PCT
WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :
C11D 3/395, 1/72, 1/722, 3/14

(21) International Application Number: PCT/EP99/03844
(22) International Filing Date: 2 June 1999 (02.06.99)
(30) Priority Data:
98304566.7 9 June 1998 (09.06.98) EP

(71) Applicant (for all designated States except AU BB CA CY GB
GD GH IE IL KE LK LS MN MW NZ SG SZ TT UG US
ZA): UNILEVER N.V. [NL/NL]; Weena 455, NL–3013 AL
Rotterdam (NL).

(71) Applicant (for AU BB CA CY GB GD GH IE IL KE LK LS
MN MW NZ SG SZ TT UG US ZA only): UNILEVER PLC
[GB/GB]; Unilever House, Blackfriars, London, Greater
London EC4P 4BQ (GB).

(72) Inventors; and
(75) Inventors/Applicants (for US only): FONTANA, Cinzia
[IT/IT]; Lever Development Centre, Via Lever–Gibbs, 3/a,
I–26841 Casalpusterlengo (IT). NOVITA, Luciano [IT/IT];
Lever Development Centre, Via Lever–Gibbs, 3/a, I–26841
Casalpusterlengo (IT).

(74) Agent: DEKKER, Enno; Unilever N.V., Patent Dept., Olivier
van Noortlaan 120, NL–3133 AT Vlaardingen (NL).

(54) Title: HARD SURFACE CLEANERS

(57) Abstract

The invention concerns hard surface cleaning compositions comprising a halogen bleaching agent and a surfactant system, wherein the surfactant system consists of or comprises at least one ethoxylated nonionic surfactant carrying a terminal OH group in an amount of more than 0.2 % by weight of the composition and the composition comprises a buffer system to maintain the pH at or above 11.5. The surfactant system preferably comprises a mixture of anionic and nonionic surfactants. The compositions preferably additionally comprise an abrasive.

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB,
GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG,
KP, KR, KZ, LC,LK, LS, LT, LU, LV, MD, MG, MK,…

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL Albania
AM Armenia
AT Austria
AU Australia
AZ Azerbaijan
BA Bosnia and Herzegovina
BB Barbados
BE Belgium
BF Burkina Faso
BG Bulgaria
BJ Benin
BR Brazil
BY Belarus
CA Canada
CF Central African Republic
CG Congo
CH Switzerland
CI Côte d'Ivoire
CM Cameroon
CN China
CU Cuba
CZ Czech Republic
DE Germany
DK Denmark
EE Estonia
ES Spain
FI Finland
FR France
GA Gabon
GB United Kingdom
GE Georgia
GH Ghana
GN Guinea
GR Greece
HU Hungary
IE Ireland
IL Israel
IS Iceland
IT Italy
JP Japan
KE Kenya
KG Kyrgyzstan
KP Democratic People's Republic of Korea
KR Republic of Korea
KZ Kazakhstan
LC Saint Lucia
LI Liechtenstein
LK Sri Lanka
LR Liberia
LS Lesotho
LT Lithuania
LU Luxembourg
LV Latvia
MC Monaco
MD Republic of Moldova
MG Madagascar
MK The former Yugoslav Republic of Macedonia
ML Mali
MN Mongolia
MR Mauritania
MW Malawi
MX Mexico
NE Niger
NL Netherlands
NO Norway
NZ New Zealand
PL Poland
PT Portugal
RO Romania
RU Russian Federation
SD Sudan
SE Sweden
SG Singapore
SI Slovenia
SK Slovakia
SN Senegal
SZ Swaziland
TD Chad
TG Togo
TJ Tajikistan
TM Turkmenistan
TR Turkey
TT Trinidad and Tobago
UA Ukraine
UG Uganda
US United States of America
UZ Uzbekistan
VN Viet Nam
YU Yugoslavia
ZW Zimbabwe
HARD SURFACE CLEANERS

Technical Field:

The present invention relates to liquid hard surface cleaners, and in particular to hard surface cleaners which contain bleach.

Background to the Invention:

Hard surface cleaners containing bleach are well known in the art. Typical compositions comprise one or more surfactants in solution and a bleaching agent such as a hypochlorite salt. Such hard surface cleaners typically are rather viscous liquids such that when they are applied to a tilted or vertical surface they do not run off immediately, but rather cling to the surface and only gradually drain off thus extending their action on that surface.

They may contain other components as well, particularly an abrasive. The abrasive particles should stay suspended in the liquid so that sedimentation of the particles is prevented and the product need not be shaken before use.

Often, the required thickening of the liquid cleaner is the result of a proper selection of the surfactant or surfactants, which in combination with other ingredients present in the product or with each other provide for the thickening effect.

Bleach is present in the product because it is very effective in removing oxidizable stains and against microbes and molds. The principal problem normally
associated with the presence of bleach is oxidation of other components of the formulation thereby reducing its effectiveness. Excessive decomposition of hypochlorite may also cause the product to foam and pressure to build up in the container of the product.

Thus, in EP-A-0 009 942, which describes liquid cleaning compositions containing abrasive and chlorine bleach, it is stressed that that the surfactants should be resistant to oxidation by the bleach. Particularly the ethoxylated nonionic surfactants are mentioned as being unsuitable because of their susceptibility to oxidation. The need to use bleach stable surfactants, particularly bleach stable nonionic surfactants, is also stressed in US 5,279,755, which again describes bleach containing liquid abrasive cleaning compositions. Similar disclosures can be found in EP-A-0 159 923, US 4,438,016 and EP-A-0 649 898. All of these references describe the use of a mixture of anionic and bleach stable nonionic surfactants as being particularly suitable. Tertiary amine oxides are generally recognized as being particularly stable against bleach and very suitable for the above purpose.

US 3,577,347 describes solid cleaning compositions comprising a surfactant, a chlorine bleach and a water soluble salt as abrasive. Large groups of anionic and nonionic surfactants are listed as suitable, among which ethoxylated alkylphenols and ethoxylated fatty alcohols. However, it is stressed that in order to remain stable the composition should not contain an appreciable amount of water and the water soluble salt should therefore have less than 6 molecules of water of hydration.
EP-A-0 346 112 discloses machine diswashing compositions containing hypochlorite bleach. The compositions also contain detergent surfactants of which it is stressed that they should be bleach stable. A general description of a wide variety of possible nonionic surfactants, including fatty alcohol ethoxylates, ends with the remark that some of them are bleach stable and some are not. It is then said that in order to be bleach stable the nonionic detergent compound should not contain free OH groups, i.e. it should be "capped" with a low alcohol moiety. Also the compositions should preferably have pH between 10.5 and 12.5 to minimize chemical interaction between the detergent and the bleach.

Similar compositions are described in US 5,130,043 which also contain alkoxyalted nonionics which are capped, i.e. do not contain a free terminal OH group.

Further examples of the use of capped alkoxyalted nonionic surfactants in combination with hypochlorite bleach may be found in EP-A-0 812 908.

EP-A-0 520 226 describes acidic halogen bleach compositions which contain limited amounts of ethoxylated alkylphenols as chlorine scavenger. This shows the ease with which these compounds react with halogen.

Nonionic surfactants which are generally considered to be bleach stable are not always the most desirable ones to be used in cleaning compositions. Thus, amine oxides are generally more expensive than e.g. ethoxylated aliphatic alcohols. Also, the latter are generally considered to be excellent detergents especially for removing fatty soils.
Brief Description of the Invention:

It has now been found that stable aqueous liquid hard surface cleaning compositions can be prepared, comprising a halogen bleach and an ethoxylated nonionic surfactant and which is buffered so as to maintain the pH of the composition at 11.5 or above.

Accordingly, the present invention provides aqueous liquid hard surface cleaning compositions comprising a halogen bleaching agent and a surfactant system, wherein the surfactant system consists of, or comprises, at least one ethoxylated nonionic surfactant carrying a terminal OH group and the composition comprises a buffer system to maintain the pH at or above 11.5.

The formulations described herein provide cleaning compositions which are stable under the normally encountered storage temperatures and during normally encountered periods of storage and use, and exhibit good cleaning properties and rheology.

Detailed Description of the Invention:

As outlined above the cleaning compositions contain at least a halogen bleaching agent, a surfactant system and a buffer system. Other components may be present as well, as will be described hereinafter, to give the compositions additional useful properties. One such component, which is highly desirable for certain types of hard surface cleaning compositions is an abrasive system consisting of a plurality of solid abrasive particles.
Bleaching Agent

The compositions of the invention contain a halogen bleaching agent. The bleach is preferably selected from the group consisting of the alkali metal and the alkaline earth metal salts of hypohalite, hypohalite addition compounds, haloamines, haloimines, haloimides, and haloamides. Chlorine based bleaching agents such as hypochlorite are particularly preferred. Typical hypochlorite compounds include sodium, potassium, lithium and calcium hypochlorite, chlorinated trisodium phosphate dodecahydrate, potassium and sodium dichloro-isocyanurate, trichloroisocyanuric acid, dichlorodimethyl hydantoin, chloro-bromo-dimethylhydantoin, N-chlorosulfamide and chloramine. In the context of the present invention sodium hypochlorite (NaOCl) is particularly preferred.

The levels of bleach (expressed as %wt available halogen) present in the formulation are suitably at least 0.25wt% of the total formulation, more preferably at least 0.5%. Generally the levels do not exceed 15 wt% and are preferably at or below 5wt%, most preferably at or below 3wt%.

Surfactant System:

Ethoxylated nonionic surfactants carrying a terminal OH group are essential ingredients of the compositions according to the present invention. Suitable ethoxylated nonionic surfactants can be broadly described as compounds comprising ethyleneoxy groups, which are hydrophilic, and an organic hydrophobic group which may be aliphatic or alkyl aromatic in nature. The length of the hydrophilic polyoxyethylene group which is attached to any particular
hydrophobic group can be readily adjusted to yield a water-
 soluble compound having the desired balance between
 hydrophilic and hydrophobic elements. This enables the
 choice of nonionic surfactants with a suitable HLB

The hydrophobic group may be derived from primary or
 secondary alcohols having 8-22 C-atoms or from alkylphenols
 containing an alkyl group of 6-15 C-atoms. These compounds
 may be condensed with up to 15 moles of ethylene oxide. The
 alcohols may be saturated or unsaturated.

The hydrophobic group may also be derived from alkyl-
polyglucosides, alkoxylated alcohols, alkyl sulfoxides,
alkyl-polyglycerols, fatty acid esters, amides and amines

Preferred nonionic surfactants are selected from the group
comprising ethoxyilated alcohols of the general formula:

\[R^1-(OCH_2CH_2)_m-A-OH \]

wherein \(R^1 \) is the residue of a branched or unbranched
alcohol having 8-18 C-atoms; \(A \) is absent or is the residue
of a polyl of at least 2 C-atoms and two hydroxyl groups;
and the average degree of ethoxylation (i.e. the
ethyleneoxy chain length) \(m \) is 1-10. \(R^1 \) can be a 2-hydroxy-
alkyl group of the same chain length.

Where \(A \) is present it can be the residue of an alkylene
glycol or a sugar. Preferably \(A \) is be absent. It should be
noted that propoxy residues can partly replace the ethoxy
residues. \(R^1 \) is preferably a primary group.
The alcohol ethoxylates are excellent detergents, are available at low cost and exhibit concentration-sensitive interactions with electrolytes having a desirable thickening effect on the cleaning composition.

The level of nonionic surfactant is at least 0.1%, generally more than 0.2% by weight, preferably at least 0.25% and more preferably at least 0.4% by weight. Generally the amount will not be more than 10% by weight, more preferably at or below 5%, most preferably at most 4% by weight.

It is preferred that the compositions according to the invention also contain an anionic surfactant. Suitable anionic surfactants are water-soluble salts of organic sulphuric acid esters and of sulphonic acids which have in the molecular structure an alkyl group containing 6-22 C-atoms.

Examples of such anionic surfactants are water soluble salts of:

- long chain (i.e. 8-22 C-atom) alcohol sulphates (hereinafter referred to as PAS), especially those obtained by sulphating the fatty alcohols produced by reducing the glycerides of tallow or coconut oil;
- alkyl benzene sulphonates, such as those in which the alkyl group contains from 6 to 20 carbon atoms;
- secondary alkanesulphonates (hereinafter referred to as SAS).

Also suitable are salts of:

- alkyl glyceryl ether sulphates, especially those ethers of the fatty alcohols derived from tallow and coconut oil;
- fatty acid monoglyceride sulphates;
- sulphates of the reaction product of one mole of a fatty alcohol and from 1 to 6 moles of ethylene oxide;
- salts of alkylphenol ethyleneoxy-ether sulphates with from 1 to 8 ethyleneoxy units per molecule and in which the alkyl groups contain from 4 to 14 carbon atoms; and mixtures thereof.

Particularly suitable are ether sulphates having the formula given below:

\[R^2-(OCH_2CH_2)_n-OSO_3X \]

in which \(R^2 \) is a residue of branched or unbranched, preferably primary, alcohols with a (mean) chain length of 8-20 C-atoms, \(n \) is from 1 to 10, and \(X \) is a solubilising cation. Suitable cations include sodium, magnesium, potassium, ammonium and mixtures thereof. Preferably \(R^2 \) has a chain length of 8-16 C-atoms. It is also advantageous if \(n \) is from 1 to 5.

The level of anionic surfactant is preferably at least 0.1% by weight of the total cleaning composition, more preferably at least 0.5 and most preferably at least 1.0%. Generally, the amount will not exceed 15% by weight, more preferably it will be at most 10% and most preferably at most 5%.

In preferred embodiments of the invention the total surfactant system comprises from 1 to 15% by weight of the total cleaning composition. In particularly preferred surfactant systems the weight ratio of anionic surfactant to nonionic surfactant is below 5:1 or even below 4:1,
whereas on the other hand it is preferably not below 1:1, more preferably not below 2:1.

Surfactant systems such as those described above generally have a thickening effect which provides the cleaning composition with a desirable viscosity. This can be further improved by adding to the composition, over and above any anionic surfactant already present as described above, up to 2% by weight of fatty acid or fatty acid soap having 10-18 C-atoms. Preferred amounts are at least 0.1% by weight or even 0.2%, but do rarely need to exceed 1%. It is particularly preferred that the ratio of soap to total surfactant system should fall in the range of 1:4 - 1:20.

These fatty acids/soaps also help to prevent excessive foaming of the compositions in use.

Buffer system

The third essential ingredient of the cleaning compositions according to the invention is a buffer system which keeps the pH of the compositions at or above 11.5, not only during production of the compositions but also during its effective lifetime. For the purposes of this invention a buffer system is defined as a mixture of ingredients which is able to keep the pH at or above the required level.

Preferably the pH should be kept at or above 12, more preferably at or above 12.5. Such buffers are known in the art and are generally made up of highly alkaline compounds such as alkali metal hydroxides and alkali metal salts of weak acids. Suitable buffer systems comprise mixtures of alkali metal hydroxide and alkali metal silicate, particularly alkaline sodium silicate wherein the Na₂O/SiO₂
ratio is 1:1 or above, preferably 1.5:1 or above. A particularly suitable buffer system comprises 0.2–0.6% of NaOH and a suitable amount of alkaline Na silicate (e.g. 0.1–3%wt) to maintain the required pH.

Additional components

Abrasive:

Particularly preferred embodiments of the cleaning compositions according to the present invention additionally comprise an abrasive system, i.e. a dispersed, suspended phase of a particulate abrasive which is either insoluble in the aqueous phase or present in such excess that the solubility of the abrasive in the aqueous phase is exceeded and consequently solid abrasive particles exist in the composition.

Preferred abrasives for use in general purpose cleaning compositions have a Moh hardness below 6 although higher hardness abrasives can be employed for specialist applications.

Suitable abrasives can be selected from: zeolites, silicas, silicates, carbonates, aluminas, bicarbonates, borates, sulphates and polymeric materials such as polyethylene. The most preferred abrasives are calcium carbonate (as calcite), mixtures of calcium and magnesium carbonates (as dolomite), sodium hydrogen carbonate, potassium sulphate, zeolite, alumina, hydrated alumina, feldspar, talc and silica. Calcite and dolomite are particularly preferred due to their low cost, hardness and colour.
Preferred weight average particle sizes for the abrasive fall in the range 0.5-200 microns, with values of around 10-100 microns being particularly preferred. In this range an acceptable compromise between good cleaning behaviour and low substrate damage is achieved.

Preferred levels of abrasive range from 5-70wt% of the total cleaning composition, preferably in the range 15-50% most preferably between 30-50%. Such levels of abrasive give effective cleaning and good rinsing.

The thickening effect obtained by the preferred surfactant systems will also provide for keeping the abrasive particles in stable suspension in the cleaning composition.

Electrolyte:

The thickening effect of the surfactant system and thus also the stability of the suspension of abrasive particles, if present, is further supported by the presence of electrolyte in the compositions of the invention.

Such electrolytes may be selected from salts of monovalent or polyvalent organic or inorganic acids. Thus, suitable monovalent anions are selected from the group comprising chlorides, bromides, iodides, acetates, bicarbonates and mixtures thereof, and suitable polyvalent anions are selected from the group comprising, carbonates, citrates, sulphates and mixtures thereof. Carbonates alone, or mixtures comprising carbonates are particularly preferred. As will be apparent to a person skilled in the art, the choice of the electrolyte or electrolytes is also governed by the chemical nature of the other components present in
the compositions of the invention, so as to prevent any adverse reaction therewith.

For the longer chain ethoxylated alcohols, wherein m (the average degree of ethoxylation) is greater than 5, monovalent anion electrolyte may need to be present in weight excess over the total surfactant present in the composition, whereas electrolytes with either monovalent or polyvalent anions can be used with the shorter chain ethoxylates (i.e. where m is less than or equal to 5).

Preferred levels of electrolyte fall in the range 1-10%, more preferably 2-8%. It is particularly preferred that the anions of the electrolyte comprise at least 50 mol% carbonate.

Thickening agents:

High molecular weight hydrophilic polymers are optional ingredients of compositions according to the present invention and may help in further providing desirable physical characteristics. Particularly, they may act as thickeners and provide suspension stability for any abrasive which may be present. They should be compatible with bleach. Suitable polymers include polyacrylates. If present, the hydrophilic polymer suitably has an average molecular weight in excess of 500,000 Dalton and be present at levels of between 0.01 and 2% of the total composition.

Certain inorganic materials can also be used as thickening agents, such as colloidal aluminium oxide, colloidal silica and montmorillonite.
Minors:

The compositions of the invention can further comprise other non-essential components such as: perfumes, colours, whitening agents (e.g. titanium dioxide), dyes and foam-control agents.

Having regard to the various constraints and preferred features, particularly preferred embodiments of the present invention provide stable, liquid compositions comprising an aqueous phase and 30-50% by weight of a suspended particulate phase comprising calcite, dolomite, silica or mixtures thereof, and the aqueous phase comprises (in % by weight of the total composition):

a) 2-10% of a surfactant system comprising at least one of:
 i) \(R^1 - (\text{OCH}_2\text{CH}_2)_m - \text{OH} \)
 wherein \(R^1 \) is the residue of a branched, or unbranched, preferably primary, alcohol having 8-18 C-atoms and the average degree of \(m \) is 1-10;
 and at least one of:
 ii) \(R^2 - (\text{OCH}_2\text{CH}_2)_n - \text{OSO}_3\text{X} \)
 in which \(R^2 \) is a residue of branched or unbranched, preferably primary, alcohols with a chain length of 8-20 C-atoms, \(n \) is from 0 to 5, and \(X \) is a solubilising cation;
or:
 secondary alkanesulphonates having an alkyl group of 8-22 C-atoms;
 wherein the ratio of i to ii is between 1:1 and 1:4.
b) 0.25-5% of NaOCl.

c) 0.3-2.5% of a buffer system comprising NaOH and Na silicate.

d) 1-10% of an electrolyte said electrolyte comprising 25-100 mol% of multivalent anions selected from carbonate, citrate, sulphate and mixtures thereof.

e) 0.2-0.8% of fatty acid or fatty acid soap having 10-18 C-atoms.

The invention is further elucidated by the following example.
EXAMPLE

An aqueous liquid abrasive cleaning composition was prepared containing the following components in the given amounts (in % by weight of the total composition). The compounds were added in the order given in the table.

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demineralised water</td>
<td>44.145</td>
</tr>
<tr>
<td>Na carbonate</td>
<td>4.00</td>
</tr>
<tr>
<td>Silicone DB31</td>
<td>0.005</td>
</tr>
<tr>
<td>Anionic: Na LES 1 EO</td>
<td>2.80</td>
</tr>
<tr>
<td>Nonionic: C9-C11 5 EO (Neodol 91-5 [TM])</td>
<td>0.85</td>
</tr>
<tr>
<td>NaOH</td>
<td>0.40</td>
</tr>
<tr>
<td>Fatty acid (Prifac 7907 [TM])</td>
<td>0.35</td>
</tr>
<tr>
<td>Alkaline Na silicate (Na₂O : SiO₂ = 2)</td>
<td>1.00</td>
</tr>
<tr>
<td>Calcite (Omyacarb 30AV [TM])</td>
<td>45.00</td>
</tr>
<tr>
<td>Na hypochlorite</td>
<td>1.20</td>
</tr>
<tr>
<td>Perfume</td>
<td>0.25</td>
</tr>
</tbody>
</table>

The initial water temperature was brought to 26-30°C and the components were mixed using a static mixer. During the addition of the fatty acid the temperature was kept above 32°C, while during the addition of the bleach and the perfume the temperature was kept below 34°C.

The product had pH 13.0.

The cleaning composition obtained was shown to be more stable as to the content of available chlorine than a comparable market product containing an amine oxide as the nonionic surfactant.
CLAIMS:

1. Aqueous liquid hard surface cleaning compositions comprising a halogen bleaching agent and a surfactant system, wherein the surfactant system consists of, or comprises, at least one ethoxylated nonionic surfactant carrying a terminal OH group in an amount of more than 0.2% by weight of the composition and the composition comprises a buffer system to maintain the pH at or above 11.5.

2. Hard surface cleaning compositions according to claim 1 wherein the ethoxylated nonionic surfactant is selected from the group comprising ethoxylated alcohols of the general formula:

 \[R^1-(OCH_2CH_2)_m-A-OH \]

 wherein \(R^1 \) is the residue of a branched or unbranched alcohol having 8-18 C-atoms; A is absent or is the residue of a polyol of at least 2 C-atoms and two hydroxyl groups; and the average degree of ethoxylation m is 1-10.

3. Hard surface cleaning compositions according to claim 2 wherein A is absent.

4. Hard surface cleaning compositions according to claims 1-3 wherein the amount of nonionic surfactant is between 0.25 and 10% by weight.
5. Hard surface cleaning compositions according to claims 1-4 wherein the surfactant system additionally comprises an anionic surfactant in an amount of between 0.1 and 15% by weight of the composition.

6. Hard surface cleaning compositions according to claim 5 wherein the anionic surfactant is chosen from water-soluble salts of organic sulphuric acid esters and of sulphonlic acids which have in the molecular structure an alkyl group containing 6-22 C-atoms.

7. Hard surface cleaning compositions according to claims 5 and 6 wherein the total surfactant system comprises from 1 to 15% by weight of the composition and comprises nonionic and anionic surfactants in a weight ratio of between 1:1 and 1:5.

8. Hard surface cleaning compositions according to claims 1-8 wherein the pH is maintained at or above 12.

9. Hard surface cleaning compositions according to claims 1-8 wherein the pH is maintained at or above 12.5.

10. Hard surface cleaning compositions according to claims 1-8 wherein the buffer system comprises a mixture of alkali metal hydroxide and alkali metal silicate.

11. Hard surface cleaning compositions according to claims 1-10 which additionally comprises an abrasive system in an amount of between 5 and 70% by weight of the composition.
12. Hard surface cleaning compositions according to claim 11 wherein the abrasive is chosen from calcium carbonate (as calcite), mixtures of calcium and magnesium carbonates (as dolomite), potassium sulphate, zeolite, alumina, hydrated alumina, feldspar, talc and silica.

13. Hard surface cleaning compositions according to claims 11 and 12 wherein the amount of abrasive is between 30 and 50%.

14. Hard surface cleaning compositions according to claim 1 comprising an aqueous phase and 30-50% by weight of a suspended particulate phase comprising calcite, dolomite, silica or mixtures thereof, and the aqueous phase comprises (in % by weight of the total composition):
 a) 2-10% of a surfactant system comprising at least one of:
 i) $\text{R}^1-(\text{OCH}_2\text{CH}_2)_m\text{-OH}$
 wherein R^1 is the residue of a branched, or unbranched, preferably primary, alcohol having 8-18 C-atoms and the average degree of m is 1-10; and at least one of:
 ii) $\text{R}^2-(\text{OCH}_2\text{CH}_2)_n\text{-OSO}_3\text{X}$
 in which R^2 is a residue of branched or unbranched, preferably primary, alcohols with a chain length of 8-20 C-atoms, n is from 0 to 5, and X is a solubilising cation; or:
secondary alkanesulphonates having an alkyl group of 8-22 C-atoms;
wherein the ratio of i to ii is between 1:1 and 1:4.

b) 0.25-5% of NaOCl.

c) 0.3-2.5% of a buffer system comprising NaOH and Na silicate.

d) 1-10% of an electrolyte said electrolyte comprising 25-100 mol% of multivalent anions selected from carbonate, citrate, sulphate and mixtures thereof.

e) 0.2-0.8% of fatty acid or fatty acid soap having 10-18 C-atoms.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C11D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5 130 043 A (PRINCE MARK J ET AL)</td>
<td>1-10</td>
</tr>
<tr>
<td>Y</td>
<td>column 10, line 40 -column 11, line 56 claims 1-11</td>
<td>1-14</td>
</tr>
<tr>
<td>Y</td>
<td>EP 0 829 530 A (UNILEVER PLC ;UNILEVER NV (NL)) 18 March 1998 (1998-03-18)</td>
<td>1-14</td>
</tr>
<tr>
<td></td>
<td>page 4, line 35 - page 6, line 42</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>EP 0 346 112 A (PROCTER & GAMBLE)</td>
<td>1,4-10</td>
</tr>
<tr>
<td></td>
<td>13 December 1989 (1989-12-13)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 7, line 10 - line 58 claims 1-14</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search: 23 September 1999

Date of mailing of the international search report: 04/10/1999

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax: (+31-70) 340-3016

Authorized officer: Richards, M

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 0 812 908 A (PROCTER & GAMBLE)</td>
<td>1-14</td>
</tr>
<tr>
<td></td>
<td>17 December 1997 (1997-12-17)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 3, line 6 - line 11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 4, line 40 - page 5, line 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>examples A,E,F</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 4 913 833 A (OTTEN JAY G ET AL)</td>
<td>1,2,4, 10,11</td>
</tr>
<tr>
<td></td>
<td>3 April 1990 (1990-04-03)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 8, line 44 - column 9, line 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>claims 1-16</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>EP 0 724 011 A (DOW CHEMICAL CO)</td>
<td>1-4, 6, 8, 9</td>
</tr>
<tr>
<td></td>
<td>31 July 1996 (1996-07-31)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 3, line 52 - line 34</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 3 577 347 A (MONICK JOHN ALEXANDER)</td>
<td>1-14</td>
</tr>
<tr>
<td></td>
<td>4 May 1971 (1971-05-04)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cited in the application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 3, line 17 - column 5, line 19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>claims 1-4</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>GB 2 311 996 A (RECKITT & COLMAN INC)</td>
<td>1-14</td>
</tr>
<tr>
<td></td>
<td>15 October 1997 (1997-10-15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 3, line 19 - page 8, line 18</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 5130043 A</td>
<td>14-07-1992</td>
<td>CA 1322706 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2219596 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4976193 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2144065 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69320355 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69320355 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0659205 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2122243 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9405757 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8501120 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9306663 A</td>
</tr>
<tr>
<td>EP 0346112 A</td>
<td>13-12-1989</td>
<td>US 4859358 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 148740 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 634474 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3618089 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1322707 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 68927748 D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 282389 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 892828 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2070799 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 165059 B</td>
</tr>
<tr>
<td>EP 0812908 A</td>
<td>17-12-1997</td>
<td>CA 2258130 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9747713 A</td>
</tr>
<tr>
<td>US 4913833 A</td>
<td>03-04-1990</td>
<td>CA 1317525 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0345684 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2038499 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2687978 B</td>
</tr>
<tr>
<td>EP 0724011 A</td>
<td>31-07-1996</td>
<td>AU 4706396 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9623052 A</td>
</tr>
<tr>
<td>US 3577347 A</td>
<td>04-05-1971</td>
<td>NONE</td>
</tr>
<tr>
<td>GB 2311996 A</td>
<td>15-10-1997</td>
<td>AU 2202097 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2251109 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1218504 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0892847 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 332684 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9739099 A</td>
</tr>
</tbody>
</table>