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OPTIMAL SPLINE INTERPOLATION FOR IMAGE COMPRESSION

Field of the Invention

The invention pertains generally to methods for digital
data compression. In particular, the invention relates to
fast optimal interpolation methods for sound, image and video
data compression.

ac und of Invention

Image and sound may in general be transmitted, stored
and displayed using multi-dimensional arrays of digital data,
most often pertaining to sound (time domain), still images
(2-dimensional spatial domain) or video (3-dimensional space-
time domain). Digital representations of images, which in
general include sound and image sequences, require
substantial amounts of digital storage capacity or large
transmission bandwidths. Broadly stated, the goal of digital
image coding is primarily to reduce this data volume, while
at the same time retaining a faithful duplicate of the
original image. Compression methods for image data are based
on redundancies in data and on the non-linearities of human
perception (e.g., vision and hearing). 1In the case of still
images, spatial correlation is usually exploited, while for
video, correlation in time and space are utilized. Because
of its practical significance, digital image coding is an
active area of research and development both academically and
in industry.

Historically, there are a variety of approaches to the
problem of image compression, which may be classified by
virtue of their predominant encoding algorithms, such as, for
example, predictive coding, transform coding, statistical
coding and interpolation coding. Contemporary image
compression systems often utilize a combination of coding
techniques tailored to the characteristics of the image. For
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instance, the Joint Photographic Experts Group (JPEG)
standard utilizes Discrete Cosine Transform (DCT) and Huffman
statistical coding among others.

In order to reduce the computational overhead associated
with a large image during image processing, decimation or
subsampling can be performed at the outset, reducing the
number of samples in subsequent processing. However, it is
well known that the data should be filtered in conjunction
with subsampling to reduce aliasing upon reconstruction.
This decimation filtering is low pass in nature. It reduces
the potential aliasing effect associated with resampling, but
it also reduces the resolution of the original image. 1In the

reconstruction process, these compressed data are
interpolated by a corresponding inverse process to form the
final image, for example, by a 1st-order bi-linear

interpolation. Combining the effect of low pass filtering,
decimation and interpolation, the resolution of the resulting
image is reduced. A way of retaining the initial resolution
is to add back the difference, or residue, to the
reconstructed image; however, the residue derived by simply
subtracting the reconstructed image from the original is
generally quite large, hence limiting the resulting data
compression.

Given the transmission, display and storage requirements
of digital multimedia, more efficient data compression
methods are clearly in demand. Conventional
decimation/interpolation methods suffer from being
computationally intensive and/or inefficient compared to the

present invention.
Summary of the Invention

One objective of the present invention is to provide an
optimal filter for decimation/interpolation of digital data
which produces a minimal amount of residual error when
comparing the reconstructed data to the original data set.
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Another object of the present invention is to provide a
simple, efficient method for substantially minimizing the
residual image associated with a digital data subsampling
process.

Accordingly, one aspect of the present invention
comprises a method of compressing and reconstructing digital
data which includes applying spline filters to the original
digital data to generate compressed digital data. An
optimizing process utilizes a predetermined error criterion
to generate substantially optimal compressed digital data.
A preferred error criterion is, for example, a least-mean-
squares constraint. The method further entails interpolating
the substantially optimal compressed digital data to generate
a reconstructed representation of the original digital data.

According to another aspect of the present invention, an
optimal method for compressing digital data comprises
applying spline filters to the digital data to generate
compressed digital data. The compressed digital data is
optimized by applying a predetermined error criterion to
generate substantially optimal compressed digital data. A
predetermined error criterion preferably incorporates the
influence of the spline filter on the original digital data.

According to still another aspect of the present
invention, a method of approximating an array of digital data
comprises periodically subsampling the array of digital data
using a set of sampled continuous functions. The subsampling
process generates an approximation of the original digital
data comprising a weighted combination of the sampled
continuous functions. The weighted combination of sampled
continuous functions is optimized by a predetermined error
criterion, preferably a least-mean-squares criterion.

A further aspect of the present invention comprises a
method of optimizing an N-dimensional array of periodically
subsampled digital data. The method comprises estimating a
correlation tensor which characterizes a subsampling process,

-3-



10

15

20

25

30

WO 96/02894

PCT/US95/08823

and estimating the inverse of the correlation tensor. The
periodically subsampled N-dimensional array of digital data
is optimized by a convolution process involving the estimated
inverse of the correlation tensor.

Brief Description of the Drawings

Figure 1 is a basic block diagram of image data
compression.

Figure 2 is a basic block diagram of a spline
decimation/interpolation filter.

Figure 3 is a basic block diagram of an optimal spline
filter.

Figure 4 1is a vector representation of the image,
processed image, and residual image.

Figure 5 is a block diagram showing a basic optimization
block of the present invention.

Figure 6 1is a graphical illustration of a one-
dimensional bi-linear spline projection.

Figure 7 is a schematic view showing periodic
replication of a two-dimensional image.

Figures 8a, 8b and 8c are perspective and plan views of
a two-dimensional planar spline basis.

Figure 9 is a diagram showing representations of the
hexagonal tent function.

Figure 10 is a flow diagram of compression and
reconstruction of image data.

Figure 11 is a graphical representation of a normalized

frequency response of a one-dimensional bi-linear spline
basis.

Figure 12 is a graphical representation of a one-
dimensional eigenfilter frequency response.
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Figure 13 is a perspective view of a two-dimensional
eigenfilter frequency response.

Figure 14 is a plot of standard error as a function of
frequency for a one-dimensional cosinusoidal image.

Figure 15 is a plot of original and reconstructed one-
dimensional images and a plot of standard error.

Figure 16 is a first two-dimensional image
reconstruction for different compression factors.

Figure 17 is a second two-dimensional image
reconstruction for different compression factors.

Figure 18 is plots of standard error for representative
images 1 and 2.

Figure 19 is a compressed two- miniature using the
optimized decomposition weights.

Figure 20 is a block diagram of a preferred adaptive
compression scheme in which the method of the present
invention is particularly suited.

Figure 21 is a block diagram showing a combined sublevel
and optimal-spline compression arrangement.

Figure 22 is a block diagram showing a combined sublevel
and optimal-spline reconstruction arrangement.

Figure 23 is a block diagram showing a multi-resolution
optimized interpolation arrangement.

Figure 24 is a block diagram showing an embodiment of
the optimizing process in the image domain.

ed scri i P Emb

A novel optimal decimation/interpolation method is
disclosed for multi-dimensional image data coding. The
principle of operation derives from a least-mean-square error
(LMS) -error spline approach, which is extendable to
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N dimensions. One- and two-dimensional image data
compression utilizing linear and planar splines,

respectively, are shown to have compact, closed-form optimal
solutions for convenient, effective compression. The
computational efficiency of this new method is of special
interest, because the compression/reconstruction algorithms
proposed herein involve only the Fast Fourier Transform (FFT)
and inverse FFT types of processors or other high-speed
direct convolution algorithms. Thus, the compression and
reconstruction from the compressed image can be extremely
fast and realized in existing hardware and software. Even
with this high computational efficiency, good image quality
is obtained upon reconstruction. An important and practical
consequence of the disclosed method is the convenience and
versatility with which it is integrated into a variety of
hybrid digital data compression systems.

I. SPLINE FILTER OVERVIEW

The basic process of digital image coding entails
transforming a source image X into a "compressed" image Y
such that the signal energy of Y is concentrated into fewer
elements than the signal energy of X, with some provisions
regarding error. As depicted in Figure 1, digital source
image data 1002 represented by an appropriate N-dimensional
array X is supplied to compression block 1004, whereupon
image data X is transformed to compressed data Y’ via a first
generalized process represented here as G(X)=Y’. Compressed
data may be stored or transmitted (process block 1006) to a
"remote" reconstruction block 1008, whereupon a second
generalized process, G’ (Y’)=X’, operates to transform
compressed data Y’ into a reconstructed image X'.

G and G’ are not necessarily processes of mutual
inversion, and the processes may not conserve the full
information content of image data X. Consequently, X’ will,
in general, differ from X, and information is lost through
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the coding/reconstruction process. The residual image or so-
called residue is generated by supplying compressed data Y’
to a "local" reconstruction process 1005 followed by a
difference process 1010 which computes the residue AX=X-X'
1012. Preferably, X and X’ are sufficiently close, so that
the residue AX 1012 is small and may be transmitted, stored
along with the compressed data Y’, or discarded. Subsequent
to the remote reconstruction process 1008, the residue AX
1012 and reconstructed image X’ are supplied to adding
process 1007 to generate a restored image X' +AX=X" 1003.

In practice, to reduce computational overhead associated
with large images during compression, a decimating or
subsampling process may be performed to reduce the number of
samples. Decimation is commonly characterized by a reduction
factor 7 (tau), which indicates a measure of image data
elements to compressed data elements. However, one skilled
in the art will appreciate that image data X must be filtered
in conjunction with decimation to avoid aliasing. As shown
in Figure 2, a low-pass input filter may take the form of a

" pointwise convolution of image data X with a suitable

convolution filter 1014, preferably implemented using a

matrix filter kernel. A decimation process 1016 then
produces compressed data Y’, which is substantially free of
aliasing prior to subsequent process steps. While the

convolution or decimation filter 1014 attenuates aliasing
effects, it does so by reducing the number of bits required
to represent the signal. It is "low-pass" in nature,
reducing the information content of the reconstructed image
X’. Consequently, the residue AX 1012 will be larger, and in
part, will offset the compression attained through
decimation.

The present invention disclosed herein solves this
problem by providing a method of optimizing the compressed
data such that the mean-square-residue <AX?*> is minimized,
where "< >" shall herein denote an averaging process. As
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shown in Figure 3, compressed data Y', generated in a manner
similar to that shown in Figure 2, is further processed by an
optimization process 1018. Accordingly, the optimization
process 1018 is dependent upon the properties of convolution
filter 1014 and is constrained such that the variance of the
mean-square-residue is zero, 6<AX*>=0. The disclosed method
of filter optimization "matches" the filter response to the

image data, thereby minimizing the residue. Since the
decimation filter 1014 is 1low-pass in nature, the
optimization process 1018, in part, compensates by

effectively acting as a "self-tuned" high-pass filter. A
brief descriptive overview of the optimization procedure is
provided in the following sections.

A. Image A oximati b ine Functio

As will become clear in the following detailed
description, the input decimation filter 1014 of Figure 3 may
be regarded as a projection of an image data vector X onto a
set of basis functions that constitute shifted, but
overlapping, spline functions {¥,(x)} such that

£=x = Exk\llk(?—‘) '
k

where X’ is the reconstructed image vector and yx, is the
decomposition weight. The image data vector X is thus
approximated by an array of preferably computationally
simple, continuous functions, such as 1lines or planes,
allowing also an efficient reconstruction of the original
image.

According to the method, the basis functions need not be
orthogonal and are preferably chosen to overlap in order to
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provide a continuous approximation to image data, thereby

rendering a non-diagonal basis correlation matrix:

Ay = ¥y(X)° ¥, (x) .

This property is exploited by the method of the present
invention, since it allows the user to nadapt" the response
of the filter by the nature and degree of cross-correlation.
Furthermore, the basis of spline functions need not be
complete in the sense of spanning the space of all image
data, but preferably generates a close approximation to image
X. It is known that the decomposition of image vector X into

components of differing spline basis functions {¢x(x)} is not

‘unique. The method herein disclosed optimizes the projection

by adjusting the weights X, such that the differential
variations of the average residue vanishes, 6<pX?*>=0, oOr
equivalently <AX?>=min. In general, it will be expected that
a more complete basis set will provide a smaller residue and
petter compression, which, however, requires greater
computational overhead and greater compression. Accordingly,
it is preferable to utilize a computationally simple basis
set, which is easy to manipulate in closed form and which
renders a small residual image. This residual image OY
residue AX is preferably retained for subsequent processing
or reconstruction. In this respect there is a compromise
between computational complexity, compression, and the
magnitude of the residue.

In a schematic view, a set of spline basis functions
s'={¥,} may be regarded as a subset of vectors in the domain
of possible image vectors s={X}, as depicted in Figure 4.
The decomposition on projection of X onto components of S’ is
not unique and may be accomplished in a number of ways. A
preferable criterion set forth in the present description is
a least-mean-square (LMS) error, which minimizes the overall
difference between the source image X and the reconstructed
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image X'‘. Geometrically, the residual image AX can be
thought of as a minimal vector in the sense that it is the
shortest possible vector connecting X to X'. That is, AX
might, for instance, be orthogonal to the subspace S’, as
shown in Figure 4. As it will be elaborated in the next

section, the projection of image vector X onto S’ is
approximated by an expression of the form:

K?Ki=‘§:X£%JE)
>

The "best" X’ is determined by the constraint that AX=X-X' is
minimized with respect to variations in the weights x;:

which by analogy to Figure 4, described an orthogonal
projection of X onto S’.

Generally, the above system of equations which
determines the optimal x, may be regarded as a 1linear

transformation, which maps X onto S’ optimally, represented
here by:

A(Xk) = J_("I’k(ﬁ) ’

where BRAy=¥;*¥, is a transformation matrlx having elements
representing the correlation between bases vectors ¥; and ¥,.

The optimal weights x, are determined by the inverse
operation A™:

Xx=A (XY, (X)),

rendering compression with the least residue. One skilled in
the art of LMS criteria will know how to express the

-10-
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processes given here in the geometry of multiple dimensions.

Hence, the processes described herein are applicable to a
variety of image data types.

The present brief and general description has direct
processing counterparts depicted in Figure 3. The operation

X*¥, (Xx)
represents a convolution filtering process 1014, and

AT (Xe¥, (x))

represents the optimizing process 1018.
In addition, as will be demonstrated in the following
sections, the inverse operation A is equivalent to a so-

called inverse eigenfilter when taken over to the conjugate
image domain. Specifically,

DFT x, = .xl.DFT (X ¥, (x)),

where DFT is the familiar discrete Fourier transform (DFT)
and A, are the eigenvalues of A. The equivalent optimization

block 1018, shown in Figure 5, comprises three steps: (1) a
discrete Fourier transformation (DFT) 1020; (2) inverse
eigenfiltering 1022; and (3) an inverse discrete Fourier
transformation (DFT?) 1024. The advantages of this

embodiment, in part, rely on the fast coding/reconstruction
speed, since only DFT and DFT! are the primary computations,
where now the optimization is a simple division. Greater
elaboration into the principles of the method are provided in
Section II where alsc the presently contemplated preferred
embodiments are derived as closed form solutions for a one-
dimensional linear spline basis and two-dimensional planar
spline Dbases. Section 1III provides an operational
description for the preferred method of compression and
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reconstruction utilizing the optimal procedure disclosed in
Section II. Section IV discloses results of a reduction to
practice of the preferred embodiments applied to one- and
two-dimensiocnal images. Finally, Section V discloses a

preferred method of the filter optimizing process implemented
in the image domain.

II. IMAGE DATA COMPRESSION BY OPTIMAL SPLINE INTERPOLATION

A. One-Dimensional Data Compression by IMS-Error

Linear Splines

For one-dimensional image data, bi-linear spline
functions are combined to approximate the image data with a
resultant linear interpolation, as shown in Figure 6. The
resultant closed-form approximating and optimizing process
has a significant advantage in computational simplicity and
speed.

Letting the decimation index 7 and image sampling period
t be fixed, positive integers 7,t=1,2,..., and letting X(t)
be a periodic sequence of data of period nr, where n is also

an integer, consider a periodic, linear spline 1014 of period
nt of the type,

F(t) = F(t+nT1), (1)
where
-1t (2)
Fle) =1t .7,.for |t]|sT
0 for |t|>7 ,

as shown by the functions ¥, (t) 1014 of Figure 6.

-12-
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The family of shifted linear splines F(t) is defined as
follows:

¥, (t) = F(t-k7) for (k=0,1,2,...,(n-1)). (3)

One object of the present embodiment is to approximate X(t)
5 by the n-point sum:

n-1
s(t) =Y xv,(t), (4)
k=0
in a least-mean-squares fashion where X,,...,X,, are n

reconstruction weights. Observe that the two-point sum in
the interval 0<t<7 is:

Ko (8) +X,¥, (8) =X, (1-5) ox, - L7 5

=X+ (X,-X,) £ .
10

Hence, S(t) 1030 in Equation 4 represents a linear
interpolation of the original waveform X(t) 1002, as shown in
Figure 6.
To find the "best" weights X,,...,X,,, the quality
15 L(X,, Xy, .-.,X5;) is minimized:

ny n-1 2
L(X,, X, 0o X, ) =E< P{(t) -Eka,‘(t)] ) (6)

ta-y k=0

-13-
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where the sum has been taken over one period plus 7 of the
data. X, is minimized by differentiating as follows:

nr n-1
= F(( £) =Y X ¥, (t) ]\I'j (t)

J C=r k=0

nr n-1 nr (7)
= ( 2 [E X(0) v, () -y XY ¥, (e) v, () ] > = 0.
co-7 k=0 ge=7
This leads to the system,
n-1
Y A,x=Y,, (8)
k=0
5
of linear equations for X,, where
nr
A, =Y v (), (t) for(j, k=0,1,...,n-1) (9)
to-7
and
nr
Y, = ;'x(t)w,(t) for(j=0,1,...,n-1) (10)
10 The term Yy in Equation 10 is reducible as follows:
nr
Y,= :“: X(e)F(t-31)
’ (11)
{Jod)r
= X(t)F(t-j71).
te(j-1)r
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Letting (t-j7) = m, then:

7-1

Y, = Y X(m+j7r)F(m) for (j=0,1,2,...,n-1). (12

me=1¢l

The Y,’'s in Equation 12 represent the compressed data to
be transmitted or stored. Note that this encoding scheme
5 involves n correlation operations on only 27-1 points.
Since F(t) is assumed to be periodic with peried nr7,
the matrix form of A, in Equation 9 can be reduced by
substitution Equation 3 into Equation 9 to obtain:

r-1

A, = .,.Zm F(m+(j-k) 7) F(m)
[ -1
2 y 7 -
'.Z:M (F(m)) a4 a if j-k=0 mod n (13)

= { 7-1

F(msT)F(m) a 8 if j-kmtl mod n

e-rel

{ 0 otherwise

10 By Equation 13, A, can be expressed also in circulant form
in the following manner:

Ap8 gy, (14)

where (k-j), denotes (k-j) mod n, and

a,=a, a =8,a=0,...,a,, =8 (15)
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Therefore, Ay in Equations 14 and 15 has explicitly the
following equivalent circulant matrix representations:

Ao, 0 Ao. 1 7 Ao. n-1
ALO AL1 . AL -1
(Ay) & | L
'n-1,0 An-1.1 An-l.,n-:l.
= [{a(k-j)_}]
a, a 4a, an-J
R,y 89 &y a,.; (16)
& A, 8,48, an.s
Lal a2 a3 aD J
BO -~ B
af - 0
= ﬁ a - 0
00 - a.|

One skilled in the art of matrix and filter analysis
will appreciate that the periodic boundary conditions imposed
on the data lie outside the window of observation and may be
defined in a variety of ways. Nevertheless, periodic
boundary conditions serve to simplify the process
implementation by insuring that the correlation matrix [Aj]
has a calculable inverse. Thus, the optimization process
involves an inversion of (A;], of which the periodic boundary
conditions and consequent circulant character play a
preferred role. It is also recognized that for certain
spline functions, symmetry rendered in the correlation matrix

allows inversion in the absence of periodic image boundary
conditions.

-16-
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B. Two-Dimensional Data Compression by Planar Splines

For two-dimensional image data, multi-planar spline
functions are combined to approximate the image data with a
resultant planar interpolation. In Figure 7, X(t,,t;) is a
doubly periodic array of image data (e.g., still image) of
periods n,7 and n,7, with respect to the integer variables t,
and t, where 7 is a multiple of both t, and t,. The actual
image 1002 to be compressed can be viewed as being repeated
periodically throughout the plane as shown in the Figure 7.
Each subimage of the extended picture is separated by a
border 1032 (or gutter) of zero intensity of width 7. This
border is one of several possible preferred ‘"boundary
conditions" to achieve a doubly-periodic image.

Consider now a doubly periocdic planar spline, F(t,, t;)
which has the form of a six-sided pyramid or tent, centered
at the origin and is repeated periodically with periods n,7
and n,7 with respect to integer variables t, and t,,
respectively. A perspective view of such a planar spline
function 1034 is shown in Figure 8a and may hereinafter be
referred to as "hexagonal tent." Following the one-
dimensional case by analogy, letting:

Yy (£, ) =F -k, T, t;-k,T) (17)

for (k,=0,1,...,m-1) and (k,=0,1,...,n,-1), the "best"
weights X,,, are found such that:

2
a1, 0,7 n,-1,n,-1

L(X,,) = E ( (¢, 8) - kzk:o Xiox Yk, (€10 E5) > (18)

t,, -7

is a minimum.
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A condition for L to be a minimum is

oL nu.n.r( Ay-1.m,1
3% =2 (t,,t) - X . v, (t,t)| V¥ £t >
xj‘ji :I':Zl.-' 1 k|§.0 ki, " ey 17 =2 jxj)( 17 2)
nr,ny
-2 < E X(t,, 6) ¥y, (6, t;)
Cys Ey=-7
n,-1,n-1 nr1,n7
- E X.x, E Vg, (E, )Y, , (t, L) >
k, . k,=0 (XS

(19)

The best coefficients X,,, are the solution of the 2nd-order

tensor equation,
(20)

Ay g X, = Y13, 1
where the summation is on k; and k,,
a,7.n,v
Aj.J.k.k. = 2 ‘I'J.J.(tu tz)‘l'k,k,(tu t,) (21)
t,. -7
and
n,7.n,7
Yy, = X(t, )9, (t,t;) . (22)
& =7
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With the wvisual aid of Figure 8a, the tensor Yy,
reduces as follows:

n1,n7

Yj--’t = 2 x(tl’ t2)\p1dn(t1'tz)
£, Cy=7
nr,n,t
= X(t,, t;) F(t,—3,7, t,-J,7) (23)
t, ot

(J,*1)r (1,41} r

X(t, ) F(t,~7,7, t,-7,7)
t,={J,-1)7 t,={j,-1)7

Letting t,-j.7=m, for k = 1,2, then
-1

Yis, = 2 X(m+3,7,m+j,7) F(m, m,) (24)
m,, my=-7 1

for (j, = 0,1,...,n,-1) and (j, = 0,1,...,n,-1), where F(m,,m,)
is the doubly periodic, six-sided pyramidal function, shown
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in Figure 8a. The tensor transform in Equation 21 is treated
in a similar fashion to obtain

nr, ot
Ay gr = Y Y6 )Y, (t, £)

€ Eym-7

7-1

F(m+(j,-k) 7,m+(j,-k,) 7) F(m , m)

™, mmrel
7-1

E [F(m,, m,)]? aa

ye-T+l

if (j,-k) =0 mod n, A (j,-k;) = 0 mod n,

7-1

F(m+7,m) F(m,m,) & B
B, mye-1e1

if (j,-k,) = +1 mod n, A (j,-k,) = 0 mod n,
o ’2-3 F(m,,m,+7) F(m, 6 m,) &y
mene if (j,-k,) = 0 mod n, A (j,-k,) = +1 mod m,
3 F(m+7,m+7)F(m,m) & ¢
e if (j,-k,) = 1 mod n, A (J,-k,) = +1 mod n

7=-1

F(m¥r, m+7)F(m,m,) &1
m,m=-71+1
L if (j,-k,) = F1 mod n, A (j,-k,) = +1 mod n,.

(25)

The values of «, B, Yy, and ¢ depend on 7, and the shape

5 and orientation of the hexagonal tent with respect to the
image domain, where for example m, and m, represent row and
column indices. For greater flexibility in tailoring the
hexagonal tent function, it is possible to utilize all
parameters of the [Ayyxael- However, to minimize

10 calculational overhead it is preferable to employ symmetric
hexagons, disposed over the image domain with a bi-
directional period 7. Under these conditions, B=y=f{ and 7=0,
simplifying [Ay3y2ake] considerably. Specifically, the
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hexagonal tent depicted in Figure 8a and having an
orientation depicted in Figure 8b is described by the
preferred case in which B=y=¢( and n=0 . It will be
appreciated that other orientations and shapes of the
hexagonal tent are possible, as depicted, for example, in
Figure 8c. Combinations of hexagonal tents are also possible
and embody specific pre:.rable attributes. For example, a
superposition of the hexagonal tents shown in Figures 8b and
g8c effectively "symmetrizes" the compression process.

From Equation 25 above, Ay, can be expressed in
circulant form by the following expression:

Ay gk = Bug-dan, g-din (26)

where (k,-j,)n, denote (k, - j;) mod n,, £=1,2, and

240 Q0 Q42 Q4,n,-1
50 a; 252 3,01
[aa,a,] =1 48 an 4,2

43,01

Lan,q.o an-,1 Q.2 " anp-1.n1

- (27)
v 0 - 0 B.|
g g0 -~00
~pboo-~00
00 00
00 0 R
where (s, = 0,1,2,... n,-1) and (s; = 1,2,3,...,0,-1). Note

that when [a,,,,] is represented in matrix form, it is "block
circulant."
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c. Compression-Reconstruction Algorithms

Because the objective is to apply the above-disclosed
LMS error linear spline interpolation techniques to image
sequence coding, it is advantageous to utilize the tensor
formalism during the course of the analysis in order to
readily solve the linear systems in equations 8 and 20.
Here, the tensor summation convention is used in the analysis
for one and two dimensions. It will be appreciated that such

convention may readily apply to the general case of N
dimensions.

1. Linear Transformation of Tensors

A linear transformation of a 1lst-order tensor is written
as

Y = A X, (sum on s) , (28)

where A,, is a linear transformation, and Y,,X, are lst-order

tensors. Similarly, a linear transformation of a second
order tensor is written as:

Y, = Anammxia (sumon s,,s,). (29)

The product or composition of 1linear transformations is
defined as follows. When the above Equation 29 holds, and

ZQ:Q: = BQ:Q:’:’: Yfl'n ! (3 0)

then

leQx = Bqlq',‘r,At‘,’.‘.'X.‘.' ‘ (31)
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Hence,

an%sl’n = Bqu:rnrxArxrlsx’a ( 32 )

is the composition or product of two linear transformations.
2. irculant Transformation of 1st-Order Tensors

5 The tensor method for solving equations 8 and 20 is
illustrated for the l-dimensional case below:

Letting A, represent a circulant tensor of the form:

A_,=a, yman for(r,s=0,1,2,...,n-1), (33)

and considering the n special 1lst-order tensors as

W(g) = (U‘)‘ for (z'—'olllzl"‘ln-l) - (34)
10
where w is the n-th root of unity, then
(&) . (&)
AW =AW, (35)
where
n-1

A(L) =Za,(w')’ (36)

30
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are the distinct eigenvalues of A,,. The terms W(g) are

orthogonal.

(37)

(&) ,(j)» _ |0 for &=j
Ws Ws {n for £=3.

At this point it is convenient to normalize these
S tensors as follows:

¢(§)A_E.W(g) for (¢=0,1,2,...,n-1).

(38)
n

¢(g) evidently also satisfies the orthonormal property,

i.e.,
Dol s, (39)
10 where 6,y is the Kronecker delta function and * represents

complex conjugation.

A linear transformation is formed by summing the n dyads

¢(£)¢(23' for { = 0,1,...,n-1 under the summation sign as

follows:

n-l

SRS RIGILAFR U (40)
=0
15
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Then

. n-1
A3 =T Ao (e, (0) 20, (3)
2

te0 (41)
;X(f)«’,(f)b,j

M) e (F)

Since A, has by a simple verification the same eigenvectors
and eigenvalues as the transformation A, has in Equations 9

5 and 33, the transformation A, and A,, are equal.
3. Inverse Transformation of 1st-Order Tensors.

The inverse transformation of A,, is shown next to be

n-1

- 1 L te
A; = . (42)
: Z; ~TrT P
This is proven easily, as shown below:
n-1 n-1
A=Y % M0 A
=0 {'=0 (l )
n-1l n-l 1 .
= EE A () pd "40; E‘P:‘P: (43)
l-o =0 A(E)
n- n-1
= 1 tyrt = 1 reyld =
Z; = (wh }: (W) = b,
10
4. vi - or ations

The solution of a 1lst-order tensor equation Y,=A,X is
given by

AjY, = AgA X, = 0.X, = Xg . (44)
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so that
X, = ALY,

n-1

1 .
X xTIy e

n-1 ‘pl-y . n-1 1 ln-l (45)
= 3 s r = = Y.tk tr
5 ) o 8 [ B8 e )

1 -
DFT [WTDFT : (Yk)] .

where DFT denotes the discrete Fourier Transform and DFT!
denotes its inverse discrete Fourier Transform.

An alternative view of the above solution method is
derived below for one dimension using standard matrix
methods. A linear transformation of a 1st-order tensor can
be represented by a matrix. For example, let A denote A, in
matrix form. If A, is a circulant transformation, then A is
also a circulant matrix. From métrix theory it is known that
every circulant matrix is "similar" to a DFT matrix. If Q
denotes the DFT matrix of dimension (nxn), and Q' the complex

conjugate of the DFT matrix, and A is defined to be the
eigenmatrix of A, then:

A = QAQ' . (46)

The solution to y = Ax is then
X =A%y = QA (Q'y)
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For the one-dimensional process described above, the

eigenvalues of the transformation operators are:

n-1
A(L) = a,(wh)?
:Zo ? (47)
= DFT(a,)
where ap=a, a,=8, ..., 2,.:=0, a,,=f, and w"=1. Hence:
A(f) = a+fuw!+Buwinl!
(e) Buw'+pw (48)

a+B (w+wt)

A direct extension of the 1st-order tensor concept to
the 2nd-order tensor will be apparent to those skilled in the
art. By solving the 2nd-order tensor equations, the results
are extended to compress a 2-D image. Figure 9 depicts three
possible hexagonal tent functions for 2-dimensioned image
compression indices 7=2,3,4. The following table exemplifies

the relevant parameters for implementing the hexagonal tent
functions:

Decimation Index T=2 Tm3 T=4
(7)
Compression Ratio 4 9 16 P
(1%)
o a*+6bq a?+6b?+12c? al+6b?
+12c?+18d?
B b? 2 (c?+bc) 2d2+2db
J +4dc+c?
gain a+6b a+6b+l2c a+6éb
‘ +12c+18d

The algorithms for compressing and reconstructing a still
image are explained in the succeeding sections.
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IIT. OVERVIEW OF CODING-RECONSTRUCTION SCHEME

A block diagram of the compression/reconstruction scheme

is shown in Figure 10. The signal source 1002, which can
have dimension up to N, is first passed through a low-pass
filter (LPF). This low-pass filter is implemented by

convolving (in a process block 1014) a chosen spline filter
1013 with the input source 1002. For example, the normalized
frequency response 1046 of a one-dimensional linear spline is
shown in Figure 11. Referring again to Figure 10, it can be
seen that immediately following the LPF, a subsampling
procedure is used to reduce the signal size 1016 by a factor
7. The information contained in the subsampled source is not

optimized in the least-mean-square sense. Thus, an
optimization procedure is needed to obtain the best
reconstruction weights. The optimization process can be

divided into three consecutive parts. A DFT 1020 maps the
non-optimized weights into the image conjugate domain.
Thereafter, an inverse eigenfilter process 1022 optimizes the
compressed data. The frequency response plots for some
typical eigenfilters and inverse eigenfilters are shown in
Figures 12 and 13. After the inverse eigenfilter 1022, a
DFT"* process block 1024 maps its input back to the original
image domain. When the optimized weights are derived,
reconstruction can proceed. The reconstruction can be viewed
as oversampling followed by a reconstruction low-pass filter.

The embodiment of the optimized spline filfer described
above may employ a DFT and DFT® type transform processes.
However, those skilled in the art of digital image processing
will appreciate that it is preferable to employ a Fast

Fourier Transform (FFT) and FFT! processes, which
substantially reduce computation overhead associated with
conjugate transform operations. Typically, such an
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improvement is given by the ratio of computation steps
required to transform a set of N elements:

N
.2.J.og2 (N)

FFT 1
£l 2« = __1o N) ,
DFT N a9 (M)

which improves with the size of the image.

5 A. The Compression Method

The coding method is specified in the following steps:
1. A suitable value of 7 (an integer) is chosen. The

compression ratio is 72 for two-dimensional images.

2. Equation 23 is applied to find Yj,,4,, which is the
10 compressed data to be transmitted or stored:
nr,n,T
Yy, = 3 X(t,6)¥, (6, t)
t,. =1
a,,n,

X(t,, t,) F(t,=3,7, t;=3,7)

t,. E==T

(J,*1)r (J,*1) 7

X(t,, t;) F(t,=3,7, £;-3,7)
t,=(J,-1) 1 g={j,"1}7
B. T Reco cti M

The reconstruction method is shown below in the
following steps:

15 1. Find the FFT? of Y, (the compressed data) .
2. The results of step 1 are divided by the
eigenvalues A(¢,m) set forth below. The

eigenvalues A({,m) are found by extending Equation
48 to the two-dimensional case to obtain:
AME,m = a+f (0o +olrwm ol W) (49)
20
where w, is the n,-th root of unity and w, is the

n,-th root of unity.
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3. The FFT of the results from step 2 is then taken.
After computing the FFT, Xx,x, (the optimized
weights) are obtained.

4, The recovered or reconstructed image is:
n-1,n,-1
St t) = 3 X, %, (t,t) . (50)
X, . Kk, =0
5. Preferably, the residue is computed and retained

with the optimized weights:
AX(t,, t,) = X(¢t,,t,)-S(¢t,,t,)

Although the optimizing procedure outlined above appears to
be associated with an image reconstruction process, it may be
implemented at any stage between the aforementioned
compression and reconstruction. It is preferable to
implement the optimizing process immediately after the
initial compression so as to minimize the residual image.
The preferred order has an advantage with regard to storage,
transmission and the incorporation of subsequent image
processes.

C. Response Considerations

The inverse eigenfilter in the conjugate domain is
described as follows: ’

H(di,7) =T(31—3'T X (51)

where A(i,j) can be considered as an estimation of the
frequency 1response of the combined decimation and

interpolation filters. The optimization process H(i,j)
attempts to "undo" what is done in the combined
decimation/interpolation process. Thus, H(i,j) tends to

restore the original signal bandwidth. For example, for 7=2,
the decimation/ interpolation combination is described as
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having an impulse response resembling that of the following
3x3 kernel:

08B
B a Bl . (52)

B B 0O

~
]

Then, its conjugate domain counterpart, Mi, )M apgn: Wwill be
. 27i 21j [ J
Mi i) laan= a+23[cos( - )+cos( I\ﬂ)*-cos[hr(%-%})]] , (53)

where i,j are frequency indexes and N represents the numbexr
of frequency terms. Hence, the implementation accomplished
in the image conjugate domain is the conjugate equivalent of
the inverse of the above 3x3 kernel. This relationship will
be utilized more explicitly for the embodiment disclosed in
Section V.

IV. NUMERICAL SIMULATIONS
A. -Dim ion C

For a one-dimensional implementation, two types of
signals are demonstrated. A first test is a cosine signal
which is useful for observing the relationship between the
standard error, the size of 7 and the signal frequency. The
standard error is defined herein to be the square root of the

average error:
1 /2
2
[Tvzc: (AX(t)) ] .

A second one-dimensional signal is taken from one line of a
grey-scale still image, which is considered to be realistic
data for practical image compression.

Figure 14 shows the plots of standard error versus
frequency of the cosine signal for different degrees of
decimation 7 1056. The general trend is that as the input
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signal frequency becomes higher, the standard error
increases. 1In the low frequency range, smaller values of 7

yield a better performance. One abnormal phenomenon exists
for the 7=2 case and a normalized input frequency of 0.25.
For this particular situation, the linear spline and the
cosine signal at discrete grid points can match perfectly so
that the standard error is substantially equal to 0.
Another test example comes from one line of realistic
still image data. Figures 15a and 15b show the reconstructed
signal waveform 1060 for 7=2 and 7=4, respectively,
superimposed on the original image data 1058. Figure 15a
shows a good quality of reconstruction for 7=2. For 7=4, in
Figure 15b, some of the high frequency components are lost
due to the combined decimation/interpolation procedure.
Figure 15c presents the error plot 1062 for this particular
test example. It will be appreciated that the non-linear
error accumulation versus decimation parameter 7 may be

exploited to minimize the combination of optimized weights
and image residue.

B. Iwo-Dimensional Case

For the two-dimensional case, realistic still image data
are used as the test. Figures 16 and 17 show the original
and reconstructed images for 7=2 and 7=4. For 7=2, the
reconstructed image 1066, 1072 is substantially similar to
the original. However, for 7=4, there are zig-zag patterns
along specific edges in images. This is due to the fact that
the interpolation less accurately tracks the high frequency
components. As described earlier, substantially complete
reconstruction is achieved by retaining the minimized residue
AX and adding it back to the approximated image. In the next
section, several methods are proposed for implementing this

process. Figure 18 shows the error plots as functions of 7
for both images.
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An additional aspect of interest is to look at the
optimized weights directly. When these optimal weights are
viewed in picture form, high-quality miniatures 1080, 1082 of
the original image are obtained, as shown in Figure 18.
Hence, the present embodiment is a very powerful and accurate
method for creating a "thumbnail" reproduction of the
original image.

V. ALTERNATIVE EMBODIMENTS

video compression is a major component of high-
definition television (HDTV). According to the present
invention, video compression is formulated as an equivalent
three-dimensional approximation problem, and is amenable to
the technique of optimum 1linear or more generally by
hyperplanar spline interpolation. The main advantages of
this approach are seen in its fast speed in
coding/reconstruction, its suitability in a VLSI hardware
implementation, and a variable compression ratio. A
principal advantage of the present invention is the
versatility with which it is incorporated into other
compression systems. The invention can serve as a "front-
end" compression platform from which other signal processes
are applied. Moreover, the invention can be applied
iteratively, in multiple dimensions and in either the image
or image conjugate domain. The optimizing method can for
example apply to a compressed image and further applied to a
corresponding compressed residual image. Due to the inherent
low-pass filtering nature of the interpolation process, some
edges and other high-frequency features may not be preserved
in the reconstructed images, but which are retained through

the residue. To address this problem, the following
procedures are set forth:
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Procedure (a

Since the theoretical formulation, derivation, and
implementation of the disclosed compression method do not
depend strongly on the choice of the interpolation kernel
function, other kernel functions can be applied and their
performances compared. So far, due to its simplicity and
excellent performance, only the linear spline function has
been applied. Higher-order splines, such as the quadratic
spline, cubic spline could also be employed. Aside from the
polynomial spline functions, other more complicated function
forms can be used.

Procedure (b)

Another way to improve the compression method is to
apply certain adaptive techniques. Figure 20 illustrates
such an adaptive scheme. For a 2-D image 1002, the whole
image can be divided into subimages of smaller size 1084.
Since different subimages have different local features and
statistics, different compression schemes can be applied to
these different subimages. An error criterion is evaluated
in a process step 1086. If the error is below a certain
threshold determined in a process step 1088, a higher
compression ratio is chosen for that subimage. If the error
goes above this threshold, then a lower compression ratio is
chosen in a step 1092 for that subimage. Both multi-kernel
functions 1090 and multi-local-compression ratios provide
good adaptive modification.

Procedure (c¢)

Subband coding techniques have been widely used in
digital speech coding. Recently, subband coding is also
applied to digital image data compression. The basic
approach of subband coding is to split the signal into a set
of frequency bands, and then to compress each subband with an
efficient compression algorithm which matches the statistics
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of that band. The subband coding techniques divide the whole
frequency band into smaller frequency subbands. Then, when
these subbands are democ. .ated into the baseband, the
resulting equivalent bandwidths are greatly reduced. Since
the subbands have only low frequency components, one can use
the above described, linear or planar spline, data
compression technique for coding these data. A 1l6-band
filter compression system is shown in Figure 21, and the
corresponding reconstruction system in Figure 22. There are,
of course, many ways to implement this filter bank, as will
be appreciated by those skilled in the art. For example, a

common method is to exploit the Quadrature Mirror Filter
structure.

V. IMAGE DOMAIN IMPLEMENTATION

The embodiments described earlier utilize a spline
filter optimization process in the image conjugate domain
using an FFT processor oOr equivalent thereof. The present
invention also provides an equivalent image domain
implementation of a spline filter optimization process which
presents distinct advantages with regard to speed, memory and
process application.

Referring back to Equation 45, it will be appreciated
that the transform processes DFT and DFT! may be subsummed
into an equivalent conjugate domain convolution, shown here

briefly:
X, = DFT [%DFT"(Y,‘)]
L]

(54)
= DFT %FT" %FT(-XJ'-)] DFT"(Y,)]
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If Q = DFT (1/X,), then:
Xj = DFT[DFT™*{(Q) DFT"? (v,)]
= Qsy, .

Furthermore, with A.=DFT(a,), the optimization process
may be completely carried over to an image domain
implementation knowing only the form of the input spline
filter function. The transform processes can be performed in
advance to generate the image domain equivalent of the
inverse eigenfilter. As shown in Figure 24, the image domain
spline optimizer Q operates on compressed image data Y’
generated by a first convolution process 1014 followed by a
decimation process 1016, as previously described. Off-line
or perhaps adaptively, the tensor transformation A (as shown
for example in Equation 25 above) is supplied to‘an FFT type
processor 1032, which computes the transformation eigenvalues
A. The tensor of eigenvalues is then inverted at process
block 1034, followed by FFT'* process block 1036, generating
the image domain tensor Q. The tensor Q is supplied to a
second convolution process 1038, whereupon Q is convolved
with the non-optimized compressed image data Y’ to yield
optimized compressed image data Y'’.

In practice, there is a compromise between accuracy and
economy with regard to the specific form of Q. The optimizer

tensor Q should be of sufficient size for adequate
approximation of:

DFT" (ﬁy) .

On the other hand, the term Q should be small enough to be
computationally tractable for the online convolution process
1038. It has been found that two-dimensional image
compression using the preferred hexagonal tent spline is
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adequately optimized by a 5x5 matrix, and preferably a 7x7
matrix, for example, with the following form:

(0 h -gg e e g)
h f edcde
-ge c b b c e
Q=J]gdbabdg;
e ¢c b b c e-g
edcde fh
Lgeeg-ghod

Additionally, to reduce computational overhead, the smallest
elements (i.e., the elements near the perimeter) such as £,
g, and h may be set to zero with little noticeable effect in
the reconstruction.

The principal advantages of the present preferred
embodiment are in computational saving above and beyond that
of the previously described conjugate domain inverse
eigenfilter process (Figure 5, 1018). For example, a two-
dimensional FFT process may typically require about N?log,N
complex operations or equivalently 6N’log,N multiplications.
The total number of image conjugate filter operations is of
order 10N?log,N. On the other hand, the presently described
(7x7) kernel with 5 distinct operations per image element
will require only SN? operations, lower by an important
factor of log,N. Hence, even for reasonably small images,
there is significant improvement in computation time.

Additionally, there is substantial reduction in buffer
demands because the image domain process 1038 requires only
a 7x7 image block at a given time, in contrast to the
conjugate process which requires a full-frame buffer before
processing. In addition to the lower demands on computation
with the image domain process 1038, there is virtually no
latency in transmission as the process is done in pipeline.
Finally, "power of 2" constraints desirable for efficient FFT
processing is eliminated, allowing convenient application to
a wider range of image dimensions.
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Although the invention has been described in terms of
the preferred embodiment, many variations will be apparent to
those skilled in the art. All such variations are intended
to be included within the appended claims.
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WHAT IS CLAIMED IS:

1. A method of compressing and reconstructing digital
data, comprising:

applying spline filters to original digital data to
generate compressed digital data;

applying a predetermined error optimizing process
to said compressed digital data to generate
substantially optimal compressed digital data; and

interpolating said substantially optimal compressed
digital data to generate a reconstructed representation
of said original digital data.

2. The method as defined in Claim 1, wherein said
predetermined error optimizing process comprises a least-
mean-squares criterion.

3. The method as defined in Claim 2, wherein said
predetermined error optimizing process comprises a process

involving the eigenvalues of said spline filter correlation
tensor.

4. The method as defined in Claim 3, wherein said
predetermined error optimizing process comprises imposing
periodic boundary conditions on said original digital data.

5. The method as defined in Claim 1, wherein said
interpolating step comprises applying said spline functions
to said optimized compressed digital data.

6. The method as defined in Claim 1, wherein said
spline functions are piece-wise linear functions of one
dimension.

7. The method as defined in Claim 1, wherein said
spline functions are piece-wise planar functions of two
dimensions.

8. The method as defined in Claim 1, wherein said

spline functions are hexagonal tent functions.
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9. The method as defined in Claim 1, wherein said
spline functions are piece-wise n-planar functions of n
dimensions.

10. The method as defined in Claim 1 further
comprising:
subtracting said reconstructed representation of
said original digital data from said original digital data to
generate‘residual digital data.

11. The method as defined in Claim 10, further
comprising:

adding said residual digital data to said

reconstructed representation of said original digital data to

generated a restored representation of said original digital
data.

12. A method of compressing digital data comprising
applying spline filters to original digital data to
generate compressed digital data; and
applying a predetermined error criterion to said
compressed digital data to generate substantially
optimal compressed digital data.

13. The method as defined in Claim 12 further
comprising:

interpolating said substantially optimal compressed
digital data.

14. A method of approximating an array of digital data,
comprising:
periodically subsampling said array of original
digital data using a set of sampled continuous functions
to generate an approximation comprising a weighted
combination of said sampled continuous functions; and
optimizing said weighted combination using a
predetermined error criterion.
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15. A method of optimizing a set of periodically
subsampled digital data comprising:

estimating a correlation tensorxr which characterizes
a subsampling process;

5 estimating an inverse of said correlation tensor;
and

applying said inverse of said correlation tensor to
optimize said set of periodically subsampled digital data.

--16. An image compression system, comprising:

an image receiving terminal, receiving an input
image thereon to be compressed to produce an output compressed
image;

first and second filtering elements, in series
Wwith one another, and operating such that an output of one of
said filters feeds the other of said filters, said filters
including:

a first filter which filters the input
information in a way to prodcue low pass filtered information
that has less energy in less elements than the input image to be
compressed; and

a mean squared error minimizing filter, having a
characteristic which minimizes a mean squared error between the

output compressed image and the input image to be compressed.
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17. A system as in claim 16 wherein said low pass

filter includes a decimation filter and a non-aliasing filter.

18. The system as in claim 16 wherein said low pass
filter receives said image, and an output of said low pass filter
drives the input of said mean squared error minimizing filter,

said mean squared minimizing operating in a decimated domain.

19. Apparatus as in claim 18 wherein said mean
squared error filter is a filter which averages the square of an

error.

20. A system as in claim 16 wherein characteristics
of said mean squared error minimizing filter are based on said
first filter and characteristics of a reconstruction low pass

filter which reconstructs the compressed signal.

21. The system as in claim 16 wherein said mean

squared error minimizing filter is a spline filter.
22. The system as in claim 21 wherein said spline

filter is a one dimensional spline filter using a linear spline

of the form ¥, (t) = F(t-kr) for (k=0,1,2,...,(n-1)).
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23. The system as in claim 16 wherein said matching
filter is a two-dimensional or greater spline filter using a
multi planar spline function of the form

¢k1k2(tl’t2) = F(tl—le' tz-sz).

24. A method of optimizing compression of

compressible data, comprising:

low pass filtering said data in a way which
concentrates output information into less areas than those in
input data; and

supplementally filtering said data, in series
with said low pass filtering, in a way to adjust an overall
compression of said filters in a way so as to minimize the least

mean squared error thereof.

25. A method as in claim 24 wherein said low pass

filtering includes a decimating the compressible data.

26. A method as in claim 25 wherein said low pass
filtering occurs before said supplemental filtering, so that said

supplemental filtering operates in the decimated domain.

27. A method as in claim 24 wherein said

supplemental filtering is a spline filtering operation.
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28. A method as in claim 27 wherein the output image

S(t) is approximated by the N point sum

S(t) = T X, ()
k=0

where X(k) are sampled points, and Ty include the linear spline

filters.

29. A method as in claim 28 wherein the spline
filtering operation is defined as ¥ (t) = F(t-k7) for
(k=0,1,2,...,(n~1)).

30. A method of transmitting an optimized and

matched compressed signal, comprising:

obtaining an original signal from a signal
source of a first type, said first type being compressible;

compressing said signal to produce a compressed
signal which is not optimized in the least mean squares sense;

optimizing an output compressed signal by
weighting said compressed signal using weights which optimize the
least mean squared errors between the output compressed signal
and the original signal; and

transmitting the output compressed signal formed

as a result of said optimizing and compressing.
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31. A method as in claim 30 wherein said compressing
comprises low pass filtering said original signal by convolving

said original signal with a chosen filter.

32. Method as in claim 30 wherein said compressing

comprises decimating the input source.--
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