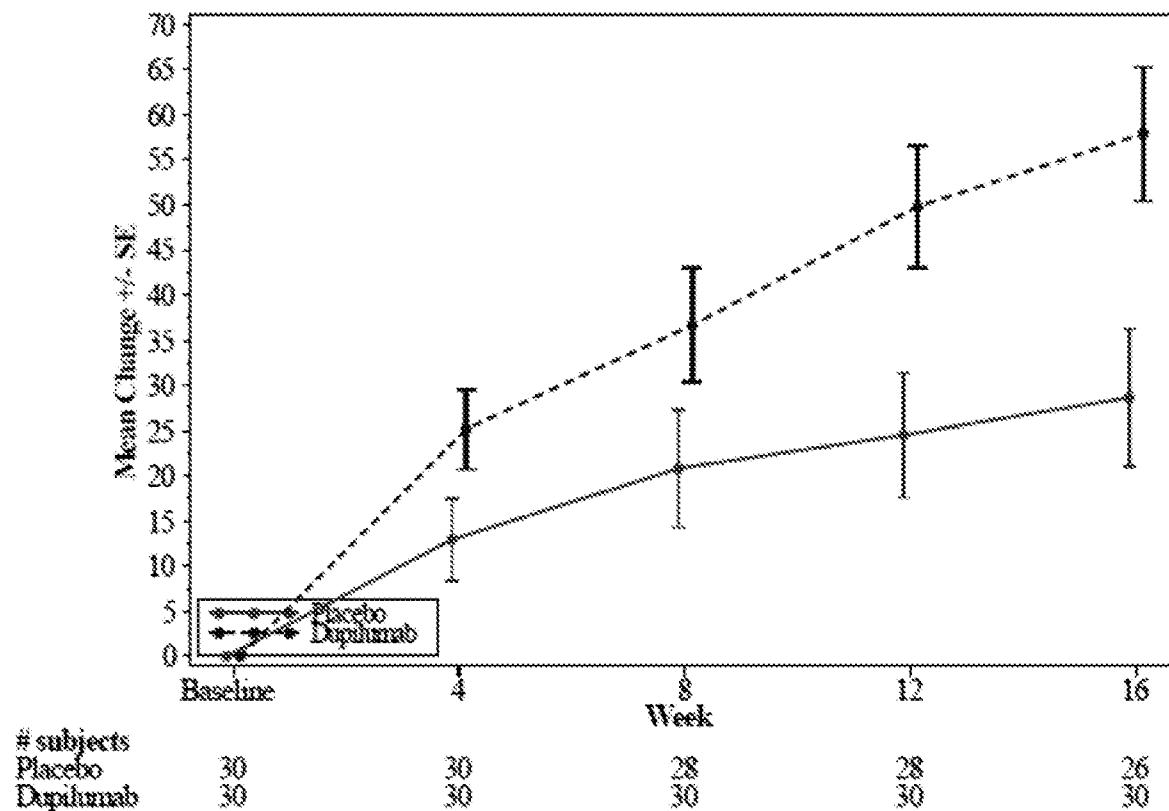
Figure 7

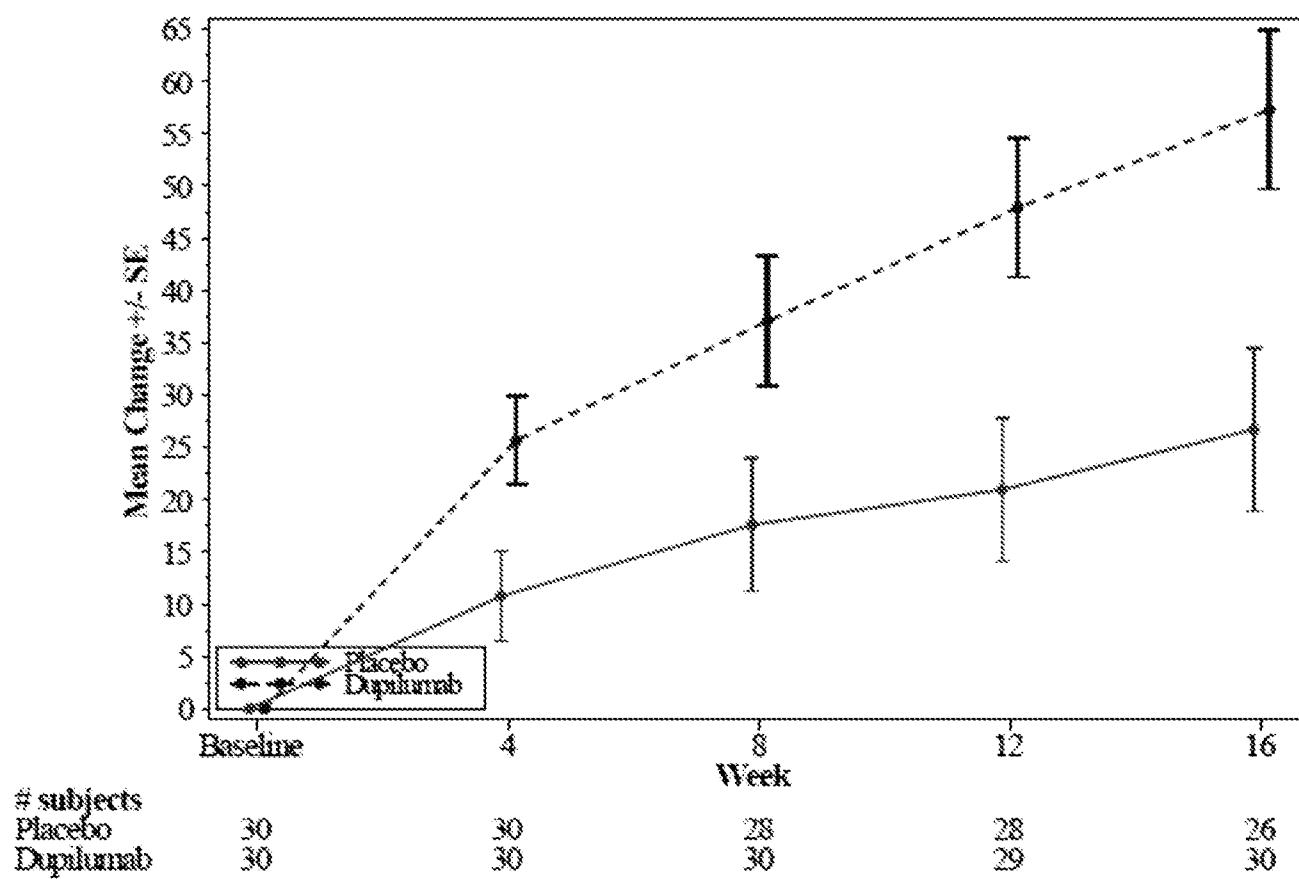
Figure 8

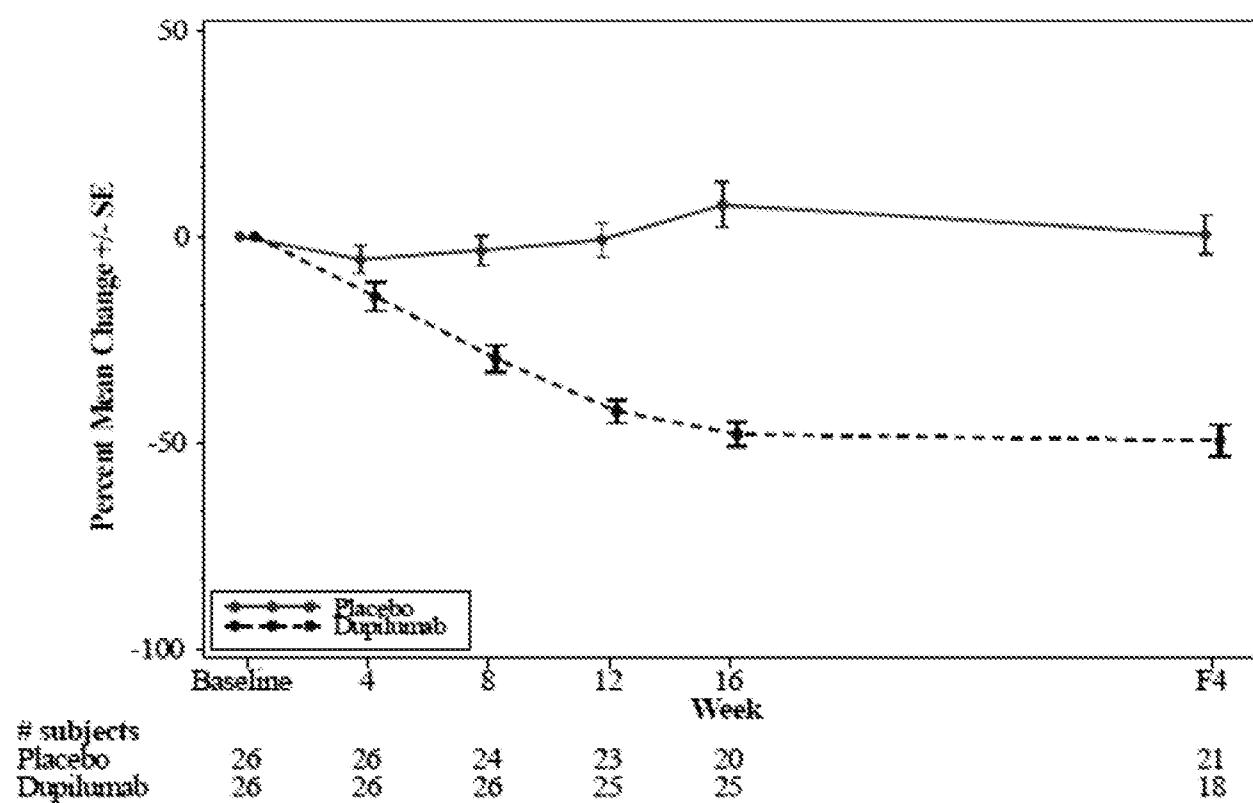
Figure 9

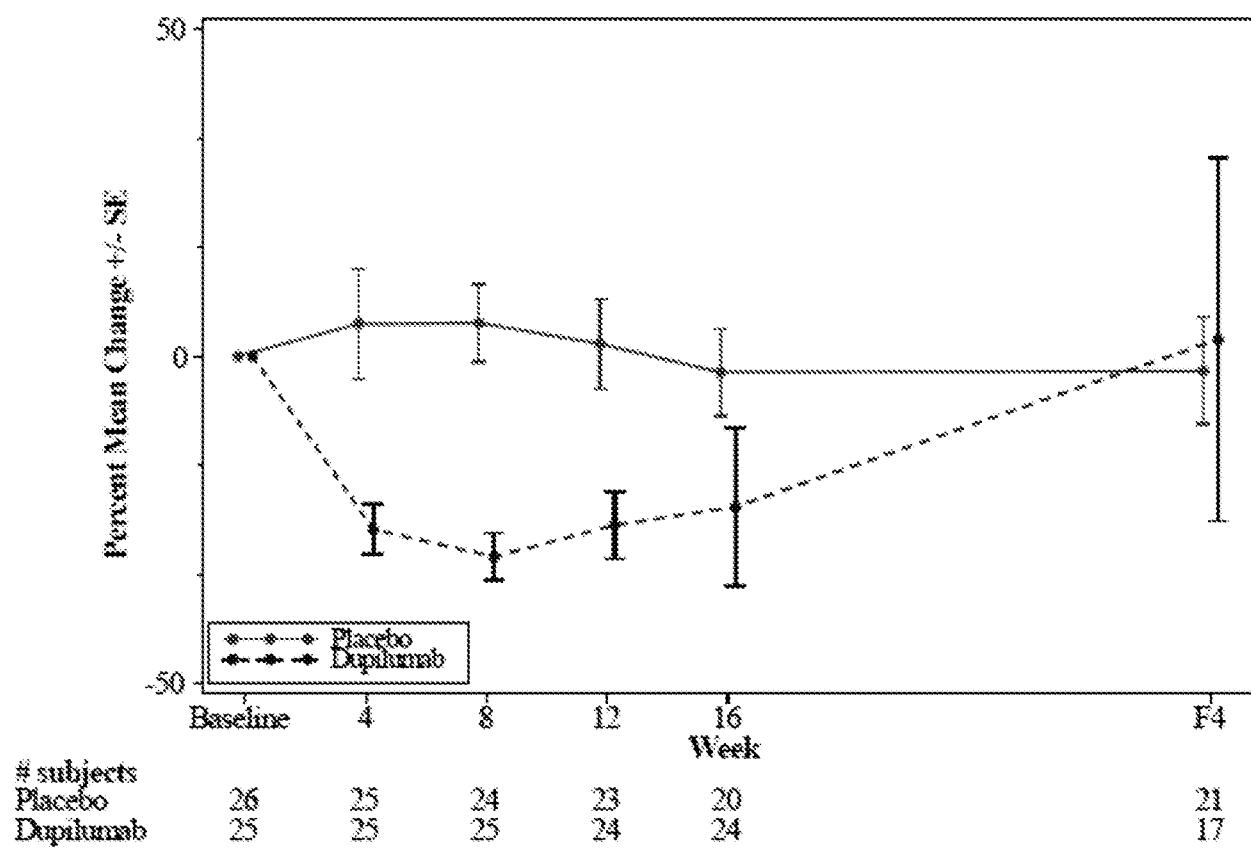
Figure 10

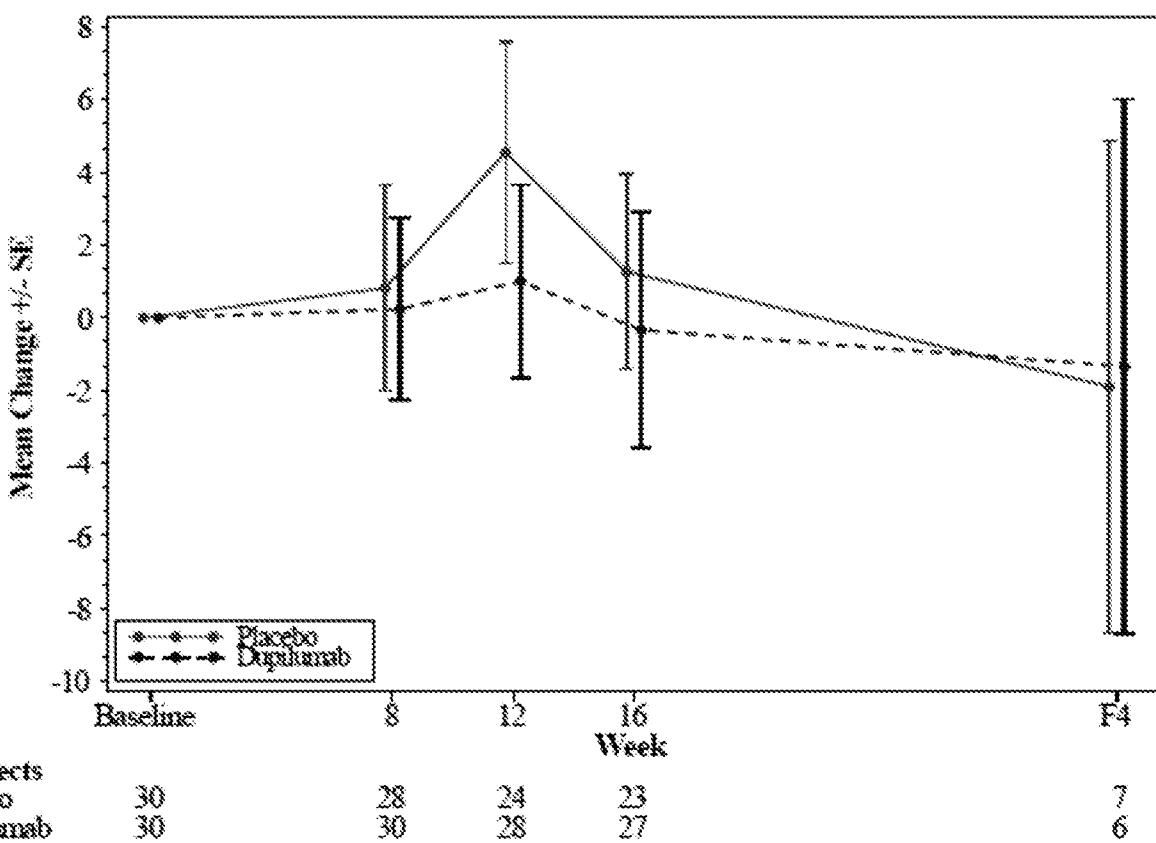
Figure 11


Figure 12


Figure 13


Figure 14


Figure 15

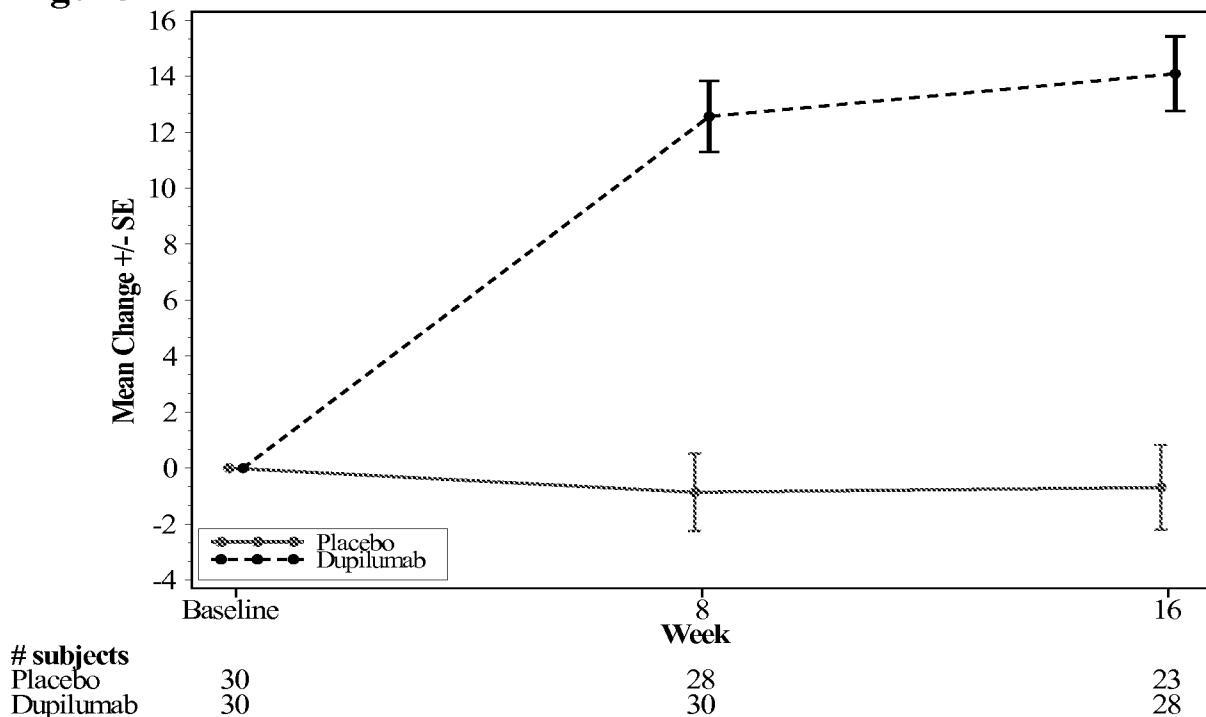
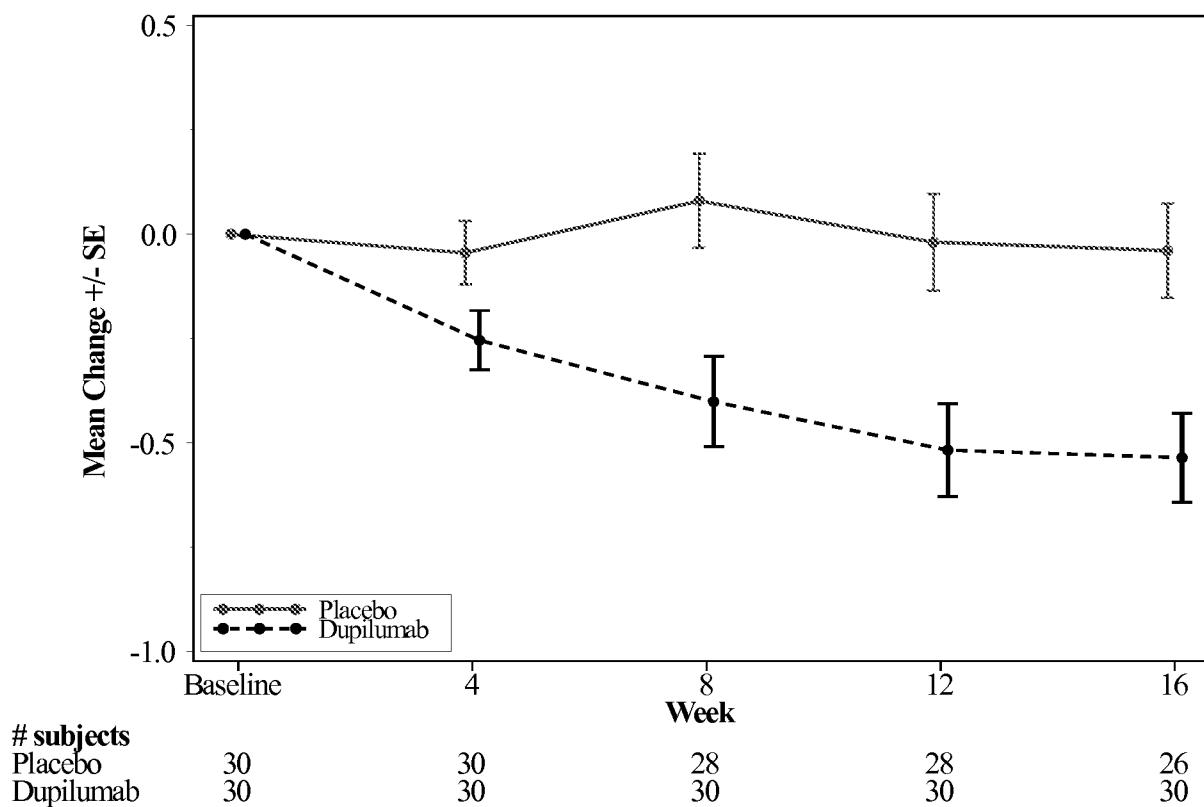
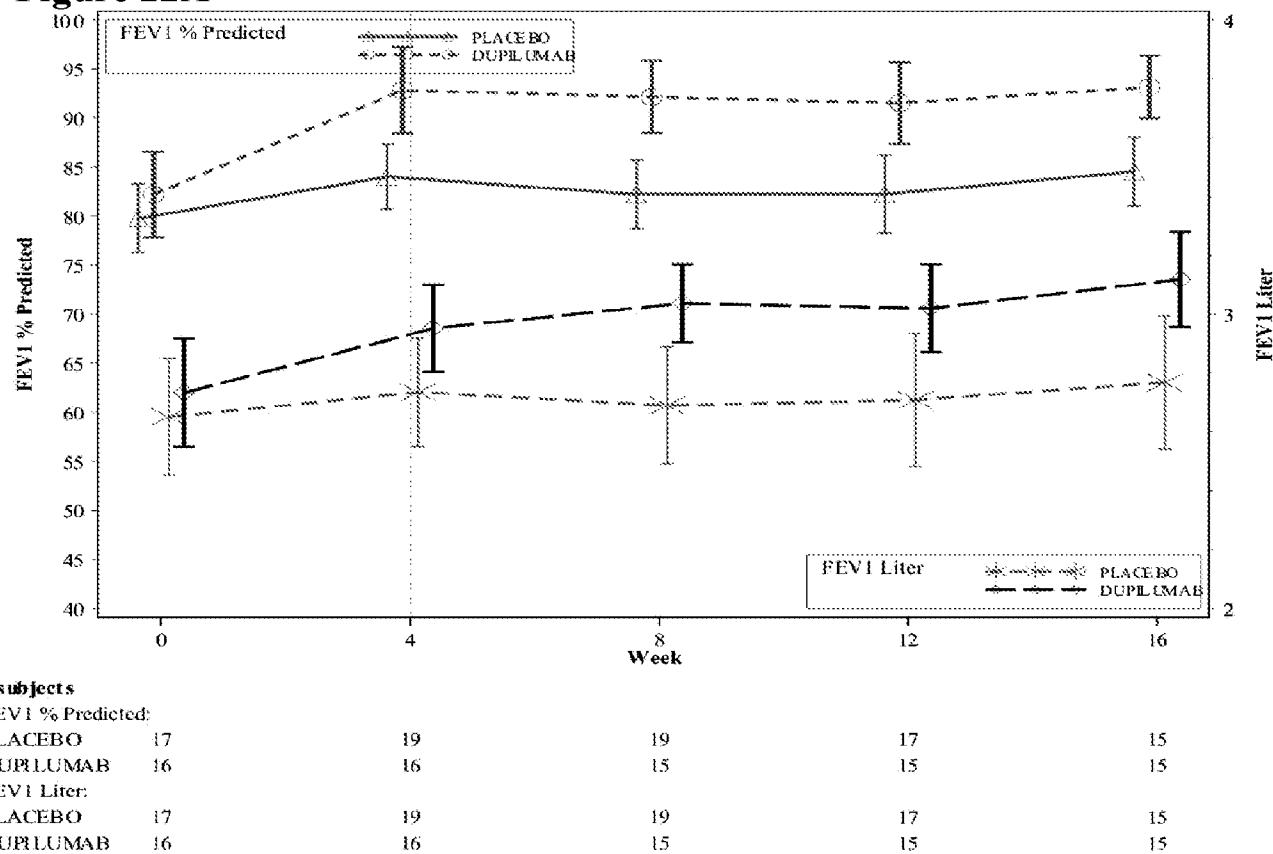
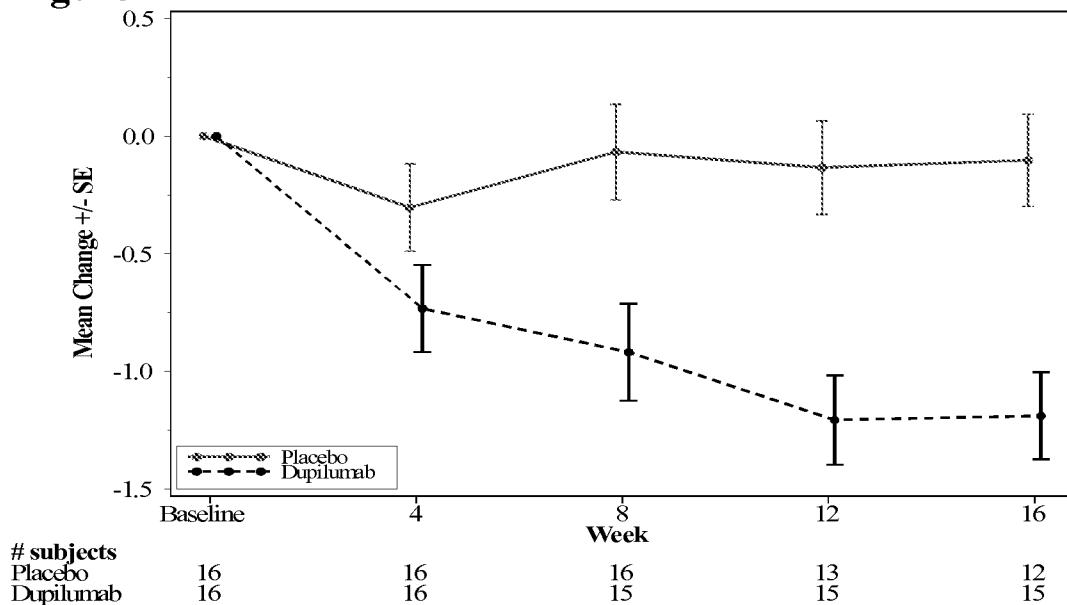
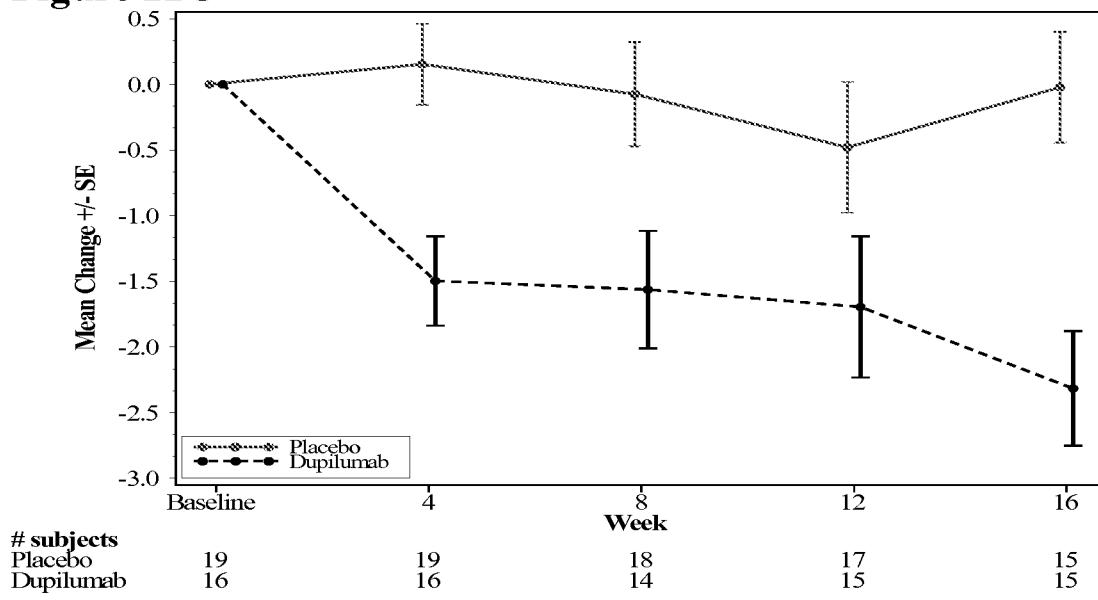
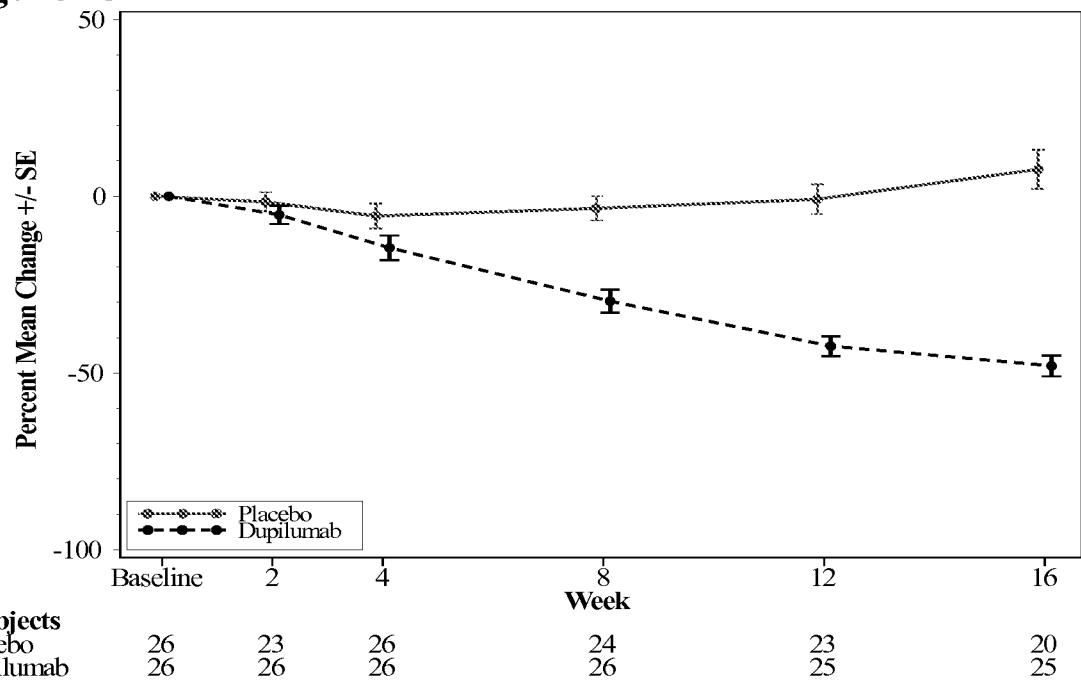
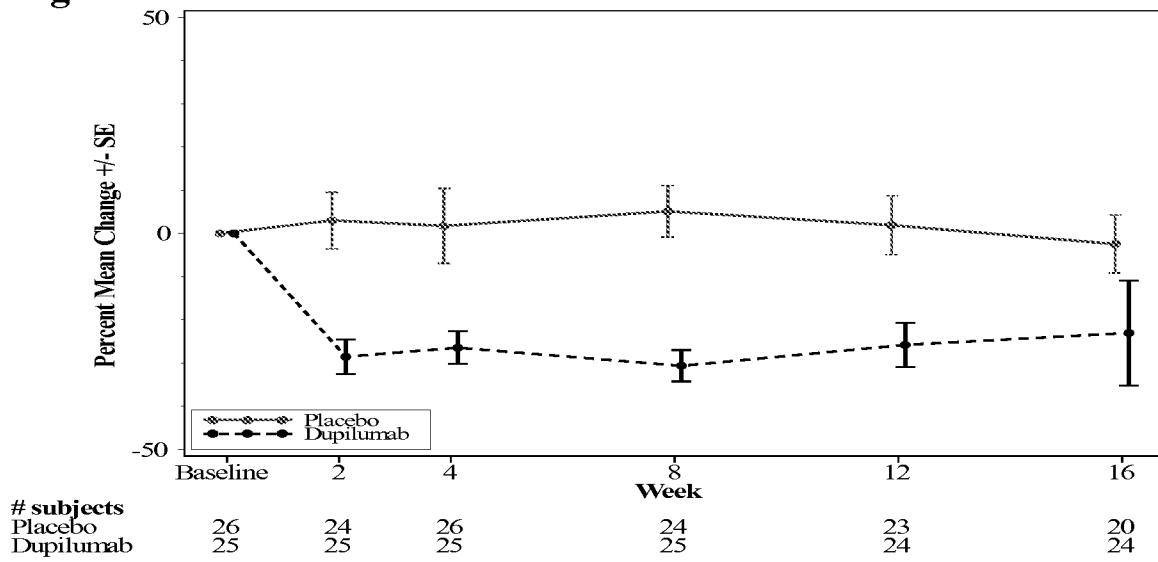


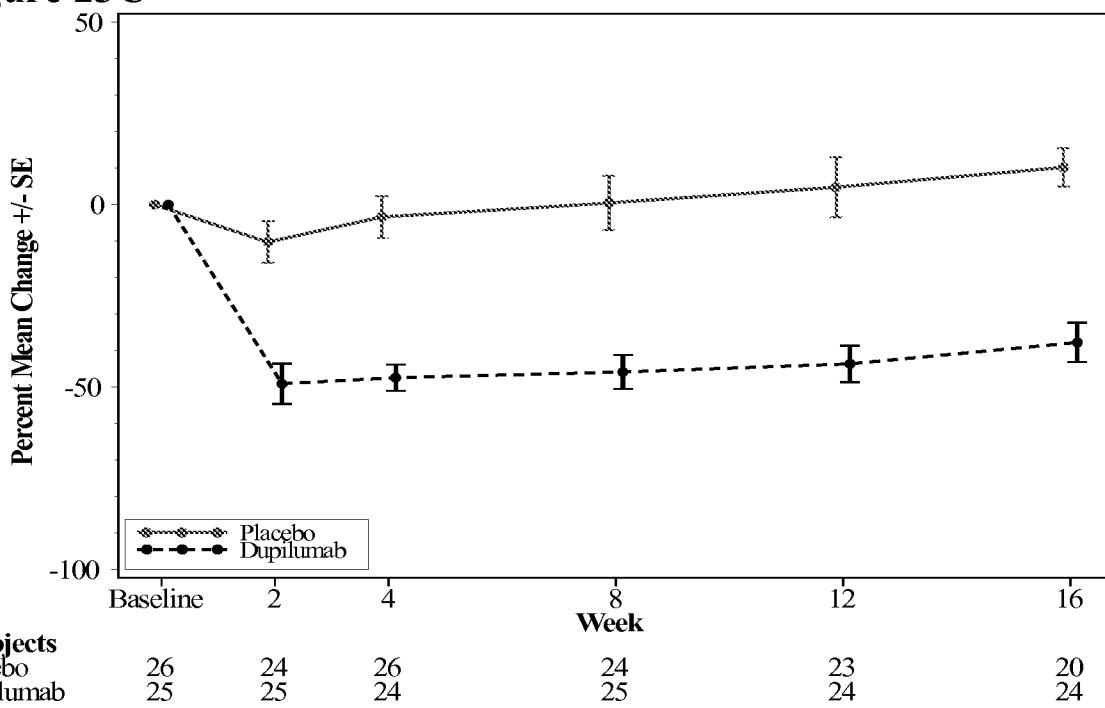
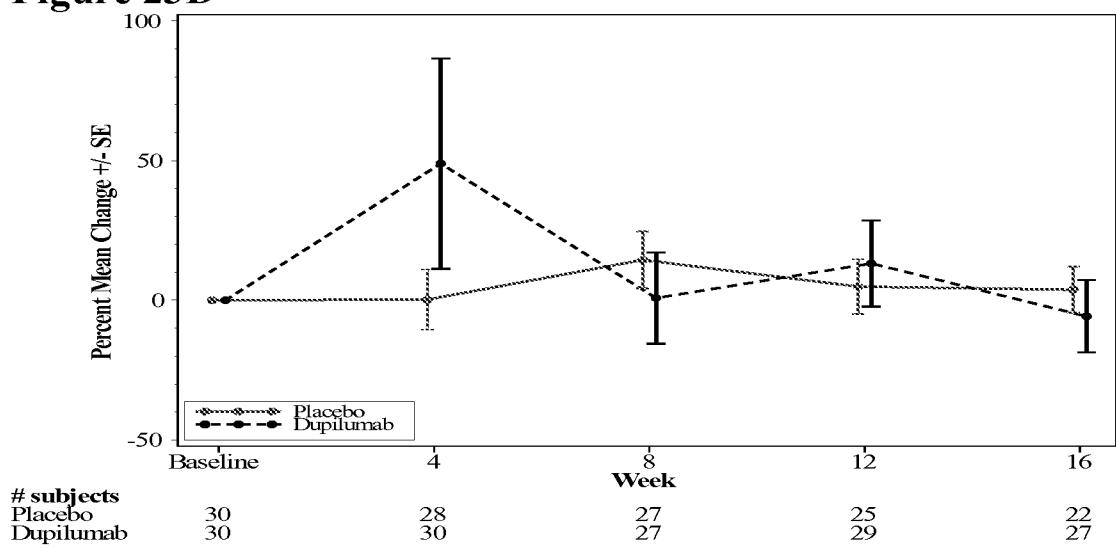
Figure 16

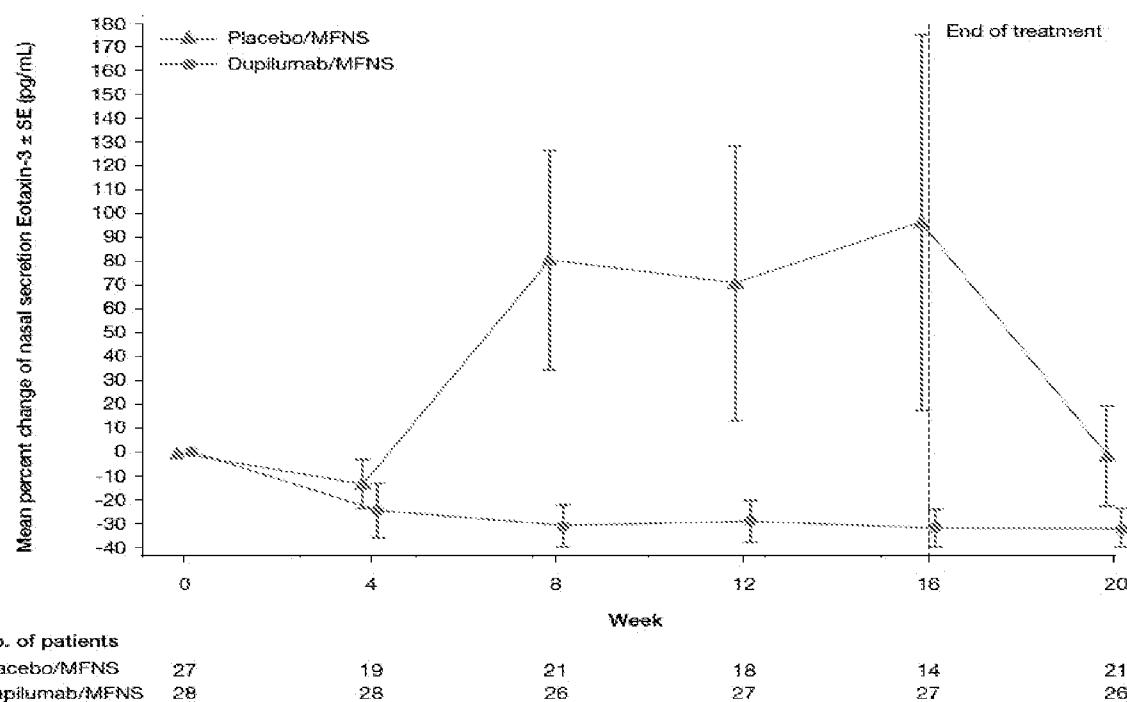
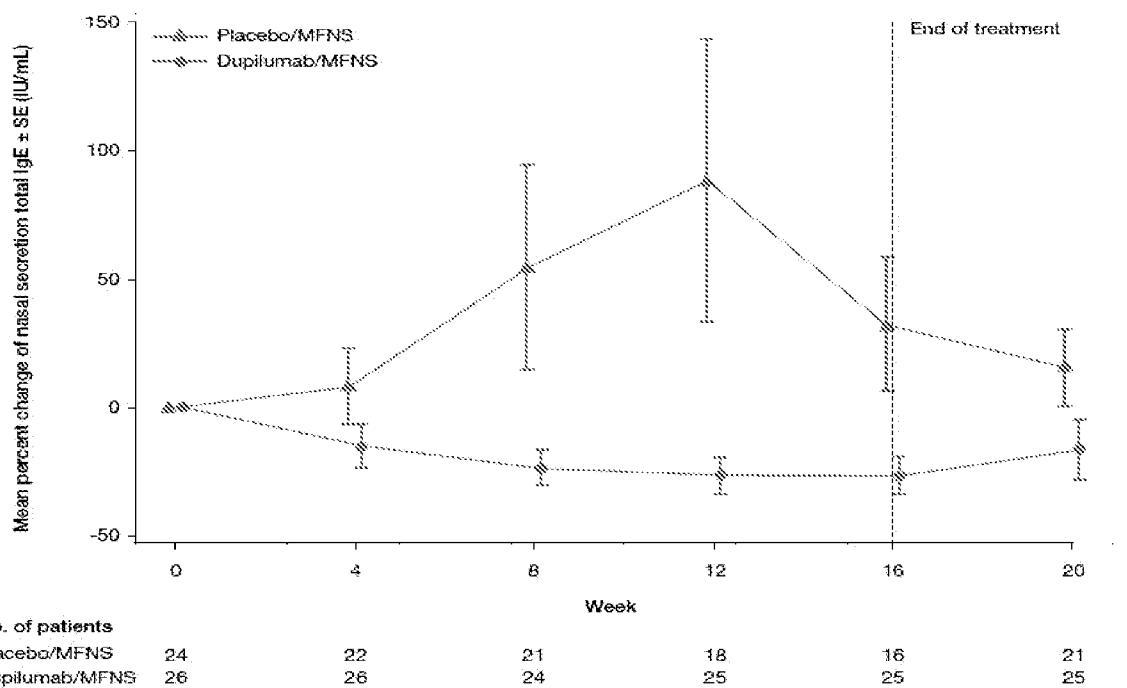

Figure 17


Figure 18



Figure 19



Figure 20



Figure 21A**Figure 21B****Figure 21**



Figure 21C**Figure 21 (Cont.)**

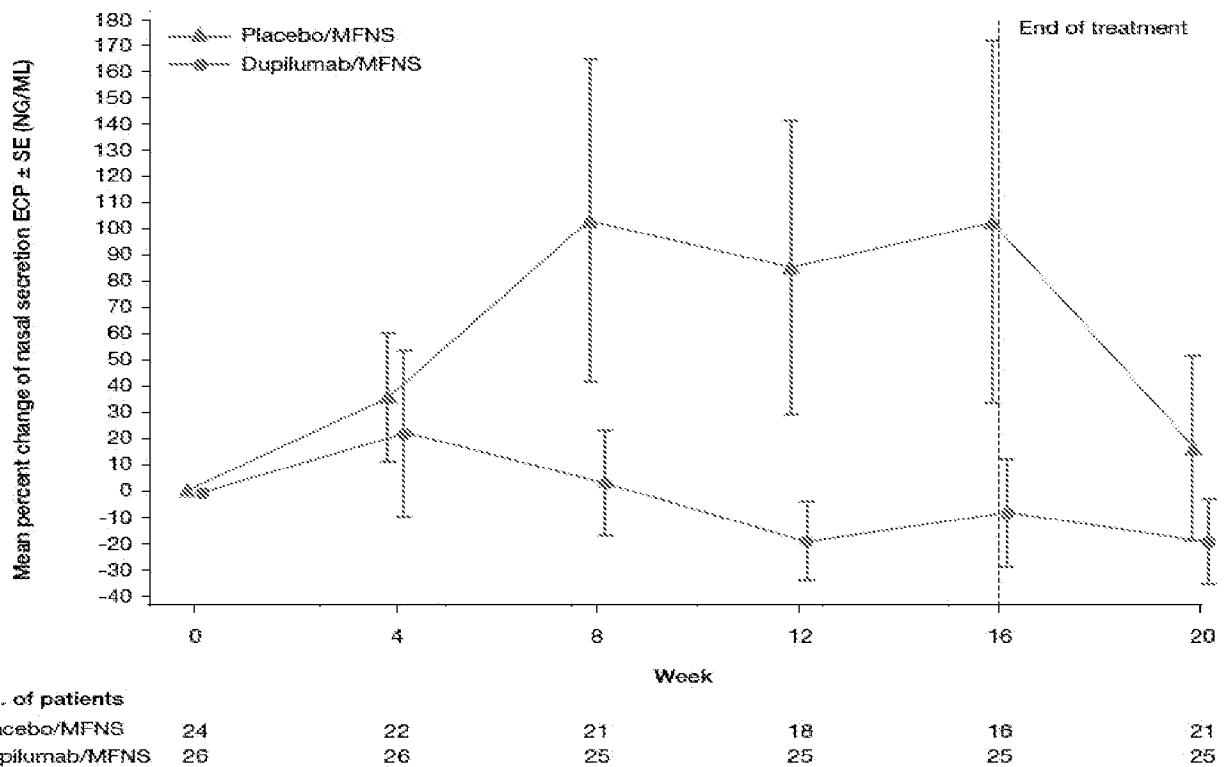

Figure 22A**Figure 22**

Figure 22B**Figure 22C****Figure 22 (Cont.)**

Figure 23A**Figure 23B****Figure 23**

Figure 23C**Figure 23D****Figure 23 (Cont.)**

Figure 24A**Figure 24B**

Figure 24**Figure 24C****Figure 24 (Cont.)**

INTERNATIONAL SEARCH REPORT

International application No PCT/US2015/060540

A. CLASSIFICATION OF SUBJECT MATTER INV. C07K16/28 A61K39/395 ADD. A61K39/00
--

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) C07K A61K
--

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
--

EPO-Internal, BIOSIS, EMBASE, WPI Data
--

C. DOCUMENTS CONSIDERED TO BE RELEVANT
--

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X, P	<p>WO 2014/205365 A1 (SANOFI SA [FR]; REGENERON PHARMA [US]) 24 December 2014 (2014-12-24) the whole document</p> <p>-----</p> <p style="text-align: center;">-/-</p>	1-154

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
3 February 2016	17/02/2016
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Malamoussi, A

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2015/060540

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>Anonymous: "Regeneron and Sanofi Announce Positive Phase 2 Top-line Dupilumab Results in Patients with Chronic Sinusitis with Nasal Polyps", , 30 September 2014 (2014-09-30), XP055240175, Retrieved from the Internet: URL:http://files.shareholder.com/downloads/REGN/0x0x783968/ea1617b5-cd39-46c9-a619-2bdb378cc8d0/REGN_News_2014_9_30_General_Releases.pdf [retrieved on 2016-01-12] page 1, paragraph 1 - paragraph 5 -----</p>	1-154
A	<p>"International Nonproprietary Names for Pharmaceutical Substances (INN) Dénominations communes internationales des Substances pharmaceutiques (DCI)", WHO Drug Information, 1 January 2012 (2012-01-01), XP055084074, Retrieved from the Internet: URL:http://www.who.int/medicines/publications/druginformation/issues/PL_108.pdf [retrieved on 2016-01-13] page 412 -----</p>	1-154
A	<p>Anonymous: "CAS: PubChem: DRUG D10354-Dupilumab", , 14 February 2014 (2014-02-14), XP055240675, Retrieved from the Internet: URL:http://www.genome.jp/dbget-bin/www_bget?dr:D10354 [retrieved on 2016-01-12] the whole document -----</p>	1-154
A	<p>Anonymous: "PubChem SID 172232447", , 14 February 2014 (2014-02-14), XP055240678, Retrieved from the Internet: URL:http://pubchem.ncbi.nlm.nih.gov/substance/172232447#section=Top [retrieved on 2016-01-12] the whole document ----- ----- -/-</p>	1-154

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2015/060540

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A,P	Anonymous: "Alignment Heavy Chain dupilumab with SEQ ID NO 9", , 12 January 2016 (2016-01-12), XP055240680, Retrieved from the Internet: URL: http://blast.ncbi.nlm.nih.gov/Blast.cgi [retrieved on 2016-01-12] the whole document -----	1-154
A,P	Anonymous: "Alignment of light chain of dupilumab with SEQ ID No 10", , 12 January 2016 (2016-01-12), XP055240683, Retrieved from the Internet: URL: http://blast.ncbi.nlm.nih.gov/Blast.cgi [retrieved on 2016-01-12] the whole document -----	1-154
A	US 2014/072583 A1 (ARDELEANU MARIUS [US] ET AL) 13 March 2014 (2014-03-13) page 56, paragraph 0477 - page 57, paragraph 0478 sequences 162, 164 -----	1-154

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2015/060540

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
WO 2014205365	A1 24-12-2014	AU 2014284235	A1 21-01-2016	CA 2915839	A1 24-12-2014
		US 2015017182	A1 15-01-2015	WO 2014205365	A1 24-12-2014
US 2014072583	A1 13-03-2014	AU 2013312868	A1 12-03-2015	CA 2883936	A1 13-03-2014
		CN 104995212	A 21-10-2015	EP 2892927	A1 15-07-2015
		JP 2015534548	A 03-12-2015	KR 20150048887	A 07-05-2015
		SG 11201501011W	A 30-03-2015	US 2014072583	A1 13-03-2014
		UY 35013	A 31-03-2014	WO 2014039461	A1 13-03-2014