
(19) United States
US 20050097537A1

(12) Patent Application Publication (10) Pub. No.: US 2005/0097537 A1
Laura (43) Pub. Date: May 5, 2005

(54) SYSTEM AND METHOD FOR DISTRIBUTED
PROCESSING IN COBOL

(76) Inventor: Joseph G. Laura, Plano, TX (US)
Correspondence Address:
SPRINT
6391 SPRINT PARKWAY
KSOPHTO101-Z2100
OVERLAND PARK, KS 66251-2100 (US)

(21) Appl. No.: 10/696,828

(22) Filed: Oct. 30, 2003

Publication Classification

(51) Int. Cl." ... G06F 9/44

30 34

--
W
- PIPE --> ROUTINE

(52) U.S. Cl. 717/162; 717/107; 717/114

(57) ABSTRACT

A system for enabling socket communication in COBOL
program is provided. The System includes a memory block,
a COBOL program communicating with the memory block,
a socket and a COBOL routine callable from the COBOL
program. The COBOL routine is operable to read informa
tion from the Socket and write the information read from the
socket to the memory block in response to the COBOL
program call. A method for Socket and pipe communication
in COBOL is also provided. The method includes reading,
by a routine, information from a Socket or pipe and writing,
by the routine, the information to an area. The method
provides for reading, by a COBOL program, the information
from the area. The COBOL program and the routine oper
ating in the same runtime environment.

20e

SOCKETS
ROUTINE

MEMORY

36
COBO

PROGRAM

12

Patent Application Publication May 5, 2005 Sheet 1 of 4 US 2005/0097537 A1

FIG. I.

COMPUTER
COMPUTER

18 COBOL PROGRAM

DISTRIBUTED AND
ASYNCHRONOUS TECHNICAL LAYER
PROCESSING TASK

DISTRIBUTED AND
ASYNCHRONOUS
PROCESSING TASK

FIG. 2
TECHNICAL LAYER

SIGNAL SHARED MEMORY
HANDLER MEMORY SOCKETS"GUEGE SEMAPHORE 10

20e 20g 20 20C 20a (Ul
MESSAGE

2Ob 200 2Of 2Oh 20

30 34 20e FIG. 3

SOCKETS
ROUTINE

-- - - - - - - - - - - - 36
W PIPE -- PIPES COBO

--> ROUTINE PROGRAM
- - - - -----

2Of 12

Patent Application Publication May 5, 2005 Sheet 2 of 4 US 2005/0097537 A1

FIG. 4

FIRST SECOND
COBOL COBOL 52

PROGRAM PROGRAM

SHARED MEMORY

50

54 THREADS
ROUTINE N 200

SHARED RESOURCE
56

70

----4----
PARENT FIG. 5 1 - - - - - - - - - N

/ N
/ n

SECOND
COBOL

PROGRAM 72a 72b PROGRAM
52

STATE

SEMAPHORE

SEMAPHORE
ROUTINE

SHARED
RESOURCE

COBOL
PROGRAM

LINKAGE
SECTION

KEY ADDRESS

- - - - - - -
MUTEXES

20-1 ROUTINE 20

12

20g

MEMORY
36

ADDRESS
94

Patent Application Publication May 5, 2005 Sheet 3 of 4 US 2005/0097537 A1

FIG. 7
52 FIRST SECOND

COBOL COBOL
SHARED PROGRAM PROGRAM
MEMORY
ROUTINE LINKAGE LINKAGE

SECTION SECTION N.96b 20C

34
MEMORY

36
ADDRESS

112 112-- N114

12
SIGNAL

20a N HANDLER 130
ROUTINE

2Ob COBOL
PROGRAM

12

156a CHILD
PROCESS

PIDEVENT 152a

SHARED
RESOURCE

US 2005/0097537 A1 May 5, 2005 Sheet 4 of 4 Patent Application Publication

011,

0 / ’9 IAI

)\HOINE W CJE HVHS

US 2005/0097537 A1

SYSTEMAND METHOD FOR DISTRIBUTED
PROCESSING IN COBOL

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is related to U.S. patent applica
tion Ser. No. entitled SYSTEM AND METHOD
FOR COBOL TO PROVIDE SHARED MEMORY AND
MEMORY AND MESSAGE QUEUES, inventor Joseph G.
Laura, filed on even date here with, U.S. patent application
Ser. No. , entitled SYSTEM AND METHOD FOR
ASYNCHRONOUS PROCESSING IN COBOL, inventor
Joseph G. Laura, filed on even date herewith, and U.S.
patent application Ser. No. entitled IMPLEMEN
TATION OF DISTRIBUTED AND ASYNCHRONOUS
PROCESSING IN COBOL, inventor Joseph G. Laura, filed
on even date here with, all of which are incorporated herein
by reference for all purposes.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

0002) Not applicable.

REFERENCE TO A MICROFICHEAPPENDIX

0003) Not applicable.

FIELD OF THE INVENTION

0004. The present invention relates to the field of com
puter programs and computer programming languages and
more specifically, but not by way of limitation, to imple
mentation of distributed and asynchronous processing in
COBOL.

BACKGROUND OF THE INVENTION

0005 Common Business Oriented Language, or COBOL
as it is more commonly known, is a computer programming
language that has been in use for decades. COBOL is widely
used for busineSS applications on mainframe computer SyS
tems. COBOL was created to address the needs of business
computing and is not generally used for writing System or
low-level programs. COBOL applications can be hundreds
of thousands or more lines of code that are used for years and
evolve with periodic modifications and maintenance. Due to
the huge investment in these large, busineSS critical, COBOL
applications, it is difficult for businesses to justify abandon
ing the COBOL applications for newer technologies.
0006 Unfortunately, COBOL is severely limited in a
number of areas compared to the processing techniques
available to developerS that use other languages Such as C or
JAVA. POSIX, or Portable Operating System Interface uniX,
is a standard UNIX interface for applications to ensure
interoperability on equipment from various venders. POSIX
includes well know functionality available in programming
languages Such as C and JAVA for accomplishing distributed
and asynchronous processing, Such as shared memory,
memory and message queues, threads, Semaphores and
mutexes, events, Signal handlers, and Sockets.
0007 Shared memory and memory and message queues
provide functionality to enable multiple C or JAVA pro
grams, for example, to share resources. Threads refer to
functionality to enables asynchronous processing to allow a

May 5, 2005

program or application to be split into multiple paths to
improve efficiency. Semaphores and mutexes relate to func
tionality to coordinate processing acroSS jobs and threads,
respectively. Events handle Signals from other jobs, while
Signal handlers refer to the functionality for a program to
manage exceptions, for example, from the operating System.
Sockets provide programs the capability to share informa
tion acroSS machines.

0008. The processing techniques described above are
examples of useful functionality widely available to pro
grammerS using distributed and asynchronous processing
languages, such as C and JAVA, but unavailable in COBOL.
Frequently, it is desirable for busineSS processes employing
COBOL applications to accomplish distributed and asyn
chronous processing. Although the COBOL language has
limitations, it is difficult for businesses with a significant
investment in COBOL programs to justify abandoning the
COBOL applications and redeveloping the applications
using a more modern and flexible language, Such as C or
JAVA. Instead, COBOL systems are typically provided with
an interface or “hook” to enable the COBOL program to
cooperate with, for example, C or JAVA programs. The C or
Java program then performs the distributed and asynchro
nous processing tasks that the COBOL application is oth
erwise incapable of handling independently.

SUMMARY OF THE INVENTION

0009. A system for enabling socket communication in
COBOL program is provided. The system includes a
memory block, a COBOL program communicating with the
memory block, a socket and a COBOL routine callable from
the COBOL program. The COBOL routine is operable to
read information from the Socket and write the information
read from the Socket to the memory block in response to the
COBOL program call. A method for Socket and pipe com
munication in COBOL is also provided. The method
includes reading, by a routine, information from a Socket or
pipe and writing, by the routine, the information to an area.
The method provides for reading, by a COBOL program, the
information from the area. The COBOL program and the
routine operating in the Same runtime environment.
0010. These and other features and advantages will be
more clearly understood from the following detailed
description taken in conjunction with the accompanying
drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

0011 For a more complete understanding of the presen
tation and the advantages thereof, reference is now made to
the following brief description, taken in connection with the
accompanying drawings in detailed description, wherein
like reference numerals represent like parts.
0012 FIG. 1 is a block diagram illustrating one embodi
ment of a System for implementing distributed and asyn
chronous processing using a COBOL program.
0013 FIG. 2 is a block diagram illustrating one embodi
ment of a technical layer having a plurality of routines to
enable distributed and asynchronous processing in COBOL
programs.

0014 FIG. 3 illustrates one embodiment of a socket
routine of the technical layer for enabling Socket commu
nications by COBOL programs.

US 2005/0097537 A1

0.015 FIG. 4 is a block diagram illustrating one embodi
ment of a thread routine of the technical layer for enabling
threads in COBOL programs.
0016 FIG. 5 is a block diagram illustrating one embodi
ment of a Semaphore routine of the technical layer for
enabling Semaphores in COBOL programs.
0017 FIG. 6 is a block diagram, according to one
embodiment, of a memory queue routine for enabling
memory queues in COBOL programs.
0018 FIG. 7 illustrates one embodiment of a shared
memory routine of the technical layer for enabling shared
memory in COBOL programs.
0.019 FIG. 8 is a block diagram illustrating a signal
handler routine for implementation in COBOL programs,
according to one embodiment.
0020 FIG. 9 illustrates one embodiment of an events
routine of the technical layer for enabling events in COBOL
programs.

0021 FIG. 10 is a block diagram of an exemplary system
illustrating implementation of various distributed and asyn
chronous processes for COBOL, according to another
embodiment.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0022. It should be understood at the outset that although
an exemplary implementation of one embodiment is illus
trated below, the present System may be implemented using
any number of techniques, whether currently known or in
existence. The present disclosure should in no way be
limited to the exemplary implementations, drawings, and
techniques illustrated below, including the exemplary design
and implementation illustrated and described herein, but
may be modified within the Scope of the appended claims
along with their full Scope of equivalents.
0023 FIG. 1 is a block diagram illustrating one embodi
ment for implementing distributed and asynchronous pro
cessing in COBOL. To the domestic and international
COBOL programming community, enabling distributed and
asynchronous processing for the COBOL programming lan
guage is a Significant achievement that enables a new
paradigm for COBOL applications and programmers,
whether for mainframe or PC COBOL systems.
0024. The exemplary embodiment enables distributed
and asynchronous processing by employing a technical layer
10. A COBOL program 12 is provided, along with the
technical layer 10, on a computer 14. The COBOL program
12 may be any type of computer program written in the
COBOL programming language, regardless of the version,
vendor, level of compliance with the COBOL ANSI stan
dard, Specific compiler or operating System features of the
COBOL system. The COBOL program 12, in this embodi
ment, is a COBOL application or program, or may be a
COBOL routine, paragraph, Subroutine, Subtask or other
instructions coded in the COBOL programming language.
The computer 14, in this embodiment, is a mainframe
computer System. The present disclosure, however, should
not be limited to mainframe computers and may be imple
mented, in other embodiments, on a mid-range computer
System, network Server or WorkStation, or desktop or other
computers.

May 5, 2005

0025 The COBOL program 12 is programmed to execute
a call to one or more callable modules or routines (not
shown) of the technical layer 10 to perform distributed and
asynchronous processing tasks 16 on the computer 14. The
computer 14 is shown in communication with a Second
computer 18, which may be similar to the computer 14. In
this manner, the COBOL program 12 using the technical
layer 10 is operable to enable the distributed and asynchro
nous processing tasks 16 on the Second computer 18 as well.

0026. In this embodiment, the technical layer 10, which
will be described in greater detail hereinafter with regard to
FIG. 2, is implemented as a library having one or more
callable modules, routines or Subroutines uSable by the
COBOL program 12, such as by being linked into the
COBOL program 12. In other embodiments, the callable
modules or routines of the technical layer 10 may be integral
or incorporated into the COBOL program 12. In yet other
embodiments, the technical layer 10 may be employed as a
pre-compiler, Such that routines or functions enabling the
distributed and asynchronous processing functionality are
enabled prior to the COBOL program 12 being compiled. In
still other embodiments, the technical layer 10 may be
enabled as part of a COBOL compiler, such that the asyn
chronous and distributed processing functionality for the
COBOL program 12 are enabled by the COBOL compiler
during compilation.

0027. As discussed above, distributed and asynchronous
processing is intended to describe a variety of functionality
that is not native to COBOL or was not previously available
to in the COBOL programming language, but which is
available in distributed and asynchronous processing envi
ronments and programming languages Such as C and Java.
The terms distributed and/or asynchronous processing, as
used herein, are intended to include, but not be limited to,
one or more of the programming techniques and function
ality for programming, enabling, and managing Sockets and
pipes, shared memory, threads, memory and message
queues, Signal handlers, events, Semaphores and mutexes.

Technical Layer

0028 FIG. 2 is a block diagram illustrating one embodi
ment of the technical layer 10 for enabling distributed and
asynchronous processing by COBOL language programs,
such as the COBOL program 12. The technical layer 10,
when enabled as a COBOL library, may be written in the
COBOL programming language as a plurality of paragraphs,
routines, or modules callable by the COBOL program 12 and
linked to the COBOL program 12 at the appropriate time.
However in other embodiments, the technical layer 10 may
be written in a variety of other languages, Such as, but not
limited to, assembly language. Nothing in this disclosure
should be regarded as limiting or restricting the particular
construction or techniques used to implement the technical
layer 10. As previously discussed, the technical layer 10 may
be implemented, in other embodiments, as a compiler that
enables distributed and asynchronous processing routines,
functions, or program code of the COBOL program 12 or its
Sub-programs.

0029 Based on the present disclosure, one skilled in the
art would readily identify a number of ways to enable
distributed and asynchronous processing in COBOL lan
guage programs. Thus, although the technical layer 10 in the

US 2005/0097537 A1

present embodiment is provided as a COBOL language
program library, each of the various routines and instructions
for enabling each of the distributed and asynchronous pro
ceSSes may be implemented as individual programs or
Systems or Separated into different combinations, all of
which are within the Spirit and Scope of the present disclo
SUC.

0.030. In addition, the technical layer 10 may be embod
ied as one or more layerS or Sub-layers, Systems or Sub
Systems, which may be beneficial in Some aspects for ease
of maintenance and for adaptation to other Systems for
reasons of compatibility, performance or efficiency. For
example the technical layer 10 may include an operating
System calls layer (not shown). Such an operating System
layer may be provided for handling Specific operating Sys
tem calls from the technical layer 10 to a particular main
frame or computer operating System. Thus, an operating
system layer allows the technical layer 10 to be independent
of any particular operating System. This implementation
Simplifies migration to different mainframe or other com
puter operating Systems without the need to completely
replace or rewrite the technical layer 10 for operation on
another operating System. Whether or not an operating
System layer is employed, the technical layer 10 insulates the
COBOL program 12 from the operating System, making the
COBOL program 12 operating System independent and
readily portable to other operating Systems and platforms.

0031. The technical layer 10 has a plurality of routines 20
including, but not limited to, routines for enabling distrib
uted and asynchronous processing by COBOL language
programs, such as POSIX functionality available in other
languages. The plurality of routines 20 of the technical layer
10 are designated alphanumerically for purposes of clarity
for this disclosure. The plurality of routines 20 include a
Signal handler routine 20a, an events routine 20b, a shared
memory routine 20c, a threads routine 20d, a Sockets routine
20e, a pipes routine 20?, a memory queue routine 20g, a
message queue routine 20h, a Semaphore routine 20i, and a
mutex routine 20j.
0.032 Briefly, the signal handler routine 20a provides
functionality to enable the COBOL program 12 to work with
operating System generated events. The events routine 20b
enables the COBOL program 12 to manage Signals from
other jobs. The shared memory routine 20c provides the
COBOL program 12 with the functionality to enable
memory sharing on the computer 14, or other computers,
with other COBOL programs. The threads routine 20d
enables COBOL applications to be split into multiple paths.
The sockets routine 20e enables the COBOL program 12 to
communicate information between, for example, the com
puter 14 and the Second computer 18, via a Socket connec
tion. The pipes routine 20fprovides functionality to enable
the COBOL program 12 to communicate via pipe connec
tions on the computer System 14.

0033. The memory queue routine 20g and message queue
routine 20h provide functionality to enable the COBOL
program 12 to use memory queues on the computer 14, as
well as message queues employed by and between computer
systems. The semaphore routine 20i provides functionality
to coordinate processing acroSS jobs, while the muteX rou
tine 20; enables COBOL language programs to coordinate
processing acroSS threads. The term job includes instructions

May 5, 2005

Sent in a batch manner to a computer as a unit of work to be
accomplished by the computer. The term threads includes a
Sequence of computer instructions that make up a program
Such that multiple threads can be executed independently to
improve program efficiency.

0034). Each of the routines 20 of the technical layer 10
may be employed individually or in various combinations or
in the combination illustrated in FIG. 2. AS Such, each of the
individual routines 20 or combination of routines 20 may be
enabled in a number of ways including, but not limited to:
provided as a library linkable to the COBOL program 12;
provided as routines that are nested, embedded or otherwise
included in the COBOL program 12; provided in a pre
compiler configuration where the functionality of the routine
20 is in enabled in the COBOL program 12 during a process
prior to compilation; or provided as a COBOL language
compiler where the functionality provided by the routine 20
is enabled during compilation of the COBOL program 12. In
any case, the present disclosure enables asynchronous and
distributed processing by one or more COBOL programs or
routines either independently or employing associated Sys
tems, such as but not limited to the above described list,
within the COBOL programming language or the same
runtime environment. Other methods of enabling one or
more of the distributed and asynchronous processing capa
bilities disclosed herein will readily Suggest themselves to
one skilled in the art.

0035) In the present embodiment, the routines 20 are
provided as part of the technical layer 10 in a library that is
easy to maintain and adapt as necessary. Such implementa
tion allows for the library to be readily packaged for use by
other COBOL language developers and may be distributed
including the Source code or may be distributed only as
object code. In either case, the COBOL language program
mers can easily employ the technical layer 10 as a library
without changes to the underlying COBOL language System
and quickly begin using the distributed and asynchronous
processing functionality provided in the present disclosure.
0036 Sockets and Pipes
0037 FIG. 3 is a diagram illustrating the functionality of
the Socket routine 20e for enabling the COBOL program 12
for communication with a socket 30. The socket 30 may
represent a communication channel established between one
or more computer Systems, Such as the first computer 14 and
the second computer 18 (illustrated in FIG. 1). Functionally,
the COBOL program 12 requests communication, via a
Socket, from the Socket routine 20e. The Socket routine 20e
establishes the Socket connection with the Socket 30, Such as
by a call to an operating System 34. The operating System 34
may be any operating System operable on the computer 14.
In the present embodiment, the COBOL program 12 is
operable on an IBM mainframe computer System using a
ZOS operating System.
0038. The COBOL program 12 may, for example, initiate
a call to a function of the operating System 34 to accept a
connection request from a client. Examples of Such calls are
provided in the operating System's callable Services refer
ence manual. It may be necessary to refer to the Specific
documentation for the operating System where the technical
layer 10 and COBOL program 12 will be employed to
determine the correct Syntax and functionality. The operat
ing System calls, including the Syntax and techniques for the

US 2005/0097537 A1

COBOL program 12 to communicate with the operating
system 34 via the technical layer 10, may vary greatly
depending upon the desired operating System. AS previously
described, the technical layer 10 may be separated into
multiple layers including an operating System layer that
maintains each of the operating System calls for compatibil
ity with Specific operating Systems. AS Such, the technical
layer 10 would require little or no modification to enable
compatibility with other operating Systems. By abstracting
the Specific calls to a single layer, the technical layer 10 and
COBOL program 12 remain substantially the same regard
less of the operating System, thus eliminating or reducing the
need to maintain different versions of the technical layer 10
or COBOL program 12 for different operating systems.
Regardless, any change in the technical layer 10 to accom
modate different operating Systems would be transparent to
the COBOL programs using the technical layer 10.

0039. In the present embodiment, and referring to the
above described operating System documentation, the
“accept (BPX1ACP)” is the appropriate call to accept a
connection request from a client. This operating System
function extracts the first connection on the queue of pend
ing connections, creates a new Socket with the same prop
erties as the Specified Socket and allocates a new descriptor
for that Socket, as provided in the documentation. If there are
no connections pending, the Service either blockS until a
connection request is received, or fails with an EWOULD
BLOCK, depending upon whether the specified socket is
marked as blocking or non-blocking. Thus, the Socket rou
tine 20e is operable, via the operating System 34, to establish
and communicate via the socket 30. It will be appreciated
that a number of operating System calls and communications
are employed by the routines 20 of the technical layer 10.
For purposes of clarity and brevity of disclosure, only the
above operating System call and function is described. The
Specifics for additional operating System calls and functions
may be obtained by referring to the above or desired
operating System documentation and relevant COBOL pro
gramming language Support materials.

0040. The operating system call is made from the Socket
routine 20e, which, in the present embodiment, is a program
written in COBOL having a routine or paragraph wherein a
call is made in the COBOL code to the operating system 34
as described above. The called operating System function
returns information used by the socket routine 20e for these
purposes. For example, the above call is described in the
documentation as follows:

CALL BPX1ACP,
(Socket descriptor.Sockaddr length.Sockaddr, Return value,
Return code,Reason code)

0041. The actual implementation of the operating system
calls will vary depending upon the different functionality
enabled in various portions of the technical layer 10.
Regardless of the Specific operating System call, technique
for making the call, and whether or not the call is made from
a COBOL language program, it is readily apparent that
enabling a technical layer 10 for use by a COBOL program
allows the COBOL program to accomplish communication
with the socket 30. In light of the above description, one

May 5, 2005

skilled in the art can See that using operating System calls
from COBOL programs or routines could also be used to
make other calls to the operating System 34, as well as other
operating Systems, and for brevity only the above call will
be described in detail.

0042. When the technical layer 10 is programmed in
COBOL, as is the case in the present embodiment, the
operating System calls require bit level mapping of the calls,
parameters and returned information to complete a COBOL
programming language call to the operating System 34.
Some operating System calls may be accomplished other
wise. However, the present embodiment employs the bit
level calls to communicate with the operating System to
enable the COBOL program to look like an assembler call,
as necessitated by the operating System. AS Such, the call to
the operating System 34 has the correct bits, offsets and
memory mapping to Sufficiently interface with the operating
System 34. AS previously discussed, these specific bit level
calls, including offsets, will depend upon the particular
operating System 34 that is being employed.

0043 Source code for the Socket interface call from a
COBOL language program, according to the present
embodiment, is provided below. A number of interesting
aspects of the code are apparent, including that the code
provides a nested program called GETADDR that provides
the address of an internal area into a pointer variable. This
address moved into an external area prior to making the
Socket call. This is one method for circumventing a limita
tion of the COBOL compiler that restricts setting pointer
addresses to areas that are in linkage. Using the external area
to communicate the address of the requesting program's
Socket communication area allows the program to be used in
either 24 or 32 bit mode, which may also be referred to as
above or below the line.

O1 WS-SOCKETAREA
O2 WS-SOCKETACTION
O2 WS-SOCKET-FD.

05 WS-SOCKET-FD-NUM PIC 9(9) COMP.
O2 WS-SOCKETIPADDR.

OS WS-SOCKETIPADDR-N PIC 9(9) COMP.
O2 WS-SOCKETOCTETS REDEFINES WS-SOCKETIPADDR.

OS WS-SOCKETIPADDR-B OCCURS 4 TIMES
INDEXED BY WS-SOK-IP-IDX PIC X(1).

O2 WS-SOCKET-PORT PIC 9(9) COMP.
O2 WS-SOCKET-INPUT LEN PIC 9(4) COMP.
O2 WS-SOCKET-INPUTNAME-AREA

PIC X(1).

OS WS-SOCKET-INPUTNAME PIC X(10).
05 FILLER PIC X(1) VALUE I.
OS WS-SOCKET-INPUTPID PIC 9(09).

O2 WS-SOCKETOUTPUT LEN PIC 9(4) COMP.
O2 WS-SOCKETOUTPUTNAME-AREA

05 WS-SOCKET-OUTPUT-NAME PIC X(10).
05 FILLER PIC X(1) VALUE 'O'.
05 WS-SOCKET-OUTPUT-PID PIC 9(09).

O2 WS-SOCKETIN PIC S9(9) COMP.
O2 WS-SOCKETOUT PIC S9(9) COMP.
O2 WS-CLIENT-FD PIC S9(9) COMP.
O2 WS-SOCKETCHARS-O PIC S9(9) COMP.
O2 WS-SOCKETREC-LEN PIC S9(9) COMP.
O2 WS-SOCKETREC.

OS WS-SOCK-CHAR OCCURS 20OOOOOTIMES
PIC X(1).

O1 WS-POINTERS.
O2 WS-SOCKETINTF-PTR POINTER.
O2 CL-CLIENTINTF-PTR POINTER.
O2 SZ-CLIENT INTF-PTR POINTER.

US 2005/0097537 A1

-continued

O2 RM-CLIENT INTF-PTR POINTER.
O1 EX-SOCKETINTF-AREA EXTERNAL.

O2 EX-SOCKETINTF-PTR POINTER.
CALL 'GETADDR USING WS-SOCKET-AREA,

WS-SOCKETINTF-PTR.
SET EX-SOCKETINTF-PTR TO WS-SOCKETINTF-PTR.
PERFORM V1000-CALL-SOCKETINTERFACE.
PERFORM C1OOO-CHECK-RETURN-CODE.
::

* CALL SOCKET INTERFACE ROUTINE
::

V1OOO-CALL-SOCKETINTERFACE.
CALL HHABSSOK.

LINKAGE SECTION.
O1 WS-AREA PIC X(1).
O1 WS-ADDR POINTER.
PROCEDURE DIVISION USING WS-AREA

WS-ADDR.
MAIN.

SET WS-ADDR TO ADDRESS OF WS-AREA
GOBACK.

END PROGRAM GETADDR.

0044) In other embodiments, the technical layer 10 may
be implemented wherein the Specific Syntax from the
COBOL language program is separated with the EXEC/
END-EXEC and the syntax is stripped out of the source
COBOL language program in a pre-compile Step and
replaced with calls to the technical layer 10. In addition, the
operating calls and/or routines 20 may be provided in a
COBOL language compiler as previously discussed.

0.045 Once the socket routine 20e establishes the con
nection with the Socket 30, via the operating system 34, the
socket routine 20e is then operable to read and write
information from the Socket 30. The Socket routine 20e
receives information from the Socket 30 and writes the
information to a memory 36, Such as a block of memory of
the computer 14. In the present embodiment where the
computer 14 is a mainframe, the Socket routine 20e receives
the information from the socket 30 and is operable to convert
the information based on the formats of the Sending and
receiving platforms. For example, the Socket routine 20e
may receive the information in ASCII format and convert
the information to EBCDIC format for use on a mainframe,
or Vice-versa.

0046) The COBOL program 12 then reads the informa
tion from the memory 36 thus enabling the COBOL program
12 to communicate via the Socket 30. In Some embodiments,
the COBOL program 12 allocates the memory 36, and thus
obtains the address of the memory 36. In the present
embodiment, the Socket routine 20e establishes the memory
36 and the COBOL program 12 obtains the address of the
memory 36 from the socket routine 20e. In either case, the
COBOL program 12 uses the address of the memory 36 and
lays a map over the memory 36 to read the information from
the memory 36. One method of accomplishing this tech
nique is for the COBOL program 12 to employ a copybook
for reading the memory 36 information into the COBOL
program 12.

0047. In the present embodiment, the socket routine 20e
creates the Socket 30 and may be thought of as providing a
file descriptor that describes a stream. The Socket routine
20e obtains or is provided the address or the target where the

May 5, 2005

data or information coming off the socket 30 should be
provided. The COBOL program 12 maps the address of the
memory location 36 to the working Storage Section of the
COBOL program 12. The COBOL program 12 can then
analyze the information obtained from the socket 30 in any
desirable manner. Thus, the Socket routine 20e reads the data
streaming off the socket 30 and writes the data to a file or
memory for access by the COBOL program 12. The Socket
routine 20e and the COBOL program 12, in this embodi
ment, cooperate to synchronize this activity by the COBOL
program 12 requesting that the Socket routine 20e read
additional data off the Socket 30 each time the COBOL
program 12 finishes reading or manipulating the data pre
viously written to the file or memory from the socket routine
20e. The present embodiment illustrates the additional func
tionality and flexibility provided by this socket routine 20e,
and which is also provided by the pipes routine 20fthat will
be described hereinafter, to enable COBOL programmers
the ability to accomplish, for example, messaging in a
distributed environment.

0048. To write to the socket 30, the COBOL program 12
may, in one embodiment, write the information or data to the
memory 36 or provide the information directly to the Socket
routine 20e. After receiving the information, the Socket
routine 20e writes, via the operating system 34, the infor
mation to the Socket 30. To accomplish the various socket 30
related functions, the socket routine 20e is provided with a
number of functions callable from the COBOL program 12
or enabled by the technical layer 10, including a create
function to create a new Socket, an attach function to attach
to existing Sockets, and an open function to open the Socket
30.

0049 Other functions of in the socket routine 20e include
a write function to write data into the Socket 30 and a block
function to prevent writing to the socket 30 when the socket
30 is full. The Socket routine 20e includes a read function to
read data from the Socket 30, Substantially as described
above. A remove function enables the Socket routine 20e to
remove sockets 30 from the system, and a delete function is
operable to delete sockets where the Socket 30 has not yet
been opened. In the present embodiment, the Socket routine
20e also includes a listening port function that allows the
Socket routine 20e to monitor the Socket 30 for communi
cations and additional functionality for managing the con
nection of the Socket 30. A number of the Socket functions
described above may be enabled via operating System calls,
for example, from the socket routine 20e to enable socket
communications.

0050. The pipes routine 20f functions and operates in a
manner Substantially similar to that of the Socket routine
20e. Sockets are essentially communications between Sepa
rate machines whereas pipes are essentially communications
on the same or local machine. For reasons of brevity, the
pipes routine 20f will not be described in detail due to the
Similarities in construction and function of the pipes routine
20f and the socket routine 20e. The modifications necessary
to enable the pipes routine 20fare based on the local nature
of pipes and will be apparent to one skilled in the art. The
pipes routine 20falso includes functionality, for example, to
prevent reading from an empty pipe, prevent writing to a full
pipe, and waiting before writing to a full pipe as well as
balancing where one or more of the pipes are full.

US 2005/0097537 A1

0051) The pipes routine 20fprovides COBOL program
mers the ability to accomplish asynchronous processing by
reading and writing to multiple pipes and enabling multiple
child processes to Simultaneously read information from
pipes. The pipes and Sockets functionality was heretofore
unavailable to COBOL programmers. Previously COBOL
programs were only able to read from a file, Such as a
database or an index sequential file or VSAM file, and were
not provided with the functionality to read, manage and
write information from Socket and pipe connections.

Threads

0.052 FIG. 4 is a block diagram illustrating the threads
routine 20d of the technical layer 10. Threads provide for
asynchronous processing by multiple processes Simulta
neously. The threads routine 20d achieves the functionality
of native threads, as used in C and Java, and enables them
for the COBOL language by employing and managing
Subtasks, as described below, which were not previously
used by COBOL programs in this manner. The threads
routine 20d enables COBOL applications to be split into
multiple paths. FIG. 4 illustrates a first COBOL program 50
and a second COBOL program 52, which are both similar to
the COBOL program 12 illustrated in FIG. 1. The threads
routine 20d allows the first and second COBOL programs 50
and 52 to use a shared memory 54 to enable threads for
COBOL. The operation and function of shared memory will
be discussed in greater detail hereinafter with regard to FIG.
7.

0053. In the present embodiment, the first and second
COBOL programs 50 and 52 write an output to the shared
memory 54. The threads routine 20d is operable to read the
information written to the shared memory 54 by the first and
second COBOL programs 50 and 52 and write the informa
tion to a shared resource 56. Using COBOL language
program calls to the operating System 34, for example, the
threads routine 20al enables the first and second COBOL
programs 50 and 52 to operate as asynchronous Subtasks
wherein both the first and second COBOL programs 50 and
52 use the same address Space, but employ distinct proceSS
ID numbers. Distinct process ID numbers would be used in
the present embodiment where the System is operating on a
mainframe computer System. In this environment, only one
of the first and second COBOL programs 50 and 52 would
be able to write to the shared resource 56 without causing a
conflict. The present System resolves this potential for
conflicts by employing the mutex routine 20j, which will be
discussed in greater detail hereafter. The mutex routine 20j
protects the shared memory 54 so that both the first and
second COBOL programs 50 and 52 can write information
to the shared memory 54, which is eventually written to the
shared resource 56 by the threads routine 20d. This function
allows the first and second COBOL programs 50 and 52 to
both output, although indirectly, to the shared resource 56.
The mutex routine 20jalso functions to serialize the transfer
of the information written to the shared memory 54 out to
the shared resource 56, eliminating the potential for conflicts
when outputting to the shared resource 56.
0054. In addition, the threads routine 20d is operable to
detect when a Subtask goes down, or has Some other type of
failure. The thread routine 20d is further operable to restart
the Subtask. In a mainframe environment when a Subtask
abruptly ends, no messages or events provide notice or

May 5, 2005

warning to indicate that the Subtask has ended. The threads
routine 20d monitors and detects when a Subtask, Such as the
first and second COBOL programs 50 and 52, ends and is
further operable to restart the Subtask, by using the process
ID assigned to the subtask. In addition the threads routine
20d is operable to maintain a log to track information, Such
as but not limited to, the information written from the first
and second COBOL programs 50 and 52 to the shared
memory 54. The log may also maintain the process ID's of
the first and second COBOL programs 50 and 52 and the
information and data written by the threads routine 20d to
the shared resource 56. This information is useful for
operation of the threads routine 20d, as well as for devel
operS and administrators to track program events.

0055. The threads routine 20d, using some of the func
tionality of the mutex routine 20j, enables COBOL language
programmers to operate COBOL programs as threads by
employing them as subtasks. Further, the threads routine 20d
eliminates the negative effects of autonomous Subtasks
writing to the shared resource 56, such as SYSOUT, which
would otherwise create potential for System errors and
instability. The threads routine 20d allows for asynchronous
processing Simultaneously as opposed to the traditional
COBOL tops-down programming approach.

0056 Employing the threads routine 20d, COBOL pro
grammerS can now break-up large database file reading
operations into multiple threads to read through large files
and databases much more rapidly and efficiently. Enabling
this functionality required, among other things, identifying
the differences between mainframe COBOL programming
and threads as natively used in languages Such as C or Java.
For example, threads natively share, for example, address
Space, process, memory and file Space as well as returning
a message in the event a thread abruptly terminates. To
enable threads for COBOL, the technical layer 10 uses
subtasks. COBOL was not previously operable to support
Subtasks in this manner. Subtasks use the same address
Space, have distinct process IDS, and Share memory, but not
file Space. AS discussed above, Subtasks do not provide
notification when they abnormally terminate. The threads
routine 20d must manage these and other aspects of Sub
tasks. In the present embodiment, the threads routine 20d of
the technical layer 10 uses, among other techniques, Sub
tasks to accomplish the thread functionality that is natively
Supported in computer languages Such as C or Java.

Semaphores and Mutexes

0057 FIG. 5 illustrates a portion of the technical layer 10
operable for coordinating processing in COBOL programs
using Semaphores and mutexes. Semaphores allow process
ing acroSS jobs, Such as between or acroSS Separate pro
grams, while mutexes allow processing acroSS threads, or
inside of programs. These functions are further operable to
Synchronize these processes. The Semaphore routine 20i is
illustrated communicating with the first and second COBOL
programs 50 and 52 which may be independent programs or
routines. In the present embodiment, the first and Second
COBOL programs 50 and 52 are subroutines or subtasks of
a parent COBOL program 70.
0058. The technique for coordinating processing in
COBOL programs includes the first and second COBOL
programs 50 and 52 having a first and second routines 72a

US 2005/0097537 A1

and 72b, respectively, for processing. The Semaphore routine
20i is callable by the first and second COBOL programs 50
and 52 and maintains a shareable state 74 to coordinate the
processing of the first and second routines 72a and 72b. For
example, the first COBOL program 50 calls the semaphore
routine 20i with an argument to lock the Semaphore or State
74. Provided that the state 74 does not indicate that the
Semaphore is already locked, the Semaphore routine 20i
locks the semaphore. The state 74 may be a flag or other
method for indicating that a shared process is in use.
0059 Certain operations may only be accomplished in a
Serial manner without causing System errorS or instability.
For example, writing to the shared resource 56 by multiple
programs Simultaneously may cause errors. The Semaphore
routine 20i addresses this problem, according to the present
embodiment, by associating the particular operation or job
with a State or flag that is share able between programs. Thus,
when the second COBOL program 52 initiates the same
proceSS and attempts to lock the Semaphore related to a
particular operation, the Semaphore routine 20i will indicate
that the State 74 is locked and the processing of the Second
routine 72b goes into an event wait State.
0060. The second COBOL program 52 and/or second
routine 72b polls the semaphore routine 20i to determine the
status of the shareable state 74. Once the semaphore is
unlocked, as indicated by the shareable state 74, then the
Second routine 72b begins processing. In this manner, the
Semaphore routine 20i prevents multiple routines from pro
cessing to the shared resource 56 to prevent conflicts, errors,
or other instabilities caused when multiple processes Simul
taneously write to an output or shared resource, Such as
SYSOUT.

0061. Once the semaphore is locked, the semaphore then
processes the job to the shared resource 56, Such as shared
memory, a file, a block of memory that is not shareable, a
database, or other shared resource 56. In the present embodi
ment, the semaphore routine 20i, when called by the first or
second COBOL programs 50 and 52, creates the shared
Semaphore and associates a share able State 74 with the
created Semaphore. The Semaphore routine 20i is operable to
create and manage a plurality of Semaphores related to
various operations and maintain multiple share able States 74
each associated with one of the created Semaphores. In
addition, the Semaphore routine 20i is operable to create and
share semaphores between a plurality of COBOL programs
such as a third and fourth COBOL programs (not shown),
while the first and second COBOL programs 50 and 52 use
the same or another Semaphore.
0062) The semaphore routine 20i is provided with a
plurality of functionality for maintaining Semaphores
including: creating a Semaphore, obtaining an identifier
related to the Semaphore, identifying the Semaphore, que
rying to determine whether the shareable state 74 indicates
that the Semaphore is locked, changing the Status of the
share able State 74 to indicate that the Semaphore is locked,
as well as changing the Status of the share able State 74 to
indicate the Semaphore is unlocked and available. Additional
functionality includes obtaining a process identification or
ID number to determine the process associated with the
Semaphore and removing the Semaphore from the computer
System.

0063. In other embodiments, the first and second COBOL
programs 50 and 52 are operable to independently determine

May 5, 2005

the Status of the Shareable State 74, as well as other processes
associated with semaphore routine 20i. In still other embodi
ments, the first and second COBOL programs 50 and 52 only
process a request to the Semaphore routine 20i, which in turn
returns the information requested by the first and Second
COBOL programs 50 and 52.
0064. The construction and function of the mutex routine
20i is substantially similar to that of the semaphore routine
20i and the differences are based primarily on the charac
teristics of mutexes. Specifically, the Semaphore routine 20i
manages jobs which are processed in Separate address Space
and which work across various jobs. The mutex routine 20i,
on the other hand, manages the coordination of processing
within Subtasks using the same address Space. In any event,
the semaphore and mutex routines 20i and 20i provide a
mutually exclusive capability to lock the Semaphore or
muteX by a first process which causes the Second process to
Suspend or wait until the Semaphore or muteX becomes
available. This functionality prevents multiple jobs from
Simultaneously updating the shared resource 56.
0065. The semaphores and mutexes routines 20i and 20j
provide the COBOL language and COBOL developers addi
tional programming capabilities by managing asynchronous
processes to prevent multiple process, tasks, or jobs from
updating the same Shared resource 56 at the same time. In
the present embodiment, the Semaphore routine 20i and
mutex routine 20j enable this functionality by making the
appropriate calls to the operating System. In the present
embodiment, the Semaphores and mutexes routines 20i and
20i are computer programs written in the COBOL program
ming language and the operating System calls are accom
plished substantially as described above with respect to
Sockets.

Memory Queues and Message Queues

0066 FIG. 6 illustrates one embodiment of the memory
queue routine 20g of the technical layer 10 for enabling
queues in COBOL programs. The memory queue routine
20g maintains an index 90 having one or more keys 92 to
manage the memory 36 of the computer 14. The memory
queue routine 20g communicates with the operating System
34 to retrieve an address 94 in memory 36 based on the key
92. The operating system 34 maintains the key 92 related to
the address 94 of the memory 36 wherein the relevant
information and data is stored. The COBOL program 12
includes a linkage Section 96, which is a Standard portion of
a COBOL program that is ordinarily used to receive data that
is passed in from other programs. The COBOL program 12
communicates with the memory queue routine 20g to
receive the address 94 of the memory 36.
0067. In the present embodiment, the COBOL program
12 includes an identifier associated with the key 92, such as
an alphanumeric identifier or name used by the COBOL
program 12 to call the memory queue routine 20g. The
memory queue routine 20g looks up the identifier or name
in the index 90 and obtains the associated key 92. In the
manner described above, the memory queue routine 20g
obtains the address 94 in memory 36 related to the key 92
and returns the address 94 to the COBOL program 12.
0068. In one embodiment, the COBOL program 12
makes a linkage call by name to the memory queue routine
20g requesting the address 94 in memory 36 for a particular

US 2005/0097537 A1

memory queue to be used. The memory queue routine 20g
looks up the name in the index to return the address 94 to the
linkage section 96 of the COBOL program 12. By mapping
the linkage section 96 of the COBOL program 12 to the
address 94, the COBOL program 12 resolves the data at the
address 94 of the memory 36 to the linkage section 96 of the
COBOL program 12. Thus, the COBOL program 12 con
siders the information stored in memory at the address 94 as
local and accessible to the COBOL program 12. This tech
nique is effective to enable memory queues for the COBOL
programming language.
0069. The memory queue routine 20g is operable to
Serialize the information in the memory queue in various
orders, including in last-in-first-out order. In Some instances,
it may be useful for the memory queue routine 20g to
coordinate reading and writing information in a first-in
first-out order. The memory space at the address 94 is
operable for a memory queue and the memory queue routine
20g coordinates, or in Some instances may directly or
exclusively control, the reading and writing of information
to prevent conflicts in the memory queue.
0070. In the present embodiment, the memory queue
routine 20g is programmed in the COBOL programming
language and the memory queue is enabled via a call to the
operating System by the memory queue routine 20g. AS
Such, the operating System 34 creates and enables the
memory queue for use by the COBOL program, via the
memory queue routine 20g.
0071. The construction and function of the message
queue routine 20h is substantially similarly to that of the
memory queue routine 20g illustrated in FIG. 6. When the
message queue routine 20h is employed in lieu of the
memory queue routine 20g, the memory Space located at the
address 94 is operable for a message queue. In this embodi
ment, the message queue routine 20h receives the request
from the COBOL program 12 to read and write information
to the message queue. In one embodiment, the message
queue routine 20h coordinates the reading and writing of
information to the message queue in a last-in-first-out order,
while in still other embodiments the order is first-in-first-out.

0.072 The message queue functionality is enabled by the
message queue routine 20h via a call to the operating System
32, as discussed above. AS is the case with the memory
queue routine 20g, the message queue routine 20h includes
a plurality of functions to manage message queues including
a create function to create new queues Such as by initiating
an appropriate operating System call. Other functions
include an attach function for connecting to existing queues
and a query function to determine whether a queue exists
and obtain the size of the queue in terms of the number of
rows as well as additional information related to the queue.
Some other functions of the message queue routine 20h
include a push function to add a row to the queue and a block
function to block when the queue is full. A pop function
removes the top row from the queue and also prevents this
operation when no more rows exist on the queue. Additional
functions provide for detaching from an existing queue and
removing the queue from the System.
0073. The functions of the message queue routine 20h
and memory queue routine 20g may be called directly from
the COBOL program 12, or routines 20 in the technical layer
10 provided as a library linkable to the COBOL program 12,

May 5, 2005

as previously discussed above. In another embodiment, the
functionality of the memory queue routine 20g may be
enabled as a message queue by providing a Socket layer
around the memory queue. Also, the message queue routine
20h is operable to maintain the address 94 of memory 36 as
a fixed size and block when the memory 36 is full, such as
by employing Semaphores. Similarly, pushing data onto the
queue may require Serialization So that processes, Such as
multiple Subtasks do not simultaneously insert data into the
Same point in the queue, or address Space 94 of memory 36.
This Serialization may be enabled as part of the message
queue routine 20h, for example.

0074. In the present embodiment, it may be useful on the
input Side for records to be maintained by only one job or
process at a time as opposed to multiple jobs. While on the
output Side, data may be preferably coming out of only one
process as opposed to multiple processes for the purposes of
Serializing the process. The message queue routine 20h and
memory queue routine 20g provide new capability to the
COBOL programming language and COBOL developers, by
providing queue functionality for multiple COBOL pro
grams and processes.

Shared Memory

0075 FIG. 7 illustrates one embodiment of the shared
memory routine 26 for sharing memory between COBOL
programs. The shared memory routine 20c is provided with
an index 110 for maintaining a plurality of keys 112 related
to an address 114 in memory 26 that is used as shared
memory by the first and second COBOL programs 50 and
52. The first COBOL program 50 requests shared memory
from the shared memory routine 20c. The shared memory
routine 20c includes a plurality of functions operable for
managing shared memory, including a create function for
creating a shared memory block. In the present embodiment,
the shared memory routine 20c is a COBOL program that
issues a call to the operating System 34 to allocate the
appropriate amount of memory.

0076 By providing the shared memory routine 20c as a
COBOL library, the first COBOL program 50 may be
compiled to enable this functionality. The amount of
memory needed by the first COBOL program 50 is desig
nated by the first COBOL program 50 at compile time.
Based on the call from the shared memory routine 20c, the
operating System 34 allocates the memory required for the
working storage section of the first COBOL program 50. The
operating System obtains the address 114 for the designated
memory 36 to be shared between the COBOL programs. The
first COBOL program 50 identifies the shared memory 36
using an identifier, Such as an alphanumeric identifier or
name, for example. Once the Shared memory has been
identified, the first COBOL program 50 can begin using the
shared memory 36 via a request to the shared memory
routine 20c.

0077. The shared memory routine 20c maintains the
identifier in the index 110 along with the associated key 112.
The shared memory routine 20c uses the key 112 to issue a
request to the operating System for the address 114 in
memory 36 that will be shared. The operating system 34
passes the address 114 back to the shared memory routine
20c, which in turn passes the address 114 back to the linkage
section 96a of the first COBOL program 50.

US 2005/0097537 A1

0078. As previously discussed, the linkage section 96a of
the first COBOL program 50 is typically used for passing
information between Subprograms or calling programs, but
is employed in a novel manner in the present embodiment to
map to the address 114 of the memory 26 that is used for
shared memory. Mapping the address 114 to the linkage
section 96a of the first COBOL program 50 is useful since
shared memory only needs to be loaded one time and does
not require constant refreshing. For example, data Space is
known as a Section of mainframe memory that stays resident
when programs exit, but requires a task running to keep the
memory refreshed. Core loads are another example of
memory employed in mainframe computer Systems, but
when the program using the memory exits or closes, the
memory is released and the data is no longer available.
Employing the shared memory routine 20c according to the
present aspect, the memory is maintained by the shared
memory routine 20c even after the first COBOL program 50
terminates.

007.9 The second COBOL program 52, using the same
identifier or name, requests the address 114 in memory 36
where the shared memory is located. The shared memory
routine 20c returns the address 114, in a similar manner,
based on the use of the same identifier or name. The address
114 of the shared memory is mapped back to the linkage
section 96b of the second COBOL program 52 thereby
creating a shared block of memory useable by both the first
and second COBOL programs 50 and 52.

0080. The shared memory routine 20c is operable to
manage multiple shared memory blocks based on a unique
name or identifier associated with the each address 114 of
the array in memory 36. The shared memory blocks can then
be accessed by numerous COBOL programs, via the shared
memory routine 20c, by referencing the unique identifier. A
number of techniques for managing the unique identifiers, or
asSociating, organizing or referencing memory blocks by
and between COBOL programs may be used since the
present System is not limited to any particular implementa
tion. In addition to those functions previously described, the
shared memory routine 20c includes an attach function to
attach to an existing block of memory, a detach function to
detach from an existing block of memory, a remove function
to remove a shared memory block from the System, and a
query function to determine whether a shared block of
memory exists and obtain the size and other information
about the shared memory block.

0081. In other embodiments, the shared memory routine
20c may be provided with one or more indexes 110 for
maintaining identifiers and keys 112, each of which may be
queried by the COBOL programs. In one embodiment, the
shared memory routine 20c monitors the shared memory
when the memory is protected to prevent the shared memory
from being overwritten. In yet other embodiments, the
memory may be unprotected and the shared memory routine
20c may allow the COBOL programs to read and write from
memory in an unrestricted manner. A number of techniques
may be employed for managing the protection and privileges
of shared memory and are within the Spirit and Scope of the
present disclosure.

0082 In the present embodiment, the shared memory
routine 20c manages the protected and unprotected aspects
of the shared memory by Virtue of the Specific operating

May 5, 2005

System call. For example, the type of call dictates the way
the operating System 34 will manage the protection of the
block of memory 36 used for shared memory. In any event,
the shared memory routine 20c enables the COBOL lan
guage to be programmed for memory Sharing between
COBOL programs enabling a new level of functionality in
COBOL language programs.

Signal Handlers

0083 FIG. 8 is a block diagram illustrating the signal
handler routine 20a to enable COBOL programs to use
Signal handlers. The Signal handler routine 20a operably
communicates with the COBOL program 12 to receive a
signal handler 130 designated by the COBOL program 12 to
execute based on an event. The Signal handler routine 20a
registers the signal handler 130 with the operating system 34
So that the operating System 34 executes the Signal handler
130 on the event.

0084. When, for example, the operating system detects
that a program ABENDS (abnormal end), or otherwise
detects an error, the operating System issues an event. A
number of handlers are operable to launch Specific processes
when these events occur. For example, Specific programs
such as the signal handler 130 can be registered with the
operating System and executed on the registered event. The
Signal handler routine 20a is operable to register programs,
such as the signal handler 130, with the operating system 34
for execution on Such events. The signal handler routine 20a
is not limited to input-output error or events and may also
register programs to be executed for memory exceptions,
program protection violations, and other events.

0085. The signal handler routine 20a is further operable
to initiate a separate thread for execution of the Signal
handler 130 when the event occurs. The signal handler
routine 20a identifies the program name or other identifier of
the signal handler 130. The signal handler routine 20a
registers this name with the operating System 34 and asso
ciates the name with a desired event. The Signal handler
routine 20a enables the signal handler functionality for
COBOL programs by, for example, an operating System call.
In the present embodiment, the Signal handler routine 20a is
a COBOL language program employed by the COBOL
program 12 as a library that makes the operating System call,
similar to that described above. In the present embodiment,
the Signal handler 130 may be any program, Such as a
notification program registered with the operating System
that provides relevant notice on the registered event. The
Signal handler 130 may be programmed to correct, recover,
terminate, or take other action based on the event.

0086 The signal handler routine 20a is operable to
maintain a log of processes, Such as in a shared block of
memory, to track the processes operating on the computer
14. When a particular event occurs the log can be queried to
determine the last proceSS or program operating. In this
manner, the Signal handler routine 20a is operable to not
only handle events from the operating System which
executes Signal handlers on the events, but also to track the
processes to help identify the relevant processes or programs
that triggered the event and the signal handler 130. This
functionality is useful for debugging programs, for example,
Since the program or process that generated the error is
typically identifiable from the log. Further, programs that

US 2005/0097537 A1

generate erroneous data or output are also readily identifi
able Since the program and the output may be logged and
reviewed.

0087. In some embodiments, the signal handler routine
20a is operable to register multiple signal handlers 130
related to one or more operating System events. The Signal
handler routine 20a may be further operable to enable the
COBOL program 12 to directly register the signal handlers
130 with the operating system 34.

Events

0088 FIG. 9 illustrates the function and operation of the
events routine 20b to enable events in COBOL programs.
The events routine 20b is operable to allow COBOL pro
grams to perform asynchronous processing and further to
coordinate request handling acroSS multiple child processes.
The COBOL program 12 maintains an index 150 including
a process identification number or PID 152 and an event 154
associated with each of a plurality of child processes 156.
The child processes are designated alphanumerically as
child processes 156a, 1156b, and 156c. The child processes
are Subtasks, Subprograms, or Subroutines of the parent
program, Such as COBOL program 12. The child processes
operate, in this embodiment, as threads which may be
enabled by the threads routine 20d discussed above.

Signals
0089. When the COBOL program 12 initiates the child
process 156, such as child process 156a, the COBOL
program 12 puts the child proceSS 156a into an event wait.
In this embodiment, the events routine 20b may place the
child process 156a into the event wait. The child process
156a registers with the COBOL program 12 Such that the
process ID 152 and event that the child process 156a is
waiting on are recorded in the index 150 of the COBOL
program 12. The COBOL program 12 may obtain a process
ID 152 and event 154 associated with the child process 156a
on initializing or on Starting the child proceSS 156a or may
obtain this information Subsequently from the events routine
20b. In some cases, the child process 156a would not be
required to register with the COBOL program 12.
0090. In the present embodiment, the child process 156a
registers with a register 158 of the events routine 20b. The
register 158 maintains the process ID 152 and event 154
associated with the child process 156a. The events routine
20b maintains the functionality to place the child process
156a, as well as the other child processes 156b and 156c,
into the wait state upon request by the COBOL program 12.
0.091 At the appropriate time, the COBOL program 12
initiates the child process 156a by Signaling the events
routine 20b using the process ID 152 and the event 154
asSociated with the desired process, Such as the child proceSS
156a. In some cases, the COBOL program 12 may only
signal the child process 156a using the process ID 152, via
the events routine 20b. The events routine 20b receives the
process ID 152 from the COBOL program 12 and associates
the event 154 with the process ID 152 using the register 158.
The events routine 20b then signals the appropriate child
process, Such as child process 156a, based on the process ID
152.

0092. The child process 156a is programmed to perform
a process, Such as outputting to a shared resource 56 or

May 5, 2005

writing to memory, for example. The COBOL program 12
and the events routine 20b, via the index 150 and register
158, respectively, are operable to maintain a plurality of
process IDs 152 and a plurality of events 154 associated with
the one or more child processes 156. The events routine 20b
is operable to coordinate signaling and processing of the
child processes 156 to the shared resource 56.

0093. The shared resource 56 may be, for example, a
socket connection initially created by the COBOL program
12 via the Sockets routine 20e. In Some operating Systems,
only the process that creates the Socket connection is able to
use that connection. In this case, it may be useful for the
COBOL program 12 to pass or assign the Socket connection
to the child process 156, for reasons of programming effi
ciency. To coordinate the transfer of, for example, a Socket
connection requires a Synchronized transfer. The events
routine 20b is operable to synchronize such a transfer. In this
example, the COBOL program 12 created the shared
resource 56 or Socket connection and has ownership of the
Socket connection until it is otherwise assigned.
0094 Typically the operating system of a mainframe
computer, for example, designates the shared resource 56, or
socket connection, to the COBOL program 12 based on the
process ID of the COBOL program 12. The COBOL pro
gram 12 gives, via the events routine 20b, the shared
resource 56 to the child process 156. The COBOL program
12 then enters into an event wait until receiving a response
from the child process 156. The child process 156 receives
or takes the shared resource 56 from the COBOL program
12 and signals the COBOL program 12 that the take has been
completed. The giving and taking of the shared resource 56,
in this manner, may be accomplished via one or more
operating system calls from the events routine 20b to the
operating System to transfer the proceSS ID designated for
the shared resource 56.

0095 Socket connections, as well as other shared
resources 56 may be transferred between the creating
resource and other Subtasks, threads, routines, or Subpro
grams to provide additional functionality to the COBOL
programming language. In the present embodiment, the
events routine 20b is a COBOL program maintained in a
library linkable to the COBOL program 12. Similar to the
manner described above, the calls to the operating System
that accomplish the giving and taking of the shared resource
are accomplished by COBOL language program calls to the
operating System. It will be appreciated that, depending
upon the particular operating System where the technical
layer 10 is employed, coordination of taking and giving
shared resources can be problematic and, if not Synchronized
properly, can cause errors and System instability.

0096. In some other embodiments, the child process 156
signals the COBOL program 12, via the events routine 20b,
to signal that the child process 156 has received or taken the
shared resources. In alternate embodiments, the child pro
cess 156 signals the COBOL program 12 directly. The
events routine 20b of the technical layer 10 provides addi
tional functionality to the COBOL language to allow for
asynchronous and distributed processing and the coordina
tion of event handling acroSS Various child processes which
was not previously available to COBOL developers. This
functionality also provides COBOL applications the ability
to use both Semaphores and mutexes in conjunction. For

US 2005/0097537 A1

example, the Semaphore routine 20i can be used to process,
Synchronize, Stop, and Start acroSS jobs or programs, while
the muteX routine 20i can be used to process Synchronize,
Stop and Start acroSS threads within these programs.
0097 FIG. 10 is a block diagram of an exemplary system
illustrating use of distributed and asynchronous processing
in COBOL to parallelize and distribute work. The system
170 is provided only as an exemplary implementation of the
technical layer 10 using COBOL language programs. Alter
native changes, modifications, and techniques may also be
employed for Systems requiring different or additional func
tionality. The system 10 includes a first machine 172, a
Second machine 174, a third machine 176 and a fourth
machine 178. The machines 172-178 may be computer
Systems. Such as mainframe computer Systems, mid-range
computer Systems, networks and/or desktop computer Sys
temS.

0098. In the present embodiment, the first through third
machines 172-176 are mainframe computer systems and the
fourth machine 178 is a mid-range computer system. The
second machine 174 is provided with a customer interface
180 for managing, for example, internet user profiles. The
information for the internet user profiles may be Stored, for
example, in a customer master file or CustMast file (not
shown). Accounts receivable information for the internet
user profile may be maintained in a first A/R file 182
provided on the first machine 172. Additional account
receivable information for the internet user profile may be
maintained in a second A/R file 184 maintained on the third
machine 176. The first and Second A/R files 182 and 184
may also represent applications having access to databases
wherein the relevant information is stored.

0099. A plurality of databases 186 stored on the fourth
machine 178 maintain a more detailed record of customer
information Stored as one or more database files or data
bases. The customer interface 180 is a COBOL application,
which may be one or more COBOL programs, routines, or
subroutines enabled via the technical layer 10 for gathering
customer data to be stored in the databases 186 on the fourth
machine 178. The customer interface 180 is operable to
retrieve customer information for reporting and other pur
poses, for example, on thousands of customers whose infor
mation is maintained in the customer master file.

0100. The customer interface 180 may be comprised of a
plurality of COBOL programs including a profile changes
program 190. The profile changes program 190 is operable
using the message queue routine 20h of the technical layer
10 to employ a message queue 192. The profile changes
program 190 using the shared memory routine 20c is oper
able to establish a shared memory 194 on the second
machine 174. To quickly and efficiently read thousands of
records from the customer master file, the profile changes
program 190 is operable, using the technical layer 10, to
Spawn a plurality of jobs 196 designated alphanumerically
196a, 196b, and 196c. Processing the separate jobs 196 may
be accomplished, for example, using the Semaphore routine
20i, as described above. In this manner, the profile changes
program 190 breaks up access to the customer master file
into multiple jobs to improve the efficiency of accessing the
customer master information.

0101 Each of the jobs 196 operates in its own address
space, but is able to share the shared memory 194. As each

May 5, 2005

of the jobs 196 is started, the jobs 196 look at the shared
memory 194 to obtain the key with the location to the
message queue 192, Such as elsewhere in memory. The jobs
196 then take the first message off the message queue 192
and process the message or instruction. The job 196 then, for
example, pulls or reads records off the customer master file
and puts or writes the information to an output queue 198.
The profile changes program 190, via the technical layer 10,
is operable to monitor and manage the message queue 192
to provide the jobs 196 with messages or work. The shared
memory 196 is used to communicate across the jobs 196 any
information to be shared between the jobs 196.
0102) An A/R changes program 200 is a COBOL pro
gram or routine that is operable to read information from the
output queue 198 as written from the jobs 196. The A/R
changes program 200 may be a program or routine that is
part of the customer interface 180. The A/R changes pro
gram 200, in this example, requires information from the
first and second A/R files 182 and 184 to complete process
ing. Rather than route jobs one-at-a-time and waiting until
the process is returned, the A/R changes program 200 is
operable, using the technical layer 10, to do a Socket
connection request directly to the relevant A/R customer
data. Specifically, the A/R changes program 200, using the
Sockets routine 20e, is operable to enable Socket communi
cation to the first A/R file 182 on the first machine 172 and
further operable to retrieve information from the second A/R
file 184 on the third machine 176 via a socket request.

0103) The A/R changes program 200 combines the infor
mation from the output queue 198 received from the jobs
196 with the associated data from the first and second A/R
files, received via the Socket connections. The A/R changes
program 200 then outputs the combined information or data
to program 202 or system on the fourth machine 178, via an
additional Socket communication. The output to the fourth
machine 178 may be performed using, among other func
tions, the semaphore routine 20i. The program 202 is oper
able to appropriately divide and Store the data into the
databases 186.

0104. The system 170 illustrated in FIG. 10 is an
example of the functionality that the technical layer 10
provides to COBOL language programmers to enable asyn
chronous and distributed processing. Although the System
170 does not specifically employ all the routines 20 of the
technical layer 10, the system 170 is illustrated to provide
insight into the vast new capabilities enabled for the COBOL
language by the present disclosure. While the technical layer
10 is used as a library in this example, the asynchronous and
distributed COBOL functions disclosed herein, as previ
ously discussed, may also be enabled via a pre-compiler, a
compiler, or by directly programming the system 170 for this
functionality.

0105 While several embodiments have been provided in
the present disclosure, it should be understood that the
implementation of distributed and asynchronous processing
in COBOL may be embodied in many other specific forms
without departing from the Spirit or Scope of the present
disclosure. The present examples are to be considered as
illustrative and not restrictive, and the intention is not to be
limited to the details given herein, but may be modified
within the Scope of the appended claims along with their full
Scope of equivalents. For example, the various elements or

US 2005/0097537 A1

components may be combined or integrated in another
System or certain features may be omitted, or not imple
mented.

0106 Also, techniques, systems, subsystems and meth
ods described and illustrated in the various embodiments as
discrete or Separate may be combined or integrated with
other Systems, modules, techniques, or methods without
departing from the Scope of the present disclosure. Other
items shown as directly coupled or communicating with
each other may be coupled through Some interface or device,
Such that the items may no longer be considered directly
coupled to each but may still be indirectly coupled and in
communication with one another. Other examples of
changes, Substitutions, and alterations are ascertainable by
on Skilled in the art and could be made without departing
from the Spirit and Scope disclosed herein.

What is claimed is:
1. A System for enabling Socket communication in

COBOL program, comprising:
a memory block,
a COBOL program communicating with the memory

block;

a Socket; and

a COBOL routine callable from the COBOL program, the
COBOL routine operable to read information from the
Socket and write the information read from the Socket
to the memory block in response to the COBOL pro
gram call.

2. The system of claim 1, wherein the COBOL program
further communicates with the COBOL routine to initiate
the COBOL routine communication with the Socket and the
memory block.

3. The system of claim 1, wherein the COBOL routine is
further defined as a Subroutine of the COBOL program.

4. The system of claim 1, wherein the COBOL routine is
further defined as a COBOL library having a plurality of
routines callable by the COBOL program.

5. The system of claim 1, wherein the COBOL routine is
further defined as a compiler enabled function usable by the
COBOL program.

6. Method for enabling socket communication in COBOL
program, comprising:

requesting, by a COBOL program, information from a
Socket;

retrieving, by a COBOL routine, information from the
Socket;

writing, by the COBOL routine, information read from the
Socket to a memory block, and

reading from the memory block, by the COBOL program,
the information.

7. The method of claim 6, wherein the method further
comprises managing, by the COBOL routine, a connection
with the Socket.

8. The method of claim 7, wherein managing includes
listening on the Socket connection.

9. The method of claim 7, wherein managing includes
disconnecting the connection with the Socket.

May 5, 2005

10. The method of claim 6, wherein the method further
comprises, establishing, by the COBOL routine, a connec
tion with the Socket.

11. The method of claim 10, wherein the connection with
the Socket is established in response to a request from the
COBOL program

12. The method of claim 6, wherein the COBOL routine
provides an address to the COBOL program, the address
identifying a location of the memory block where the
information is written.

13. The method of claim 12, wherein the method further
comprises mapping, by the COBOL program, the memory
block into the COBOL program.

14. The method of claim 13, wherein the mapping is
accomplished using a copybook.

15. The method of claim 6, wherein the information is
provided in an EBCDIC format and wherein the method
further comprises converting the information from the
EBCDIC format to an ASCII format.

16. The method of claim 15, wherein the conversion is
accomplished by the COBOL routine.

17. The method of claim 6, wherein the COBOL routine
further includes a coordination module to coordinate Such
that the COBOL routine only reads when the socket has
information and only writes when the socket is not full.

18. The method of claim 6, further comprising initiating
a call to the operating system by the COBOL routine to
establish a Socket connection.

19. The method of claim 18, wherein the call to the
operating System is further defined as a bit-level call to the
operation System of a mainframe computer System.

20. The method of claim 19, wherein the COBOL routine
is further defined as written in COBOL programming lan
guage.

21. A system for enabling pipe communication in COBOL
program, comprising:

a memory block,
a COBOL program communicating with the memory

block;
a pipe, and
a COBOL routine callable from the COBOL program, the
COBOL routine operable to read information from the
pipe and write the information read from the pipe to the
memory block in response to the COBOL program call.

22. The system of claim 21, wherein the memory block is
further defined as a mainframe memory block and wherein
the COBOL program and COBOL routine are operable on a
mainframe computer System.

23. The system of claim 22, wherein the COBOL routine
is further defined as a COBOL technical layer having a
plurality of routines callable by the COBOL program, the
COBOL technical layer including:

a create module communicating with a computer System
and operable to create a pipe connection;

a connect module operable to promote attachment to the
pipe connection;

an open module operable to open the pipe connection to
promote communication via the pipe connection;

a write module operable to write information to the pipe
connection, the write module operable to Verify that the

US 2005/0097537 A1

pipe connection is not full prior to writing information
and further operable to block when the pipe connection
is full;

a read module coupleable to the pipe connection to read
information from the pipe connection;

a release module to release the pipe connection;

a remove module to remove the pipe connection from the
computer System; and

a delete module to delete the pipe connection wherein the
pipe connection is closed.

May 5, 2005

24. A method for Socket communication in COBOL,
comprising:

reading, by a routine, information from a Socket;
Writing, by the routine, the information to an area; and
reading, by a COBOL program, the information from the

area, the COBOL program and the routine operating in
the same runtime environment.

25. The method of claim 24, wherein the area is a file.
26. The method of claim 24, wherein the area is a memory

aca.

