本发明公开了一种用以传输电力的导线结构，包括多条第一芯线与多条第二芯线，相互绞聚在一起。各第一芯线是由数种金属材料组合而成。位在第一芯线中心处的为第一金属层，在第一金属层外包覆有第二金属层。
1. 一种用以传输电力的导线结构，该导线结构包括多条第一芯线与多条第二芯线，第一芯线与第二芯线相互绞聚在一起，其中各该第一芯线是由数种金属材料组合而成，在该第一芯线中心的为一第一金属层，在该第一金属层外还包覆有一第二金属层。

2. 如权利要求1所述的导线结构，其特征在于，所述第一芯线的数量占所述第一芯线的数量与所述第二芯线的数量之和的百分之五十以下。

3. 如权利要求1所述的导线结构，其特征在于，所述导线结构用以传输电压绝对值范围在3.3V至60V内的电力，或者电压绝对值为3.3V、5V、12V、16V、19V、20V或60V。

4. 如权利要求1所述的导线结构，其特征在于，所述第一芯线排列在所述导线结构的中心，而所述第二芯线大致排列在所述第一芯线之外。

5. 如权利要求4所述的导线结构，其特征在于，所述第二芯线中最靠近所述第一芯线者相对于所述导线结构之轴心处的距离大致相等。

6. 如权利要求1所述的导线结构，其特征在于，所述第二金属层的体积与所述第一金属层与所述第二金属层之体积和的比例约在40%以下，在30%～38%的区间之间或38%～40%的区间之间。

7. 如权利要求1所述的导线结构，其特征在于，所述第一金属层的材质为铝或铝镁合金，而所述第二金属层的材质为铜。

8. 如权利要求1所述的导线结构，其特征在于，各所述第一芯线还包括一保护层，所述保护层包覆在所述第二金属层之外。

9. 如权利要求8所述的导线结构，其特征在于，所述保护层的材质为锡。

10. 如权利要求1所述的导线结构，其特征在于，各所述第二芯线包括一铜线，以及所述铜线外的一锡材保护层，其中所述导线结构用于交换式电源供应器。

11. 如权利要求1所述的导线结构，其特征在于，所述第一芯线的外径为0.17mm～0.19mm之间。

12. 如权利要求1至11任一项所述的导线结构，其特征在于，所述第一芯线与第二芯线之数量总和为21条、34条或是7条到34条之间。

13. 如权利要求12所述的导线结构，其特征在于，所述第一芯线与所述第二芯线的耐热温度大于90°C，且所述导线结构在传送电力时不会超过90°C。
导线结构

技术领域
[0001] 本发明是有关于一种导线结构，且特别是一种用以传输电力的导线结构。

背景技术
[0002] 一直以来，电源供应器是电子设备主要进行电力转换之重要零件。在电子科技不断发展下，因特网及多媒体技术亦渐成熟，为此，提供稳定电力输出之电源供应器自然必须随之成长技术。
[0003] 现有连接电源供应器以传输电力的导线结构是以单一金属（铜）线加以绞聚制成，其虽具有较佳的电流传输效能，但，因电流之表面效应的影响，使得电流仅会流经铜线的表面，整体导线轴心部位的铜线并非电流传导的主要部分，加上铜线本身的抗拉伸强度有限且其材料成本较高，因此如何将用以传输电力的导线结构加以适当地改进，以提高其产业利用性，便成为值得研究的课题。

发明内容
[0004] 本发明的目的在于提供一种导线结构，其具有较佳的结构强度、电流传输效能与较低的制造成本。
[0005] 为实现上述目的，本发明的一实施例提出一种用以传输电力的导线结构，其包括多条第一芯线与多条第二芯线，第一芯线与第二芯线相互绞聚（twist）在一起。各第一芯线是由数种金属材料组合而成。位在第一芯线中的为—第一金属层，且在第一金属层外还包覆有一第二金属层。
[0006] 在本发明之一实施例中，上述之第一芯线的数量占第一芯线的数量与第二芯线的数量之和的百分之五十以下。
[0007] 在本发明之一实施例中，上述之导线结构用以传输电压绝对值范围在 3.3V 至 60V 以外，或者电压绝对值为 3.3V、5V、12V、16V、19V、20V 或 60V。
[0008] 在本发明之一实施例中，上述之第一芯线排列在导线结构的中心，而第二芯线大致排列在第一芯线之外。
[0009] 在本发明之一实施例中，上述之第二芯线中最靠近第一芯线者相对于导线结构之轴心处的距离大致相等。
[0010] 在本发明之一实施例中，上述之第二金属层的体积占第一金属层与第二金属层之体积和的比例约在 40% 以下、在 32% ~ 38% 的区间之间或在 38% ~ 40% 的区间之间。
[0011] 在本发明之一实施例中，上述之第一金属层的材质为铝或铝镁合金，而第二金属层的材质为铜。
[0012] 在本发明之一实施例中，上述之各第一芯线还包括一保护层，该保护层包覆在第二金属层之外，用以防止导线结构氧化，以及增加导线结构与其它电子构件电性连接的连接强度。
[0013] 在本发明之一实施例中，上述之保护层的材质为锡。
在本发明之一实施例中，上述之第二芯线包括一铜线，以及铜线外的一锡材保护层，其中，上述之导线结构用于交换式电源供应器。

在本发明之一实施例中，上述之第一芯线的外径为 0.17mm ～ 0.19mm 之间。

在本发明之一实施例中，上述之第一芯线与第二芯线之数量总和为 21 条、34 条或是 7 条到 34 条之间。

在本发明之一实施例中，上述之第一芯线与第二芯线的耐热温度大于 90°C，且导线结构在传送电力时不会超过 90°C。

基于上述，在本发明的上述实施例中，导线结构包括相互绞聚的第一芯线与第二芯线，其中第一芯线是由数种金属材料所组成，因而使导线结构具有较佳的电力传输效率的前提下，藉由改变第一芯线的金属材料与比例，而提高导线结构的机械性质与降低导线结构的制作成本。

附图说明

图 1 是依照本发明一实施例的一种导线结构的示意图。
图 2 是图 1 的导线结构的剖面图。
图 3A 与图 3B 分别示图 2 的导线结构中第一芯线与第二芯线的剖面图。
图中元件标号说明：

100	导线结构	110	第一芯线
112	第一金属层	114	第二芯线
116、124	保护层	120	第二芯线
122	铜线	130	绝缘材
200	交换式电源供应器	300	电子构件

具体实施方式

为了详细说明本发明的技术内容、构造特征，以下结合实施方式并配合附图作进一步说明。

图 1 是依照本发明一实施例的一种导线结构的示意图。图 2 是图 1 的导线结构的剖面图。请同时参考图 1 及图 2，在本实施例中，导线结构 100 适于连接在一交换式电源供应器 200 与一电子构件 300 之间，用以将交换式电源供应器 200 所产生的电力传送至电子构件 300。在此，电子构件 300 例如是一主板机，但并不以此为限。在图 1 中，导线结构 100 是指其中一条导线而言。

在本实施例中，导线结构 100 包括多条第一芯线 110 与多条第二芯线 120，其相互绞聚在一起之后，再于其外部包覆一绝缘材 130。在导线结构 100 中，第一芯线 110 的数量占第一芯线 110 的数量与第二芯线 120 的数量之和的百分之五十以下，其中为使导线结构 100 能保持其较佳的电流传输效率，第一芯线 110 与第二芯线 120 是以大致为 1:1 的数量比进行混合绞聚，以让此导线结构 100 能符合功率 700W 的交换式电源供应器 200 使用。在此，第一芯线 110 与第二芯线 120 之数量总和为 21 条，34 条或是 7 条到 34 条之间，以使该导线在较佳的材料强度和较少能量损耗的情形下导电。在此，导线结构 100 可用以传输电压绝对值范围在 3.3V 至 60V 内的电力，其中较佳为电压绝对值为 3.3V、5V、12V、16V、19V、
20V或60V。此外为清楚辨识第一芯线110与第二芯线120的差异，故仅绘示第二芯线120与邻近第二芯线120的部分第一芯线110。

[0031] 再者，第一芯线110排列在导线结构100的中心处，而第二芯线120则大致排列在第一芯线110之外。换句话说，第二芯线120系环绕地配置在第一芯线110的周围，亦即第二芯线120中最靠近第一芯线110者相对于导线结构100之轴心处的距离大致相等。

[0032] 图3A与图3B分别绘示图2的导线结构中第一芯线与第二芯线的剖面图。请同时参考图2与图3A、图3B，在本实施例中，第二芯线120包括一铜线122与包覆在此铜线122外的一保护层124。而值得注意的是第一芯线110是由两种金属材料组合而成。各第一芯线110包括位于中心处的一第一金属层112，包覆在第一金属层112外的第二金属层114，以及包覆在第二金属层114外的保护层116。其中第一金属层112的材质为铝或铝镁合金，用以构成第一芯线110的主体结构，而第二金属层114的材质为铜。再者，第一芯线110与第二芯线120的耐热温度大于90°C，且导线结构100在传送电力时不会超过90°C。

[0033] 基于上述，藉由第一芯线110中第二金属层114包覆在第一金属层112之外，而使其外径为0.17mm～0.19mm之间，并将第二导线120环绕地配置在第一芯线110周围。据此，导线结构100于传送电力时，因电流表面效应的缘故，而使电流得以从第一芯线110的第二金属层112与第二芯线120的表面进行传输，并使本发明的导线结构100内的芯线110、120具有较大的表面积以承载较大电流通过。因此，本发明的导线结构100在具有佳的电力传输效率的前提下，更由于第一芯线110得以将现有铜线的部分转换成非铜材质的第一金属层112而不影响电流的传输效率，且此第一金属层112相等于第二金属层114具有佳的机械性质与较低的制造成本，进而达到提高导线结构100的机械性质与降低成本的效果。

[0034] 此外，上述保护层116、124的材质皆为锡，其除能用以防止导线结构100氧化，且有助于导线结构100与电子构件300之间的焊接工艺，以增加导线结构100与电子构件300电性连接时的连接强度。举例来说，当欲将导线结构100焊接至电子构件300（例如为一电路板）上时，由于锡具有较低熔点的材料特性，而得以熔接在每条芯线110、120与电子构件300之间，并因增加其接触面积而使导线结构100与电子构件300之间有佳的电性连接效果。

[0035] 详细而言，第一金属层112藉由其材料特性，而使第一芯线110具有较轻的重量与较高抗拉伸强度。再者，第二金属层114的材质为铜，其藉由包覆焊接的制造技术完全包覆第一金属层112，使两者之间形成牢固的冶金结合，因而完成制作后的第一芯线110能以像加工单一金属的芯线一般进行拉伸和退火处理等后续工艺，且在进行拉伸工艺的过程中，第一金属层112与第二金属层114会呈现同等比例的线径变化，亦即第一金属层112相对于第二金属层114的体积比例能保持恒定不变。

[0036] 在此，为让第一芯线110整合第一金属层112与第二金属层114的材质特性，第二金属层114的体积占第一金属层112与第二金属层114之体积和的比例约在40%以下，其中较佳的比例为在32%～38%的区间之间或在38%～40%的区间之间。另外，本发明并未限定用以复合上述第一金属层112与第二金属层114的方式。举例来说，当第二金属层114的比例占第一金属层112与第二金属层114之体积和的38%以上时，便以上述包覆焊接的方式进行结合。相对地，当第二金属层114的比例占第一金属层112与第二金属层114之体积
积和的 38% 以下时，便需以电镀方式将第二金属层 114 镀于第一金属层 112 的表面上。因此，设计者可依据制作工艺及相关规范选择适当的加工方式以结合第一金属层 112 与第二金属层 114。
[0037]综上所述，在本发明的上述实施例中，导线结构中的芯线包括相互绞聚的第一芯线与第二芯线，其中第一芯线位于导线结构的中心处，而第二芯线排列在第一芯线的周围，且其中第一芯线是由数种金属材料所组成。据此，藉由第二芯线与第一芯线之结构周围处的第二金属层进行电流传输，以让导线结构能有较佳的电流传输效能。再者，将第一芯线之结构中心处的第一金属层改用机械性质较佳且成本较低的金属材质，而让第一芯线具有较佳的结构特性，因而本发明的导线结构能以较低的制作成本而达到符合电力传输所需的效能及结构特性。
[0038]虽然本发明已以实施例揭露如上，然其并非用以限定本发明，任何所属技术领域中具有通常知识者，在不脱离本发明之精神和范围内，当可作些许之更动与润饰，但，仍属于本发明所涵盖的范围。