Aug. 2, 1938.
T. E. CORR

2,125,546
PORTABLE LIFTING DEVIGE
Filed Feb. 17, 1937
2 Sheets-Sheet 1

Aug. 2, 1938.
T. E. CORR

2,125,546
PORTABLE LIFTING DEVICE
Filed Feb. 17, 1937

UNITED STATES PATENT OFFICE

2,125,546

PORTABLE LIFTING DEVICE
Thomas E. Corr, San Francisco, Calif.
Application February 17, 1087, Eerial No. 126,184
8 Clalms. (Cl. © 86)

This invention relates to an apparatus for lifting and moving cripples, invalids, sick persons and the like, and consists of a wheel or caster-supported irame adapted to straddle or for supporting and lifting a petient from a bed and of bertine and hithe a peilent from a bed and of being freely movable on a floor to transfer a patient to an operating room or other place and for agatn returning the pattent to his or her room and bed, the operation of raising or lowering a person being accomplished without shocis, vibration, or discomfort to the patient. This appilication is a continuation in part of my former applicstion entifled "Portable lifting de15 vice", flled March 31, 1936, Sexial No. 71,868. The object of the present invention is to generally improve and simplify the consiruction and operation of hiting devices comprising a wheelor caster-supported frame having a lifting beam mounted and guided therein; to provide means suspended from the beam for engaging and supporting the patient to be lifted; to provide manual or power actuated means for raising elther end of the beam or both ends in unison; and iurther, to provide a lifting device of the character described which may be readily passed through doorways or similar nerrow passages. The invention is shown by way of illustration in the accompenylag drawings in which-
FMg. 1 is a slde elevation in section of the lifting device;
Fig. 2 is a perspective view of one of the supporting arms;
Fig. 3 is a cross section taken on line III-TII,

35 Tig. 1;

Ehig. \& is a cross section of the lifting frame tolen on line IV-IV, Fig. 1;
$F \mathrm{glg}$. 6 is a pian view of one end of the Heting Irame, sadd view being partially brolem away
and being partially in section; and and being partially in section; and

Fig. 6 is an enlarged cross section of the iliting beam and one of the hangers from which the supporting arms are suspended.
Referring to the drawings in detall, and par45 ticularly figs. I and 4, A madicates in general an elongated irame consisting of a pair of posts or uprights 2-2, connected at their upper ends by a horizontally disposed bar \&. Each post terminates in a base plate 4 which is supported by
50 horizontally extending leg members 0 which, in turn, are supported by casters 6 . The inner ends of the legs 5 are plvoted to the bese plate and they are, furthermore, braced with relation
to the posts as shown at f to stend any load 55 appilied.

The frame as a whole, es will be noted by reference to Fig. 1, is suficiently long to permit it to straddle a bed lengthwise. In this position of the frame and also when shoving or moving it 60 from room to room, the legs $W 111$ assume the
position shown in Figs. 4 and 5; that 1s, a position at right angles to the bar 3 or the longitudinal axis of the frame so as to give the greatest lateral stability possible, but when the frame is to be passed through a doorway, or similar narrow possage, the legs will assume a trailing position, such as indicated by dotted lines 5 a in Flg. 5. Aiter one end of the frame has passed through the door the legs will again be swung outwardly as shown in full lines in Fig. 5, and will there be locked by foggle links of. When the rear end of the frame is to be passed through the legs will again be swung inwordly and when they have passed through they will be swrung outwardly and locled. Even with one pair of legs, or another, swung invardly parallel to the longitudinal axis sufficient lateral stability is insured as a three-point support is provided but the greatest stablity is, of course, maintained when all of the legs are extended.
The posts 2-2 and the bar ${ }^{2}$ are preferably constructed of channel bars, or the like. Each post 2 carries a screw shaft θ and a right angularly extending shaft $9 a$, such shaft being squared on its outer end to receive a hand crank, or the like, whereby it may be rotated. Bevel gears 10 connect the sheits 9 and 80 so that when shaft ea is rotated rotary motion will also be transmitted to the shaft 9. A shaft 11 extends lengthwise of the ber 3. This is provided with bevel gears at opposite ends and these intermesh with bevel geers on the upper encis of the shafit 0 ; hence whers elther of the shaits 18 are rotated shait if whll aiso be rotated. However, there mey be times when only halif of the length of sharit if is to be rotated and to permit such Independent rotation 2 clutch 18 is provided Wherelay the two nalves of the shaft it may be connected or disconnected, es will hereinafter appear, said clutch being actuated by a lever 10 disposed at one end of the frame and suitable Hinkage connections. Thile shafts ga are cramis rotated, they may be power rotated, for instance by placing a pulley or sprocket at the polnt 06 and difyine if from an electric motor of or the ille secured to a bracket on the frame.
Bhounted on each of the shaits 8 is a nut 14 . These nuts are secured against rotation by being square and engaging the inner paces of the channel. The nuts form a support for a lifing beam 8 which is parallel to the bar 3 and extends from end to end of the frame. That is, the ends of the beam B are slotted as shown at If a in Fis. 3, so as to straddle the shafts 3 and to rest upon the nuts 18 . When both of the shafts 9 are rotated in unison as when the clutch 12 is con-
nected, both nuts will rise or fall with uniform nected, both nuts will rise or iall with uniform By disconnecting the clutch 12 and rotating either one or another of the shafts 9 , one end
or the ohier of tra beera way be rabed mae-
 the cluteh 15, tise becm rive we rased horizonteliy from ethers ene of bhe frame by merely applyine
 without belng subtected be urnecessemy shock at vibretion whise betax braspouroce, springs 660 may he fritemosed between the rats thase the ends log of bhe beam 3.

The beam, as slready steted, is a Hine beam and carries a piurallty of hangers 15 which are square in cross section to prevent swinging movement about the beam, but they are alidable longltudinally of the beam. Wech hanger carries a pair of supporting arms 16 pivoted to the hanger as at 17 . The arms normally assume the dotted line pozition shown at lea, see Wig. A, but they may je swung downwardly and inwardiy as shown in full lines in Frig. 4.

The shape of the arms is clearly disclosed in Fig. 2. That 1s, they are channel-shaped at theif upper ends to provide strength and iney are ends so that they may be readily pushed in under or inserted between the patient and the mattress upon which he or she is lying so as to be in a position to support a person when the beam \mathbf{B} is lifted. The arms, as already stated, normally assume the dotted line position shovin at $16 a$ as springs $18 b$ are interposed between tiee hanger and each arm to normally maintain them In a sufficiently spread position to clear the patient when they are lowered to plek up the patient. A pocket. $16 c$ ts formed at the lower end of each arm, and these may be fllled with warm water, or a hot water bas or an electric heating pad or the like may be inserted in the pockets to heat or warm the arms prior to use.
0 In actual practice, if it is desired to remove a patient from his or her bed, the frame is placed in a position straddling the bed lengthwise, as shown in Fig. 1. When the frame is first brought into position, the supporting arms 16 will assume their spread position. Each arm is then inserted in under the patien $\%$ or between the patient and the mattress, and when inserted are locked one by one by pins 18d which are inserted at the same time through the hangers and the inner upper ends of the arms to lock them and secure them against pivotal movement, this preventing accidental spreading of the arms while the patient is being lifted and wile supported by the arms. In this posibion, the beam \mathbf{B} and hangers supporting the petient are elevated and the irame may be swung clear of the bed and may be shoved or pulled from room to room. By this construction and arrangement of parts, it becomes possible for a single person or attendant to pick up a patient and transport the patient from room to room, as when the frame straddles the bed and the beam and arms are lowered to plck up the patient, the nurse will first stand on one side of the bed and Insert one arm after the other under that side of the patient and lock them and can then step around to the other side of the bed and insert the arms on that side and lock them, and then elther apply a hand crank or power to one or more of the shaits $8 a$ and . elevate the patient with relation to the bed, after which the frame carrying the patient may be readily shoved or pulled wherever desired.

When the petient is to be released, for in-
stance to be pisced upon an operating table or another bea, the freme B is lowered until tine patient reats or the bed and the arms 18 are then removed one by one. Tre entire operation of rofsime arci lowerine the patient and transferrhag the patient from place to place is thus simply and reedily accomplished and without any erertion on the part of the nurses or gim tendants, end, furthermore, without shock, thbration or inconvenience to the patient.
The supporting arms to are, as previousig stated, pipoted at $\frac{1}{7}$, nad as springs are interposed between the arms and the hangers, the arms will normaily assume a spread position, out their inward movement will be limited as the ends t Ge of the arms will engage extensions 15a of the hangers and thereby prevent any squeezing or application of pressure to the pathent when supported by the arms. In other words, the inward movement of the arms is limited by the extensions $18 a$ and $16 e$. The arms are arranged in pairs wherever the body is to be supported, but a single arm will suffice for the head, and this arm is indicated at 19.

While this and other features of the present invention have been more or less specifically described and illustrated, I wish it understood that various changes may be resorted to within the scope of the appended claims, and similerly, that the materials and finish of the several parts 30 employed may be such as the manufiacturer may decide or varying conditions or uses may demand.

Having thus described my invention, what I claim and desire to secure by Letters Patent is:

1. In a lifting device of the character described an elongated frame, a lifting beam guided and vertically movable in the frame, a plurality of hangers movable longitudinatiy of the beam, a pair of arcuate supporting arms independently pivoted to each hanges, a spring interposed between each arm and hanger to normally maintain the arms spread apart, means for limiting the rovement of the arms towards each other, and a resilient support for each end of the beam.
2. In a lifting device of the character described an elongated frame, a lifting beam guided and vertically movable in the frame, means for lifting both or either end of the beam to cause it to assume a horizontal or an angular position within the frame, a plurality of hangers on the beam, a pair of arcuate supporting arms independently plvoted to each hanger, a spring interposed between each arm and hanger to normally maintain the arms spread apart and in a raised position, means for limiting the movement of the arms towards each other, and a resilient support for each end of the lifting beam.
3. In a lifting device of the character described, having a main irame and a lifting beam guided and vertically movable therein, a plurality of hangers on the lifting beam, a pair of arcuate supporting arms independently pivoted and movable on each hanger, a spring interposed between each arm and hanger and normally maintaining each arm in a raised position and spread apart, said pivots and springs permitting each arm to be independently swung from a raised to a lowered position, and means for locking each arm against pivoting movement when swung to a lowered position.

THOMAS E. CORR.

