(12) STANDARD PATENT (11) Application No. AU 2016235759 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Executing commands within virtual machine instances

(61) International Patent Classification(s)
GO6F 9/50 (2006.01)

(21) Application No: 2016235759 (22) Date of Filing: 2016.03.16
(87) WIPO No: WO16/153881

(30) Priority Data

(31) Number (32) Date (33) Country
14/664,135 2015.03.20 us
(43) Publication Date: 2016.09.29

(44) Accepted Journal Date: 2018.11.01

(71) Applicant(s)
Amazon Technologies, Inc.

(72) Inventor(s)
King, Wesley Gavin

(74) Agent/ Attorney
FB Rice Pty Ltd, Level 23 44 Market Street, Sydney, NSW, 2000, AU

(56) Related Art
Sun Microsystems, "The Sun Cloud API", published on 14 April 2014 as
per Wayback Machine [viewed on internet on 24 April 2018]< URL: https://
web.archive.org/web/20150619133556/https://kenai.com/projects/suncloudapis/
pages/Home >

_URL:_https://web.archive.org/web/20150619133556/https://kenai.com/projects/suncloudapis/pages/Home_
_URL:_https://web.archive.org/web/20150619133556/https://kenai.com/projects/suncloudapis/pages/Home_
_URL:_https://web.archive.org/web/20150619133556/https://kenai.com/projects/suncloudapis/pages/Home_

2016/153881 A1 | [0 OO0 00 OO

C

W

(43) International Publication Date
29 September 2016 (29.09.2016)

(19) World Intellectual Property
Organization
International Bureau

\

=
WIiPO I P

CT

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2016/153881 A1l

(CD)

(e3))

(22)

(25)
(26)
(30)

(71)

(72)

74

81)

International Patent Classification:
GO6F 9/50 (2006.01)

International Application Number:
PCT/US2016/022686

International Filing Date:
16 March 2016 (16.03.2016)

Filing Language: English

Publication Language: English

Priority Data:

14/664,135 20 March 2015 (20.03.2015) usS

Applicant: AMAZON TECHNOLOGIES, INC.
[US/US]; PO Box 81226, Seattle, WA 98108-1226 (US).

Inventor: KING, Wesley, Gavin; 410 Terry Avenue
North, Seattle, WA 98109-5210 (US).

Agent: KRUGER, Damon, J.; Lee & Hayes, PLLC, 601
W. Riverside Ave, Suite 1400, Spokane, WA 99201 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: EXECUTING COMMANDS WITHIN VIRTUAL MACHINE INSTANCES

105)“\/'- VIRTUAL MACHINE INSTANCE
110 120/_,/—{ SOFTWARE AGENT II:
Q 122434 CONFIGURATION FILE
12 ! 124A
114 1]1A 18 ST f COMMAND SCRIPTS
MANAGEMENT \ 1068 4
consoe f } | 4
USER PUBLIC SERVICE
witnmce |[1B wesservice [manaceR VIRTUAL MACHINE INSTANCE
& APPLICATION 12084~ SOFTWARE AGENT
S PROGRAMMING
INTERFACE (APY) 1228 | CONFIGURATION FILE
CoMMAND [**'F
wreRrace |4 111C 1268 J. COMMAND SCRIPTS
COMMAND
J CACHE ->I INSTANCE MANAGER
116 t
/ \ \5_/ \ vostcomputer
AUTHENTICATION | [AUTHORIZATION | 124 ‘07AJ 108 i
120 _{ SERvICE SERVICE
1 e A HOST COMPUTER]
CONTROL PLANE SERVICES
4 ON-DEMAND COMPUTING SERVICE
I \ SERVICE PROVIDER NETWORK
\ 7
104
102 FIG. 1

(57) Abstract: Technologies are disclosed herein for executing commands within virtual machine ("VM") instances. A public web
service application programming interface ("API") is exposed within a service provider network that includes methods relating to the
execution of commands within VM instances. For example, the API might include a method for obtaining a list of the commands
that can be executed within a VM instance. The API might also include a method for requesting the execution of a command within
a VM instance. The API might also include a method for requesting data describing the status of the execution of a command within
a VM instance. The API might also expose other methods. A software agent executing on a VM instance may be utilized to provide
a list of commands that can be executed in the VM, to execute requested commands, and to provide data describing the status of exe -
cution of a command.

2016235759 26 Sep 2018

10

15

20

25

EXECUTING COMMANDS WITHIN VIRTUAL MACHINE INSTANCES

CROSS REFERENCE TO RELATED APPLICATION

[0001] This patent claims priority to U.S. Application Serial No. 14/664,135, entitled
"Executing Commands Within Virtual Machine Instances," filed on 20 March 2015, the
entirety of which application is incorporated herein by reference.
[0001A] Throughout this specification the word "comprise", or variations such as
"comprises" or "comprising”, will be understood to imply the inclusion of a stated
element, integer or step, or group of elements, integers or steps, but not the exclusion of
any other element, integer or step, or group of elements, integers or steps.
[0001B] Any discussion of documents, acts, materials, devices, articles or the like
which has been included in the present specification is not to be taken as an admission
that any or all of these matters form part of the prior art base or were common general
knowledge in the field relevant to the present disclosure as it existed before the priority
date of each of the appended claims.
[0001C] According to a first aspect, the present invention provides a non-transitory
computer-readable storage medium having computer-executable instructions stored
thereupon which, when executed by a computer, cause the computer to:

expose a public web service application programming interface (API)
comprising a method for executing a command within a virtual machine (VM) instance,
the command being specified in data identifying a list of commands available for
execution within the VM instance and identifying program code for performing each of
the commands;

receive a call to the method for executing the command within the VM instance;
and
cause a request to execute the command to be transmitted to a software component
executing in the VM instance, the software component configured to process the
request and cause the command to be executed in the VM instance in response to

receiving the request.

2016235759 26 Sep 2018

10

15

20

25

30

[0001D] According to a second aspect, the present invention provides a computer-
implemented method for executing a command within a virtual machine (VM)
instance, comprising:

receiving, from the VM instance, data identifying a list of commands available
for execution within the VM instance;

storing the data identifying the list of commands available for execution within
the VM instance in a cache outside of the VM instance;

exposing an application programming interface (API) comprising a method for
executing a command within a VM instance executing within the service provider
network, the command being specified in the cache;

receiving a call to the method for executing the command within the VM
instance; and

causing a request to execute the command to be transmitted to a software
component executing in the VM instance, the software component configured to
process the request and cause the command to be executed in the VM instance in

response to receiving the request.

BACKGROUND

[0002] Network-based service provider networks exist that allow customers to purchase
and utilize various types of computing resources on a permanent or as-needed basis.
For example, a service provider network may permit customers to purchase and utilize
computing resources such as virtual machine ("VM") instances, data storage resources,
database resources, networking resources, network services, and other types of
computing resources. Customers may configure the computing resources provided by a
service provider network to implement desired functionality, such as to provide a
network-based application or another type of functionality.

[0003] Managing computing resources provided by a service provider network such as
those described above can be complex and time consuming. For example, and without
limitation, in order to execute commands within a VM instance, it may be necessary for

users to remotely login to the VM instance in order to perform the desired command.

1A

10

2016235759 26 Sep 2018

This process can be very time consuming, especially where the command is to be
executed in more than one VM instance.
[0004] The disclosure made herein is presented with respect to these and other

considerations.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 is a system architecture diagram showing aspects of the configuration
and operation of a service provider network that is configured to provide functionality
for executing commands within VM instances;

[0006] FIG. 2 is a flow diagram showing an illustrative routine for obtaining a list of
commands that can be executed within a VM instance;

[0007] FIG. 3 i1s a flow diagram showing an illustrative routine for executing a

command within a VM instance;

1B

WO 2016/153881 PCT/US2016/022686

[0008] FIG. 4 is a flow diagram showing aspects of an illustrative routine disclosed
herein for obtaining the status of a command executing, or that has completed execution,
within a VM instance;

[0009] FIG. 5 is a system and network diagram that shows an illustrative operating
environment that includes a service provider network that may be configured to implement
aspects of the functionality described herein;

[0010] FIG. 6 is a computing system diagram illustrating a configuration for a data center
that may be utilized to implement aspects of the technologies disclosed herein;

[0011] FIG. 7 is a system and network diagram that shows aspects of several services that
might be provided by and utilized within a service provider network in one configuration
disclosed herein; and

[0012] FIG. 8 is a computer architecture diagram showing an illustrative computer
hardware architecture for implementing a computing device that might be utilized to

implement aspects of the various technologies presented herein.

DETAILED DESCRIPTION

[0013] The following detailed description is directed to technologies for executing
commands within a VM instance. The disclosure presented herein also includes technologies
for discovering the commands that can be executed within a VM instance and for obtaining
information indicating the status of a command that is executing, or that has completed
execution, within a VM instance. Through an implementation of these technologies, users of
an on-demand computing service provided by a service provider network can quickly and
easily execute commands within VM instances without having to remotely login to the VM
instances.

[0014] As discussed briefly above, the various technologies disclosed herein may be
implemented in a service provider network. A service provider network may permit
customers to purchase and utilize computing resources (which may be referred to herein as
“resources”) such as VM instances, data storage resources, database resources, networking
resources, network services, and other types of computing resources. In order to support the
functionality disclosed herein, VM instances executing in the service provider network may
be configured with a software agent, such as a daemon or other type of background process,
that is configured to receive and respond to requests for data, such as a list, identifying the
commands that can be executed in a particular instance, to execute a command, and to

provide data indicating the status of the execution of a command. In order to perform these

WO 2016/153881 PCT/US2016/022686

functions, a configuration file might also be maintained that identifies the available
commands for an instance and that specifies a script or other type of program code for
performing each of the commands. The configuration file and the scripts or other types of
programs might be stored at the VM instance or in another location.

[0015] A public web service application programming interface (“API”’) might also be
exposed within the service provider network in some configurations that provides methods
relating to the execution of commands within a VM instance. For example, in one
configuration the API includes a method for requesting data identifying the commands that
may be executed within a VM instance. In response to receiving a call to the method for
requesting data identifying the commands that can be executed within the VM instance, a
request is transmitted to the software agent executing on the VM instance for the data
identifying the commands that can be executed. An instance manager executing on the host
computer executing the VM instance may receive the request and pass the request to the
software agent in some configurations. In turn, the software agent is configured to return
data identifying the commands that can be executed on the VM instance. The data may be
utilized to populate a user interface (“UI”’) configured to display UI controls for executing the
commands in response to user selection and/or in other ways.

[0016] In some configurations, calls may be made periodically to the method for
requesting data identifying the commands that may be executed within a VM instance. The
data identifying the commands may be received and stored in a cache. When calls are
subsequently received to the method, the data stored in the cache may be utilized rather than
making a request to the software agent on the VM instance. In this way, the data identifying
the commands that can be executed in a VM instance can be obtained and returned in
response to a request faster than if a call were to be made to the software agent executing in
the VM instance.

[0017] The API also includes a method for executing commands within a VM instance.
In response to a call to the method for executing a command within a VM instance, a request
is transmitted to the software agent executing on the VM instance to execute the requested
command. In tum, the software agent is configured to execute the identified command by
performing the associated script or other type of program code. The software agent might
also be configured to retum a unique identifier (“ID”) associated with the command in
response to the request. As will be described in greater detail below, the ID may be utilized
to obtain information describing the status of the execution of the command and/or the output

of the execution of the command. In some configurations, various authentication and/or

WO 2016/153881 PCT/US2016/022686

authorization processes may be performed to ensure that a user associated with a request is
authorized to perform a requested command on a particular VM instance. Other types of
security checks might also be made prior to executing a command within a VM instance.
[0018] In some configurations, the API also includes a method for obtaining data
describing the status of the execution of a command within a VM instance. A call to this
method may include the ID provided by the software agent at the time the request to execute
the command was made. In response to receiving a call to this method, a request is
transmitted to the software agent executing on the VM instance upon which the command
was executed. The request may include the ID associated with the command. In response
thereto, the software agent executing on the VM instance is configured to obtain and return
data indicating the status of the execution of the command. For example, and without
limitation, the data might indicate whether execution is in progress or has completed and, if
completed, whether execution was successful or failed. The returned data might also include
the output of the execution of the command in some configurations.

[0019] Using an implementation of the mechanisms described above, various types of
commands can be executed within a VM instance without requiring a user to login to the VM
instance. For example, and without limitation, commands can be executed for restarting a
process on a VM instance, for flushing a cache, for performing a backup operation, for
configuring the VM instance, and/or for performing a test on the VM instance. Other types
of commands can also be executed. Additional details regarding the various components and
processes described briefly above will be presented below with regard to FIGS. 1-8.

[0020] It should be appreciated that the subject matter presented herein may be
implemented as a computer process, a computer-controlled apparatus, a computing system, or
an article of manufacture, such as a computer-readable storage medium. While the subject
matter described herein is presented in the general context of program modules that execute
on one or more computing devices, those skilled in the art will recognize that other
implementations may be performed in combination with other types of program modules.
Generally, program modules include routines, programs, components, data structures, and
other types of structures that perform particular tasks or implement particular abstract data
types.

[0021] Those skilled in the art will also appreciate that aspects of the subject matter
described herein may be practiced on or in conjunction with other computer system
configurations beyond those described herein, including multiprocessor systems,

microprocessor-based or programmable consumer electronics, minicomputers, mainframe

WO 2016/153881 PCT/US2016/022686

computers, handheld computers, personal digital assistants, e-readers, mobile telephone
devices, tablet computing devices, special-purposed hardware devices, network appliances,
and the like. As mentioned briefly above, the configurations described herein may be
practiced in distributed computing environments, such as a service provider network, where
tasks may be performed by remote computing devices that are linked through a
communications network. In a distributed computing environment, program modules may be
located in both local and remote memory storage devices.

[0022] In the following detailed description, references are made to the accompanying
drawings that form a part hereof, and that show, by way of illustration, specific
configurations or examples. The drawings herein are not drawn to scale. Like numerals
represent like elements throughout the several figures (which may be referred to herein as a
“FIG.” or “FIGS.”).

[0023] FIG. 1 is a system architecture diagram showing aspects of the configuration and
operation of a service provider network 102 that is configured to provide functionality for
executing commands within VM instances 106. The service provider network 102 is a
distributed network through which customers and/or other users can utilize computing
resources, such as VM instances 106 and/or other types of computing resources, on a
permanent or as-needed basis.

[0024] Each type or configuration of a computing resource may be available from the
service provider network 102 in different sizes. For example, a service provider might offer
physical hosts, VM instances 106 or other types of data processing resources that are
available for purchase and use that have many different configurations of processor
capabilities, main memory, disk storage, and operating system. A service provider operating
the service provider network 102 might also offer other types of resources for purchase and
use by customers. For example, a service provider might offer virtual or hardware devices,
database resources and instances, file or block data storage resources, and/or networking
resources, such as load balancing resources, domain name service (“DNS”) resources, virtual
private cloud (“VPC™) resources, virtual local area network (“VLAN”) resources, and/or
other types of hardware and software computing resources or services 106 on a permanent or
as-needed basis. The resources might also include, but are not limited to, VM instances 106
and images, security groups, option groups, gateways, option sets, network access control
lists (“ACLs”), subnets, storage buckets, network interfaces, snapshots, spot market requests,
and storage volumes.

[0025] The service provider operating the service provider network 102 might also

WO 2016/153881 PCT/US2016/022686

charge a fee for utilization of the resources to a customer that creates and uses the resources.
The fee charged for a particular computing resource might be based upon the type and/or
configuration of the computing resource. For example, in the case of a data processing
computing resource, like a VM instance 106, the fee for use of the computing resource might
be charged based upon the amount of time the computing resource is utilized. In the case of a
data storage computing resource, the fee might be computed based upon the amount of data
stored and/or the amount of data transferred into or out of the computing resource. The fees
for other types of resources might also be based upon other considerations. A service
provider might also utilize various purchasing models to determine the amount to charge a
customer for use of resources provided by the service provider network 102.

[0026] The resources described above may be provided in one particular implementation
by one or more data centers operated by the service provider. As known to those skilled in
the art, data centers are facilities utilized to house and operate computer systems and
associated components. Data centers also typically include redundant and backup power,
communications, cooling, and security systems. The data centers might be located in
geographically disparate regions, and might also be connected to various other facilities, such
as co-location facilities, and various wide area networks (“WANSs”), such as the Intemet.
[0027] The resources described briefly above might also be provisioned and de-
provisioned as needed in an automated fashion. For example, the service provider network
102 might be configured to instantiate a new instance of a computing resource, such as a VM
instance 106, in response to an increase in demand for a network service or other condition.
Other types of computing resources might also be provisioned and de-provisioned in a similar
manner. Services in the service provider network 102 might also provide functionality for
automatically scaling and/or de-scaling resources based upon demand for the resources
and/or other factors.

[0028] A customer or potential customer of the service provider network 102 might
utilize an appropriate computing system (not shown in FIG. 1) to communicate with the
service provider network 102 over an appropriate data communications network (also not
shown in FIG. 1). In this way, a customer of the service provider network 102 can configure
various aspects of the operation of the computing resources provided by the service provider
network 102, or to otherwise control any computing resources being utilized by the customer.
For example, and without limitation, a computing system utilized by a customer of the
service provider network 102 might be utilized to purchase computing resources in the

service provider network 102, to configure aspects of the operation of the computing

WO 2016/153881 PCT/US2016/022686

resources through a management console 114 or other type of interface, to access and utilize
functionality provided by the various services and systems described herein, and/or to
perform other types of functionality with regard to the operation of the computing resources
provided by the service provider network 102.

[0029] A customer computing system might be any type of computing device capable of
connecting to the service provider network 102 via a suitable data communications network
such as, but not limited to, a laptop or desktop computer, a tablet computing device, a server
computer, or a mobile telephone. Administrative users employed by the operator of the
service provider network 102, such as administrators managing the operation of the service
provider network 102, might also connect with, manage, and utilize resources provided by the
service provider network 102 in a similar fashion.

[0030] As discussed briefly above, the service provider network 102 might also be
configured to provide various types of network services for use internally and by customers.
For example, and without limitation, the service provider network 102 may provide an on-
demand computing service 104 for providing VM instances 106 on-demand, a data storage
service for storing data, a cryptography service, a notification service, an authentication
service, a policy management service, a task service and, potentially, other types of network-
accessible services 106. These and other services and their associated resources may be
utilized together to implement various types of network-based applications in the service
provider network 102. Additional details regarding one implementation of the service
provider network 102 and the various types of network services that might be provided by the
service provider network 102 will be discussed below with regard to FIGS. 5-8.

[0031] As shown in FIG. 1 and discussed briefly above, an on-demand computing service
104 is utilized in some configurations to provide the VM instances 106. For instance, in the
example shown in FIG.1, the on-demand computing service 104 is providing two VM
instances 106A and 106B that are executing on the same host computer 107A. In this regard,
it should be appreciated that the configuration shown in FIG. 1 has been simplified for
discussion purposes and that many other host computers 107 may be utilized to provide many
other VM instances 106 in a similar fashion. For example, and without limitation, a host
computer 107B might be utilized to provide additional VM instances 106. As discussed
above, the VM instances 106 might also be provisioned and/or de-provisioned based upon
demand and/or other factors.

[0032] As also shown in FIG. 1, the host computer 107A is configured with an instance

manager 108 in some configurations. The instance manager 108 is a software component

WO 2016/153881 PCT/US2016/022686

that executes external to the VM instances 106A and 106B. The instance manager 108
provides functionality for enabling communication with the VM instances 106A and 106B on
a particular host computer 107A. More particularly, a software agent 120 is executed within
each VM instance 106 in some configurations. For instance, in the example shown in FIG. 1,
the VM instance 106A is executing the software agent 120A and the VM instance 106B is
executing the software agent 120B. The software agent 120B might be implemented as a
daemon or other type of background process that listens on an assigned port for
communications from the instance manager 107. The software agent 120 might be
implemented as another type of software component in other configurations.

[0033] A configuration file 122 and one or more command scripts 124 are also
provisioned to each VM instance 106 in one configuration. For instance, in the example
shown in FIG. 1, a configuration file 122A and command scripts 124 A have been provisioned
to the VM instance 106A and a configuration file 122B and command scripts 124B have been
provisioned to the VM instance 106B. The configuration file 122 provides a list of the
commands that can be executed within each VM instance 106. The configuration file 122
also identifies, for each command, a command script 124 that is to be executed when a
request to execute the associated command is received by the software agent 120. In this
regard, it should be appreciated that the commands might be implemented by other types of
program code other than scripts. For example, and without limitation, the commands might
be implemented by compiled program code, interpreted program code, and/or other types of
program code in other configurations. It should also be appreciated that the list of commands
set forth in the configuration file 122A can be edited by an authorized user to provide a
custom list of commands that can be performed on a particular VM instance 106.

[0034] It should also be appreciated that the configuration file 122 and the command
scripts 124 (or other types of program code) might be stored in a location other than within a
VM instance 106 in other configurations. For example, and without limitation, the
configuration file 122 and the command scripts 124 (or other types of program code) might
be stored in a database or other type of network accessible location for use by the VM
instances 106. Moreover, in some configurations a VM instance 106 may be configured to
operate without the use of a configuration file 122. In these configurations, the command
scripts 124 (or other type of program code) might be stored in a data store external to the VM
instance 106. When a request to execute a command is received, the software agent 120 may
retrieve the command script 124 (or other type of program code) to be executed from the data

store without consulting the configuration file 122. Other implementations might also be

WO 2016/153881 PCT/US2016/022686

utilized.

[0035] In order to instantiate VM instances 106 that include the software agent 120, the
configuration file 122, and the command scripts 124 (or other type of program code), VM
images may be created in advance that include these components. The VM images may then
be utilized to instantiate VM instances 106 that are appropriately configured with the
software components described above. The VM images might be created by an operator of
the service provider network 102, a customer of the service provider network 102, a
developer, and/or another entity.

[0036] As shown in FIG. 1, a public web service application programming interface
(“API”) 110 might also be exposed within the service provider network 102 in some
configurations that provides methods 111 relating to the execution of commands within a VM
instance 106. For example, in one configuration the API 110 includes a method 111A for
requesting data identifying the commands that may be executed within a particular VM
instance 106. Various components operating within the service provider network 102 may
call the API 110. For example, and without limitation, a management console 112 may be
utilized that provides a user interface (“UI”) for managing the operation of the VM instances
106. The data identifying the commands that can be executed within a VM instance 106 may
be utilized to generate Ul controls within the UI 114 for executing the commands in response
to user selection and/or in other ways. As shown in FIG. 1, the methods 111 exposed by the
API 110 might be called by other components, such as through a command line interface
(“CLI”) 116 operating within the service provider network 102.

[0037] In response to receiving a call to the method 111A for requesting data identifying
the commands that can be executed within the VM instance, a request is transmitted to the
software agent 120 executing on the VM instance 106 for the data identifying the commands
that can be executed. For example, and without limitation, in one configuration the API 110
transmits a request to a service manager 118. In turn, the service manager 118 transmits a
request for the available commands to the instance manager 108 executing on the same host
computer 107 as the VM instance 106 for which the list of commands is desired. The
instance manager 108 receives the request and passes the request to the software agent 120
executing within the VM instance 106. In turn, the software agent 120 reads the available
commands from the configuration file 122 and returns data identifying the available
commands to the instance manager 108. The instance manager 108 returns the available
commands to the service manager 118 which, in tum, returns the commands to the API 110.

The data identifying the available commands may then be returned in response to the call to

WO 2016/153881 PCT/US2016/022686

the method 111A, such as to the management console 112 or the CLI 116.

[0038] In some configurations, the service manager 118 or another component may be
configured to periodically call the request the list of available commands from the VM
instances 106 through the mechanism described above. The service manager 118 may
receive the data identifying the commands and store the data in a cache, such as the command
cache 124 illustrated in FIG. 1. When calls are subsequently received to the method 111A,
the service manager 118 may return the data identifying the available commands that was
previously stored in the cache rather than making a request to the software agent 120 on the
VM instance 106. In this way, the data identifying the commands that can be executed in a
VM instance 106 can be obtained and returned in response to a call to the method 111A faster
than if a call were to be made to the software agent 120 executing in the VM instance 106.
Other configurations might also be utilized in other implementations. Additional details
regarding the operation of the method 111A will be provided below with regard to FIG. 2.
[0039] The API 110 also includes a method 111B for executing commands within a VM
instance 120. In response to a call to the method 111B for executing a command within a
VM instance 120, the API 110 transmits a request to the service manager 118 to execute the
specified command on the identified VM instance 106. In turn, the service manager 118
transmits a request to the instance manager 108 executing on the host computer 107
executing the VM instance 106 in which the specified command is to be executed. In
response thereto, the service manager 108 then transmits a request to the software agent 120
executing within the VM instance 106 in which the command is to be executed.

[0040] The software agent 120 receives the request to execute the command from the
instance manager 108. In one configuration, the software agent 120 then examines the
configuration file 122 to identify the command script 124 (or other type of program code)
that corresponds to the requested command. Once the command script 124 associated with
the requested command has been identified, the software agent 120 causes the command
script 124A (or other type of program code for implementing the command) to be executed
within the VM instance 106.

[0041] As discussed briefly above, the software agent 120 might also be configured to
return a unique identifier (“ID”) associated with the executed command in response to the
request. For example, the software agent 120 might return the process ID for the executed
command script 124A or other type of program code. Other types of IDs might also be
utilized in other configurations. The ID is returned to the instance manager 108, which

returns the ID to the service manager 118. The service manager 118 may then retum the ID

10

WO 2016/153881 PCT/US2016/022686

to the API which, in turn, retuns the ID in response to the call to the method 111B. As will
be described in greater detail below, the returned ID may be subsequently utilized to obtain
information describing the status of the execution of the command and/or the output of the
execution of the command.

[0042] In some configurations, various authentication and/or authorization processes may
be performed to ensure that a user associated with a request to perform a command is
authorized to perform the requested command on a particular VM instance 106. For
example, and without limitation, the API 110 and/or the service manager 118 might call an
authentication service 120 and/or an authorization service 122 prior to executing a command
to verify that a user requesting execution of a command is authorized to perform the
command. Through this authentication mechanism, users may be authorized to perform
certain types of commands within a VM instance 106 even though the user may not be
authorized to remotely login to the VM instance 106. In this regard, it should be appreciated
that other types of security checks might also be made prior to executing a command within a
VM instance 106. Additional details regarding the operation of the method 111B for
executing a command within a VM instance 106 will be provided below with regard to FIG.
3.

[0043] In some configurations, the API 110 also includes a method 111C for obtaining
data describing the status of the execution of a command within a VM instance 106. As
discussed above, a call to the method 111C may include the ID provided by the software
agent 120 at the time the request to execute the command was made. In response to receiving
a call to this method, the API 110 transmits a request to the service manager 118 which, in
turn, transmits a request to the appropriate instance manager 108. The instance manager 108
transmits a request for the status of the command to the software agent 120 executing on the
VM instance 106 within which the command was executed. In response thereto, the software
agent 120 executing within the VM instance 106 obtains and returns data indicating the status
of the execution of the command. For example, and without limitation, the data might
indicate whether execution is in progress or has completed and, if completed, whether
execution was successful or failed. The returned data might also include the output of the
execution of the command in some configurations. Additional details regarding the operation
of the method 111C will be provided below with regard to FIG. 4.

[0044] As discussed briefly above, using an implementation of the mechanisms described
above various types of commands can be executed within a VM instance 106 without

requiring a user to login to the VM instance 106. For example, and without limitation,

11

WO 2016/153881 PCT/US2016/022686

commands can be executed for restarting a process on a VM instance 106, for flushing a
cache, for performing a backup operation, for configuring a VM instance 106, and/or for
performing a test on a VM instance 106. Other types of commands can also be executed.
[0045] It should be appreciated that the various methods 111 described above as being
exposed by the API 110 are merely illustrative and that other types of methods 111 might
also or alternatively be provided in other configurations. It should also be appreciated that
other services operating in the service provider network might also utilize the methods 111
exposed by the API 110. Services other than those shown in FIG. 1 that operate within the
service provider network 102 might also be utilized to implement the functionality provided
by the API 110.

[0046] FIG. 2 is a flow diagram showing an illustrative routine 200 for obtaining data,
such as a list, identifying the commands that can be executed within a particular VM instance
106. It should be appreciated that the logical operations described herein with respect to FIG.
2, and the other FIGS., may be implemented (1) as a sequence of computer implemented acts
or program modules running on a computing system and/or (2) as interconnected machine
logic circuits or circuit modules within the computing system.

[0047] The implementation of the various components described herein is a matter of
choice dependent on the performance and other requirements of the computing system.
Accordingly, the logical operations described herein are referred to variously as operations,
structural devices, acts, or modules. These operations, structural devices, acts, and modules
may be implemented in software, in firmware, in special purpose digital logic, and any
combination thereof. It should also be appreciated that more or fewer operations may be
performed than shown in the FIGS. and described herein. These operations may also be
performed in parallel, or in a different order than those described herein. Some or all of these
operations might also be performed by components other than those specifically identified.
[0048] The routine 200 begins at operation 202, where the public web service API 110 is
exposed within the service provider network 102. As discussed above, the API 110 includes
a method 1102A for obtaining data, such as a list, that describes the commands that can be
executed within a particular VM instance 106. From operation 202, the routine 200 proceeds
to operation 204, where a call is received to the method 111A for obtaining data describing
the commands that can be executed within a VM instance 106. For example, and without
limitation, the management console 112 and the CLI 116 might be utilized in various
configurations to make such a call to the method 111A. Other components might be utilized

to make such a call in other configurations.

12

WO 2016/153881 PCT/US2016/022686

[0049] From operation 204, the routine 200 proceeds to operation 206, where the API
110 causes a request to be transmitted to the instance manager 108 on the host computer 107
executing the VM instance 120 for which the list of commands is to be obtained. As
discussed above, the service manager 118 is called in some configurations which, in turn,
calls the instance manager 108 on the appropriate host computer 107 for the list of
commands. The instance manager 108 transmits the request for the available commands to
the software agent 120 executing in the appropriate VM instance 106 at operation 208.

[0050] At operation 210, the software agent 106 receives the request for the available
commands from the instance manager 108 and identifies the available commands based upon
the contents of the configuration file 122 in one configuration. The software agent 106 then
returns data identifying the commands available for execution to the instance manager 108.
In tumn, the instance manager 108 retums the available commands to the service manager 118,
which returns the list of commands to the API 110. In turn, the list of commands is returned
in response to the call to the method 111A at operation 212. The routine 200 then proceeds
from operation 212 to operation 214, where it ends. As discussed above, other mechanisms,
such as caching, might also be utilized to obtain and return the list of available commands
more quickly in other configurations.

[0051] FIG. 3 is a flow diagram showing an illustrative routine 300 for executing a
command within a VM instance 106. The routine 300 begins at operation 302, where the API
100 exposes a method 111B for executing a command within a VM instance 106 executing in
the service provider network 102. From operation 302, the routine 300 proceeds to operation
304, where a call is received to the method 111B for executing a command within a VM
instance 106. As discussed above, such a call might be made by the management console
112, the CLI 116, or another component.

[0052] From operation 304, the routine 300 proceeds to operation 306, where
authentication and/or authorization might be performed in order to verify that a user
associated with the request to execute the command is permitted to perform the command.
For example, and without limitation, the API 110 might call the authentication service 120
and/or the authorization service 122 to determine whether the user is permitted to execute the
command. If the user is not permitted to execute the command, the routine 300 may proceed
from operation 308 to operation 310, where an error may be returned. If, however, the user is
permitted to execute the command, the routine 300 may proceed from operation 308 to
operation 312.

[0053] At operation 312, the API 100 may cause a request to execute the command to be

13

WO 2016/153881 PCT/US2016/022686

transmitted to the instance manager 108 executing on the host computer 107 that is executing
the VM instance 106 in which the command is to be executed. In turn, the instance manager
108 transmits a request to execute the command to the appropriate software agent 120
executing in the VM instance 106 at operation 314. The software agent 120 utilizes the
configuration file 122 to identify the command script 124 (or other program component)
corresponding to the requested command at operation 318. The software agent 120 then
executes the identified command script 124 (or other program component).

[0054] From operation 316, the routine 300 proceeds to operation 318, where the
software agent 120 returns the ID associated with the execution of the command to the
instance manager 108. The instance manager 108 returns the ID to the service manager 118
which, in turn, returns the ID to the API 110. The ID can then be retumed in response to the
call to the method 111B at operation 320. The routine 300 then proceeds from operation 320
to operation 322, where it ends.

[0055] It should be appreciated that, in some configurations, the execution of commands
and/or the results of execution may be logged by the software agent 120, the instance
manager 108, the API 110, and/or the service manager 118. In this way, a record can be kept
of the commands that were executed on each VM instance 106 and, potentially, the results of
execution. Other data regarding the calls to the API 110 and/or the execution of commands
on the VM instances 106 might also be captured and maintained in other configurations.
[0056] FIG. 4 is a flow diagram showing aspects of an illustrative routine 400 disclosed
herein for obtaining the status of a command executing, or that has completed execution,
within a VM instance 106. The routine 400 begins at operation 402, where the API 110
exposes a method 111C for obtaining the status of a command that has been executed within
a VM instance 106. From operation 402, the routine 400 proceeds to operation 404, where a
call is received to the method 111C to obtain the status of a command executed within a VM
instance 106. As discussed above, the management console 112, the CLI 116, and/or another
component may make such a call. Additionally, the call may include the ID that was returned
by the software agent 120 when the command was executed.

[0057] From operation 404, the routine 400 proceeds to operation 406, where a request is
transmitted via the service manager 118 to the instance manager 108 executing on the host
computer 107 containing the VM instance 106 within which the command was executed.
The routine 400 then proceeds from operation 406 to operation 408, where the instance
manger 108 transmits a request for the status of the execution of the command to the software

agent 120 in the VM instance 106 in which the command was executed. The routine 400

14

WO 2016/153881 PCT/US2016/022686

then proceeds to operation 410, where the software agent 120 returns the status of the
execution of the command to the instance manger 108. The status might indicate, for
example, that execution of the command was successful or that execution failed. The status
might also or alternately indicate other types of conditions. The status might also include a
text output of the execution of the command. The output of the execution of the command
might be presented in the UI 114, the CLI 116, and/or in another manner.

[0058] From operation 410, the instance manager 108 returns the data indicating the
status of the execution of the command to the service manager 118. The service manager
118, in turn, returns the data to the API 110, which returns the data in response to the call to
the method 111C. From operation 412, the routine 400 proceeds to operation 414, where it
ends.

[0059] FIG. 5 is a system and network diagram that shows one illustrative operating
environment for the configurations disclosed herein that includes a service provider network
102 that may be configured to provide functionality for performing commands within VM
instances 106 and related functionality in the manner described above, according to one
configuration disclosed herein. As discussed above, the service provider network 102 can
provide computing resources, like VM instances 106, on a permanent or an as-needed basis.
Among other types of functionality, the computing resources provided by the service
provider network 102 can be utilized to implement the various services described above. As
also discussed above, the computing resources provided by the service provider network 102
may include various types of computing resources, such as data processing resources like VM
instances 106, data storage resources, networking resources, data communication resources,
network services, and the like.

[0060] Each type of computing resource provided by the service provider network 102
may be general-purpose or may be available in a number of specific configurations. For
example, data processing resources may be available as physical computers or VM instances
106 in a number of different configurations. The VM instances 106 may be configured to
execute applications, including web servers, application servers, media servers, database
servers, some or all of the services described above, and/or other types of programs. Data
storage resources may include file storage devices, block storage devices, and the like. The
service provider network 102 might also be configured to provide other types of computing
resources not mentioned specifically herein.

[0061] The computing resources provided by the service provider network 102 are

enabled in one implementation by one or more data centers 504A-504N (which may be

15

WO 2016/153881 PCT/US2016/022686

referred herein singularly as “a data center 504 or in the plural as “the data centers 5047).
The data centers 504 are facilities utilized to house and operate computer systems and
associated components. The data centers 504 typically include redundant and backup power,
communications, cooling, and security systems. The data centers 504 might also be located
in geographically disparate locations. One illustrative configuration for a data center 504 that
might be utilized to implement the technologies disclosed herein will be described below
with regard to FIG. 6.

[0062] The customers and other users of the service provider network 102 may access the
computing resources provided by the service provider network 102 over a network 502,
which may be a wide area communication network (“WAN™), such as the Internet, an intranet
or an Internet service provider (“ISP”) network or a combination of such networks. For
example, and without limitation, a computing device 500 operated by a customer or other
user of the service provider network 102 might be utilized to access the service provider
network 102 by way of the network 502. It should be appreciated that a local-area network
(“LAN), the Internet, or any other networking topology known in the art that connects the
data centers 504 to remote customers and other users may be utilized. It should also be
appreciated that combinations of such networks might also be utilized.

[0063] FIG. 6 is a computing system diagram that illustrates one configuration for a data
center 504 that implements aspects of the technologies disclosed herein for executing
commands within VM instances 106 and the related functionality disclosed herein. The
example data center 504 shown in FIG. 6 includes several server computers 602A-602F
(which may be referred to herein singularly as “a server computer 602 or in the plural as
“the server computers 602”) for providing computing resources 606A-606E.

[0064] The server computers 602 may be standard tower, rack-mount, or blade server
computers configured appropriately for providing the computing resources described herein
(illustrated in FIG. 6 as the computing resources 604A-604E). As mentioned above, the
computing resources provided by the service provider network 102 might be data processing
resources such as VM instances 106 or hardware computing systems, data storage resources,
database resources, networking resources, and others. Some of the servers 602 might also be
configured to execute a resource manager 604 capable of instantiating and/or managing the
computing resources. In the case of VM instances 106, for example, the resource manager
604 might be a hypervisor or another type of program configured to enable the execution of
multiple VM instances 106 on a single server 602. Server computers 602 in the data center

504 might also be configured to provide network services and other types of services, some

16

WO 2016/153881 PCT/US2016/022686

of which are described in detail below with regard to FIG. 7.

[0065] The data center 504 shown in FIG. 6 also includes a server computer 602F that
may execute some or all of the software components described above. For example, and
without limitation, the server computer 602F might be configured to execute various
components for providing the on-demand computing service 104, the management console
112, and/or the other software components described above. The server computer 602F
might also be configured to execute other components and/or to store data for providing some
or all of the functionality described herein. In this regard, it should be appreciated that the
services illustrated in FIG. 6 as executing on the server computer 602F might execute on
many other physical or virtual servers in the data centers 504 in various configurations.

[0066] In the example data center 504 shown in FIG. 6, an appropriate LAN 606 is also
utilized to interconnect the server computers 602A-602F. The LAN 606 is also connected to
the network 502 illustrated in FIG. 5. It should be appreciated that the configuration and
network topology described herein has been greatly simplified and that many more
computing systems, software components, networks, and networking devices may be utilized
to interconnect the various computing systems disclosed herein and to provide the
functionality described above. Appropriate load balancing devices or other types of network
infrastructure components might also be utilized for balancing a load between each of the
data centers 504A-504N, between each of the server computers 602A-602F in each data
center 504, and, potentially, between computing resources in each of the data centers 504. It
should be appreciated that the configuration of the data center 504 described with reference to
FIG. 6 is merely illustrative and that other implementations might be utilized.

[0067] FIG. 7 is a system and network diagram that shows aspects of several network
services that might be provided by and utilized within a service provider network 102 in one
configuration disclosed herein. In particular, and as discussed above, the service provider
network 102 may provide a variety of network services to customers and other users of the
service provider network 102 including, but not limited to, the on-demand computing service
104. The service provider network 102 might also provide other types of services including,
but not limited to, a storage service 702A, a deployment service 702B, a cryptography service
702C, an authentication service 120, a policy management service 702E, and/or a task service
702F, each of which is described in greater detail below. Additionally, the service provider
network 102 might also provide other services 702G, some of which are described in greater
detail below.

[0068] It should be appreciated that customers of the service provider network 102 may

17

WO 2016/153881 PCT/US2016/022686

include organizations or individuals that utilize some or all of the services provided by the
service provider network 102. As described above, a customer or other user may
communicate with the service provider network 102 through a network, such as the network
502 shown in FIG. 5. Communications from a customer computing device, such as the
computing device 500 shown in FIG. 5, to the service provider network 102 may cause the
services provided by the service provider network 102 to operate in accordance with the
described configurations or variations thereof.

[0069] It is noted that not all configurations described include the services described with
reference to FIG. 7 and that additional services may be provided in addition to or as an
alternative to services explicitly described. Each of the services shown in FIG. 7 might also
expose web service interfaces that enable a caller to submit appropriately configured API
calls to the various services through web service requests. In addition, each of the services
may include service interfaces that enable the services to access each other (e.g., to enable a
virtual computer system provided by the on-demand computing service 104 to store data in or
retrieve data from the data storage service 702A). Additional details regarding some of the
services shown in FIG. 7 will now be provided.

[0070] As discussed above, the on-demand computing service 104 may be a collection of
computing resources configured to instantiate VM instances 106 and to provide other types of
computing resources on demand. For example, a customer or other user of the service
provider network 102 may interact with the on-demand computing service 104 (via
appropriately configured and authenticated API calls) to provision and operate VM instances
106 that are instantiated on physical computing devices hosted and operated by the service
provider network 102. The VM instances 106 may be used for various purposes, such as to
operate as servers supporting a web site, to operate business applications or, generally, to
serve as computing resources for the customer. Other applications for the VM instances 106
may be to support database applications, electronic commerce applications, business
applications and/or other applications. Although the on-demand computing service 104 is
shown in FIG. 7, any other computer system or computer system service may be utilized in
the service provider network 102, such as a computer system or computer system service that
does not employ virtualization and instead provisions computing resources on dedicated or
shared computers/servers and/or other physical devices.

[0071] The storage service 702A might include software and computing resources that
collectively operate to store data using block or file-level storage devices (and/or

virtualizations thereof). The storage devices of the storage service 702A might, for instance,

18

WO 2016/153881 PCT/US2016/022686

be operationally attached to virtual computer systems provided by the on-demand computing
service 104 to serve as logical units (e.g., virtual drives) for the computer systems. A storage
device might also enable the persistent storage of data used/generated by a corresponding
virtual computer system where the virtual computer system service might only provide
ephemeral data storage.

[0072] The service provider network 102 may also include a cryptography service 702C.
The cryptography service 702C may utilize storage services of the service provider network
102, such as the storage service 702A, to store encryption keys in encrypted form, whereby
the keys may be usable to decrypt customer keys accessible only to particular devices of the
cryptography service 702C. The cryptography service 702C might also provide other types
of functionality not specifically mentioned herein.

[0073] As illustrated in FIG. 7, the service provider network 102, in various
configurations, also includes an authentication service 120 and a policy management service
702E. The authentication service 120, in one example, is a computer system (i.e., collection
of computing resources) configured to perform operations involved in authentication of users.
For instance, one of the services 702 shown in FIG. 7 may provide information from a user to
the authentication service 120 to receive information in return that indicates whether or not
the requests submitted by the user are authentic.

[0074] The policy management service 702E, in one example, is a network service
configured to manage policies on behalf of customers or internal users of the service provider
network 102. The policy management service 702E may include an interface that enables
customers to submit requests related to the management of policy. Such requests may, for
instance, be requests to add, delete, change or otherwise modify policy for a customer,
service, or system, or for other administrative actions, such as providing an inventory of
existing policies and the like.

[0075] The service provider network 102, in various configurations, is also configured
with a task service 702F. The task service 702F is configured to receive a task package and
to enable executing tasks as dictated by the task package. The task service 702F may be
configured to use any resource of the service provider network 102, such as instantiated
virtual machines or virtual hosts, for executing the task. The task service 702F may
configure the instantiated virtual machines or virtual hosts to operate using a selected
operating system and/or a selected execution application in accordance with specified
requirements.

[0076] The service provider network 102 may additionally maintain other services 702G

19

WO 2016/153881 PCT/US2016/022686

based, at least in part, on the needs of its customers. For instance, the service provider
network 102 may maintain a deployment service 702B for deploying program code and/or a
database service (not shown in FIG. 7) in some configurations. A database service may be a
collection of computing resources that collectively operate to create, maintain, and allow
queries to be performed on databases stored within the service provider network 102. For
example, a customer or other user of the service provider network 102 may operate and
manage a database from the database service by utilizing appropriately configured network
API calls. This, in turn, may allow the customer to maintain and potentially scale the
operations in the database. Other services include object-level archival data storage services,
and services that manage, monitor, interact with, or support other services. The service
provider network 102 might also be configured with other services not specifically mentioned
herein in other configurations.

[0077] Embodiments of the present disclosure can be described in view of the following
clauses:

L. An apparatus, comprising:

a processor; and

a non-transitory computer-readable storage medium having instructions stored
thereupon which are executable by the processor and which, when executed, cause the
apparatus to

expose a public web service application programming interface (API) within a
service provider network, the API comprising a method for executing a command
within a virtual machine (VM) instance executing in the service provider network,

receive a call to the method for executing the command within the VM
instance, and

in response to receiving the call, cause a request to execute the command to be
transmitted to a software agent executing in the VM instance, the software agent
configured to execute the command in the VM instance in response to receiving the
request.

2. The apparatus of clause 1, wherein the public web service API further
comprises a method for requesting data identifying commands that can be executed within
the VM instance, and wherein the non-transitory computer-readable storage medium has
further instructions stored thereupon to:

receive a call to the method for requesting data identifying the commands that

can be executed within the VM instance; and

20

WO 2016/153881 PCT/US2016/022686

in response to receiving the call to the method for requesting data identifying
the commands that can be executed within the VM instance, cause a request to be
transmitted to the software agent executing in the VM instance for the data identifying
the commands that can be executed within the VM instance.

3. The apparatus of clause 1, wherein the public web service API further
comprises a method for requesting data identifying commands that can be executed within
the VM instance, and wherein the non-transitory computer-readable storage medium has
further instructions stored thereupon to:

cause a request to be transmitted to the software agent executing in the VM
instance for the data identifying the commands that can be executed within the VM
Instance;

receive the data identifying the commands that can be executed within the VM
Instance;

store the data identifying the commands that can be executed within the VM
instance in a cache; and

respond to calls to the method for requesting data identifying commands that
can be executed within the VM instance using the data identifying the commands that
can be executed within the VM instance stored in the cache.

4. The apparatus of clause 3, wherein the non-transitory computer-readable
storage medium has further instructions stored thereupon to utilize the data identifying the
commands that can be executed within the VM instance to generate a user interface (UI)
configured to display UI controls for executing the commands within the VM instance.

S. The apparatus of clause 1, wherein the public web service API further
comprises a method for obtaining a status of the execution of the command within the VM
instance, and wherein the non-transitory computer-readable storage medium has further
instructions stored thereupon to:

receive a call to the method for obtaining a status of the execution of the
command within the VM instance; and

in response to receiving the call to the method for obtaining a status of the
execution of the command within the VM instance, cause a request to be transmitted
to the software agent executing in the VM instance for the status of the execution of
the command within the VM instance.

6. The apparatus of clause 1, wherein the non-transitory computer-readable

storage medium has further instructions stored thereupon to determine that a user associated

21

WO 2016/153881 PCT/US2016/022686

with the call to the method for executing the command is authorized to perform the command
prior to causing the request to execute the command to be transmitted to the software agent
executing in the VM instance.

7. The apparatus of clause 1, wherein the command comprises one or more of a
command for restarting a process on the VM instance, a command for flushing a cache, a
command for performing a backup operation, a command for configuring the VM instance,
or a command for performing a test on the VM instance.

8. A non-transitory computer-readable storage medium having computer-
executable instructions stored thereupon which, when executed by a computer, cause the
computer to:

expose a public web service application programming interface (API) comprising a
method for executing a command within a virtual machine (VM) instance;

receive a call to the method for executing the command within the VM instance; and

cause a request to execute the command to be transmitted to a software component
executing in the VM instance, the software component configured to execute the command in
the VM instance in response to receiving the request.

9. The non-transitory computer-readable storage medium of clause 8, having
further computer-executable instructions stored thereupon to log the execution of the
command in the VM instance.

10. The non-transitory computer-readable storage medium of clause 8, wherein
the public web service API further comprises a method for requesting data identifying
commands that can be executed within the VM instance.

11. The non-transitory computer-readable storage medium of clause 10, having
further computer-executable instructions stored thereupon to:

receive a call to the method for requesting data identifying the commands that can be
executed within the VM instance; and

cause a request to be transmitted to the software component executing in the VM
instance for the data identifying the commands that can be executed within the VM instance.

12. The non-transitory computer-readable storage medium of clause 10, having
further computer-executable instructions stored thereupon to:

cause a request to be transmitted to the software component executing in the VM
instance for the data identifying the commands that can be executed within the VM instance;

receive the data identifying the commands that can be executed within the VM

instance;

22

WO 2016/153881 PCT/US2016/022686

store the data identifying the commands that can be executed within the VM instance
in a cache; and

utilize the data identifying the commands that can be executed within the VM
instance stored in the cache to respond to calls to the method for requesting data identifying
commands that can be executed within the VM instance.

13. The non-transitory computer-readable storage medium of clause 10, having
further computer-executable instructions stored thereupon to utilize the data identifying the
commands that can be executed within the VM instance to generate a user interface (UI)
configured to display UI controls for executing the commands within the VM instance.

14. The non-transitory computer-readable storage medium of clause 8, wherein
the public web service API further comprises a method for obtaining a status of the execution
of the command within the VM instance.

15. The non-transitory computer-readable storage medium of clause 14, having
further computer-executable instructions stored thereupon to:

receive a call to the method for obtaining a status of the execution of the command
within the VM instance; and

cause a request to be transmitted to the software component executing in the VM
instance for the status of the execution of the command within the VM instance.

16. A computer-implemented method for executing a command within a virtual
machine (VM) instance, comprising;

publicly expose an application programming interface (API) within a service provider
network, the API comprising a method for executing a command within a virtual machine
(VM) instance executing within the service provider network;

receive a call to the method for executing the command within the VM instance; and

cause a request to execute the command to be transmitted to a software component
executing in the VM instance, the software component configured to execute the command in
the VM instance in response to receiving the request.

17. The computer-implemented method of clause 15, wherein the API further
comprises a method for requesting data identifying commands that can be executed within
the VM instance.

18. The computer-implemented method of clause 15, wherein the API further
comprises a method for obtaining a status of the execution of the command within the VM
instance.

19. The computer-implemented method of claim 15, further comprising

23

WO 2016/153881 PCT/US2016/022686

determining that a user associated with the call to the method for executing the command is
authorized to perform the command prior to causing the request to execute the command to
be transmitted to the software component executing in the VM instance.

20. The computer-implemented method of clause 15, wherein the command
comprises one or more of a command for restarting a process on the VM instance, a
command for flushing a cache, a command for performing a backup operation, a command
for configuring the VM instance, or a command for performing a test on the VM instance.
[0078] FIG. 8 shows an example computer architecture for a computer 800 capable of
executing program components for implementing the functionality described above. The
computer architecture shown in FIG. 8 illustrates a conventional server computer,
workstation, desktop computer, laptop, tablet, network appliance, e-reader, smartphone, or
other computing device, and may be utilized to execute any of the software components
presented herein.

[0079] The computer 800 includes a baseboard 802, or “motherboard,” which is a printed
circuit board to which a multitude of components or devices may be connected by way of a
system bus or other electrical communication paths. In one illustrative configuration, one or
more central processing units (“CPUs”) 804 operate in conjunction with a chipset 806. The
CPUs 804 may be standard programmable processors that perform arithmetic and logical
operations necessary for the operation of the computer 800.

[0080] The CPUs 804 perform operations by transitioning from one discrete, physical
state to the next through the manipulation of switching elements that differentiate between
and change these states. Switching elements may generally include electronic circuits that
maintain one of two binary states, such as flip-flops, and electronic circuits that provide an
output state based on the logical combination of the states of one or more other switching
elements, such as logic gates. These basic switching elements may be combined to create
more complex logic circuits, including registers, adders-subtractors, arithmetic logic units,
floating-point units, and the like.

[0081] The chipset 806 provides an interface between the CPUs 804 and the remainder of
the components and devices on the baseboard 802. The chipset 806 may provide an interface
to a RAM 808, used as the main memory in the computer 800. The chipset 806 may further
provide an interface to a computer-readable storage medium such as a read-only memory
(“ROM”) 810 or non-volatile RAM (“NVRAM”) for storing basic routines that help to
startup the computer 800 and to transfer information between the various components and

devices. The ROM 810 or NVRAM may also store other software components necessary for

24

WO 2016/153881 PCT/US2016/022686

the operation of the computer 800 in accordance with the configurations described herein.
[0082] The computer 800 may operate in a networked environment using logical
connections to remote computing devices and computer systems through a network, such as
the network 606. The chipset 806 may include functionality for providing network
connectivity through a NIC 812, such as a gigabit Ethernet adapter. The NIC 812 is capable
of connecting the computer 800 to other computing devices over the network 606. It should
be appreciated that multiple NICs 812 may be present in the computer 800, connecting the
computer to other types of networks and remote computer systems.

[0083] The computer 800 may be connected to a mass storage device 818 that provides
non-volatile storage for the computer. The mass storage device 818 may store an operating
system 820, programs 822, and data, which have been described in greater detail herein. The
mass storage device 818 may be connected to the computer 800 through a storage
controller 814 connected to the chipset 806. The mass storage device 818 may consist of one
or more physical storage units. The storage controller 814 may interface with the physical
storage units through a serial attached SCSI (“SAS”) interface, a serial advanced technology
attachment (“SATA”) interface, a fiber channel (“FC”) interface, or other type of interface
for physically connecting and transferring data between computers and physical storage units.
[0084] The computer 800 may store data on the mass storage device 818 by transforming
the physical state of the physical storage units to reflect the information being stored. The
specific transformation of physical state may depend on various factors, in different
implementations of this description. Examples of such factors may include, but are not
limited to, the technology used to implement the physical storage units, whether the mass
storage device 818 is characterized as primary or secondary storage, and the like.

[0085] For example, the computer 800 may store information to the mass storage
device 818 by issuing instructions through the storage controller 814 to alter the magnetic
characteristics of a particular location within a magnetic disk drive unit, the reflective or
refractive characteristics of a particular location in an optical storage unit, or the electrical
characteristics of a particular capacitor, transistor, or other discrete component in a solid-state
storage unit. Other transformations of physical media are possible without departing from the
scope and spirit of the present description, with the foregoing examples provided only to
facilitate this description. The computer 800 may further read information from the mass
storage device 818 by detecting the physical states or characteristics of one or more particular
locations within the physical storage units.

[0086] In addition to the mass storage device 818 described above, the computer 800 may

25

WO 2016/153881 PCT/US2016/022686

have access to other computer-readable storage media to store and retrieve information, such
as program modules, data structures, or other data. It should be appreciated by those skilled
in the art that computer-readable storage media is any available media that provides for the
non-transitory storage of data and that may be accessed by the computer 800.

[0087] By way of example, and not limitation, computer-readable storage media may
include volatile and non-volatile, removable and non-removable media implemented in any
method or technology. Computer-readable storage media includes, but is not limited to,
RAM, ROM, erasable programmable ROM (“EPROM?”), electrically-erasable programmable
ROM (“EEPROM?”), flash memory or other solid-state memory technology, compact disc
ROM (“CD-ROM”), digital versatile disk (“DVD”), high definition DVD (“HD-DVD”),
BLU-RAY, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage
or other magnetic storage devices, or any other medium that can be used to store the desired
information in a non-transitory fashion.

[0088] As mentioned briefly above, the mass storage device 818 may store an operating
system 820 utilized to control the operation of the computer 800. According to one
configuration, the operating system comprises the LINUX operating system. According to
another configuration, the operating system comprises the WINDOWS® SERVER operating
system from MICROSOFT Corporation. According to further configurations, the operating
system may comprise the UNIX operating system or one of its variants. It should be
appreciated that other operating systems may also be utilized. The mass storage device 818
may store other system or application programs and data utilized by the computer 800.

[0089] In one configuration, the mass storage device 818 or other computer-readable
storage media is encoded with computer-executable instructions which, when loaded into the
computer 800, transform the computer from a general-purpose computing system into a
special-purpose computer capable of implementing the configurations described herein.
These computer-executable instructions transform the computer 800 by specifying how the
CPUs 804 transition between states, as described above. According to one configuration, the
computer 800 has access to computer-readable storage media storing computer-executable
instructions which, when executed by the computer 800, perform the various processes
described above with regard to FIGS. 2-4. The computer 800 might also include computer-
readable storage media for performing any of the other computer-implemented operations
described herein.

[0090] The computer 800 may also include one or more input/output controllers 816 for

receiving and processing input from a number of input devices, such as a keyboard, a mouse,

26

WO 2016/153881 PCT/US2016/022686

a touchpad, a touch screen, an electronic stylus, or other type of input device. Similarly, an
input/output controller 816 may provide output to a display, such as a computer monitor, a
flat-panel display, a digital projector, a printer, a plotter, or other type of output device. It
will be appreciated that the computer 800 may not include all of the components shown in
FIG. 8, may include other components that are not explicitly shown in FIG. 8, or may utilize
an architecture completely different than that shown in FIG. 8.

[0091] Based on the foregoing, it should be appreciated that technologies for executing
commands within VM instances have been presented herein. Moreover, although the subject
matter presented herein has been described in language specific to computer structural
features, methodological acts, and computer readable media, it is to be understood that the
invention defined in the appended claims is not necessarily limited to the specific features,
acts, or media described herein. Rather, the specific features, acts, and media are disclosed as
example forms of implementing the claims.

[0092] The subject matter described above is provided by way of illustration only and
should not be construed as limiting. Furthermore, the claimed subject matter is not limited to
implementations that solve any or all disadvantages noted in any part of this disclosure.
Various modifications and changes may be made to the subject matter described herein
without following the example configurations and applications illustrated and described, and
without departing from the true spirit and scope of the present invention, which is set forth in

the following claims.

27

2016235759 26 Sep 2018

10

15

20

25

30

CLAIMS
WHAT IS CLAIMED IS:

1. A non-transitory computer-readable storage medium having computer-
executable instructions stored thereupon which, when executed by a computer, cause
the computer to:

expose a public web service application programming interface (API)
comprising a method for executing a command within a virtual machine (VM) instance,
the command being specified in data identifying a list of commands available for
execution within the VM instance and identifying program code for performing each of
the commands;

receive a call to the method for executing the command within the VM instance;
and

cause a request to execute the command to be transmitted to a software
component executing in the VM instance, the software component configured to
process the request and cause the command to be executed in the VM instance in

response to receiving the request.

2. The non-transitory computer-readable storage medium of claim 1,
having further computer-executable instructions stored thereupon to log the execution

of the command in the VM instance.

3. The non-transitory computer-readable storage medium of claim 1 or
claim 2, wherein the API further comprises a method for requesting the data identifying

the command available for execution within the VM instance.

4. The non-transitory computer-readable storage medium of claim 3,
having further computer-executable instructions stored thereupon to:
receive a call to the method for requesting data identifying the command

available for execution within the VM instance; and

28

2016235759 26 Sep 2018

10

15

20

25

30

cause a request to be transmitted to the software component executing in the
VM instance for the data identifying the command available for execution within the

VM instance.

5. The non-transitory computer-readable storage medium of claim 3,
having further computer-executable instructions stored thereupon to:

cause a request to be transmitted to the software component executing in the
VM instance for the data identifying the command available for execution within the
VM instance;

receive the data identifying the command available for execution within the VM
instance;

store the data identifying the command available for execution within the VM
instance in a cache; and

utilize the data identifying the command available for execution within the VM
instance stored in the cache to respond to the call to the method requesting data

identifying the command available for execution within the VM instance.

6. The non-transitory computer-readable storage medium of any one of
claims 3 to 5, wherein the call to the method for executing the command within the VM
instance is generated in response to a selection of a user interface control for executing
the command presented in a user interface (UI) that is configured to display the data
identifying the command available for execution within the VM instance and the user

interface control.
7. The non-transitory computer-readable storage medium of any one of
claims 1 to 6 wherein the API further comprises a method for obtaining a status of

execution of the command within the VM instance.

8. The non-transitory computer-readable storage medium of claim 7,

having further computer-executable instructions stored thereupon to:

29

2016235759 26 Sep 2018

10

15

20

25

30

receive a call to the method for obtaining the status of the execution of the
command within the VM instance; and
cause a request to be transmitted to the software component executing in the

VM instance for the status of the execution of the command within the VM instance.

9. The non-transitory computer-readable storage medium of any one of
claims 1 to 8, wherein the API further comprises a method for requesting the data

identifying the command available for execution within the VM instance.

10. The non-transitory computer-readable storage medium of claim 9, having
further computer-executable instructions stored thereupon to:

receive a call to the method for requesting data identifying the command
available for execution within the VM instance; and

cause a request to be transmitted to the software component executing in the
VM instance for the data identifying the command available for execution within the

VM instance.

11. A computer-implemented method for executing a command within a
virtual machine (VM) instance, comprising:

receiving, from the VM instance, data identifying a list of commands available
for execution within the VM instance;

storing the data identifying the list of commands available for execution within
the VM instance in a cache outside of the VM instance;

exposing an application programming interface (API) comprising a method for
executing a command within a VM instance executing within the service provider
network, the command being specified in the cache;

receiving a call to the method for executing the command within the VM
instance; and

causing a request to execute the command to be transmitted to a software

component executing in the VM instance, the software component configured to

30

2016235759 26 Sep 2018

10

15

20

25

process the request and cause the command to be executed in the VM instance in

response to receiving the request.

12. The computer-implemented method of claim 11, wherein the API
further comprises a method for requesting the data identifying the list of commands that

can be executed within the VM instance.

13. The computer-implemented method of claim 11 or 12, wherein the API
further comprises a method for obtaining a status of the execution of the command
within the VM instance, and wherein the computer-implemented method further
comprises:

receiving a call to the method for obtaining the status of execution of the
command within the VM instance; and

in response to receiving the call to the method for obtaining the status of
execution of the command within the VM instance, causing a request to be transmitted
to the software component executing in the VM instance for the status of the execution

of the command within the VM instance.

14. The computer-implemented method of any one of claims 11 to 13,
further comprising determining whether a user associated with the call to the method
for executing the command is authorized to perform the command prior to causing the
request to execute the command to be transmitted to the software component executing

in the VM instance.

15. The computer-implemented method of any one of claims 11 to 14,
wherein the command comprises one or more of a command for flushing a cache, a
command for performing a backup operation, a command for configuring the VM

instance, or a command for performing a test on the VM instance.

31

PCT/US2016/022686

WO 2016/153881

1/8

.

P L L T T

701 W
... MGOMIAN ¥IGIAGEd IOIAGTS ™ T T
Jo I0IAY3S ONILNAWOD aNvw3a-No 7T 3
w 271 S3JING3IS ANY1d TOHLNOD m
m ¥3LNdWNOO LSOH + 300 ~T |~ m
m JOINY3S 3OING3S b ocl :
m $ 801 v/0L ¢7¢% | NOILVZIHOHLNY | | NOILYOILNIHLNY m
m o (/- { _ m
m ¥3LNdNOD LSOH 7] H m
: 7 oLl
; |.w HIOVNVIN SONVLSNI < JHOVO ﬂ ;
m ANVININOD = M
SLdI¥0S aNvINNOD S 8vzt oLl | FOIAN
P £ anvawoo | i
m 3714 NOILVHNOIANOD gccl (1dV) I0V443LNI \\. ". m
; ONININYHOONd 4 | m
; » INIOV IHVMLI0S Yauz, MIOVNYI NOILYOITddY :
: JOING3S 93N .-’ JOV4d3LNI m
JFONVLSNI ANIHOVIN TYNLAHIA J M Tonmas €1 7 orang auifl azen m
3 N (3T0SNOD '
m ° g90} M _ ININIOVNVI
: LI "
“ S1dI¥0S anviawod | A~ 8H Adde m
m vrel . z/
; 3714 NOILYENDIANOD | __t1~vzz) “ m
» LINIOV IHYML40S T—T1 [Vozl Okl M
FONVLSNI INIHOVI IVNLYIA L+ o0 M

A Y Y Y Y LY Y T Y Py Y L L L T e Y Y Y Y Yy Y Y Y Y LY g

WO 2016/153881

2/8

EXECUTED WITHIN A VM INSTANCE

(START)

I

EXPOSE PUBLIC WEB SERVICE API THAT
INCLUDES A METHOD FOR OBTAINING
THE LIST OF COMMANDS THAT CAN BE

EXECUTED WITHIN A VM INSTANCE

|

RECEIVE A CALL TO THE METHOD FOR)

THAT CAN BE EXECUTED WITHIN A VM

OBTAINING THE LIST OF COMMANDS

INSTANCE

v

THE INSTANCE MANAGER ON THE HOST

CAUSE REQUEST FOR LIST OF h
COMMANDS TO BE TRANSMITTED TO

EXECUTING THE VM INSTANCE

|

PCT/US2016/022686

OBTAIN LIST OF COMMANDS THAT CAN BE

202

204

206

INSTANCE MANAGER TRANSMITS \/\208

REQUEST FOR THE LIST OF
COMMANDS TO THE SOFTWARE
AGENT EXECUTING IN THE VM
INSTANCE

|

SOFTWARE AGENT EXECUTING IN THEN

VM INSTANCE RETURNS THE LIST OF 210
COMMANDS IN RESPONSE TO THE
REQUEST
N
RETURN LIST OF COMMANDS IN 212

RESPONSE TO THE API CALL

v

FIG. 2

G =

/200

WO 2016/153881 PCT/US2016/022686

3/8

EXECUTE A COMMAND WITHIN A VIRTUAL
MACHINE INSTANCE

(START) [300

EXPOSE PUBLIC WEB SERVICE API THAT[" 30
INCLUDES A METHOD FOR EXECUTING

A COMMAND WITHIN A VM INSTANCE

v

RECEIVE A CALL TO THE METHOD FOR T 304
EXECUTING A COMMAND WITHIN A VM
INSTANCE

v

PERFORM AUTHENTICATION AND/OR \/})06
AUTHORIZATION TO DETERMINE IF
REQUESTING USER IS AUTHORIZED TO
(31 0 PERFORM THE REQUESTED COMMAND

)

RETURN ERROR

EXECUTE
COMMAND?

TRANSMIT REQUEST TO EXECUTE \-/\31 2
COMMAND TO INSTANCE MANAGER ON
HOST EXECUTING THE VM INSTANCE

v

INSTANCE MANAGER TRANSMITS A ‘~/\3 4
REQUEST TO EXECUTE THE COMMAND 1
TO THE SOFTWARE AGENT ON THE VM

L

SOFTWARE AGENT CAUSES THE ‘-/‘31 6
COMMAND TO BE EXECUTED

L 2
SOFTWARE AGENTRETURNS AN ID Y~
ASSOCIATED WITH THE EXECUTION OF 318
THE COMMAND

ID IS RETURNED IN RESPONSE ‘—/320
TO THE API CALL

L E*D Y

FIG. 3

WO 2016/153881

PCT/US2016/022686

4/8

OBTAIN STATUS OF COMMAND EXECUTING
WITHIN A VIRTUAL MACHINE INSTANCE

(START)
!

INCLUDES A METHOD FOR OBTAINING
THE STATUS OF A COMMAND EXECUTED
WITHIN A VIRTUAL MACHINE INSTANCE

|

RECEIVE A CALL TO THE METHOD FOR™
OBTAINING THE STATUS OF A COMMAND
EXECUTED WITHIN A
VIRTUAL MACHINE INSTANCE

v

TRANSMIT A REQUEST TO THE INSTANCE)

MANAGER ON THE HOST EXECUTING THE

VIRTUAL MACHINE FOR THE STATUS OF
THE COMMAND

v

REQUEST TO THE SOFTWARE AGENT
EXECUTING IN THE VIRTUAL MACHINE
INSTANCE FOR THE STATUS OF THE
COMMAND

|

STATUS OF THE COMMAND / OUTPUT OF
THE COMMAND TO THE INSTANCE
MANAGER

v

COMMAND AND/OR THE OUTPUT OF THE
COMMAND IS RETURNED IN RESPONSE
TO THE CALL TO THE METHOD

v

/ 400

EXPOSE PUBLIC WEB SERVICE API THAT"-/-?‘O2

404

406

INSTANCE MANAGER TRANSMITS A <

408

SOFTWARE AGENT RETURNS THE {__~

410

DATA INDICATING THE STATUS OF THE {__~—

412

END }/\
(414

FIG.4

PCT/US2016/022686
5/8

WO 2016/153881

.
[}
[]
[]
[]
[)
]
[]
[]
[)
]
[]
[)
)
]
[]
[)
[]
[]
[]
[)
[]
[]
[]
[)
[]
[]
[]
[)
[]
[]
[]
[)
[]
[]
[]
[)
[]
]

o

: MHOMLIN :

w d3dINOYd IOING3S lf\nlNO l
WS wainaoviva e G ‘94

°

: L

w)

205

005
Ov0S i N ¥3LN3D VLva A

/

30IA3A
ONILNdINOD

av0og

~ d31IN30 Vv1ivd

V05

d31N30 Vivd <

PCT/US2016/022686

WO 2016/153881

6/8

9 Ol

AHJOML3AN
<m~7\mm§SAuh

]

_~"4209

¥31NdINOD ¥IANYIS 90s__IH L
H3OVNVIN D
304N0OS3 o109
—>
310SNOD INIWIOVYNYIN ._.A\} HoNNOSTY
chh ¥3LNdINOD
ERINYEES QC09_A yanu3s
ONILNINOD ANYWIANO JL—)
:l\} \ 4
3209
909 LK L = L
H3OVNVIN H3OVNVIN Y
304N0S3Y WHOMLIN 304NOS3Y av09
304dN0S3d V3dVv 1vOO1 304N0S3d
¥31NdINOD P ¥31NdINOD
¥3IAYIS Av09 9209_~ ¥3IAY3S
909
+ acoe
909 [~ 5 909_J1 —
H3OVNVIN H3OVNVYIN L~
304N0OS3Y 304dN0OSs3d .\<VO©
- >
304dN0OS3d 304dNOSs3d
¥31NdINOD . v0S vZ09_~ ¥3LNdINOD
¥3NY3S Maros y3IN3D vLva Y3INY3S

PCT/US2016/022686

WO 2016/153881

7/8

HNO_‘

MHYOMLAN ¥IAINOYd IINYIS ;
m 30IAY3S m
t | S301NY3S ¥IHLO .
920/_i AHdVHOOLdAYD “
: ,.\m/oNE
H_NE(W\, w
: 30IAY3S m
i | FonuIsNSVL ININAOIIAT m
40,
320, |
=T 2onaas I0INYTS m
N IINEERYINT "
" 3OVHOLS .
; A2170d BN
: i V20L
ozh i :
1 o | s |
i | NOILYOILNIHLNY) "
“ ONYWIANO | 4
: Hp

WO 2016/153881

8/8

PCT/US2016/022686

606
816)
8127~ k4 (
NETWORK INPUT/
INTERFACE OUTPUT
802 CONTROLLER CONTROLLER
¥ 2 806
AN
CHIPSET
) 3 ¥ $ 814
—
STORAGE
CPUS) || RAM | | ROM || - SNTROLLER
3 3 3
(/ (/ (/ A
804 808 810 l
800 — \<~8)8
_/ 820
y)
OPERATING SYSTEM
822

PROGRAMS

N~

FIG. 8

