
(12) STANDARD PATENT (11) Application No. AU 2016235759 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Executing commands within virtual machine instances

(51) International Patent Classification(s)
G06F9/50 (2006.01)

(21) Application No: 2016235759 (22)

(87) WIPO No: WO16/153881

(30) Priority Data

(31) Number (32) Date
14/664,135 2015.03.20

(43) Publication Date: 2016.09.29
(44) Accepted Journal Date: 2018.11.01

(71) Applicant(s)
Amazon Technologies, Inc.

(72) Inventor(s)
King, Wesley Gavin

Date of Filing: 2016.03.16

(33) Country
US

(74) Agent / Attorney
FB Rice Pty Ltd, Level 23 44 Market Street, Sydney, NSW, 2000, AU

(56) Related Art
Sun Microsystems, "The Sun Cloud API", published on 14 April 2014 as
per Wayback Machine [viewed on internet on 24 April 2018]< URL: https://
web.archive.org/web/20150619133556/https://kenai.com/projects/suncloudapis/
pages/Home >

_URL:_https://web.archive.org/web/20150619133556/https://kenai.com/projects/suncloudapis/pages/Home_
_URL:_https://web.archive.org/web/20150619133556/https://kenai.com/projects/suncloudapis/pages/Home_
_URL:_https://web.archive.org/web/20150619133556/https://kenai.com/projects/suncloudapis/pages/Home_

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

Organization
International Bureau

(43) International Publication Date
29 September 2016 (29.09.2016) WIPOIPCT

(51) International Patent Classification:
G06F9/50 (2006.01)

(21) International Application Number:
PCT/US2016/022686

(22) International Filing Date:
16 March 2016 (16.03.2016)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
14/664,135 20 March 2015 (20.03.2015) US

(71) Applicant: AMAZON TECHNOLOGIES, INC.
[US/US]; PO Box 81226, Seattle, WA 98108-1226 (US).

(72) Inventor: KING, Wesley, Gavin; 410 Terry Avenue
North, Seattle, WA 98109-5210 (US).

(74) Agent: KRUGER, Damon, J.; Lee & Hayes, PLLC, 601
W. Riverside Ave, Suite 1400, Spokane, WA 99201 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available)·. AE, AG, AL, AM,

(10) International Publication Number
WO 2016/153881 Al

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available)·. ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

(54) Title: EXECUTING COMMANDS WITHIN VIRTUAL MACHINE INSTANCES

W
O

 20
16

/1
53

88
1 A

l

ON-DEMAND COMPUTING SERVICE

SERVICE PROVIDER NETWORK

(57) Abstract: Technologies are disclosed herein for executing commands within virtual machine ("VM") instances. A public web
service application programming interface ("API") is exposed within a service provider network that includes methods relating to the
execution of commands within VM instances. For example, the API might include a method for obtaining a list of the commands
that can be executed within a VM instance. The API might also include a method for requesting the execution of a command within
a VM instance. The API might also include a method for requesting data describing the status of the execution of a command within
a VM instance. The API might also expose other methods. A software agent executing on a VM instance may be utilized to provide
a list of commands that can be executed in the VM, to execute requested commands, and to provide data describing the status of exe -
cution of a command.

20
16

23
57

59

26
 Se

p 2
01

8

EXECUTING COMMANDS WITHIN VIRTUAL MACHINE INSTANCES

CROSS REFERENCE TO RELATED APPLICATION

[0001] This patent claims priority to U.S. Application Serial No. 14/664,135, entitled

5 "Executing Commands Within Virtual Machine Instances," filed on 20 March 2015, the

entirety of which application is incorporated herein by reference.

[0001A] Throughout this specification the word "comprise", or variations such as

"comprises" or "comprising", will be understood to imply the inclusion of a stated

element, integer or step, or group of elements, integers or steps, but not the exclusion of

10 any other element, integer or step, or group of elements, integers or steps.

[000IB] Any discussion of documents, acts, materials, devices, articles or the like

which has been included in the present specification is not to be taken as an admission

that any or all of these matters form part of the prior art base or were common general

knowledge in the field relevant to the present disclosure as it existed before the priority

15 date of each of the appended claims.

[0001C] According to a first aspect, the present invention provides a non-transitory

computer-readable storage medium having computer-executable instructions stored

thereupon which, when executed by a computer, cause the computer to:

expose a public web service application programming interface (API)

20 comprising a method for executing a command within a virtual machine (VM) instance,

the command being specified in data identifying a list of commands available for

execution within the VM instance and identifying program code for performing each of

the commands;

receive a call to the method for executing the command within the VM instance;

25 and

cause a request to execute the command to be transmitted to a software component

executing in the VM instance, the software component configured to process the

request and cause the command to be executed in the VM instance in response to

receiving the request.

1

20
16

23
57

59

26
 Se

p 2
01

8

[000ID] According to a second aspect, the present invention provides a computer-

implemented method for executing a command within a virtual machine (VM)

instance, comprising:

5 receiving, from the VM instance, data identifying a list of commands available

for execution within the VM instance;

storing the data identifying the list of commands available for execution within

the VM instance in a cache outside of the VM instance;

exposing an application programming interface (API) comprising a method for

10 executing a command within a VM instance executing within the service provider

network, the command being specified in the cache;

receiving a call to the method for executing the command within the VM

instance; and

causing a request to execute the command to be transmitted to a software

15 component executing in the VM instance, the software component configured to

process the request and cause the command to be executed in the VM instance in

response to receiving the request.

BACKGROUND

20 [0002] Network-based service provider networks exist that allow customers to purchase

and utilize various types of computing resources on a permanent or as-needed basis.

For example, a service provider network may permit customers to purchase and utilize

computing resources such as virtual machine ("VM") instances, data storage resources,

database resources, networking resources, network services, and other types of

25 computing resources. Customers may configure the computing resources provided by a

service provider network to implement desired functionality, such as to provide a

network-based application or another type of functionality.

[0003] Managing computing resources provided by a service provider network such as

those described above can be complex and time consuming. For example, and without

30 limitation, in order to execute commands within a VM instance, it may be necessary for

users to remotely login to the VM instance in order to perform the desired command.

IA

20
16

23
57

59

26
 Se

p 2
01

8

This process can be very time consuming, especially where the command is to be

executed in more than one VM instance.

[0004] The disclosure made herein is presented with respect to these and other

considerations.

5

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 is a system architecture diagram showing aspects of the configuration

and operation of a service provider network that is configured to provide functionality

for executing commands within VM instances;

10 [0006] FIG. 2 is a flow diagram showing an illustrative routine for obtaining a list of

commands that can be executed within a VM instance;

[0007] FIG. 3 is a flow diagram showing an illustrative routine for executing a

command within a VM instance;

IB

WO 2016/153881 PCT/US2016/022686

[0008] FIG. 4 is a flow diagram showing aspects of an illustrative routine disclosed

herein for obtaining the status of a command executing, or that has completed execution,

within a VM instance;

[0009] FIG. 5 is a system and network diagram that shows an illustrative operating

environment that includes a service provider network that may be configured to implement

aspects of the functionality described herein;

[0010] FIG. 6 is a computing system diagram illustrating a configuration for a data center

that may be utilized to implement aspects of the technologies disclosed herein;

[0011] FIG. 7 is a system and network diagram that shows aspects of several services that

might be provided by and utilized within a service provider network in one configuration

disclosed herein; and

[0012] FIG. 8 is a computer architecture diagram showing an illustrative computer

hardware architecture for implementing a computing device that might be utilized to

implement aspects of the various technologies presented herein.

DETAILED DESCRIPTION

[0013] The following detailed description is directed to technologies for executing

commands within a VM instance. The disclosure presented herein also includes technologies

for discovering the commands that can be executed within a VM instance and for obtaining

information indicating the status of a command that is executing, or that has completed

execution, within a VM instance. Through an implementation of these technologies, users of

an on-demand computing service provided by a service provider network can quickly and

easily execute commands within VM instances without having to remotely login to the VM

instances.

[0014] As discussed briefly above, the various technologies disclosed herein may be

implemented in a service provider network. A service provider network may permit

customers to purchase and utilize computing resources (which may be referred to herein as

“resources”) such as VM instances, data storage resources, database resources, networking

resources, network services, and other types of computing resources. In order to support the

functionality disclosed herein, VM instances executing in the service provider network may

be configured with a software agent, such as a daemon or other type of background process,

that is configured to receive and respond to requests for data, such as a list, identifying the

commands that can be executed in a particular instance, to execute a command, and to

provide data indicating the status of the execution of a command. In order to perform these

2

WO 2016/153881 PCT/US2016/022686

functions, a configuration file might also be maintained that identifies the available

commands for an instance and that specifies a script or other type of program code for

performing each of the commands. The configuration file and the scripts or other types of

programs might be stored at the VM instance or in another location.

[0015] A public web service application programming interface (“API”) might also be

exposed within the service provider network in some configurations that provides methods

relating to the execution of commands within a VM instance. For example, in one

configuration the API includes a method for requesting data identifying the commands that

may be executed within a VM instance. In response to receiving a call to the method for

requesting data identifying the commands that can be executed within the VM instance, a

request is transmitted to the software agent executing on the VM instance for the data

identifying the commands that can be executed. An instance manager executing on the host

computer executing the VM instance may receive the request and pass the request to the

software agent in some configurations. In turn, the software agent is configured to return

data identifying the commands that can be executed on the VM instance. The data may be

utilized to populate a user interface (“UI”) configured to display UI controls for executing the

commands in response to user selection and/or in other ways.

[0016] In some configurations, calls may be made periodically to the method for

requesting data identifying the commands that may be executed within a VM instance. The

data identifying the commands may be received and stored in a cache. When calls are

subsequently received to the method, the data stored in the cache may be utilized rather than

making a request to the software agent on the VM instance. In this way, the data identifying

the commands that can be executed in a VM instance can be obtained and returned in

response to a request faster than if a call were to be made to the software agent executing in

the VM instance.

[0017] The API also includes a method for executing commands within a VM instance.

In response to a call to the method for executing a command within a VM instance, a request

is transmitted to the software agent executing on the VM instance to execute the requested

command. In turn, the software agent is configured to execute the identified command by

performing the associated script or other type of program code. The software agent might

also be configured to return a unique identifier (“ID”) associated with the command in

response to the request. As will be described in greater detail below, the ID may be utilized

to obtain information describing the status of the execution of the command and/or the output

of the execution of the command. In some configurations, various authentication and/or

3

WO 2016/153881 PCT/US2016/022686

authorization processes may be performed to ensure that a user associated with a request is

authorized to perform a requested command on a particular VM instance. Other types of

security checks might also be made prior to executing a command within a VM instance.

[0018] In some configurations, the API also includes a method for obtaining data

describing the status of the execution of a command within a VM instance. A call to this

method may include the ID provided by the software agent at the time the request to execute

the command was made. In response to receiving a call to this method, a request is

transmitted to the software agent executing on the VM instance upon which the command

was executed. The request may include the ID associated with the command. In response

thereto, the software agent executing on the VM instance is configured to obtain and return

data indicating the status of the execution of the command. For example, and without

limitation, the data might indicate whether execution is in progress or has completed and, if

completed, whether execution was successful or failed. The returned data might also include

the output of the execution of the command in some configurations.

[0019] Using an implementation of the mechanisms described above, various types of

commands can be executed within a VM instance without requiring a user to login to the VM

instance. For example, and without limitation, commands can be executed for restarting a

process on a VM instance, for flushing a cache, for performing a backup operation, for

configuring the VM instance, and/or for performing a test on the VM instance. Other types

of commands can also be executed. Additional details regarding the various components and

processes described briefly above will be presented below with regard to FIGS. 1-8.

[0020] It should be appreciated that the subject matter presented herein may be

implemented as a computer process, a computer-controlled apparatus, a computing system, or

an article of manufacture, such as a computer-readable storage medium. While the subject

matter described herein is presented in the general context of program modules that execute

on one or more computing devices, those skilled in the art will recognize that other

implementations may be performed in combination with other types of program modules.

Generally, program modules include routines, programs, components, data structures, and

other types of structures that perform particular tasks or implement particular abstract data

types.

[0021] Those skilled in the art will also appreciate that aspects of the subject matter

described herein may be practiced on or in conjunction with other computer system

configurations beyond those described herein, including multiprocessor systems,

microprocessor-based or programmable consumer electronics, minicomputers, mainframe

4

WO 2016/153881 PCT/US2016/022686

computers, handheld computers, personal digital assistants, e-readers, mobile telephone

devices, tablet computing devices, special-purposed hardware devices, network appliances,

and the like. As mentioned briefly above, the configurations described herein may be

practiced in distributed computing environments, such as a service provider network, where

tasks may be performed by remote computing devices that are linked through a

communications network. In a distributed computing environment, program modules may be

located in both local and remote memory storage devices.

[0022] In the following detailed description, references are made to the accompanying

drawings that form a part hereof, and that show, by way of illustration, specific

configurations or examples. The drawings herein are not drawn to scale. Like numerals

represent like elements throughout the several figures (which may be referred to herein as a

“FIG.” or “FIGS ”).

[0023] FIG. 1 is a system architecture diagram showing aspects of the configuration and

operation of a service provider network 102 that is configured to provide functionality for

executing commands within VM instances 106. The service provider network 102 is a

distributed network through which customers and/or other users can utilize computing

resources, such as VM instances 106 and/or other types of computing resources, on a

permanent or as-needed basis.

[0024] Each type or configuration of a computing resource may be available from the

service provider network 102 in different sizes. For example, a service provider might offer

physical hosts, VM instances 106 or other types of data processing resources that are

available for purchase and use that have many different configurations of processor

capabilities, main memory, disk storage, and operating system. A service provider operating

the service provider network 102 might also offer other types of resources for purchase and

use by customers. For example, a service provider might offer virtual or hardware devices,

database resources and instances, file or block data storage resources, and/or networking

resources, such as load balancing resources, domain name service (“DNS”) resources, virtual

private cloud (“VPC”) resources, virtual local area network (“VLAN”) resources, and/or

other types of hardware and software computing resources or services 106 on a permanent or

as-needed basis. The resources might also include, but are not limited to, VM instances 106

and images, security groups, option groups, gateways, option sets, network access control

lists (“ACLs”), subnets, storage buckets, network interfaces, snapshots, spot market requests,

and storage volumes.

[0025] The service provider operating the service provider network 102 might also

5

WO 2016/153881 PCT/US2016/022686

charge a fee for utilization of the resources to a customer that creates and uses the resources.

The fee charged for a particular computing resource might be based upon the type and/or

configuration of the computing resource. For example, in the case of a data processing

computing resource, like a VM instance 106, the fee for use of the computing resource might

be charged based upon the amount of time the computing resource is utilized. In the case of a

data storage computing resource, the fee might be computed based upon the amount of data

stored and/or the amount of data transferred into or out of the computing resource. The fees

for other types of resources might also be based upon other considerations. A service

provider might also utilize various purchasing models to determine the amount to charge a

customer for use of resources provided by the service provider network 102.

[0026] The resources described above may be provided in one particular implementation

by one or more data centers operated by the service provider. As known to those skilled in

the art, data centers are facilities utilized to house and operate computer systems and

associated components. Data centers also typically include redundant and backup power,

communications, cooling, and security systems. The data centers might be located in

geographically disparate regions, and might also be connected to various other facilities, such

as co-location facilities, and various wide area networks (“WANs”), such as the Internet.

[0027] The resources described briefly above might also be provisioned and de-

provisioned as needed in an automated fashion. For example, the service provider network

102 might be configured to instantiate a new instance of a computing resource, such as a VM

instance 106, in response to an increase in demand for a network service or other condition.

Other types of computing resources might also be provisioned and de-provisioned in a similar

manner. Services in the service provider network 102 might also provide functionality for

automatically scaling and/or de-scaling resources based upon demand for the resources

and/or other factors.

[0028] A customer or potential customer of the service provider network 102 might

utilize an appropriate computing system (not shown in FIG. 1) to communicate with the

service provider network 102 over an appropriate data communications network (also not

shown in FIG. 1). In this way, a customer of the service provider network 102 can configure

various aspects of the operation of the computing resources provided by the service provider

network 102, or to otherwise control any computing resources being utilized by the customer.

For example, and without limitation, a computing system utilized by a customer of the

service provider network 102 might be utilized to purchase computing resources in the

service provider network 102, to configure aspects of the operation of the computing

6

WO 2016/153881 PCT/US2016/022686

resources through a management console 114 or other type of interface, to access and utilize

functionality provided by the various services and systems described herein, and/or to

perform other types of functionality with regard to the operation of the computing resources

provided by the service provider network 102.

[0029] A customer computing system might be any type of computing device capable of

connecting to the service provider network 102 via a suitable data communications network

such as, but not limited to, a laptop or desktop computer, a tablet computing device, a server

computer, or a mobile telephone. Administrative users employed by the operator of the

service provider network 102, such as administrators managing the operation of the service

provider network 102, might also connect with, manage, and utilize resources provided by the

service provider network 102 in a similar fashion.

[0030] As discussed briefly above, the service provider network 102 might also be

configured to provide various types of network services for use internally and by customers.

For example, and without limitation, the service provider network 102 may provide an on-

demand computing service 104 for providing VM instances 106 on-demand, a data storage

service for storing data, a cryptography service, a notification service, an authentication

service, a policy management service, a task service and, potentially, other types of network-

accessible services 106. These and other services and their associated resources may be

utilized together to implement various types of network-based applications in the service

provider network 102. Additional details regarding one implementation of the service

provider network 102 and the various types of network services that might be provided by the

service provider network 102 will be discussed below with regard to FIGS. 5-8.

[0031] As shown in FIG. 1 and discussed briefly above, an on-demand computing service

104 is utilized in some configurations to provide the VM instances 106. For instance, in the

example shown in FIG.l, the on-demand computing service 104 is providing two VM

instances 106A and 106B that are executing on the same host computer 107A. In this regard,

it should be appreciated that the configuration shown in FIG. 1 has been simplified for

discussion purposes and that many other host computers 107 may be utilized to provide many

other VM instances 106 in a similar fashion. For example, and without limitation, a host

computer 107B might be utilized to provide additional VM instances 106. As discussed

above, the VM instances 106 might also be provisioned and/or de-provisioned based upon

demand and/or other factors.

[0032] As also shown in FIG. 1, the host computer 107A is configured with an instance

manager 108 in some configurations. The instance manager 108 is a software component

7

WO 2016/153881 PCT/US2016/022686

that executes external to the VM instances 106A and 106B. The instance manager 108

provides functionality for enabling communication with the VM instances 106A and 106B on

a particular host computer 107A. More particularly, a software agent 120 is executed within

each VM instance 106 in some configurations. For instance, in the example shown in FIG. 1,

the VM instance 106A is executing the software agent 120A and the VM instance 106B is

executing the software agent 120B. The software agent 120B might be implemented as a

daemon or other type of background process that listens on an assigned port for

communications from the instance manager 107. The software agent 120 might be

implemented as another type of software component in other configurations.

[0033] A configuration file 122 and one or more command scripts 124 are also

provisioned to each VM instance 106 in one configuration. For instance, in the example

shown in FIG. 1, a configuration file 122A and command scripts 124A have been provisioned

to the VM instance 106A and a configuration file 122B and command scripts 124B have been

provisioned to the VM instance 106B. The configuration file 122 provides a list of the

commands that can be executed within each VM instance 106. The configuration file 122

also identifies, for each command, a command script 124 that is to be executed when a

request to execute the associated command is received by the software agent 120. In this

regard, it should be appreciated that the commands might be implemented by other types of

program code other than scripts. For example, and without limitation, the commands might

be implemented by compiled program code, interpreted program code, and/or other types of

program code in other configurations. It should also be appreciated that the list of commands

set forth in the configuration file 122A can be edited by an authorized user to provide a

custom list of commands that can be performed on a particular VM instance 106.

[0034] It should also be appreciated that the configuration file 122 and the command

scripts 124 (or other types of program code) might be stored in a location other than within a

VM instance 106 in other configurations. For example, and without limitation, the

configuration file 122 and the command scripts 124 (or other types of program code) might

be stored in a database or other type of network accessible location for use by the VM

instances 106. Moreover, in some configurations a VM instance 106 may be configured to

operate without the use of a configuration file 122. In these configurations, the command

scripts 124 (or other type of program code) might be stored in a data store external to the VM

instance 106. When a request to execute a command is received, the software agent 120 may

retrieve the command script 124 (or other type of program code) to be executed from the data

store without consulting the configuration file 122. Other implementations might also be

8

WO 2016/153881 PCT/US2016/022686

utilized.

[0035] In order to instantiate VM instances 106 that include the software agent 120, the

configuration file 122, and the command scripts 124 (or other type of program code), VM

images may be created in advance that include these components. The VM images may then

be utilized to instantiate VM instances 106 that are appropriately configured with the

software components described above. The VM images might be created by an operator of

the service provider network 102, a customer of the service provider network 102, a

developer, and/or another entity.

[0036] As shown in FIG. 1, a public web service application programming interface

(“API”) 110 might also be exposed within the service provider network 102 in some

configurations that provides methods 111 relating to the execution of commands within a VM

instance 106. For example, in one configuration the API 110 includes a method 111A for

requesting data identifying the commands that may be executed within a particular VM

instance 106. Various components operating within the service provider network 102 may

call the API 110. For example, and without limitation, a management console 112 may be

utilized that provides a user interface (“UI”) for managing the operation of the VM instances

106. The data identifying the commands that can be executed within a VM instance 106 may

be utilized to generate UI controls within the UI 114 for executing the commands in response

to user selection and/or in other ways. As shown in FIG. 1, the methods 111 exposed by the

API 110 might be called by other components, such as through a command line interface

(“CLI”) 116 operating within the service provider network 102.

[0037] In response to receiving a call to the method 111A for requesting data identifying

the commands that can be executed within the VM instance, a request is transmitted to the

software agent 120 executing on the VM instance 106 for the data identifying the commands

that can be executed. For example, and without limitation, in one configuration the API 110

transmits a request to a service manager 118. In turn, the service manager 118 transmits a

request for the available commands to the instance manager 108 executing on the same host

computer 107 as the VM instance 106 for which the list of commands is desired. The

instance manager 108 receives the request and passes the request to the software agent 120

executing within the VM instance 106. In turn, the software agent 120 reads the available

commands from the configuration file 122 and returns data identifying the available

commands to the instance manager 108. The instance manager 108 returns the available

commands to the service manager 118 which, in turn, returns the commands to the API 110.

The data identifying the available commands may then be returned in response to the call to

9

WO 2016/153881 PCT/US2016/022686

the method 111 A, such as to the management console 112 or the CLI 116.

[0038] In some configurations, the service manager 118 or another component may be

configured to periodically call the request the list of available commands from the VM

instances 106 through the mechanism described above. The service manager 118 may

receive the data identifying the commands and store the data in a cache, such as the command

cache 124 illustrated in FIG. 1. When calls are subsequently received to the method 111A,

the service manager 118 may return the data identifying the available commands that was

previously stored in the cache rather than making a request to the software agent 120 on the

VM instance 106. In this way, the data identifying the commands that can be executed in a

VM instance 106 can be obtained and returned in response to a call to the method 111A faster

than if a call were to be made to the software agent 120 executing in the VM instance 106.

Other configurations might also be utilized in other implementations. Additional details

regarding the operation of the method 111A will be provided below with regard to FIG. 2.

[0039] The API 110 also includes a method 11 IB for executing commands within a VM

instance 120. In response to a call to the method 11 IB for executing a command within a

VM instance 120, the API 110 transmits a request to the service manager 118 to execute the

specified command on the identified VM instance 106. In turn, the service manager 118

transmits a request to the instance manager 108 executing on the host computer 107

executing the VM instance 106 in which the specified command is to be executed. In

response thereto, the service manager 108 then transmits a request to the software agent 120

executing within the VM instance 106 in which the command is to be executed.

[0040] The software agent 120 receives the request to execute the command from the

instance manager 108. In one configuration, the software agent 120 then examines the

configuration file 122 to identify the command script 124 (or other type of program code)

that corresponds to the requested command. Once the command script 124 associated with

the requested command has been identified, the software agent 120 causes the command

script 124A (or other type of program code for implementing the command) to be executed

within the VM instance 106.

[0041] As discussed briefly above, the software agent 120 might also be configured to

return a unique identifier (“ID”) associated with the executed command in response to the

request. For example, the software agent 120 might return the process ID for the executed

command script 124A or other type of program code. Other types of IDs might also be

utilized in other configurations. The ID is returned to the instance manager 108, which

returns the ID to the service manager 118. The service manager 118 may then return the ID

10

WO 2016/153881 PCT/US2016/022686

to the API which, in turn, returns the ID in response to the call to the method 11 IB. As will

be described in greater detail below, the returned ID may be subsequently utilized to obtain

information describing the status of the execution of the command and/or the output of the

execution of the command.

[0042] In some configurations, various authentication and/or authorization processes may

be performed to ensure that a user associated with a request to perform a command is

authorized to perform the requested command on a particular VM instance 106. For

example, and without limitation, the API 110 and/or the service manager 118 might call an

authentication service 120 and/or an authorization service 122 prior to executing a command

to verify that a user requesting execution of a command is authorized to perform the

command. Through this authentication mechanism, users may be authorized to perform

certain types of commands within a VM instance 106 even though the user may not be

authorized to remotely login to the VM instance 106. In this regard, it should be appreciated

that other types of security checks might also be made prior to executing a command within a

VM instance 106. Additional details regarding the operation of the method 11 IB for

executing a command within a VM instance 106 will be provided below with regard to FIG.

3.

[0043] In some configurations, the API 110 also includes a method 111C for obtaining

data describing the status of the execution of a command within a VM instance 106. As

discussed above, a call to the method 111C may include the ID provided by the software

agent 120 at the time the request to execute the command was made. In response to receiving

a call to this method, the API 110 transmits a request to the service manager 118 which, in

turn, transmits a request to the appropriate instance manager 108. The instance manager 108

transmits a request for the status of the command to the software agent 120 executing on the

VM instance 106 within which the command was executed. In response thereto, the software

agent 120 executing within the VM instance 106 obtains and returns data indicating the status

of the execution of the command. For example, and without limitation, the data might

indicate whether execution is in progress or has completed and, if completed, whether

execution was successful or failed. The returned data might also include the output of the

execution of the command in some configurations. Additional details regarding the operation

of the method 111C will be provided below with regard to FIG. 4.

[0044] As discussed briefly above, using an implementation of the mechanisms described

above various types of commands can be executed within a VM instance 106 without

requiring a user to login to the VM instance 106. For example, and without limitation,

11

WO 2016/153881 PCT/US2016/022686

commands can be executed for restarting a process on a VM instance 106, for flushing a

cache, for performing a backup operation, for configuring a VM instance 106, and/or for

performing a test on a VM instance 106. Other types of commands can also be executed.

[0045] It should be appreciated that the various methods 111 described above as being

exposed by the API 110 are merely illustrative and that other types of methods 111 might

also or alternatively be provided in other configurations. It should also be appreciated that

other services operating in the service provider network might also utilize the methods 111

exposed by the API 110. Services other than those shown in FIG. 1 that operate within the

service provider network 102 might also be utilized to implement the functionality provided

by the API 110.

[0046] FIG. 2 is a flow diagram showing an illustrative routine 200 for obtaining data,

such as a list, identifying the commands that can be executed within a particular VM instance

106. It should be appreciated that the logical operations described herein with respect to FIG.

2, and the other FIGS., may be implemented (1) as a sequence of computer implemented acts

or program modules running on a computing system and/or (2) as interconnected machine

logic circuits or circuit modules within the computing system.

[0047] The implementation of the various components described herein is a matter of

choice dependent on the performance and other requirements of the computing system.

Accordingly, the logical operations described herein are referred to variously as operations,

structural devices, acts, or modules. These operations, structural devices, acts, and modules

may be implemented in software, in firmware, in special purpose digital logic, and any

combination thereof. It should also be appreciated that more or fewer operations may be

performed than shown in the FIGS, and described herein. These operations may also be

performed in parallel, or in a different order than those described herein. Some or all of these

operations might also be performed by components other than those specifically identified.

[0048] The routine 200 begins at operation 202, where the public web service API 110 is

exposed within the service provider network 102. As discussed above, the API 110 includes

a method 1102A for obtaining data, such as a list, that describes the commands that can be

executed within a particular VM instance 106. From operation 202, the routine 200 proceeds

to operation 204, where a call is received to the method 111A for obtaining data describing

the commands that can be executed within a VM instance 106. For example, and without

limitation, the management console 112 and the CLI 116 might be utilized in various

configurations to make such a call to the method 111 A. Other components might be utilized

to make such a call in other configurations.

12

WO 2016/153881 PCT/US2016/022686

[0049] From operation 204, the routine 200 proceeds to operation 206, where the API

110 causes a request to be transmitted to the instance manager 108 on the host computer 107

executing the VM instance 120 for which the list of commands is to be obtained. As

discussed above, the service manager 118 is called in some configurations which, in turn,

calls the instance manager 108 on the appropriate host computer 107 for the list of

commands. The instance manager 108 transmits the request for the available commands to

the software agent 120 executing in the appropriate VM instance 106 at operation 208.

[0050] At operation 210, the software agent 106 receives the request for the available

commands from the instance manager 108 and identifies the available commands based upon

the contents of the configuration file 122 in one configuration. The software agent 106 then

returns data identifying the commands available for execution to the instance manager 108.

In turn, the instance manager 108 returns the available commands to the service manager 118,

which returns the list of commands to the API 110. In turn, the list of commands is returned

in response to the call to the method 111A at operation 212. The routine 200 then proceeds

from operation 212 to operation 214, where it ends. As discussed above, other mechanisms,

such as caching, might also be utilized to obtain and return the list of available commands

more quickly in other configurations.

[0051] FIG. 3 is a flow diagram showing an illustrative routine 300 for executing a

command within a VM instance 106. The routine 300 begins at operation 302, where the API

100 exposes a method 11 IB for executing a command within a VM instance 106 executing in

the service provider network 102. From operation 302, the routine 300 proceeds to operation

304, where a call is received to the method 11 IB for executing a command within a VM

instance 106. As discussed above, such a call might be made by the management console

112, the CLI 116, or another component.

[0052] From operation 304, the routine 300 proceeds to operation 306, where

authentication and/or authorization might be performed in order to verify that a user

associated with the request to execute the command is permitted to perform the command.

For example, and without limitation, the API 110 might call the authentication service 120

and/or the authorization service 122 to determine whether the user is permitted to execute the

command. If the user is not permitted to execute the command, the routine 300 may proceed

from operation 308 to operation 310, where an error may be returned. If, however, the user is

permitted to execute the command, the routine 300 may proceed from operation 308 to

operation 312.

[0053] At operation 312, the API 100 may cause a request to execute the command to be

13

WO 2016/153881 PCT/US2016/022686

transmitted to the instance manager 108 executing on the host computer 107 that is executing

the VM instance 106 in which the command is to be executed. In turn, the instance manager

108 transmits a request to execute the command to the appropriate software agent 120

executing in the VM instance 106 at operation 314. The software agent 120 utilizes the

configuration file 122 to identify the command script 124 (or other program component)

corresponding to the requested command at operation 318. The software agent 120 then

executes the identified command script 124 (or other program component).

[0054] From operation 316, the routine 300 proceeds to operation 318, where the

software agent 120 returns the ID associated with the execution of the command to the

instance manager 108. The instance manager 108 returns the ID to the service manager 118

which, in turn, returns the ID to the API 110. The ID can then be returned in response to the

call to the method 11 IB at operation 320. The routine 300 then proceeds from operation 320

to operation 322, where it ends.

[0055] It should be appreciated that, in some configurations, the execution of commands

and/or the results of execution may be logged by the software agent 120, the instance

manager 108, the API 110, and/or the service manager 118. In this way, a record can be kept

of the commands that were executed on each VM instance 106 and, potentially, the results of

execution. Other data regarding the calls to the API 110 and/or the execution of commands

on the VM instances 106 might also be captured and maintained in other configurations.

[0056] FIG. 4 is a flow diagram showing aspects of an illustrative routine 400 disclosed

herein for obtaining the status of a command executing, or that has completed execution,

within a VM instance 106. The routine 400 begins at operation 402, where the API 110

exposes a method 111C for obtaining the status of a command that has been executed within

a VM instance 106. From operation 402, the routine 400 proceeds to operation 404, where a

call is received to the method 111C to obtain the status of a command executed within a VM

instance 106. As discussed above, the management console 112, the CLI 116, and/or another

component may make such a call. Additionally, the call may include the ID that was returned

by the software agent 120 when the command was executed.

[0057] From operation 404, the routine 400 proceeds to operation 406, where a request is

transmitted via the service manager 118 to the instance manager 108 executing on the host

computer 107 containing the VM instance 106 within which the command was executed.

The routine 400 then proceeds from operation 406 to operation 408, where the instance

manger 108 transmits a request for the status of the execution of the command to the software

agent 120 in the VM instance 106 in which the command was executed. The routine 400

14

WO 2016/153881 PCT/US2016/022686

then proceeds to operation 410, where the software agent 120 returns the status of the

execution of the command to the instance manger 108. The status might indicate, for

example, that execution of the command was successful or that execution failed. The status

might also or alternately indicate other types of conditions. The status might also include a

text output of the execution of the command. The output of the execution of the command

might be presented in the UI 114, the CLI 116, and/or in another manner.

[0058] From operation 410, the instance manager 108 returns the data indicating the

status of the execution of the command to the service manager 118. The service manager

118, in turn, returns the data to the API 110, which returns the data in response to the call to

the method 111C. From operation 412, the routine 400 proceeds to operation 414, where it

ends.

[0059] FIG. 5 is a system and network diagram that shows one illustrative operating

environment for the configurations disclosed herein that includes a service provider network

102 that may be configured to provide functionality for performing commands within VM

instances 106 and related functionality in the manner described above, according to one

configuration disclosed herein. As discussed above, the service provider network 102 can

provide computing resources, like VM instances 106, on a permanent or an as-needed basis.

Among other types of functionality, the computing resources provided by the service

provider network 102 can be utilized to implement the various services described above. As

also discussed above, the computing resources provided by the service provider network 102

may include various types of computing resources, such as data processing resources like VM

instances 106, data storage resources, networking resources, data communication resources,

network services, and the like.

[0060] Each type of computing resource provided by the service provider network 102

may be general-purpose or may be available in a number of specific configurations. For

example, data processing resources may be available as physical computers or VM instances

106 in a number of different configurations. The VM instances 106 may be configured to

execute applications, including web servers, application servers, media servers, database

servers, some or all of the services described above, and/or other types of programs. Data

storage resources may include file storage devices, block storage devices, and the like. The

service provider network 102 might also be configured to provide other types of computing

resources not mentioned specifically herein.

[0061] The computing resources provided by the service provider network 102 are

enabled in one implementation by one or more data centers 504A-504N (which may be

15

WO 2016/153881 PCT/US2016/022686

referred herein singularly as “a data center 504” or in the plural as “the data centers 504”).

The data centers 504 are facilities utilized to house and operate computer systems and

associated components. The data centers 504 typically include redundant and backup power,

communications, cooling, and security systems. The data centers 504 might also be located

in geographically disparate locations. One illustrative configuration for a data center 504 that

might be utilized to implement the technologies disclosed herein will be described below

with regard to FIG. 6.

[0062] The customers and other users of the service provider network 102 may access the

computing resources provided by the service provider network 102 over a network 502,

which may be a wide area communication network (“WAN”), such as the Internet, an intranet

or an Internet service provider (“ISP”) network or a combination of such networks. For

example, and without limitation, a computing device 500 operated by a customer or other

user of the service provider network 102 might be utilized to access the service provider

network 102 by way of the network 502. It should be appreciated that a local-area network

(“LAN”), the Internet, or any other networking topology known in the art that connects the

data centers 504 to remote customers and other users may be utilized. It should also be

appreciated that combinations of such networks might also be utilized.

[0063] FIG. 6 is a computing system diagram that illustrates one configuration for a data

center 504 that implements aspects of the technologies disclosed herein for executing

commands within VM instances 106 and the related functionality disclosed herein. The

example data center 504 shown in FIG. 6 includes several server computers 602A-602F

(which may be referred to herein singularly as “a server computer 602” or in the plural as

“the server computers 602”) for providing computing resources 606A-606E.

[0064] The server computers 602 may be standard tower, rack-mount, or blade server

computers configured appropriately for providing the computing resources described herein

(illustrated in FIG. 6 as the computing resources 604A-604E). As mentioned above, the

computing resources provided by the service provider network 102 might be data processing

resources such as VM instances 106 or hardware computing systems, data storage resources,

database resources, networking resources, and others. Some of the servers 602 might also be

configured to execute a resource manager 604 capable of instantiating and/or managing the

computing resources. In the case of VM instances 106, for example, the resource manager

604 might be a hypervisor or another type of program configured to enable the execution of

multiple VM instances 106 on a single server 602. Server computers 602 in the data center

504 might also be configured to provide network services and other types of services, some

16

WO 2016/153881 PCT/US2016/022686

of which are described in detail below with regard to FIG. 7.

[0065] The data center 504 shown in FIG. 6 also includes a server computer 602F that

may execute some or all of the software components described above. For example, and

without limitation, the server computer 602F might be configured to execute various

components for providing the on-demand computing service 104, the management console

112, and/or the other software components described above. The server computer 602F

might also be configured to execute other components and/or to store data for providing some

or all of the functionality described herein. In this regard, it should be appreciated that the

services illustrated in FIG. 6 as executing on the server computer 602F might execute on

many other physical or virtual servers in the data centers 504 in various configurations.

[0066] In the example data center 504 shown in FIG. 6, an appropriate LAN 606 is also

utilized to interconnect the server computers 602A-602F. The LAN 606 is also connected to

the network 502 illustrated in FIG. 5. It should be appreciated that the configuration and

network topology described herein has been greatly simplified and that many more

computing systems, software components, networks, and networking devices may be utilized

to interconnect the various computing systems disclosed herein and to provide the

functionality described above. Appropriate load balancing devices or other types of network

infrastructure components might also be utilized for balancing a load between each of the

data centers 504A-504N, between each of the server computers 602A-602F in each data

center 504, and, potentially, between computing resources in each of the data centers 504. It

should be appreciated that the configuration of the data center 504 described with reference to

FIG. 6 is merely illustrative and that other implementations might be utilized.

[0067] FIG. 7 is a system and network diagram that shows aspects of several network

services that might be provided by and utilized within a service provider network 102 in one

configuration disclosed herein. In particular, and as discussed above, the service provider

network 102 may provide a variety of network services to customers and other users of the

service provider network 102 including, but not limited to, the on-demand computing service

104. The service provider network 102 might also provide other types of services including,

but not limited to, a storage service 702A, a deployment service 702B, a cryptography service

702C, an authentication service 120, a policy management service 702E, and/or a task service

702F, each of which is described in greater detail below. Additionally, the service provider

network 102 might also provide other services 702G, some of which are described in greater

detail below.

[0068] It should be appreciated that customers of the service provider network 102 may

17

WO 2016/153881 PCT/US2016/022686

include organizations or individuals that utilize some or all of the services provided by the

service provider network 102. As described above, a customer or other user may

communicate with the service provider network 102 through a network, such as the network

502 shown in FIG. 5. Communications from a customer computing device, such as the

computing device 500 shown in FIG. 5, to the service provider network 102 may cause the

services provided by the service provider network 102 to operate in accordance with the

described configurations or variations thereof.

[0069] It is noted that not all configurations described include the services described with

reference to FIG. 7 and that additional services may be provided in addition to or as an

alternative to services explicitly described. Each of the services shown in FIG. 7 might also

expose web service interfaces that enable a caller to submit appropriately configured API

calls to the various services through web service requests. In addition, each of the services

may include service interfaces that enable the services to access each other (e.g., to enable a

virtual computer system provided by the on-demand computing service 104 to store data in or

retrieve data from the data storage service 702A). Additional details regarding some of the

services shown in FIG. 7 will now be provided.

[0070] As discussed above, the on-demand computing service 104 may be a collection of

computing resources configured to instantiate VM instances 106 and to provide other types of

computing resources on demand. For example, a customer or other user of the service

provider network 102 may interact with the on-demand computing service 104 (via

appropriately configured and authenticated API calls) to provision and operate VM instances

106 that are instantiated on physical computing devices hosted and operated by the service

provider network 102. The VM instances 106 may be used for various purposes, such as to

operate as servers supporting a web site, to operate business applications or, generally, to

serve as computing resources for the customer. Other applications for the VM instances 106

may be to support database applications, electronic commerce applications, business

applications and/or other applications. Although the on-demand computing service 104 is

shown in FIG. 7, any other computer system or computer system service may be utilized in

the service provider network 102, such as a computer system or computer system service that

does not employ virtualization and instead provisions computing resources on dedicated or

shared computers/servers and/or other physical devices.

[0071] The storage service 702A might include software and computing resources that

collectively operate to store data using block or file-level storage devices (and/or

virtualizations thereof). The storage devices of the storage service 702A might, for instance,

18

WO 2016/153881 PCT/US2016/022686

be operationally attached to virtual computer systems provided by the on-demand computing

service 104 to serve as logical units (e.g., virtual drives) for the computer systems. A storage

device might also enable the persistent storage of data used/generated by a corresponding

virtual computer system where the virtual computer system service might only provide

ephemeral data storage.

[0072] The service provider network 102 may also include a cryptography service 702C.

The cryptography service 702C may utilize storage services of the service provider network

102, such as the storage service 702A, to store encryption keys in encrypted form, whereby

the keys may be usable to decrypt customer keys accessible only to particular devices of the

cryptography service 702C. The cryptography service 702C might also provide other types

of functionality not specifically mentioned herein.

[0073] As illustrated in FIG. 7, the service provider network 102, in various

configurations, also includes an authentication service 120 and a policy management service

702E. The authentication service 120, in one example, is a computer system (i.e., collection

of computing resources) configured to perform operations involved in authentication of users.

For instance, one of the services 702 shown in FIG. 7 may provide information from a user to

the authentication service 120 to receive information in return that indicates whether or not

the requests submitted by the user are authentic.

[0074] The policy management service 702E, in one example, is a network service

configured to manage policies on behalf of customers or internal users of the service provider

network 102. The policy management service 702E may include an interface that enables

customers to submit requests related to the management of policy. Such requests may, for

instance, be requests to add, delete, change or otherwise modify policy for a customer,

service, or system, or for other administrative actions, such as providing an inventory of

existing policies and the like.

[0075] The service provider network 102, in various configurations, is also configured

with a task service 702F. The task service 702F is configured to receive a task package and

to enable executing tasks as dictated by the task package. The task service 702F may be

configured to use any resource of the service provider network 102, such as instantiated

virtual machines or virtual hosts, for executing the task. The task service 702F may

configure the instantiated virtual machines or virtual hosts to operate using a selected

operating system and/or a selected execution application in accordance with specified

requirements.

[0076] The service provider network 102 may additionally maintain other services 702G

19

WO 2016/153881 PCT/US2016/022686

based, at least in part, on the needs of its customers. For instance, the service provider

network 102 may maintain a deployment service 702B for deploying program code and/or a

database service (not shown in FIG. 7) in some configurations. A database service may be a

collection of computing resources that collectively operate to create, maintain, and allow

queries to be performed on databases stored within the service provider network 102. For

example, a customer or other user of the service provider network 102 may operate and

manage a database from the database service by utilizing appropriately configured network

API calls. This, in turn, may allow the customer to maintain and potentially scale the

operations in the database. Other services include object-level archival data storage services,

and services that manage, monitor, interact with, or support other services. The service

provider network 102 might also be configured with other services not specifically mentioned

herein in other configurations.

[0077] Embodiments of the present disclosure can be described in view of the following

clauses:

1. An apparatus, comprising:

a processor; and

a non-transitory computer-readable storage medium having instructions stored

thereupon which are executable by the processor and which, when executed, cause the

apparatus to

expose a public web service application programming interface (API) within a

service provider network, the API comprising a method for executing a command

within a virtual machine (VM) instance executing in the service provider network,

receive a call to the method for executing the command within the VM

instance, and

in response to receiving the call, cause a request to execute the command to be

transmitted to a software agent executing in the VM instance, the software agent

configured to execute the command in the VM instance in response to receiving the

request.

2. The apparatus of clause 1, wherein the public web service API further

comprises a method for requesting data identifying commands that can be executed within

the VM instance, and wherein the non-transitory computer-readable storage medium has

further instructions stored thereupon to:

receive a call to the method for requesting data identifying the commands that

can be executed within the VM instance; and

20

WO 2016/153881 PCT/US2016/022686

in response to receiving the call to the method for requesting data identifying

the commands that can be executed within the VM instance, cause a request to be

transmitted to the software agent executing in the VM instance for the data identifying

the commands that can be executed within the VM instance.

3. The apparatus of clause 1, wherein the public web service API further

comprises a method for requesting data identifying commands that can be executed within

the VM instance, and wherein the non-transitory computer-readable storage medium has

further instructions stored thereupon to:

cause a request to be transmitted to the software agent executing in the VM

instance for the data identifying the commands that can be executed within the VM

instance;

receive the data identifying the commands that can be executed within the VM

instance;

store the data identifying the commands that can be executed within the VM

instance in a cache; and

respond to calls to the method for requesting data identifying commands that

can be executed within the VM instance using the data identifying the commands that

can be executed within the VM instance stored in the cache.

4. The apparatus of clause 3, wherein the non-transitory computer-readable

storage medium has further instructions stored thereupon to utilize the data identifying the

commands that can be executed within the VM instance to generate a user interface (UI)

configured to display UI controls for executing the commands within the VM instance.

5. The apparatus of clause 1, wherein the public web service API further

comprises a method for obtaining a status of the execution of the command within the VM

instance, and wherein the non-transitory computer-readable storage medium has further

instructions stored thereupon to:

receive a call to the method for obtaining a status of the execution of the

command within the VM instance; and

in response to receiving the call to the method for obtaining a status of the

execution of the command within the VM instance, cause a request to be transmitted

to the software agent executing in the VM instance for the status of the execution of

the command within the VM instance.

6. The apparatus of clause 1, wherein the non-transitory computer-readable

storage medium has further instructions stored thereupon to determine that a user associated

21

WO 2016/153881 PCT/US2016/022686

with the call to the method for executing the command is authorized to perform the command

prior to causing the request to execute the command to be transmitted to the software agent

executing in the VM instance.

7. The apparatus of clause 1, wherein the command comprises one or more of a

command for restarting a process on the VM instance, a command for flushing a cache, a

command for performing a backup operation, a command for configuring the VM instance,

or a command for performing a test on the VM instance.

8. A non-transitory computer-readable storage medium having computer-

executable instructions stored thereupon which, when executed by a computer, cause the

computer to:

expose a public web service application programming interface (API) comprising a

method for executing a command within a virtual machine (VM) instance;

receive a call to the method for executing the command within the VM instance; and

cause a request to execute the command to be transmitted to a software component

executing in the VM instance, the software component configured to execute the command in

the VM instance in response to receiving the request.

9. The non-transitory computer-readable storage medium of clause 8, having

further computer-executable instructions stored thereupon to log the execution of the

command in the VM instance.

10. The non-transitory computer-readable storage medium of clause 8, wherein

the public web service API further comprises a method for requesting data identifying

commands that can be executed within the VM instance.

11. The non-transitory computer-readable storage medium of clause 10, having

further computer-executable instructions stored thereupon to:

receive a call to the method for requesting data identifying the commands that can be

executed within the VM instance; and

cause a request to be transmitted to the software component executing in the VM

instance for the data identifying the commands that can be executed within the VM instance.

12. The non-transitory computer-readable storage medium of clause 10, having

further computer-executable instructions stored thereupon to:

cause a request to be transmitted to the software component executing in the VM

instance for the data identifying the commands that can be executed within the VM instance;

receive the data identifying the commands that can be executed within the VM

instance;

22

WO 2016/153881 PCT/US2016/022686

store the data identifying the commands that can be executed within the VM instance

in a cache; and

utilize the data identifying the commands that can be executed within the VM

instance stored in the cache to respond to calls to the method for requesting data identifying

commands that can be executed within the VM instance.

13. The non-transitory computer-readable storage medium of clause 10, having

further computer-executable instructions stored thereupon to utilize the data identifying the

commands that can be executed within the VM instance to generate a user interface (UI)

configured to display UI controls for executing the commands within the VM instance.

14. The non-transitory computer-readable storage medium of clause 8, wherein

the public web service API further comprises a method for obtaining a status of the execution

of the command within the VM instance.

15. The non-transitory computer-readable storage medium of clause 14, having

further computer-executable instructions stored thereupon to:

receive a call to the method for obtaining a status of the execution of the command

within the VM instance; and

cause a request to be transmitted to the software component executing in the VM

instance for the status of the execution of the command within the VM instance.

16. A computer-implemented method for executing a command within a virtual

machine (VM) instance, comprising:

publicly expose an application programming interface (API) within a service provider

network, the API comprising a method for executing a command within a virtual machine

(VM) instance executing within the service provider network;

receive a call to the method for executing the command within the VM instance; and

cause a request to execute the command to be transmitted to a software component

executing in the VM instance, the software component configured to execute the command in

the VM instance in response to receiving the request.

17. The computer-implemented method of clause 15, wherein the API further

comprises a method for requesting data identifying commands that can be executed within

the VM instance.

18. The computer-implemented method of clause 15, wherein the API further

comprises a method for obtaining a status of the execution of the command within the VM

instance.

19. The computer-implemented method of claim 15, further comprising

23

WO 2016/153881 PCT/US2016/022686

determining that a user associated with the call to the method for executing the command is

authorized to perform the command prior to causing the request to execute the command to

be transmitted to the software component executing in the VM instance.

20. The computer-implemented method of clause 15, wherein the command

comprises one or more of a command for restarting a process on the VM instance, a

command for flushing a cache, a command for performing a backup operation, a command

for configuring the VM instance, or a command for performing a test on the VM instance.

[0078] FIG. 8 shows an example computer architecture for a computer 800 capable of

executing program components for implementing the functionality described above. The

computer architecture shown in FIG. 8 illustrates a conventional server computer,

workstation, desktop computer, laptop, tablet, network appliance, e-reader, smartphone, or

other computing device, and may be utilized to execute any of the software components

presented herein.

[0079] The computer 800 includes a baseboard 802, or “motherboard,” which is a printed

circuit board to which a multitude of components or devices may be connected by way of a

system bus or other electrical communication paths. In one illustrative configuration, one or

more central processing units (“CPUs”) 804 operate in conjunction with a chipset 806. The

CPUs 804 may be standard programmable processors that perform arithmetic and logical

operations necessary for the operation of the computer 800.

[0080] The CPUs 804 perform operations by transitioning from one discrete, physical

state to the next through the manipulation of switching elements that differentiate between

and change these states. Switching elements may generally include electronic circuits that

maintain one of two binary states, such as flip-flops, and electronic circuits that provide an

output state based on the logical combination of the states of one or more other switching

elements, such as logic gates. These basic switching elements may be combined to create

more complex logic circuits, including registers, adders-subtractors, arithmetic logic units,

floating-point units, and the like.

[0081] The chipset 806 provides an interface between the CPUs 804 and the remainder of

the components and devices on the baseboard 802. The chipset 806 may provide an interface

to a RAM 808, used as the main memory in the computer 800. The chipset 806 may further

provide an interface to a computer-readable storage medium such as a read-only memory

(“ROM”) 810 or non-volatile RAM (“NVRAM”) for storing basic routines that help to

startup the computer 800 and to transfer information between the various components and

devices. The ROM 810 or NVRAM may also store other software components necessary for

24

WO 2016/153881 PCT/US2016/022686

the operation of the computer 800 in accordance with the configurations described herein.

[0082] The computer 800 may operate in a networked environment using logical

connections to remote computing devices and computer systems through a network, such as

the network 606. The chipset 806 may include functionality for providing network

connectivity through a NIC 812, such as a gigabit Ethernet adapter. The NIC 812 is capable

of connecting the computer 800 to other computing devices over the network 606. It should

be appreciated that multiple NICs 812 may be present in the computer 800, connecting the

computer to other types of networks and remote computer systems.

[0083] The computer 800 may be connected to a mass storage device 818 that provides

non-volatile storage for the computer. The mass storage device 818 may store an operating

system 820, programs 822, and data, which have been described in greater detail herein. The

mass storage device 818 may be connected to the computer 800 through a storage

controller 814 connected to the chipset 806. The mass storage device 818 may consist of one

or more physical storage units. The storage controller 814 may interface with the physical

storage units through a serial attached SCSI (“SAS”) interface, a serial advanced technology

attachment (“SATA”) interface, a fiber channel (“FC”) interface, or other type of interface

for physically connecting and transferring data between computers and physical storage units.

[0084] The computer 800 may store data on the mass storage device 818 by transforming

the physical state of the physical storage units to reflect the information being stored. The

specific transformation of physical state may depend on various factors, in different

implementations of this description. Examples of such factors may include, but are not

limited to, the technology used to implement the physical storage units, whether the mass

storage device 818 is characterized as primary or secondary storage, and the like.

[0085] For example, the computer 800 may store information to the mass storage

device 818 by issuing instructions through the storage controller 814 to alter the magnetic

characteristics of a particular location within a magnetic disk drive unit, the reflective or

refractive characteristics of a particular location in an optical storage unit, or the electrical

characteristics of a particular capacitor, transistor, or other discrete component in a solid-state

storage unit. Other transformations of physical media are possible without departing from the

scope and spirit of the present description, with the foregoing examples provided only to

facilitate this description. The computer 800 may further read information from the mass

storage device 818 by detecting the physical states or characteristics of one or more particular

locations within the physical storage units.

[0086] In addition to the mass storage device 818 described above, the computer 800 may

25

WO 2016/153881 PCT/US2016/022686

have access to other computer-readable storage media to store and retrieve information, such

as program modules, data structures, or other data. It should be appreciated by those skilled

in the art that computer-readable storage media is any available media that provides for the

non-transitory storage of data and that may be accessed by the computer 800.

[0087] By way of example, and not limitation, computer-readable storage media may

include volatile and non-volatile, removable and non-removable media implemented in any

method or technology. Computer-readable storage media includes, but is not limited to,

RAM, ROM, erasable programmable ROM (“EPROM”), electrically-erasable programmable

ROM (“EEPROM”), flash memory or other solid-state memory technology, compact disc

ROM (“CD-ROM”), digital versatile disk (“DVD”), high definition DVD (“HD-DVD”),

BLU-RAY, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage

or other magnetic storage devices, or any other medium that can be used to store the desired

information in a non-transitory fashion.

[0088] As mentioned briefly above, the mass storage device 818 may store an operating

system 820 utilized to control the operation of the computer 800. According to one

configuration, the operating system comprises the LINUX operating system. According to

another configuration, the operating system comprises the WINDOWS® SERVER operating

system from MICROSOFT Corporation. According to further configurations, the operating

system may comprise the UNIX operating system or one of its variants. It should be

appreciated that other operating systems may also be utilized. The mass storage device 818

may store other system or application programs and data utilized by the computer 800.

[0089] In one configuration, the mass storage device 818 or other computer-readable

storage media is encoded with computer-executable instructions which, when loaded into the

computer 800, transform the computer from a general-purpose computing system into a

special-purpose computer capable of implementing the configurations described herein.

These computer-executable instructions transform the computer 800 by specifying how the

CPUs 804 transition between states, as described above. According to one configuration, the

computer 800 has access to computer-readable storage media storing computer-executable

instructions which, when executed by the computer 800, perform the various processes

described above with regard to FIGS. 2-4. The computer 800 might also include computer-

readable storage media for performing any of the other computer-implemented operations

described herein.

[0090] The computer 800 may also include one or more input/output controllers 816 for

receiving and processing input from a number of input devices, such as a keyboard, a mouse,

26

WO 2016/153881 PCT/US2016/022686

a touchpad, a touch screen, an electronic stylus, or other type of input device. Similarly, an

input/output controller 816 may provide output to a display, such as a computer monitor, a

flat-panel display, a digital projector, a printer, a plotter, or other type of output device. It

will be appreciated that the computer 800 may not include all of the components shown in

FIG. 8, may include other components that are not explicitly shown in FIG. 8, or may utilize

an architecture completely different than that shown in FIG. 8.

[0091] Based on the foregoing, it should be appreciated that technologies for executing

commands within VM instances have been presented herein. Moreover, although the subject

matter presented herein has been described in language specific to computer structural

features, methodological acts, and computer readable media, it is to be understood that the

invention defined in the appended claims is not necessarily limited to the specific features,

acts, or media described herein. Rather, the specific features, acts, and media are disclosed as

example forms of implementing the claims.

[0092] The subject matter described above is provided by way of illustration only and

should not be construed as limiting. Furthermore, the claimed subject matter is not limited to

implementations that solve any or all disadvantages noted in any part of this disclosure.

Various modifications and changes may be made to the subject matter described herein

without following the example configurations and applications illustrated and described, and

without departing from the true spirit and scope of the present invention, which is set forth in

the following claims.

27

20
16

23
57

59

26
 Se

p 2
01

8

CLAIMS
WHAT IS CLAIMED IS:

1. A non-transitory computer-readable storage medium having computer-

5 executable instructions stored thereupon which, when executed by a computer, cause

the computer to:

expose a public web service application programming interface (API)

comprising a method for executing a command within a virtual machine (VM) instance,

the command being specified in data identifying a list of commands available for

10 execution within the VM instance and identifying program code for performing each of

the commands;

receive a call to the method for executing the command within the VM instance;

and

cause a request to execute the command to be transmitted to a software

15 component executing in the VM instance, the software component configured to

process the request and cause the command to be executed in the VM instance in

response to receiving the request.

2. The non-transitory computer-readable storage medium of claim 1,

20 having further computer-executable instructions stored thereupon to log the execution

of the command in the VM instance.

3. The non-transitory computer-readable storage medium of claim 1 or

claim 2, wherein the API further comprises a method for requesting the data identifying

25 the command available for execution within the VM instance.

4. The non-transitory computer-readable storage medium of claim 3,

having further computer-executable instructions stored thereupon to:

receive a call to the method for requesting data identifying the command

30 available for execution within the VM instance; and

28

20
16

23
57

59

26
 Se

p 2
01

8

cause a request to be transmitted to the software component executing in the

VM instance for the data identifying the command available for execution within the

VM instance.

5 5. The non-transitory computer-readable storage medium of claim 3,

having further computer-executable instructions stored thereupon to:

cause a request to be transmitted to the software component executing in the

VM instance for the data identifying the command available for execution within the

VM instance;

10 receive the data identifying the command available for execution within the VM

instance;

store the data identifying the command available for execution within the VM

instance in a cache; and

utilize the data identifying the command available for execution within the VM

15 instance stored in the cache to respond to the call to the method requesting data

identifying the command available for execution within the VM instance.

6. The non-transitory computer-readable storage medium of any one of

claims 3 to 5, wherein the call to the method for executing the command within the VM

20 instance is generated in response to a selection of a user interface control for executing

the command presented in a user interface (UI) that is configured to display the data

identifying the command available for execution within the VM instance and the user

interface control.

25 7. The non-transitory computer-readable storage medium of any one of

claims 1 to 6 wherein the API further comprises a method for obtaining a status of

execution of the command within the VM instance.

8. The non-transitory computer-readable storage medium of claim 7,

30 having further computer-executable instructions stored thereupon to:

29

20
16

23
57

59

26
 Se

p 2
01

8

receive a call to the method for obtaining the status of the execution of the

command within the VM instance; and

cause a request to be transmitted to the software component executing in the

VM instance for the status of the execution of the command within the VM instance.

5

9. The non-transitory computer-readable storage medium of any one of

claims 1 to 8, wherein the API further comprises a method for requesting the data

identifying the command available for execution within the VM instance.

10 10. The non-transitory computer-readable storage medium of claim 9, having

further computer-executable instructions stored thereupon to:

receive a call to the method for requesting data identifying the command

available for execution within the VM instance; and

cause a request to be transmitted to the software component executing in the

15 VM instance for the data identifying the command available for execution within the

VM instance.

11. A computer-implemented method for executing a command within a

virtual machine (VM) instance, comprising:

20 receiving, from the VM instance, data identifying a list of commands available

for execution within the VM instance;

storing the data identifying the list of commands available for execution within

the VM instance in a cache outside of the VM instance;

exposing an application programming interface (API) comprising a method for

25 executing a command within a VM instance executing within the service provider

network, the command being specified in the cache;

receiving a call to the method for executing the command within the VM

instance; and

causing a request to execute the command to be transmitted to a software

30 component executing in the VM instance, the software component configured to

30

20
16

23
57

59

26
 Se

p 2
01

8

process the request and cause the command to be executed in the VM instance in

response to receiving the request.

12. The computer-implemented method of claim 11, wherein the API

5 further comprises a method for requesting the data identifying the list of commands that

can be executed within the VM instance.

13. The computer-implemented method of claim 11 or 12, wherein the API

further comprises a method for obtaining a status of the execution of the command

10 within the VM instance, and wherein the computer-implemented method further

comprises:

receiving a call to the method for obtaining the status of execution of the

command within the VM instance; and

in response to receiving the call to the method for obtaining the status of

15 execution of the command within the VM instance, causing a request to be transmitted

to the software component executing in the VM instance for the status of the execution

of the command within the VM instance.

14. The computer-implemented method of any one of claims 11 to 13,

20 further comprising determining whether a user associated with the call to the method

for executing the command is authorized to perform the command prior to causing the

request to execute the command to be transmitted to the software component executing

in the VM instance.

25 15. The computer-implemented method of any one of claims 11 to 14,

wherein the command comprises one or more of a command for flushing a cache, a

command for performing a backup operation, a command for configuring the VM

instance, or a command for performing a test on the VM instance.

31

WO 2016/153881 PCT/US2016/022686

1/8

LU
O or

LU
H
Z)
CL

o
o
I— ω o
T

or
LU
I-
z>
CL

·— C
O

I—ω
O
T

co■—-o

CN CN

LUo
>
QC
LU< CD/ CO;

r-o r-o o:

z>
CL

o
o
Q

LUo
>□ oc <

m w o =)
CL

O y o
0 FT LU

Q

ω
co

<
DC
0 E
O LU
DC H
D. Z

tw
=)<

SE
R

VI
C

E
PR

O
VI

D
ER

 N
ET

W
O

RK

-A J O

WO 2016/153881 PCT/US2016/022686

2/8

200

OBTAIN LIST OF COMMANDS THAT CAN BE
EXECUTED WITHIN A VM INSTANCE

FIG. 2

WO 2016/153881 PCT/US2016/022686

3/8
EXECUTE A COMMAND WITHIN A VIRTUAL

MACHINE INSTANCE

c310

RETURN ERROR

>{ END
322

FIG. 3

WO 2016/153881 PCT/US2016/022686

4/8

OBTAIN STATUS OF COMMAND EXECUTING
WITHIN A VIRTUAL MACHINE INSTANCE 400

FIG.4

WO 2016/153881 PCT/US2016/022686

5/8

SE
R

V
IC

E
 P

R
O

V
ID

ER

•
N

ET
W

O
R

K

WO 2016/153881 PCT/US2016/022686

6/8

<
LU
or<

.LU
Q

LU

oro
CO
0

WO 2016/153881 PCT/US2016/022686

7/8

FI
G

. 7

WO 2016/153881 PCT/US2016/022686

8/8

FIG. 8

