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(57)【特許請求の範囲】
【請求項１】
　バリアント病原性分類器を構築する方法であって、
　基準タンパク質配列および代替タンパク質配列の良性訓練例のペアと病原性訓練例のペ
アとを入力として使用して、メモリに結合された多数のプロセッサ上で実行される、畳み
込みニューラルネットワークベースのバリアント病原性分類器を訓練するステップを含み
、前記代替タンパク質配列が良性バリアントおよび病原性バリアントから生成され、
　前記良性バリアントが、一般的なヒトミスセンスバリアントと、ヒトと一致する基準コ
ドン配列を共有する代替的なヒト以外の霊長類コドン配列上で発生するヒト以外の霊長類
ミスセンスバリアントとを含む、方法。
【請求項２】
　前記一般的なヒトミスセンスバリアントが、少なくとも100000人のヒトからサンプリン
グされたヒト集団バリアントデータセットにわたって0.1%より高いマイナーアレル頻度(M
AFと省略される)を有する、請求項1に記載の方法。
【請求項３】
　前記サンプリングされたヒトが異なるヒト亜集団に属し、前記一般的なヒトミスセンス
バリアントがそれぞれのヒト亜集団バリアントデータセット内で0.1%より高いMAFを有す
る、請求項2に記載の方法。
【請求項４】
　前記ヒト亜集団が、アフリカ人/アフリカ系アメリカ人(AFRと省略される)、アメリカ人
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(AMRと省略される)、アシュケナージ系ユダヤ人(ASJと省略される)、東アジア人(EASと省
略される)、フィンランド人(FINと省略される)、フィンランド人以外のヨーロッパ人(NFE
と省略される)、南アジア人(SASと省略される)、および他(OTHと省略される)を含む、請
求項3に記載の方法。
【請求項５】
　前記ヒト以外の霊長類ミスセンスバリアントが、チンパンジー、ボノボ、ゴリラ、B.オ
ランウータン、S.オランウータン、アカゲザル、およびマーモセットを含む、複数のヒト
以外の霊長類の種からのミスセンスバリアントを含む、請求項1に記載の方法。
【請求項６】
　エンリッチメント分析に基づいて、前記良性バリアントに特定のヒト以外の霊長類の種
のミスセンスバリアントを含めるために、前記特定のヒト以外の霊長類の種を受け入れる
ステップをさらに含み、前記エンリッチメント分析が、前記特定のヒト以外の霊長類の種
に対して、前記特定のヒト以外の霊長類の種の同義バリアントの第1のエンリッチメント
スコアを前記特定のヒト以外の霊長類の種のミスセンス同一バリアントの第2のエンリッ
チメントスコアと比較することを含み、
　ミスセンス同一バリアントが、ヒトと一致する基準コドン配列および代替コドン配列を
共有するミスセンスバリアントであり、
　前記第1のエンリッチメントスコアが、0.1%より高いマイナーアレル頻度(MAFと省略さ
れる)を伴う一般的な同義バリアントに対する0.1%より低いMAFを伴う稀な同義バリアント
の比を決定することによって作り出され、
　前記第2のエンリッチメントスコアが、0.1%より高いMAFを伴う一般的なミスセンス同一
バリアントに対する0.1%より低いMAFを伴う稀なミスセンス同一バリアントの比を決定す
ることによって作り出される、請求項1に記載の方法。
【請求項７】
　稀な同義バリアントがシングルトンバリアントを含む、請求項6に記載の方法。
【請求項８】
　前記第1のエンリッチメントスコアと前記第2のエンリッチメントスコアとの差が所定の
範囲内にあり、前記良性バリアントに前記特定のヒト以外の霊長類のミスセンスバリアン
トを含めるために、前記特定のヒト以外の霊長類の種を受け入れるステップをさらに含む
、請求項6に記載の方法。
【請求項９】
　前記差が前記所定の範囲にあることが、前記ミスセンス同一バリアントが前記同義バリ
アントと同じ程度の自然選択を受けており、したがって前記同義バリアントと同じくらい
良性であることを示す、請求項8に記載の方法。
【請求項１０】
　前記エンリッチメント分析を繰り返し適用して、前記良性バリアントに前記ヒト以外の
霊長類の種のミスセンスバリアントを含めるために複数のヒト以外の霊長類の種を受け入
れるステップをさらに含む、請求項6に記載の方法。
【請求項１１】
　前記ヒト以外の霊長類の種の各々に対する同義バリアントの第1のエンリッチメントス
コアとミスセンス同一バリアントの第2のエンリッチメントスコアを比較するために、相
同性のカイ二乗検定を使用するステップをさらに含む、請求項1に記載の方法。
【請求項１２】
　前記ヒト以外の霊長類ミスセンスバリアントのカウントが少なくとも100000である、請
求項1に記載の方法。
【請求項１３】
　前記ヒト以外の霊長類ミスセンスバリアントの前記カウントが385236である、請求項12
に記載の方法。
【請求項１４】
　前記一般的なヒトミスセンスバリアントのカウントが少なくとも50000である、請求項1
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に記載の方法。
【請求項１５】
　前記一般的なヒトミスセンスバリアントの前記カウントが83546である、請求項14に記
載の方法。
【請求項１６】
　バリアント病原性分類器を構築するためのコンピュータプログラム命令が焼かれた非一
時的コンピュータ可読記憶媒体であって、プロセッサで実行されると、
　基準タンパク質配列および代替タンパク質配列の良性訓練例のペアと病原性訓練例のペ
アとを入力として使用して、メモリに結合された多数のプロセッサ上で実行される、畳み
込みニューラルネットワークベースのバリアント病原性分類器を訓練するステップを含む
方法を実施し、前記代替タンパク質配列が良性バリアントおよび病原性バリアントから生
成され、
　前記良性バリアントが、一般的なヒトミスセンスバリアントと、ヒトと一致する基準コ
ドン配列を共有する代替的なヒト以外の霊長類コドン配列上で発生するヒト以外の霊長類
ミスセンスバリアントとを含む、非一時的コンピュータ可読記憶媒体。
【請求項１７】
　エンリッチメント分析に基づいて、前記良性バリアントに特定のヒト以外の霊長類の種
のミスセンスバリアントを含めるために、前記特定のヒト以外の霊長類の種を受け入れる
ことをさらに含む前記方法を実施し、前記エンリッチメント分析が、前記特定のヒト以外
の霊長類の種に対して、前記特定のヒト以外の霊長類の種の同義バリアントの第1のエン
リッチメントスコアを前記特定のヒト以外の霊長類の種のミスセンス同一バリアントの第
2のエンリッチメントスコアと比較することを含み、
　ミスセンス同一バリアントが、ヒトと一致する基準コドン配列および代替コドン配列を
共有するミスセンスバリアントであり、
　前記第1のエンリッチメントスコアが、0.1%より高いマイナーアレル頻度(MAFと省略さ
れる)を伴う一般的な同義バリアントに対する0.1%より低いMAFを伴う稀な同義バリアント
の比を決定することによって作り出され、
　前記第2のエンリッチメントスコアが、0.1%より高いMAFを伴う一般的なミスセンス同一
バリアントに対する0.1%より低いMAFを伴う稀なミスセンス同一バリアントの比を決定す
ることによって作り出される、請求項16に記載の非一時的コンピュータ可読記憶媒体。
【請求項１８】
　前記ヒト以外の霊長類の種の各々に対する同義バリアントの第1のエンリッチメントス
コアとミスセンス同一バリアントの第2のエンリッチメントスコアを比較するために、相
同性のカイ二乗検定を使用することをさらに含む前記方法を実施する、請求項16に記載の
非一時的コンピュータ可読記憶媒体。
【請求項１９】
　バリアント病原性分類器を構築するためのコンピュータ命令がロードされたメモリに結
合された1つまたは複数のプロセッサを含むシステムであって、前記プロセッサで実行さ
れると、前記命令が、
　基準タンパク質配列および代替タンパク質配列の良性訓練例のペアと病原性訓練例のペ
アとを入力として使用して、メモリに結合された多数のプロセッサ上で実行される、畳み
込みニューラルネットワークベースのバリアント病原性分類器を訓練することを含む活動
を実施し、前記代替タンパク質配列が良性バリアントおよび病原性バリアントから生成さ
れ、
　前記良性バリアントが、一般的なヒトミスセンスバリアントと、ヒトと一致する基準コ
ドン配列を共有する代替的なヒト以外の霊長類コドン配列上で発生するヒト以外の霊長類
ミスセンスバリアントとを含む、システム。
【請求項２０】
　エンリッチメント分析に基づいて、前記良性バリアントに特定のヒト以外の霊長類の種
のミスセンスバリアントを含めるために、前記特定のヒト以外の霊長類の種を受け入れる
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活動をさらに実施し、前記エンリッチメント分析が、前記特定のヒト以外の霊長類の種に
対して、前記特定のヒト以外の霊長類の種の同義バリアントの第1のエンリッチメントス
コアを前記特定のヒト以外の霊長類の種のミスセンス同一バリアントの第2のエンリッチ
メントスコアと比較することを含み、
　ミスセンス同一バリアントが、ヒトと一致する基準コドン配列および代替コドン配列を
共有するミスセンスバリアントであり、
　前記第1のエンリッチメントスコアが、0.1%より高いマイナーアレル頻度(MAFと省略さ
れる)を伴う一般的な同義バリアントに対する0.1%より低いMAFを伴う稀な同義バリアント
の比を決定することによって作り出され、
　前記第2のエンリッチメントスコアが、0.1%より高いMAFを伴う一般的なミスセンス同一
バリアントに対する0.1%より低いMAFを伴う稀なミスセンス同一バリアントの比を決定す
ることによって作り出される、請求項19に記載のシステム。
【請求項２１】
　バリアント分類のために畳み込みニューラルネットワークベースの分類器を構築するコ
ンピュータで実施される方法であって、
　メモリに結合される多数のプロセッサ上で実行される畳み込みニューラルネットワーク
ベースの分類器を、前記畳み込みニューラルネットワークベースの分類器の出力を対応す
るグラウンドトゥルースラベルと漸進的に照合する逆伝播ベースの勾配更新技法を使用し
て、訓練データについて訓練するステップを含み、
　前記畳み込みニューラルネットワークベースの分類器が残差ブロックのグループを備え
、
　残差ブロックの各グループが、前記残差ブロックの中の畳み込みフィルタの数、前記残
差ブロックの畳み込みウィンドウサイズ、および前記残差ブロックの膨張畳み込み率によ
ってパラメータ化され、
　前記畳み込みウィンドウサイズが残差ブロックの前記グループ間で変動し、
　前記膨張畳み込み率が残差ブロックの前記グループ間で変動し、
　前記訓練データが、良性バリアントおよび病原性バリアントから生成され良性訓練例お
よび病原性訓練例として使用される、翻訳された配列のペアを含み、
　前記良性バリアントが、一般的なヒトミスセンスバリアントと、ヒトと一致する基準塩
基トリプレット配列を共有する代替的なヒト以外の霊長類塩基トリプレット配列上で発生
するヒト以外の霊長類ミスセンスバリアントとを含む、方法。
【請求項２２】
　バリアント分類のために畳み込みニューラルネットワークベースの分類器を構築するた
めのコンピュータプログラム命令が焼かれた非一時的コンピュータ可読記憶媒体であって
、プロセッサで実行されると、前記命令が、
　メモリに結合される多数のプロセッサ上で実行される畳み込みニューラルネットワーク
ベースの分類器を、前記畳み込みニューラルネットワークベースの分類器の出力を対応す
るグラウンドトゥルースラベルと漸進的に照合する逆伝播ベースの勾配更新技法を使用し
て、訓練データについて訓練するステップを含む方法を実施し、
　前記畳み込みニューラルネットワークベースの分類器が残差ブロックのグループを備え
、
　残差ブロックの各グループが、前記残差ブロックの中の畳み込みフィルタの数、前記残
差ブロックの畳み込みウィンドウサイズ、および前記残差ブロックの膨張畳み込み率によ
ってパラメータ化され、
　前記畳み込みウィンドウサイズが残差ブロックの前記グループ間で変動し、
　前記膨張畳み込み率が残差ブロックの前記グループ間で変動し、
　前記訓練データが、良性バリアントおよび病原性バリアントから生成され良性訓練例お
よび病原性訓練例として使用される、翻訳された配列のペアを含み、
　前記良性バリアントが、一般的なヒトミスセンスバリアントと、ヒトと一致する基準塩
基トリプレット配列を共有する代替的なヒト以外の霊長類塩基トリプレット配列上で発生
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するヒト以外の霊長類ミスセンスバリアントとを含む、非一時的コンピュータ可読記憶媒
体。
【請求項２３】
　バリアント分類のために畳み込みニューラルネットワークベースの分類器を構築するた
めのコンピュータ命令がロードされたメモリに結合される1つまたは複数のプロセッサを
含むシステムであって、前記プロセッサで実行されると、前記命令が、
　メモリに結合される多数のプロセッサ上で実行される畳み込みニューラルネットワーク
ベースの分類器を、前記畳み込みニューラルネットワークベースの分類器の出力を対応す
るグラウンドトゥルースラベルと漸進的に照合する逆伝播ベースの勾配更新技法を使用し
て、訓練データについて訓練することを含む活動を実施し、
　前記畳み込みニューラルネットワークベースの分類器が残差ブロックのグループを備え
、
　残差ブロックの各グループが、前記残差ブロックの中の畳み込みフィルタの数、前記残
差ブロックの畳み込みウィンドウサイズ、および前記残差ブロックの膨張畳み込み率によ
ってパラメータ化され、
　前記畳み込みウィンドウサイズが残差ブロックの前記グループ間で変動し、
　前記膨張畳み込み率が残差ブロックの前記グループ間で変動し、
　前記訓練データが、良性バリアントおよび病原性バリアントから生成され良性訓練例お
よび病原性訓練例として使用される、翻訳された配列のペアを含み、
　前記良性バリアントが、一般的なヒトミスセンスバリアントと、ヒトと一致する基準塩
基トリプレット配列を共有する代替的なヒト以外の霊長類塩基トリプレット配列上で発生
するヒト以外の霊長類ミスセンスバリアントとを含む、システム。
【発明の詳細な説明】
【技術分野】
【０００１】
付録
　付録には、発明者らが著述した論文に列挙される潜在的な関連する参考文献の目録が含
まれる。その論文の主題は、本出願がその優先権を主張する/その利益を主張する米国仮
出願において扱われる。これらの参考文献は、要求に応じて訴訟代理人に対して利用可能
にされることが可能であり、またはGlobal Dossierを介して入手可能であることがある。
その論文は最初の列挙される参考文献である。
【０００２】
優先出願
　本出願は、2017年10月16日に出願された、Hong Gao、Kai-How Farh、Laksshman Sundar
am、およびJeremy Francis McRaeによる「Training a Deep Pathogenicity Classifier U
sing Large-Scale Benign Training Data」という表題の米国仮特許出願第62/573,144号(
代理人整理番号第ILLM 1000-1/IP-1611-PRV)、2017年10月16日に出願された、Kai-How Fa
rh、Laksshman Sundaram、Samskruthi Reddy Padigepati、およびJeremy Francis McRae
による「Pathogenicity Classifier Based On Deep Convolutional Neural Networks (CN
NS)」という表題の米国仮特許出願第62/573,149号(代理人整理番号第ILLM 1000-2/IP-161
2-PRV)、2017年10月16日に出願された、Hong Gao、Kai-How Farh、Laksshman Sundaram、
およびJeremy Francis McRaeによる「Deep Semi-Supervised Learning that Generates L
arge-Scale Pathogenic Training Data」という表題の米国仮特許出願第62/573,153号(代
理人整理番号第ILLM 1000-3 /IP-1613-PRV)、および、2017年11月7日に出願された、Hong
 Gao、Kai-How Farh、およびLaksshman Sundaramによる「Pathogenicity Classification
 of Genomic Data Using Deep Convolutional Neural Networks (CNNs)」という表題の米
国仮特許出願第62/582,898号(代理人整理番号第ILLM 1000-4/IP-1618-PRV)の優先権また
は利益を主張する。これらの仮出願は、すべての目的のために本明細書において参照によ
り引用される。
【０００３】
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引用
　以下は、本明細書に完全に記載されるかのようにすべての目的のために参照により引用
される。
【０００４】
　後にPCT出願公開第WO(未定)号として公開される、2018年10月15日に同時に出願された
、Laksshman Sundaram、Kai-How Farh、Hong Gao、Samskruthi Reddy Padigepati、およ
びJeremy Francis McRaeによる、「DEEP CONVOLUTIONAL NEURAL NETWORKS FOR VARIANT C
LASSIFICATION」という表題のPCT特許出願第PCT/US2018/(未定)号(代理人整理番号ILLM 1
000-9/IP-1612-PCT)。
【０００５】
　後にPCT出願第WO(未定)号として公開される、2018年10月15日に同時に出願された、Lak
sshman Sundaram、Kai-How Farh、Hong Gao、およびJeremy Francis McRaeによる、「SEM
I-SUPERVISED LEARNING FOR TRAINING AN ENSEMBLE OF DEEP CONVOLUTIONAL NEURAL NETW
ORKS」という表題の国際特許出願第PCT/US18/(未定)号(代理人整理番号第ILLM 1000-10/I
P-1613-PCT)。
【０００６】
　同時に出願された、Hong Gao、Kai-How Farh、Laksshman Sundaram、およびJeremy Fra
ncis McRaeによる、「DEEP LEARNING-BASED TECHNIQUES FOR TRAINING DEEP CONVOLUTION
AL NEURAL NETWORKS」という表題の米国非仮特許出願(代理人整理番号ILLM 1000-5/IP-16
11-US)。
【０００７】
　同時に出願された、Laksshman Sundaram、Kai-How Farh、Hong Gao、およびJeremy Fra
ncis McRaeによる、「DEEP CONVOLUTIONAL NEURAL NETWORKS FOR VARIANT CLASSIFICATIO
N」という表題の米国非仮特許出願(代理人整理番号ILLM 1000-6/IP-1612-US)。
【０００８】
　同時に出願された、Laksshman Sundaram、Kai-How Farh、Hong Gao、およびJeremy Fra
ncis McRaeによる、「SEMI-SUPERVISED LEARNING FOR TRAINING AN ENSEMBLE OF DEEP CO
NVOLUTIONAL NEURAL NETWORKS」という表題の米国非仮特許出願(代理人整理番号ILLM 100
0-7/IP-1613-US)。
【０００９】
　文書1 - A.V.D.Oord、S.Dieleman、H.Zen、K.Simonyan、O.Vinyals、A.Graves、N.Kalc
hbrenner、A.Senior、およびK.Kavukcuoglu、「WAVENET: A GENERATIVE MODEL FOR RAW A
UDIO」、arXiv:1609.03499、2016
【００１０】
　文書2 - S.O.Arik、M.Chrzanowski、A.Coates、G.Diamos、A.Gibiansky、Y.Kang、X.Li
、J.Miller、A.Ng、J.Raiman、S.Sengupta、およびM.Shoeybi、「DEEP VOICE: REAL-TIME
 NEURAL TEXT-TO-SPEECH」、arXiv:1702.07825、2017
【００１１】
　文書3 - F.YuおよびV.Koltun、「MULTI-SCALE CONTEXT AGGREGATION BY DILATED CONVO
LUTIONS」、arXiv:1511.07122、2016
【００１２】
　文書4 - K.He、X.Zhang、S.Ren、およびJ.Sun、「DEEP RESIDUAL LEARNING FOR IMAGE 
RECOGNITION」、arXiv:1512.03385、2015
【００１３】
　文書5 - R.K.Srivastava、K.Greff、およびJ.Schmidhuber、「HIGHWAY NETWORKS」、ar
Xiv:1505.00387、2015
【００１４】
　文書6 - G.Huang、Z.Liu、L.van der Maaten、およびK.Q.Weinberger、「DENSELY CONN
ECTED CONVOLUTIONAL NETWORKS」、arXiv:1608.06993、2017
【００１５】
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　文書7 - C.Szegedy、W.Liu、Y.Jia、P.Sermanet、S.Reed、D.Anguelov、D.Erhan、V.Va
nhoucke、およびA.Rabinovich、「GOING DEEPER WITH CONVOLUTIONS」、arXiv:1409.4842
、2014
【００１６】
　文書8 - S.Ioffe、およびC.Szegedy、「BATCH NORMALIZATION: ACCELERATING DEEP NET
WORK TRAINING BY REDUCING INTERNAL COVARIATE SHIFT」、arXiv:1502.03167、2015
【００１７】
　文書9 - J.M.Wolterink、T.Leiner、M.A.Viergever、およびI.Isgum、「DILATED CONVO
LUTIONAL NEURAL NETWORKS FOR CARDIOVASCULAR MR SEGMENTATION IN CONGENITAL HEART 
DISEASE」、arXiv:1704.03669、2017
【００１８】
　文書10 - L.C.Piqueras、「AUTOREGRESSIVE MODEL BASED ON A DEEP CONVOLUTIONAL NE
URAL NETWORK FOR AUDIO GENERATION」、Tampere University of Technology、2016
【００１９】
　文書11 - J.Wu、「Introduction to Convolutional Neural Networks」、Nanjing Univ
ersity、2017
【００２０】
　文書12 - I.J.Goodfellow、D.Warde-Farley、M.Mirza、A.Courville、およびY.Bengio
、「CONVOLUTIONAL NETWORKS」、Deep Learning、MIT Press、2016
【００２１】
　文書13 - J.Gu、Z.Wang、J.Kuen、L.Ma、A.Shahroudy、B.Shuai、T.Liu、X.Wang、およ
びG.Wang、「RECENT ADVANCES IN CONVOLUTIONAL NEURAL NETWORKS」、arXiv:1512.07108
、2017
【００２２】
　文書1は、入力シーケンスを受け入れて入力シーケンス中のエントリをスコアリングす
る出力シーケンスを生成するために、同じ畳み込みウィンドウサイズを有する畳み込みフ
ィルタ、バッチ正規化層、正規化線形ユニット(ReLUと省略される)層、次元変換層、指数
関数的に増大する膨張畳み込み率(atrous convolution rate)を伴う膨張畳み込み層、ス
キップ接続、およびソフトマックス分類層を伴う、残差ブロックのグループを使用する深
層畳み込みニューラルネットワークアーキテクチャを説明する。開示される技術は、文書
1において説明されるニューラルネットワークコンポーネントおよびパラメータを使用す
る。一実装形態では、開示される技術は、文書1において説明されるニューラルネットワ
ークコンポーネントのパラメータを修正する。たとえば、文書1とは異なり、開示される
技術における膨張畳み込み率は、より低い残差ブロックグループからより高い残差ブロッ
クグループへと非指数関数的に高まる。別の例では、文書1とは異なり、開示される技術
における畳み込みウィンドウサイズは、残差ブロックのグループ間で変動する。
【００２３】
　文書2は、文書1において説明される深層畳み込みニューラルネットワークアーキテクチ
ャの詳細を説明する。
【００２４】
　文書3は、開示される技術によって使用される膨張畳み込みを説明する。本明細書では
、膨張畳み込みは「拡張畳み込み(dilated convolution)」とも呼ばれる。膨張/拡張畳み
込みは、少数の訓練可能なパラメータで大きな受容野を可能にする。膨張/拡張畳み込み
は、膨張畳み込み率または拡張係数とも呼ばれるあるステップを用いて入力値をスキップ
することによって、カーネルがその長さより長いエリアにわたって適用されるような畳み
込みである。膨張/拡張畳み込みは、畳み込み演算が実行されるときに、より長い間隔の
隣り合う入力エントリ(たとえば、ヌクレオチド、アミノ酸)が考慮されるように、畳み込
みフィルタ/カーネルの要素間に離隔を加える。これにより、入力における長距離のコン
テクスト依存性の組み込みが可能になる。膨張畳み込みは、隣接するヌクレオチドが処理
されるにつれて、部分的な畳み込み計算結果を再使用のために保存する。
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【００２５】
　文書4は、開示される技術によって使用される残差ブロックおよび残差接続を説明する
。
【００２６】
　文書5は、開示される技術によって使用されるスキップ接続を説明する。本明細書では
、スキップ接続は「ハイウェイネットワーク」とも呼ばれる。
【００２７】
　文書6は、開示される技術によって使用される密接続(densely connected)畳み込みネッ
トワークアーキテクチャを説明する。
【００２８】
　文書7は、開示される技術によって使用される次元変換畳み込み層およびモジュールベ
ースの処理パイプラインを説明する。次元変換畳み込みの一例は1×1の畳み込みである。
【００２９】
　文書8は、開示される技術によって使用されるバッチ正規化層を説明する。
【００３０】
　文書9も、開示される技術によって使用される膨張/拡張畳み込みを説明する。
【００３１】
　文書10は、畳み込みニューラルネットワーク、深層畳み込みニューラルネットワーク、
および膨張/拡張畳み込みを伴う深層畳み込みニューラルネットワークを含む、開示され
る技術によって使用され得る深層ニューラルネットワークの様々なアーキテクチャを説明
する。
【００３２】
　文書11は、サブサンプリング層(たとえば、プーリング)および全結合層を伴う畳み込み
ニューラルネットワークを訓練するためのアルゴリズムを含む、開示される技術によって
使用され得る畳み込みニューラルネットワークの詳細を説明する。
【００３３】
　文書12は、開示される技術によって使用され得る様々な畳み込み演算の詳細を説明する
。
【００３４】
　文書13は、開示される技術によって使用され得る畳み込みニューラルネットワークの様
々なアーキテクチャを説明する。
【００３５】
本出願とともに電子的に提出されるテーブルの参照による引用
　ASCIIテキストフォーマットの以下のテーブルファイルが、本明細書とともに提出され
、参照によって引用される。ファイルの名称、作成日、およびサイズは次の通りである。
【００３６】
　SupplementaryTable1.txt　　　　　　　2018年10月2日　　13KB
【００３７】
　SupplementaryTable2.txt　　　　　　　2018年10月2日　　13KB
【００３８】
　SupplementaryTable3.txt　　　　　　　2018年10月2日　　11KB
【００３９】
　SupplementaryTable4.txt　　　　　　　2018年10月2日　　13KB
【００４０】
　SupplementaryTable6.txt　　　　　　　2018年10月2日　　12KB
【００４１】
　SupplementaryTable7.txt　　　　　　　2018年10月2日　　44KB
【００４２】
　SupplementaryTable13.txt　　　　　　　2018年10月2日　　119KB
【００４３】
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　SupplementaryTable18.txt　　　　　　　2018年10月2日　　35KB
【００４４】
　SupplementaryTable20.txt　　　　　　　2018年10月2日　　1027KB
【００４５】
　SupplementaryTable20Summary.txt　　　2018年10月2日　　9KB
【００４６】
　SupplementaryTable21.txt　　　　　　　2018年10月2日　　24KB
【００４７】
　SupplementaryTable21.txt　　　　　　　2018年10月2日　　24KB
【００４８】
　SupplementaryTable18.txt　　　　　　　2018年10月4日　　35KB
【００４９】
　DataFileS1.txt　　　　　　　　　　　　2018年10月4日　　138MB
【００５０】
　DataFileS2.txt　　　　　　　　　　　　2018年10月4日　　980MB
【００５１】
　DataFileS3.txt　　　　　　　　　　　　2018年10月4日　　1.01MB
【００５２】
　DataFileS4.txt　　　　　　　　　　　　2018年10月4日　　834KB
【００５３】
　Pathogenicity_prediction_model.txt　　　2018年10月4日　　8.24KB
【００５４】
　補足テーブル1:分析において使用される各種からのバリアントの詳細。このテーブルは
、これらのデータソースの各々のためのパイプラインにおける中間結果を含む。このテー
ブルはSupplementaryTable1.txtにおいて提供されることに留意されたい。
【００５５】
　補足テーブル2:一般的なヒトアレル頻度で他の種において存在するミスセンスバリアン
トの枯渇率。この枯渇率は、ヒトと他の種との間で同一状態(identical-by-state)であっ
たバリアントを使用して、稀なバリアント(<0.1%)と比較された一般的なバリアント(>0.1
%)におけるミスセンス:同義比に基づいて計算された。このテーブルはSupplementaryTabl
e2.txtにおいて提供されることに留意されたい。
【００５６】
　補足テーブル3:ヒトと他の哺乳類との間で50%を超える平均ヌクレオチド保存率を伴う
遺伝子だけに制約された、一般的なヒトアレル頻度で他の種において存在するミスセンス
バリアントの枯渇率。この枯渇率は、ヒトと他の種との間で同一状態であったバリアント
を使用して、稀なバリアント(<0.1%)と比較された一般的なバリアント(>0.1%)におけるミ
スセンス:同義比に基づいて計算された。このテーブルはSupplementaryTable3.txtにおい
て提供されることに留意されたい。
【００５７】
　補足テーブル4:一般的なヒトアレル頻度で関連する種のペアにおいて固定された置換と
して存在するミスセンスバリアントの枯渇率。この枯渇率は、ヒトと関連する種のペアと
の間で同一状態であったバリアントを使用して、稀なバリアント(<0.1%)と比較された一
般的なバリアント(>0.1%)におけるミスセンス:同義比に基づいて計算された。このテーブ
ルはSupplementaryTable4.txtにおいて提供されることに留意されたい。
【００５８】
　補足テーブル6:SCN2A遺伝子のドメイン固有のアノテーション。ウィルコクソンの順位
和のp値は、タンパク質全体と比較した特定のドメインにおけるPrimateAIスコアの相違を
示す。太字で強調されたドメインはタンパク質の約7%をカバーするが、ClinVar病原性ア
ノテーションの大半を有する。このことは、それらのドメインに対する平均PrimateAIス
コアとよく符合し、PrimateAIモデルによれば上位3つの病原性ドメインである。このテー
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ブルはSupplementaryTable6.txtにおいて提供されることに留意されたい。
【００５９】
　補足テーブル7:予想されるミスセンス:同義比に対するアレル頻度の影響を計算する際
に使用される生カウント。同義バリアントとミスセンスバリアントの予想されるカウント
は、変異率および遺伝子変換を考慮するためにトリヌクレオチドコンテクストを使用して
、イントロン領域におけるバリアントに基づいて計算された。このテーブルはSupplement
aryTables.xlsxにおいて提供されることに留意されたい。
【００６０】
　補足テーブル13:3状態の二次構造および3状態の溶媒接触性予測のための深層学習モデ
ルを訓練するために使用されるProtein DataBank(PDB)からのタンパク質名の一覧。ラベ
ル列は、モデル訓練の訓練/妥当性確認/検定段階においてタンパク質が使用されるかどう
かを示す。このテーブルはSupplementaryTable13.txtにおいて提供されることに留意され
たい。
【００６１】
　補足テーブル18:タンパク質切断変異(p<0.05)のみから計算される、DDD研究において疾
患との関連について名目上有意であった605個の遺伝子の一覧。このテーブルはSupplemen
taryTable18.txtにおいて提供されることに留意されたい。
【００６２】
　補足テーブル20:少なくとも1つの観察されるDNMを伴うすべての遺伝子に対する、遺伝
子ごとのde novo変異(DNM)のエンリッチメントの検定結果。すべてのDNMを含むときの、
およびPrimateAIスコアが0.803より小さいミスセンスDNMを除去した後の、P値が与えられ
る。FDRで訂正されたP値が同様に与えられる。DDDコホートだけからの、および完全なメ
タ分析コホートからの、観察されるタンパク質切断(PTV)DNMとミスセンスDNMのカウント
も含まれる。第1にすべてのミスセンスDNMを含むときの、および第2にPrimateAIスコアが
0.803より小さいすべてのミスセンスDNMを除去した後の、観察され予測されるミスセンス
DNMの同様のカウントも含まれる。このテーブルはSupplementaryTable20.txtおよびSuppl
ementaryTable20Summary.txtにおいて提供されることに留意されたい。
【００６３】
　補足テーブル21:FDR<0.1である遺伝子におけるde novo変異のエンリッチメントを検定
した結果。一度はすべてのミスセンスde novo変異についての、およびもう一度は損害を
引き起こすミスセンス変異だけについての、観察されるタンパク質切断(PTV)de novo変異
のカウントと、他のタンパク質変換de novo変異のカウントとが含まれる。低スコアのミ
スセンス箇所を除外した後のP値と比較した、すべてのミスセンスサイトを含むときのP値
が与えられる。このテーブルはSupplementaryTable21.txtにおいて提供されることに留意
されたい。
【００６４】
　DataFileS1:他の種において存在するすべてのバリアントの一覧。「ClinVar有意性」列
は、利用可能な矛盾しないClinVarアノテーションを含む。このテーブルはDataFileS1.tx
tにおいて提供されることに留意されたい。
【００６５】
　DataFileS2:関連する種のペアからのすべての固定された置換の一覧。このテーブルはD
ataFileS2.txtにおいて提供されることに留意されたい。
【００６６】
　DataFileS3:霊長類とIBSである保留された(withheld)良性検定バリアントの一覧。良性
検定バリアントは、1つ以上の霊長類の種とIBSである一般的ではないヒトバリアントであ
る。このテーブルはDataFileS3.txtにおいて提供されることに留意されたい。
【００６７】
　DataFileS4:保留された良性検定バリアントと一致する、霊長類とIBSであるラベリング
されていないバリアントの一覧。ラベリングされていないバリアントは、変異率、カバレ
ッジの偏り、および霊長類の種とのアラインメント可能性について、良性検定バリアント
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と一致する。このテーブルはDataFileS4.txtにおいて提供されることに留意されたい。
【００６８】
　Pathogenicity_prediction_model:一実装形態に従って開示される技術を可能にするPyt
honプログラミング言語のコード。このコードファイルはPathogenicity_prediction_mode
l.txtにおいて提供されることに留意されたい。
【００６９】
開示される技術の分野
　開示される技術は、人工知能タイプコンピュータならびにデジタルデータ処理システム
ならびに知性のエミュレーションのための対応するデータ処理方法および製品(すなわち
、知識ベースシステム、推論システム、知識取得システム)に関し、不確実性を伴う推論
のためのシステム(たとえば、ファジー論理システム)、適応システム、機械学習システム
、および人工ニューラルネットワークを含む。具体的には、開示される技術は、深層畳み
込みニューラルネットワークを訓練するために深層学習ベースの技法を使用することに関
する。
【背景技術】
【００７０】
　このセクションにおいて論じられる主題は、このセクションにおける言及の結果として
、単なる従来技術であると見なされるべきではない。同様に、このセクションにおいて言
及される問題、または背景として提供される主題と関連付けられる問題は、従来技術にお
いてこれまで認識されていたと見なされるべきではない。このセクションの主題は異なる
手法を表すにすぎず、それらの異なる手法自体も、特許請求される技術の実装形態に対応
し得る。
【００７１】
［機械学習］
　機械学習では、出力変数を予測するために入力変数が使用される。入力変数はしばしば
特徴量と呼ばれ、X=(X1,X2,...,Xk)と表記され、i∈1,...,kである各Xiが特徴量である。
出力変数はしばしば応答または依存変数と呼ばれ、変数Yiにより表記される。Yと対応す
るXとの関係は、次の一般的な形式で書くことができる。
Y=f(x)+∈
【００７２】
　上式において、fは特徴量(X1,X2,...,Xk)の関数であり、∈はランダムな誤差の項であ
る。この誤差の項は、Xとは無関係であり、平均値が0である。
【００７３】
　実際には、特徴量Xは、Yがなくても、またはXとYとの厳密な関係を知らなくても入手可
能である。誤差の項は平均値が0であるので、目標はfを推定することである。
【００７４】
【数１】

【００７５】
　上式において、
【００７６】

【数２】

【００７７】
は∈の推定値であり、これはしばしばブラックボックスと見なされ、
【００７８】
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【数３】

【００７９】
の入力と出力の関係のみが知られていることを意味するが、なぜこれで機能するのかとい
う疑問は答えられていないままである。
【００８０】
　関数
【００８１】

【数４】

【００８２】
は学習を使用して発見される。教師あり学習および教師なし学習は、このタスクのための
機械学習において使用される2つの方式である。教師あり学習では、ラベリングされたデ
ータが訓練のために使用される。入力および対応する出力(=ラベル)を示すことによって
、関数
【００８３】
【数５】

【００８４】
は、出力を近似するように最適化される。教師なし学習では、目標はラベリングされてい
ないデータから隠された構造を見つけることである。このアルゴリズムは、入力データに
ついての正確さの尺度を持たず、これにより教師あり学習と区別される。
【００８５】
［ニューラルネットワーク］
　図1Aは、複数の層を伴う全結合ニューラルネットワークの一実装形態を示す。ニューラ
ルネットワークは、互いとの間でメッセージを交換する相互接続された人工ニューロン(
たとえば、a1、a2、a3)のシステムである。示されるニューラルネットワークは3つの入力
を有し、2つのニューロンが隠れ層にあり、2つのニューロンが出力層にある。隠れ層は活
性化関数f(・)を有し、出力層は活性化関数g(・)を有する。これらの接続は、適切に訓練
されたネットワークが認識すべき画像を与えられると正しく応答するように、訓練プロセ
スの間に調整された数値的な重み(たとえば、w11、w21、w12、w31、w22、w32、v11、v22)
を有する。入力層は生の入力を処理し、隠れ層は入力層と隠れ層との間の接続の重みに基
づいて入力層から出力を処理する。出力層は、隠れ層から出力を取り込み、隠れ層と出力
層との間の接続の重みに基づいてそれを処理する。ネットワークは、特徴検出ニューロン
の複数の層を含む。各層は、前の層からの入力の異なる組合せに対応する多数のニューロ
ンを有する。これらの層は、第1の層が入力画像データにおける基本的なパターンのセッ
トを検出し、第2の層がパターンのパターンを検出し、第3の層がそれらのパターンのパタ
ーンを検出するように、構築される。
【００８６】
　遺伝学における深層学習の応用の概観は、以下の出版物において見出され得る。
　・　T.Ching他、Opportunities And Obstacles For Deep Learning In Biology And Me
dicine、www.biorxiv.org:142760、2017
　・　Angermueller C、Parnamaa T、Parts L、Stegle O、Deep Learning For Computati
onal Biology. Mol Syst Biol. 2016;12:878
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　・　Park Y、Kellis M、2015 Deep Learning For Regulatory Genomics. Nat. Biotech
nol. 33、825-826、(doi:10.1038/nbt.3313)
　・　Min S、Lee B、およびYoon S、Deep Learning In Bioinformatics. Brief. Bioinf
orm. bbw068 (2016)
　・　Leung MK、Delong A、Alipanahi B他、Machine Learning In Genomic Medicine: A
 Review of Computational Problems and Data Sets、2016
　・　Libbrecht MW、Noble WS、Machine Learning Applications In Genetics and Geno
mics. Nature Reviews Genetics 2015;16(6):321-32
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【発明の概要】
【課題を解決するための手段】
【００８９】
　図面において、同様の参照文字は一般に様々な図全体で同様の部分を指す。また、図面
は必ずしも縮尺通りではなく、代わりに、開示される技術の原理を示す際に一般に強調が
行われる。以下の説明では、開示される技術の様々な実装形態が、以下の図面を参照して
説明される。
【図面の簡単な説明】
【００９０】
【図１Ａ】複数の層を伴うフィードフォワードニューラルネットワークの一実装形態を示
す図である。
【図１Ｂ】畳み込みニューラルネットワークの動作の一実装形態の図である。
【図１Ｃ】開示される技術の一実装形態による畳み込みニューラルネットワークを訓練す
るブロック図である。
【図１Ｄ】開示される技術の一実装形態によるサブサンプリング層(平均/最大プーリング
)の一実装形態の図である。
【図１Ｅ】開示される技術の一実装形態によるReLU非線形層の一実装形態を示す図である
。
【図１Ｆ】畳み込み層の2層の畳み込みの一実装形態を示す図である。
【図１Ｇ】特徴マップの追加を介して以前の情報ダウンストリームを再注入する残差接続
を示す図である。
【図１Ｈ】残差ブロックおよびスキップ接続の一実装形態を示す図である。
【図１Ｉ】バッチ正規化フォワードパスを示す図である。
【図１Ｊ】検定時のバッチ正規化変換を示す図である。
【図１Ｋ】バッチ正規化バックワードパスを示す図である。
【図１Ｌ】畳み込み層または密結合層の後と前のバッチ正規化層の使用を示す図である。
【図１Ｍ】1D畳み込みの一実装形態を示す図である。
【図１Ｎ】グローバル平均プーリング(GAP)がどのように機能するかを示す図である。
【図１Ｏ】拡張畳み込みを示す図である。
【図１Ｐ】積層(stacked)拡張畳み込みの一実装形態を示す図である。
【図１Ｑ】開示される技術を動作させることができる例示的なコンピューティング環境を
示す図である。
【図２】本明細書で「PrimateAI」と呼ばれる、病原性予測のための深層残差ネットワー
クの例示的なアーキテクチャを示す図である。
【図３】病原性分類のための深層学習ネットワークアーキテクチャであるPrimateAIの概
略図である。
【図４Ａ】病原性予測深層学習モデルPrimateAIの例示的なモデルアーキテクチャの詳細
を示す補足テーブル16である。
【図４Ｂ】病原性予測深層学習モデルPrimateAIの例示的なモデルアーキテクチャの詳細
を示す補足テーブル16である。
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【図４Ｃ】病原性予測深層学習モデルPrimateAIの例示的なモデルアーキテクチャの詳細
を示す補足テーブル16である。
【図５】タンパク質の二次構造および溶媒接触性を予測するために使用される深層学習ネ
ットワークアーキテクチャを示す図である。
【図６】タンパク質の二次構造および溶媒接触性を予測するために使用される深層学習ネ
ットワークアーキテクチャを示す図である。
【図７Ａ】3状態二次構造予測深層学習(DL)モデルの例示的なモデルアーキテクチャの詳
細を示す補足テーブル11である。
【図７Ｂ】3状態二次構造予測深層学習(DL)モデルの例示的なモデルアーキテクチャの詳
細を示す補足テーブル11である。
【図８Ａ】3状態溶媒接触性予測深層学習モデルの例示的なモデルアーキテクチャの詳細
を示す補足テーブル12である。
【図８Ｂ】3状態溶媒接触性予測深層学習モデルの例示的なモデルアーキテクチャの詳細
を示す補足テーブル12である。
【図９】良性バリアントおよび病原性バリアントから基準タンパク質配列および代替タン
パク質配列を生成することの一実装形態を示す図である。
【図１０】基準タンパク質配列と代替タンパク質配列をアラインメントすることの一実装
形態を示す図である。
【図１１】位置特異的重み行列(PWMと省略される)または位置特異的スコアリング行列(PS
SMと省略される)と呼ばれる、位置特異的頻度行列(PFMと省略される)を生成することの一
実装形態を示す図である。
【図１２】二次構造および溶媒接触性サブネットワークの処理を示す図である。
【図１３】二次構造および溶媒接触性サブネットワークの処理を示す図である。
【図１４】二次構造および溶媒接触性サブネットワークの処理を示す図である。
【図１５】二次構造および溶媒接触性サブネットワークの処理を示す図である。
【図１６】バリアント病原性分類器の動作を示す図である。本明細書では、バリアントと
いう用語は、一塩基多型(SNPと省略される)も指し、一般に一塩基バリアント(SNVと省略
される)を指す。
【図１７】残差ブロックを示す図である。
【図１８】二次構造および溶媒接触性サブネットワークのニューラルネットワークアーキ
テクチャを示す図である。
【図１９】バリアント病原性分類器のニューラルネットワークアーキテクチャを示す図で
ある。
【図２０】重要な機能ドメインのためにアノテートされた、SCN2A遺伝子の中の各アミノ
酸の場所における予測される病原性スコアを示す図である。
【図２１Ｄ】訓練を保留された10000個の一般的な霊長類のバリアントの検定セットに対
する良性の結果を予測することにおける分類器の比較を示す図である。
【図２１Ｅ】Deciphering Developmental Disorders(DDD)の患者において発生するde nov
oミスセンスバリアントに対するPrimateAI予測スコアの分布を、影響を受けていない兄弟
と比較して、対応するウィルコクソンの順位和のP値とともに示す図である。
【図２１Ｆ】DDD症例群vs対照群におけるde novoミスセンスバリアントを分離する際の分
類器の比較を示す図である。ウィルコクソンの順位和検定のP値が各分類器に対して示さ
れている。
【図２２Ａ】de novoタンパク質切断変異(P<0.05)に対して有意であった605個の関連する
遺伝子内での、DDDコホートからの影響を受けている個人における予想を超えるde novoミ
スセンス変異のエンリッチメントを示す図である。
【図２２Ｂ】605個の関連する遺伝子内での、DDD患者vs影響を受けていない兄弟において
発生するde novoミスセンスバリアントに対するPrimateAI予測スコアの分布を、対応する
ウィルコクソンの順位和のP値とともに示す図である。
【図２２Ｃ】605個の遺伝子内での症例群vs対照群におけるde novoミスセンスバリアント
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を分離する際の様々な分類器の比較を示す図である。
【図２２Ｄ】各分類器に対して示される曲線下面積(AUC)とともに、受信者動作特性曲線
上で示される、様々な分類器の比較を示す図である。
【図２２Ｅ】各分類器に対する分類の正確さおよび曲線下面積(AUC)を示す図である。
【図２３Ａ】訓練のために使用されるデータの分類の正確さに対する影響を示す図である
。
【図２３Ｂ】訓練のために使用されるデータの分類の正確さに対する影響を示す図である
。
【図２３Ｃ】訓練のために使用されるデータの分類の正確さに対する影響を示す図である
。
【図２３Ｄ】訓練のために使用されるデータの分類の正確さに対する影響を示す図である
。
【図２４】一般的な霊長類バリアントの確認に対するシーケンシングカバレッジの影響を
訂正することを示す図である。
【図２５Ａ】開示されるニューラルネットワークによるタンパク質モチーフの認識を示す
図である。
【図２５Ｂ】開示されるニューラルネットワークによるタンパク質モチーフの認識を示す
図である。
【図２５Ｃ】開示されるニューラルネットワークによるタンパク質モチーフの認識を示す
図である。
【図２６】開示されるニューラルネットワークによるタンパク質モチーフの認識を示す図
である。バリアントに対する予測される深層学習スコアへの、バリアントの中および周り
の各場所を摂動させることの影響を示す線プロットを含む。
【図２７】重みの相関パターンがBLOSUM62スコア行列およびGranthamスコア行列に倣って
いることを示す図である。
【図２８Ａ】深層学習ネットワークのPrimateAIおよび他の分類器の性能評価を示す図で
ある。
【図２８Ｂ】深層学習ネットワークのPrimateAIおよび他の分類器の性能評価を示す図で
ある。
【図２８Ｃ】深層学習ネットワークのPrimateAIおよび他の分類器の性能評価を示す図で
ある。
【図２９Ａ】4つの分類器の予測スコアの分布を示す図である。
【図２９Ｂ】4つの分類器の予測スコアの分布を示す図である。
【図３０Ａ】605個の疾患関連遺伝子において病原性バリアントと良性バリアントとを分
離する際のPrimateAIネットワークおよび他の分類器の正確さを比較する図である。
【図３０Ｂ】605個の疾患関連遺伝子において病原性バリアントと良性バリアントとを分
離する際のPrimateAIネットワークおよび他の分類器の正確さを比較する図である。
【図３０Ｃ】605個の疾患関連遺伝子において病原性バリアントと良性バリアントとを分
離する際のPrimateAIネットワークおよび他の分類器の正確さを比較する図である。
【図３１Ａ】専門家により精選されたClinVarバリアントに対する分類器の性能と、経験
的なデータセットに対する性能との相関を示す図である。
【図３１Ｂ】専門家により精選されたClinVarバリアントに対する分類器の性能と、経験
的なデータセットに対する性能との相関を示す図である。
【図３２】Protein Databankからのアノテートされたサンプルに対する3状態二次構造予
測モデルおよび3状態溶媒接触性予測モデルの性能を示す補足テーブル14である。
【図３３】DSSPデータベースからのヒトタンパク質のアノテートされた二次構造ラベルを
使用した深層学習ネットワークの性能比較を示す補足テーブル15である。
【図３４】評価した20個の分類器の各々に対する、10000個の保留された霊長類バリアン
トに対する正確さの値と、DDD症例群vs対照群におけるde novoバリアントに対するp値と
を示す、補足テーブル17である。
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【図３５】605個の疾患関連遺伝子に制約された、DDD症例群データセットvs対照群データ
セットにおけるde novoバリアントに対する異なる分類器の性能の比較を示す補足テーブ
ル19である。
【図３６】開示される半教師あり学習器のコンピューティング環境を示す図である。
【図３７】開示される半教師あり学習の様々なサイクルを示す図である。
【図３８】開示される半教師あり学習の様々なサイクルを示す図である。
【図３９】開示される半教師あり学習の様々なサイクルを示す図である。
【図４０】開示される半教師あり学習の様々なサイクルを示す図である。
【図４１】開示される半教師あり学習の様々なサイクルを示す図である。
【図４２】反復的な均衡のとれたサンプリングプロセスを示す図である。
【図４３】良性データセットを生成するために使用されるコンピューティング環境の一実
装形態を示す図である。
【図４４】良性ヒトミスセンスSNPを生成することの一実装形態を示す図である。
【図４５】ヒトオーソロガスミスセンスSNPの一実装形態を示す図である。ヒトと一致す
る基準コドンおよび代替コドンを有する、ヒト以外の種におけるミスセンスSNP。
【図４６】ヒトと一致する基準コドンを伴うヒト以外の霊長類の種(たとえば、チンパン
ジー)のSNPを良性として分類することの一実装形態を示す図である。
【図４７】エンリッチメントスコアを計算してそれらを比較することの一実装形態を示す
図である。
【図４８】良性SNPデータセットの一実装形態を示す図である。
【図４９Ａ】ヒトアレル頻度スペクトラムにわたるミスセンス:同義比を示す図である。
【図４９Ｂ】ヒトアレル頻度スペクトラムにわたるミスセンス:同義比を示す図である。
【図４９Ｃ】ヒトアレル頻度スペクトラムにわたるミスセンス:同義比を示す図である。
【図４９Ｄ】ヒトアレル頻度スペクトラムにわたるミスセンス:同義比を示す図である。
【図４９Ｅ】ヒトアレル頻度スペクトラムにわたるミスセンス:同義比を示す図である。
【図５０Ａ】他の種と同一状態であるミスセンスバリアントに対する純化選択を示す図で
ある。
【図５０Ｂ】他の種と同一状態であるミスセンスバリアントに対する純化選択を示す図で
ある。
【図５０Ｃ】他の種と同一状態であるミスセンスバリアントに対する純化選択を示す図で
ある。
【図５０Ｄ】他の種と同一状態であるミスセンスバリアントに対する純化選択を示す図で
ある。
【図５１】純化選択がない場合のヒトアレル頻度スペクトラムにわたる予想されるミスセ
ンス:同義比を示す図である。
【図５２Ａ】CpGバリアントおよび非CpGバリアントに対するミスセンス:同義比を示す図
である。
【図５２Ｂ】CpGバリアントおよび非CpGバリアントに対するミスセンス:同義比を示す図
である。
【図５２Ｃ】CpGバリアントおよび非CpGバリアントに対するミスセンス:同義比を示す図
である。
【図５２Ｄ】CpGバリアントおよび非CpGバリアントに対するミスセンス:同義比を示す図
である。
【図５３】6種の霊長類と同一状態であるヒトバリアントのミスセンス:同義比を示す図で
ある。
【図５４】6種の霊長類と同一状態であるヒトバリアントのミスセンス:同義比を示す図で
ある。
【図５５】6種の霊長類と同一状態であるヒトバリアントのミスセンス:同義比を示す図で
ある。
【図５６】調査されたヒトコホートのサイズを増やすことによって発見された新しい一般
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的なミスセンスバリアントの飽和を示すシミュレーションである。
【図５７】ゲノムにおける異なる保存プロファイルにわたるPrimateAIの正確さを示す図
である。
【図５８】一般的なヒトバリアントおよびヒト以外の霊長類において存在するバリアント
からのラベリングされた良性訓練データセットへの寄与を示す補足テーブル5である。
【図５９】予想されるミスセンス:同義比に対するアレル頻度の影響を示す補足テーブル8
である。
【図６０】ClinVar分析を示す補足テーブル9である。
【図６１】一実装形態による、ClinVarにおいて見出される他の種からのミスセンスバリ
アントの数を示す補足テーブル10である。
【図６２】知的障害における14個の追加の遺伝子候補の発見の一実装形態を示すテーブル
1である。
【図６３】ClinVarにおける病原性バリアントと良性バリアントとの間のGranthamスコア
の平均の差の一実装形態を示すテーブル2である。
【図６４】遺伝子ごとのエンリッチメント分析の一実装形態を示す図である。
【図６５】ゲノムワイドエンリッチメント分析の一実装形態を示す図である。
【図６６】開示される技術を実装するために使用され得るコンピュータシステムの簡略化
されたブロック図である。
【発明を実施するための形態】
【００９１】
　以下の議論は、あらゆる当業者が開示される技術を作成して使用することを可能にする
ために提示され、特定の適用例およびその要件の文脈で与えられる。開示される実装形態
への様々な修正が当業者に容易に明らかとなり、本明細書で定義される一般的な原理は、
開示される技術の趣旨および範囲から逸脱することなく他の実装形態および適用例に適用
され得る。したがって、開示される技術は、示される実装形態に限定されることは意図さ
れず、本明細書で開示される原理および特徴と矛盾しない最も広い範囲を認められるべき
である。
【００９２】
［導入］
［畳み込みニューラルネットワーク］
　畳み込みニューラルネットワークは特別なタイプのニューラルネットワークである。密
結合層と畳み込み層との間の基本的な違いは、密層が入力特徴空間におけるグローバルパ
ターンを学習するのに対して、畳み込み層がローカルパターンを学習するということであ
る。画像の場合、入力の小さい2Dウィンドウにおいてパターンが見出される。この重要な
特徴は、(1)畳み込みニューラルネットワークの学習するパターンが移動不変である、お
よび(2)畳み込みニューラルネットワークがパターンの空間的階層を学習できるという、2
つの興味深い特性を畳み込みニューラルネットワークに与える。
【００９３】
　第1の特性に関して、写真の右下の角のあるパターンを学習した後、畳み込み層はそれ
をどこでも、たとえば左上の角において認識することができる。密結合ネットワークは、
パターンが新しい位置において現れた場合、改めてパターンを学習しなければならない。
これにより、畳み込みニューラルネットワークはデータ効率が高くなり、それは、一般化
能力を有する表現を学習するのにより少数の訓練サンプルしか必要としないからである。
【００９４】
　第2の特性に関して、第1の畳み込み層は端などの小さいローカルパターンを学習するこ
とができ、第2の畳み込み層は第1の層の特徴から作られるより大きいパターンを学習し、
以下同様である。これにより、畳み込みニューラルネットワークは、ますます複雑になり
抽象的になる視覚的な概念を効率的に学習することが可能になる。
【００９５】
　畳み込みニューラルネットワークは、多くの異なる層において配置される人工ニューロ
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ンの層を、それらの層を互いに依存関係にする活性化関数を用いて相互接続することによ
って、高度に非線形なマッピングを学習する。畳み込みニューラルネットワークは、1つ
または複数のサブサンプリング層および非線形層とともに散在する、1つまたは複数の畳
み込み層を含み、サブサンプリング層および非線形層の後には、通常は1つまたは複数の
全結合層がある。畳み込みニューラルネットワークの各要素は、以前の層における特徴の
セットから入力を受け取る。畳み込みニューラルネットワークは同時に学習し、それは同
じ特徴マップの中のニューロンが同一の重みを有するからである。これらの局所の共有さ
れる重みがネットワークの複雑さを下げるので、多次元入力データがネットワークに入る
とき、畳み込みニューラルネットワークは、特徴の抽出および回帰または分類のプロセス
において、データ再構築の複雑さを避ける。
【００９６】
　畳み込みは、2つの空間軸(高さおよび幅)ならびに深さ軸(チャネル軸とも呼ばれる)を
伴う、特徴マップと呼ばれる3Dテンソルにわたって行われる。RGB画像では、深さ軸の次
元は3であり、それは画像が3つの色チャネル、すなわち赤、緑、および青を有するからで
ある。白黒の写真では、深さは1(グレーのレベル)である。畳み込み演算は、入力特徴マ
ップからパッチを抽出し、これらのパッチのすべてに同じ変換を適用し、出力特徴マップ
を生成する。この出力特徴マップはそれでも3Dテンソルであり、幅および高さを有する。
その深さは任意であってよく、それは出力深さが層のパラメータであり、その深さ軸にお
ける異なるチャネルはRGB入力におけるような特定の色をもはや表さず、むしろフィルタ
を表すからである。フィルタは入力データの特定の態様を符号化し、高いレベルで、単一
のフィルタが、たとえば「入力における顔の存在」という概念を符号化することができる
。
【００９７】
　たとえば、第1の畳み込み層は、サイズ(28,28,1)の特徴マップを取り込み、サイズ(26,
26,32)の特徴マップを出力する。すなわち、第1の畳み込み層は、その入力にわたる32個
のフィルタを計算する。これらの32個の出力チャネルの各々が26×26の値の格子を含み、
この格子は入力にわたるフィルタの応答マップであり、入力の中の異なる位置におけるそ
のフィルタパターンの応答を示す。これが、特徴マップという用語が意味することである
。すなわち、深さ軸におけるそれぞれの次元が特徴(またはフィルタ)であり、2Dテンソル
出力[:,:,n]が入力にわたるこのフィルタの応答の2D空間マップである。
【００９８】
　畳み込みは、(1)通常は1×1、3×3、または5×5である入力から抽出されたパッチのサ
イズ、および(2)出力特徴マップの深さという、2つの重要なパラメータによって定義され
、フィルタの数は畳み込みによって計算される。しばしば、これらは32という深さで開始
し、64という深さまで続き、128または256という深さで終わる。
【００９９】
　畳み込みは、3D入力特徴マップにわたってサイズ3×3または5×5のこれらのウィンドウ
をスライドし、それぞれの位置において止まり、周囲の特徴の3Dパッチ(形状(window_hei
ght、window_width、input_depth))を抽出することによって機能する。各々のそのような
3Dパッチは次いで、形状の1Dベクトル(output_depth)への(畳み込みカーネルと呼ばれる
、同じ学習された重み行列を伴うテンソル積を介して)変換される。これらのベクトルの
すべてが次いで、形状の3D出力マップ(高さ、幅、output_depth)へと空間的に再び組み立
てられる。出力特徴マップの中のそれぞれの空間的位置が入力特徴マップの中の同じ位置
に対応する(たとえば、出力の右下の角は入力の右下の角についての情報を含む)。たとえ
ば、3×3のウィンドウでは、ベクトル出力[i,j,:]は3Dパッチ入力[i-1:i+1,j-1:J+1,:]か
ら来る。完全なプロセスは図1Bにおいて詳述される。
【０１００】
　畳み込みニューラルネットワークは、訓練の間に多数の勾配更新反復を介して学習され
る入力値と畳み込みフィルタ(重みの行列)との間で畳み込み演算を実行する、畳み込み層
を備える。(m,n)をフィルタサイズとし、Wは重みの行列とすると、畳み込み層は、ドット
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ンスであり、bはバイアスである。畳み込みフィルタが入力にわたってスライドするステ
ップサイズはストライドと呼ばれ、フィルタ面積(m×n)は受容野と呼ばれる。同じ畳み込
みフィルタが入力の異なる場所にわたって適用され、このことは学習される重みの数を減
らす。このことは、すなわち、重要なパターンが入力において存在する場合、位置不変学
習も可能にし、畳み込みフィルタは、重要なパターンがシーケンスの中でどこにあるかに
かかわらず、重要なパターンを学習する。
【０１０１】
［畳み込みニューラルネットワークの訓練］
　図1Cは、開示される技術の一実装形態による畳み込みニューラルネットワークを訓練す
ることのブロック図を示す。畳み込みニューラルネットワークは、入力データが特定の出
力推定につながるように、調整または訓練される。畳み込みニューラルネットワークは、
出力推定とグラウンドトゥルースの比較に基づいて、出力推定がグラウンドトゥルースに
漸近的に一致または接近するまで、逆伝播を使用して調整される。
【０１０２】
　畳み込みニューラルネットワークは、グラウンドトゥルースと実際の出力との間の差に
基づいてニューロン間の重みを調整することよって訓練される。これは次のように数学的
に表される。
【０１０３】
【数６】

【０１０４】
ただし、δ=(グラウンドトゥルース)-(実際の出力)
【０１０５】
　一実装形態では、訓練規則は次のように定義される。
wnm←wnm+α(tm-φm)αn

【０１０６】
　上式において、矢印は値の更新を示し、tmはニューロンmの目標値であり、φmはニュー
ロンmの計算された現在の出力であり、αnは入力nであり、αは学習率である。
【０１０７】
　訓練における中間ステップは、畳み込み層を使用して入力データから特徴ベクトルを生
成することを含む。出力において開始して、各層における重みに関する勾配が計算される
。これは、バックワードパス、または後ろに行くと呼ばれる。ネットワークにおける重み
は、負の勾配および以前の重みの組合せを使用して更新される。
【０１０８】
　一実装形態では、畳み込みニューラルネットワークは、勾配降下法によって誤差の逆伝
播を実行する確率的勾配更新アルゴリズム(ADAMなど)を使用する。シグモイド関数ベース
の逆伝播アルゴリズムの一例は以下のように記述される。
【０１０９】
【数７】

【０１１０】
　上のシグモイド関数において、hはニューロンによって計算される加重和である。シグ
モイド関数は以下の導関数を有する。
【０１１１】
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【数８】

【０１１２】
　このアルゴリズムは、ネットワークの中のすべてのニューロンの活性化を計算し、フォ
ワードパスに対する出力を生み出すことを含む。隠れ層の中のニューロンmの活性化は次
のように記述される。
【０１１３】

【数９】

【０１１４】
　これは、次のように記述される活性化を得るためにすべての隠れ層に対して行われる。
【０１１５】
【数１０】

【０１１６】
　そして、誤差および訂正重みが層ごとに計算される。出力における誤差は次のように計
算される。
δok=(tk-φk)φk(1-φk)
【０１１７】
　隠れ層における誤差は次のように計算される。
【０１１８】
【数１１】

【０１１９】
　出力層の重みは次のように更新される。
vmk←vmk+αδokφm

【０１２０】
　隠れ層の重みは学習率αを使用して次のように更新される。
vnm←wnm+αδhman
【０１２１】
　一実装形態では、畳み込みニューラルネットワークは、すべての層にわたって誤差を計
算するために勾配降下最適化を使用する。そのような最適化において、入力特徴ベクトル
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【０１２２】
【数１２】

【０１２３】
に対して、目標がyであるときに
【０１２４】

【数１３】

【０１２５】
を予測することのコストのためのlとして損失関数が定義され、すなわち
【０１２６】

【数１４】

【０１２７】
である。予測される出力
【０１２８】

【数１５】

【０１２９】
は、関数fを使用して入力特徴ベクトルxから変換される。関数fは、畳み込みニューラル
ネットワークの重みによってパラメータ化され、すなわち
【０１３０】

【数１６】

【０１３１】
である。損失関数は
【０１３２】

【数１７】

【０１３３】
、またはQ(z,w)=l(fw(x),y)と記述され、ここでzは入力データと出力データのペア(x,y)
である。勾配降下最適化は、以下に従って重みを更新することによって実行される。
【０１３４】
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【数１８】

【０１３５】
wt+1=wt+vt+1
【０１３６】
　上式において、αは学習率である。また、損失はn個のデータペアのセットにわたる平
均として計算される。この計算は、線形収束の際に学習率αが十分小さくなると終了する
。他の実装形態では、計算効率をもたらすために、ネステロフの加速勾配法および適応勾
配法に供給される選択されたデータペアだけを使用して、勾配が計算される。
【０１３７】
　一実装形態では、畳み込みニューラルネットワークは、コスト関数を計算するために確
率的勾配降下法(SGD)を使用する。SGDは、損失関数における重みに関する勾配を、以下で
記述されるように、1つのランダム化されたデータペアztだけから計算することによって
近似する。
vt+1=μv-α∇wQ(zt,wt)
wt+1=wt+vt+1
【０１３８】
　上式において、αは学習率であり、μはモメンタムであり、tは更新前の現在の重み状
態である。SGDの収束速度は、学習率αが十分に速く低減するときと、十分に遅く低減す
るときの両方において、約O(1/t)である。他の実装形態では、畳み込みニューラルネット
ワークは、ユークリッド損失およびソフトマックス損失などの異なる損失関数を使用する
。さらなる実装形態では、Adam確率的最適化器が畳み込みニューラルネットワークによっ
て使用される。
【０１３９】
［畳み込み層］
　畳み込みニューラルネットワークの畳み込み層は、特徴抽出器として機能する。畳み込
み層は、入力データを学習して階層的特徴へと分解することが可能な、適応特徴抽出器と
して活動する。一実装形態では、畳み込み層は、入力として2つの画像を取り込み、出力
として第3の画像を生成する。そのような実装形態では、畳み込みは2次元(2D)において2
つの画像に対して動作し、一方の画像が入力画像であり、「カーネル」と呼ばれる他方の
画像が入力画像に対してフィルタとして適用され、出力画像を生成する。したがって、長
さnの入力ベクトルfおよび長さmのカーネルgに対して、fとgの畳み込みf*gは次のように
定義される。
【０１４０】

【数１９】

【０１４１】
　畳み込み演算は、入力画像にわたってカーネルをスライドすることを含む。カーネルの
各場所に対して、カーネルと入力画像の重複する値が乗算され、結果が加算される。この
積の合計が、カーネルが中心とされる入力画像の中の点における出力画像の値である。多
数のカーネルから得られた異なる出力が特徴マップと呼ばれる。
【０１４２】
　畳み込み層が訓練されると、それらは新しい推論データに対する認識タスクを実行する
ために適用される。畳み込み層は訓練データから学習するので、明示的な特徴抽出を避け
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、訓練データから暗黙的に学習する。畳み込み層は畳み込みフィルタカーネル重みを使用
し、これは訓練プロセスの一部として決定され更新される。畳み込み層は入力の異なる特
徴を抽出し、これらはより高い層において組み合わされる。畳み込みニューラルネットワ
ークは、様々な数の畳み込み層を使用し、それらの各々が、カーネルサイズ、ストライド
、パディング、特徴マップの数、および重みなどの異なる畳み込みパラメータを伴う。
【０１４３】
［サブサンプリング層］
　図1Dは、開示される技術の一実装形態によるサブサンプリング層の一実装形態である。
サブサンプリング層は、抽出された特徴または特徴マップをノイズおよび歪みに対してロ
バストにするために、畳み込み層によって抽出される特徴の分解能を下げる。一実装形態
では、サブサンプリング層は、2つのタイプのプーリング動作、すなわち平均プーリング
および最大プーリングを利用する。プーリング動作は、入力を重複しない2次元空間へと
分割する。平均プーリングでは、領域の中の4つの値の平均が計算される。最大プーリン
グでは、4つの値の最大値が選択される。
【０１４４】
　一実装形態では、サブサンプリング層は、その出力を最大プーリングにおける入力のう
ちの1つだけにマッピングし、その出力を平均プーリングにおける入力の平均にマッピン
グすることによる、以前の層の中のニューロンのセットに対するプーリング動作を含む。
最大プーリングにおいて、プーリングニューロンの出力は、
φ0=max(φ1,φ2,...,φN)
により記述されるような、入力の中に存在する最大値である。
【０１４５】
　上式において、Nはニューロンセット内の要素の総数である。
【０１４６】
　平均プーリングにおいて、プーリングニューロンの出力は、
【０１４７】
【数２０】

【０１４８】
によって記述されるような、入力ニューロンセットとともに存在する入力値の平均値であ
る。
【０１４９】
　上式において、Nは入力ニューロンセット内の要素の総数である。
【０１５０】
　図1Dにおいて、入力は4×4のサイズである。2×2のサブサンプリングに対して、4×4の
画像は2×2のサイズの4つの重複しない行列へと分割される。平均プーリングでは、4つの
値の平均は全整数出力である。最大プーリングでは、2×2の行列の中の4つの値の最大値
は全整数出力である。
【０１５１】
［非線形層］
　図1Eは、開示される技術の一実装形態による、非線形層の一実装形態を示す。非線形層
は、各隠れ層上の可能性の高い特徴の明確な識別情報をシグナリングするために、異なる
非線形トリガ関数を使用する。非線形層は、正規化線形ユニット(ReLU)、双曲線正接、双
曲線正接の絶対値、シグモイドおよび連続トリガ(非線形)関数を含む、非線形トリガリン
グを実施するために様々な固有の関数を使用する。一実装形態では、ReLU活性化は、関数
y=max(x,0)を実装し、層の入力サイズおよび出力サイズを同じに保つ。ReLUを使用するこ
との利点は、畳み込みニューラルネットワークがより高速に多くの回数訓練されることで
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ある。ReLUは、入力が0以上の場合には、入力に関して線形であり、それ以外の場合には0
である、非連続で非飽和の活性化関数である。数学的には、ReLU活性化関数は次のように
記述される。
φ(h)=max(h,0)
【０１５２】
【数２１】

【０１５３】
　他の実装形態では、畳み込みニューラルネットワークは、
φ(h)=(a+bh)c

によって記述される連続的な非飽和の関数である、冪ユニット活性化関数を使用する。
【０１５４】
　上式において、a、b、およびcはそれぞれ、シフト、スケール、および冪を制御するパ
ラメータである。冪活性化関数は、cが奇数の場合にはxとyで非対称な活性化を生み出し
、cが偶数の場合にはy対称な活性化を生み出すことが可能である。いくつかの実装形態で
は、このユニットは非正規化線形活性化を生み出す。
【０１５５】
　さらに他の実装形態では、畳み込みニューラルネットワークは、以下のロジスティック
関数
【０１５６】

【数２２】

【０１５７】
によって記述される、連続的な飽和する関数である、シグモイドユニット活性化関数を使
用する。
【０１５８】
　上式において、β=1である。シグモイドユニット活性化関数は、負の活性化を生み出さ
ず、y軸に関してのみ非対称である。
【０１５９】
［畳み込みの例］
　図1Fは、畳み込み層の2層の畳み込みの一実装形態を示す。図1Fにおいて、2048次元の
サイズの入力が畳み込まれる。畳み込み1において、入力はサイズ3×3の16個のカーネル
の2つのチャネルからなる畳み込み層によって畳み込まれる。得られる16個の特徴マップ
が次いで、ReLU1におけるReLU活性化関数によって正規化され、次いでサイズ3×3のカー
ネルを伴う16個のチャネルプーリング層を使用して平均プーリングによってプール1にお
いてプールされる。畳み込み2において、プール1の出力が次いで、3×3のサイズを伴う30
個のカーネルの16個のチャネルからなる別の畳み込み層によって畳み込まれる。さらに別
のReLU2および2×2のカーネルサイズを伴うプール2における平均プーリングが、それに続
く。畳み込み層は、可変の数、たとえば0個、1個、2個、および3個の、ストライドおよび
パディングを使用する。得られる特徴ベクトルは、一実装形態によれば、512次元である
。
【０１６０】
　他の実装形態では、畳み込みニューラルネットワークは、異なる数の畳み込み層、サブ
サンプリング層、非線形層、および全結合層を使用する。一実装形態では、畳み込みニュ



(27) JP 6834029 B2 2021.2.24

10

20

30

40

50

ーラルネットワークは、より少数の層および層当たりのより多数のニューロンを伴う浅い
ネットワークであり、たとえば、層当たり100個から200個のニューロンを伴う、1個、2個
、または3個の全結合層である。別の実装形態では、畳み込みニューラルネットワークは
、より多数の層および層当たりのより少数のニューロンを伴う深層ネットワークであり、
たとえば、層当たり30個から50個のニューロンを伴う、5個、6個、または8個の全結合層
である。
【０１６１】
［フォワードパス］
　特徴マップの中のf個の畳み込みコアに対するl番目の畳み込み層およびk番目の特徴マ
ップにおける行x、列yのニューロンの出力は、次の式によって決定される。
【０１６２】
【数２３】

【０１６３】
　l番目のサブサンプル層およびk番目の特徴マップにおける行x、列yのニューロンの出力
は、次の式によって決定される。
【０１６４】
【数２４】

【０１６５】
　l番目の出力層のi番目のニューロンの出力は、次の式によって決定される。
【０１６６】

【数２５】

【０１６７】
［逆伝播］
　出力層の中のk番目のニューロンの出力偏差は、次の式によって決定される。
【０１６８】

【数２６】

【０１６９】
　出力層の中のk番目のニューロンの入力偏差は、次の式によって決定される。
【０１７０】

【数２７】

【０１７１】
　出力層の中のk番目のニューロンの重みおよびバイアスのばらつきは、次の式によって
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決定される。
【０１７２】
【数２８】

【０１７３】
　隠れ層の中のk番目のニューロンの出力バイアスは、次の式によって決定される。
【０１７４】
【数２９】

【０１７５】
　隠れ層の中のk番目のニューロンの入力バイアスは、次の式によって決定される。
【０１７６】
【数３０】

【０１７７】
　隠れ層の中のk個のニューロンから入力を受け取る前の層のm番目の特徴マップの中の行
x、列yにおける重みおよびバイアスのばらつきは、次の式によって決定される。
【０１７８】
【数３１】

【０１７９】
　サブサンプル層Sのm番目の特徴マップの中の行x、列yの出力バイアスは、次の式によっ
て決定される。
【０１８０】

【数３２】

【０１８１】
　サブサンプル層Sのm番目の特徴マップの中の行x、列yの入力バイアスは、次の式によっ
て決定される。
【０１８２】

【数３３】
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【０１８３】
　サブサンプル層Sおよび畳み込み層Cのm番目の特徴マップの中の行x、列yの中の重みお
よびバイアスのばらつきは、次の式によって決定される。
【０１８４】
【数３４】

【０１８５】
　畳み込み層Cのk番目の特徴マップの中の行x、列yの出力バイアスは、次の式によって決
定される。
【０１８６】

【数３５】

【０１８７】
　畳み込み層Cのk番目の特徴マップの中の行x、列yの入力バイアスは、次の式によって決
定される。
【０１８８】

【数３６】

【０１８９】
　l番目の畳み込み層Cのk番目の特徴マップのm番目の畳み込みコアの中の行r、列cにおけ
る重みおよびバイアスのばらつき:
【０１９０】
【数３７】

【０１９１】
［残差接続］
　図1Gは、特徴マップ追加を介して以前の情報ダウンストリームを再注入する残差接続を
図示する。残差接続は、過去の出力テンソルをより後の出力テンソルに追加することによ
って、以前の表現をデータのダウンストリームフローへと再注入することを備え、このこ
とは、データ処理フローに沿った情報の喪失を防ぐのを助ける。残差接続は、あらゆる大
規模な深層学習モデルを悩ませる2つの一般的な問題、すなわち、勾配消失および表現上
のボトルネック(representational bottleneck)に対処する。一般に、10層を超える層を
有するあらゆるモデルに残差接続を追加することが有益である可能性が高い。上で論じら
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れたように、残差接続は、より前の層の出力をより後の層への入力として利用可能にして
、逐次ネットワークにおけるショートカットを実質的に作成することを備える。より前の
出力は、より後の活性化に連結されるのではなく、より後の活性化と加算され、このこと
は両方の活性化が同じサイズであると想定している。それらが異なるサイズである場合、
より前の活性化を目標の形状へと再成形するための線形変換が使用され得る。残差接続に
ついての追加の情報は、本明細書に完全に記載されるかのようにすべての目的で参照によ
って本明細書において引用される、K.He、X.Zhang、S.Ren、およびJ.Sun、「DEEP RESIDU
AL LEARNING FOR IMAGE RECOGNITION」、arXiv:1512.03385、2015において見出され得る
。
【０１９２】
［残差学習およびスキップ接続］
　図1Hは、残差ブロックおよびスキップ接続の一実装形態を示す。残差学習の主な考え方
は、残差マッピングが元のマッピングよりはるかに簡単に学習されるということである。
残差ネットワークは、訓練の正確さの劣化を軽減するために、いくつかの残差ユニットを
積層する。残差ブロックは、深層ニューラルネットワークにおける勾配消失をなくすため
に、特別な追加のスキップ接続を利用する。残差ブロックの初めにおいて、データフロー
は2つのストリームへと分離され、第1のストリームがブロックの変更されない入力を搬送
し、一方で第2のストリームが重みおよび非線形性を適用する。ブロックの終わりにおい
て、2つのストリームは要素ごとの和を使用して統合される。そのような構築の主な利点
は、勾配がより簡単にネットワークを通って流れることが可能になることである。残差ブ
ロックおよびスキップ接続についての追加の情報は、A.V.D.Oord、S.Dieleman、H.Zen、K
.Simonyan、O.Vinyals、A.Graves、N.Kalchbrenner、A.Senior、およびK.Kavukcuoglu、
「WAVENET: A GENERATIVE MODEL FOR RAW AUDIO」、arXiv:1609.03499、2016において見
出され得る。
【０１９３】
　残差ネットワークから利益を得て、深層畳み込みニューラルネットワーク(CNN)を簡単
に訓練することができ、画像分類および物体検出の精度改善を達成することができる。畳
み込みフィードフォワードネットワークは、l番目の層の出力を(l+1)番目の層への入力と
して接続し、これは、以下の層遷移、すなわちxl=Hl(xl-1)を生じさせる。残差ブロック
は、恒等関数:xl=Hl(xl-1)+xl-1を用いて非線形変換をバイパスするスキップ接続を追加
する。残差ブロックの利点は、勾配がより後の層からより前の層へ恒等関数を通って直接
流れることができるということである。しかしながら、恒等関数およびHlの出力は加算に
よって合成され、これはネットワークにおける情報フローを妨げることがある。
【０１９４】
［拡張畳み込み］
　図1Oは拡張畳み込みを示す。膨張畳み込みとも呼ばれることのある拡張畳み込みは、字
面上は「穴を伴う」を意味する。フランス語のalgorithme a trousが名称の由来であり、
これは高速二項ウェーブレット変換を計算する。これらのタイプの畳み込み層では、フィ
ルタの受容野に対応する入力は隣り合う点ではない。これが図1Oに示されている。入力間
の距離は拡張係数に依存する。
【０１９５】
［WaveNet］
　WaveNetは、生のオーディオ波形を生成するための深層ニューラルネットワークである
。WaveNetは他の畳み込みネットワークから区別され、それは、WaveNetは低コストで比較
的大きい「視覚野」を取り込むことが可能であるからである。その上、信号の条件をロー
カルおよびグローバルに追加することが可能であり、これにより、WaveNetが複数の声を
伴うテキストツースピーチ(TTS)エンジンとして使用されることが可能になり、TTSはロー
カル条件および特定の声およびグローバル条件を与える。
【０１９６】
　WaveNetの主なビルディングブロックは、因果的拡張畳み込みである。因果的拡張畳み



(31) JP 6834029 B2 2021.2.24

10

20

30

40

50

込みの延長として、WaveNetは、図1Pに示されるようなこれらの畳み込みの積層を可能に
する。この図において拡張畳み込みを用いて同じ受容野を取得するには、別の拡張層が必
要である。積層は拡張畳み込みの反復であり、拡張畳み込み層の出力を単一の出力に接続
する。これにより、WaveNetが比較的低い計算コストで1つの出力ノードの大きな「視覚」
野を得ることが可能になる。比較のために、512個の入力の視覚野を得るには、完全畳み
込みネットワーク(FCN)は511個の層を必要とする。拡張畳み込みネットワークの場合、8
個の層が必要である。積層された拡張畳み込みは、2層の積層では7個の層、または4個の
積層では6個の層しか必要ではない。同じ視覚野をカバーするために必要な計算能力の差
の考え方を得るために、以下の表は、層当たり1つのフィルタおよび2というフィルタ幅と
いう仮定のもとで、ネットワークにおいて必要とされる重みの数を示す。さらに、ネット
ワークが8ビットのバイナリ符号化を使用していることが仮定される。
【０１９７】
【表１】

【０１９８】
　WaveNetは、残差接続が行われる前にスキップ接続を追加し、これはすべての後続の残
差ブロックをバイパスする。これらのスキップ接続の各々は、それらを一連の活性化関数
および畳み込みに通す前に加算される。直観的には、これは各層において抽出される情報
の合計である。
【０１９９】
［バッチ正規化］
　バッチ正規化は、データ標準化をネットワークアーキテクチャの必須の部分にすること
によって、深層ネットワーク訓練を加速するための方法である。バッチ正規化は、訓練の
間に時間とともに平均および分散が変化しても、データを適応的に正規化することができ
る。バッチ正規化は、訓練の間に見られるデータのバッチごとの平均と分散の指数移動平
均を内部的に維持することによって機能する。バッチ正規化の主な影響は、残差接続とよ
く似て、勾配伝播を助けるので、深層ネットワークを可能にするということである。一部
の超深層ネットワークは、複数のバッチ正規化層を含む場合にのみ訓練することができる
。バッチ正規化についての追加の情報は、本明細書に完全に記載されるかのようにすべて
の目的で参照によって本明細書において引用される、S.IoffeおよびC.Szegedy、「BATCH 
NORMALIZATION: ACCELERATING DEEP NETWORK TRAINING BY REDUCING INTERNAL COVARIATE
 SHIFT」、arXiv:1502.03167、2015において見出され得る。
【０２００】
　バッチ正規化は、全結合層または畳み込み層のように、モデルアーキテクチャへと挿入
され得るさらに別の層として見ることができる。バッチ正規化層は通常、畳み込み層また
は密結合層の後で使用される。バッチ正規化層は、畳み込み層または密結合層の前でも使
用され得る。両方の実装形態が、開示される技術によって使用されることが可能であり、
図1Lにおいて示されている。バッチ正規化層は軸引数を取り込み、軸引数は正規化される
べき特徴軸を指定する。この引数はデフォルトでは1であり、これは入力テンソルにおけ
る最後の軸である。これは、data_formatが「channels_last」に設定された状態でDense
層、Conv1D層、RNN層、およびConv2D層を使用するときの正しい値である。しかし、data_
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formatが「channels_first」に設定されるConv2D層のニッチな使用事例では、特徴軸は軸
1であり、バッチ正規化における軸引数は1に設定され得る。
【０２０１】
　バッチ正規化は、入力をフィードフォワードすることと、バックワードパスを介してパ
ラメータに関する勾配およびそれ自体の入力(its own input)を計算することとのための
定義を提供する。実際には、バッチ正規化層は、畳み込み層または全結合層の後に挿入さ
れるが、それは出力が活性化関数へと供給される前である。畳み込み層では、異なる位置
にある同じ特徴マップの異なる要素、すなわち活性化が、畳み込みの性質に従うために同
じ方法で正規化される。したがって、ミニバッチの中のすべての活性化は、活性化ごとに
ではなく、すべての位置にわたって正規化される。
【０２０２】
　内部的な共変量のシフトは、深層アーキテクチャが訓練するのに時間がかかることで悪
名高かった主な理由である。これは、深層ネットワークが各層において新しい表現を学習
しなければならないだけではなく、それらの分布の変化も考慮しなければならないという
事実によるものである。
【０２０３】
　一般に共変量シフトは、深層学習の領域における既知の問題であり、現実世界の問題に
おいて頻繁に発生する。よくある共変量シフト問題は、最適ではない一般化性能につなが
り得る、訓練セットと検定セットでの分布の違いである。この問題は通常、標準化または
白色化前処理ステップ(whitening preprocessing step)によって対処される。しかしなが
ら、特に白色化動作は、計算負荷が高いので、共変量シフトが様々な層全体で発生する場
合には特に、オンラインの状況では非現実的である。
【０２０４】
　内部的な共変量シフトは、ネットワーク活性化の分布が、訓練の間のネットワークパラ
メータの変化により複数の層にわたって変化するという現象である。理想的には、各層は
、各層が同じ分布を有するが機能的な関係は同じままであるような空間へと変換されるべ
きである。それぞれの層およびステップにおいてデータを脱相関および白色化するための
、共分散行列の高価な計算を避けるために、各ミニバッチにわたる各層における各入力特
徴量の分布を、平均が0になり標準偏差が1になるように正規化する。
【０２０５】
　　フォワードパス
　フォワードパスの間、ミニバッチの平均および分散が計算される。これらのミニバッチ
の統計により、データは、平均を差し引き、標準偏差で除算することによって正規化され
る。最後に、データは、学習されたスケールおよびシフトパラメータを用いて、スケーリ
ングおよびシフトされる。バッチ正規化フォワードパスfBNが図1Iに図示されている。
【０２０６】
　図1Iにおいて、それぞれ、μBはバッチ平均であり、
【０２０７】
【数３８】

【０２０８】
はバッチ分散である。学習されたスケールおよびシフトパラメータは、それぞれγおよび
βと表記される。分かりやすくために、バッチ正規化手順は、本明細書では活性化ごとに
説明され、対応するインデックスを省略する。
【０２０９】
　正規化は微分可能な変換であるので、誤差はこれらの学習されたパラメータへと伝播さ
れ、したがって、恒等変換を学習することによってネットワークの再現能力を復元するこ
とが可能である。逆に、対応するバッチ統計と同一のスケールおよびシフトパラメータを
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学習することによって、それが実行すべき最適な操作であった場合、バッチ正規化変換は
ネットワークに対する効果を持たない。検定時に、バッチ平均および分散はそれぞれの母
集団の統計により置き換えられ、それは、入力がミニバッチからの他のサンプルに依存し
ないからである。別の方法は、訓練の間にバッチ統計の平均をとり続け、検定時にこれら
を使用してネットワーク出力を計算することである。検定時において、バッチ正規化変換
は、図1Jに示されるように表現され得る。図1Jにおいて、μDおよび
【０２１０】
【数３９】

【０２１１】
は、バッチ統計ではなく、それぞれ母集団の平均および分散を示す。
【０２１２】
　　バックワードパス
　正規化は微分可能な演算であるので、バックワードパスは図1Kに図示されるように計算
され得る。
【０２１３】
［1D畳み込み］
　1D畳み込みは、図1Mに示されるように、ローカルの1Dパッチまたはサブ配列を配列から
抽出する。1D畳み込みは、入力配列の中の時間的パッチから各出力タイムステップを取得
する。1D畳み込み層は、配列の中のローカルパターンを認識する。同じ入力変換がパッチ
ごとに実行されるので、入力配列の中のある場所において学習されるパターンは、異なる
場所においてより後に認識されることが可能であり、このことは、1D畳み込み層変換を時
間的変換に対して不変にする。たとえば、サイズ5の畳み込みウィンドウを使用して塩基
の配列を処理する1D畳み込み層は、長さ5以下の塩基配列を学習することが可能であるべ
きであり、入力配列の中の任意の文脈において塩基のモチーフを認識することが可能であ
るべきである。したがって、塩基レベルの1D畳み込みは、塩基の形態について学習するこ
とが可能である。
【０２１４】
［グローバル平均プーリング］
　図1Nは、グローバル平均プーリング(GAP)がどのように機能するかを示す。グローバル
平均プーリングは、スコアリングのために最後の層の中の特徴量の空間的な平均をとるこ
とによって、分類のための全結合(FC)層を置換するために使用され得る。これは、訓練負
荷を低減し、過剰適合の問題をバイパスする。グローバル平均プーリングは、モデルの前
に構造的を適用し、これはあらかじめ定められた重みを伴う線形変換と等価である。グロ
ーバル平均プーリングは、パラメータの数を減らし、全結合層をなくす。全結合層は通常
、最もパラメータと接続の多い層であり、グローバル平均プーリングは、同様の結果を達
成するのにはるかに低コストの手法を提供する。グローバル平均プーリングの主な考え方
は、スコアリングのために各々の最後の層の特徴マップからの平均値を信頼性係数として
生成し、直接ソフトマックス層に供給することである。
【０２１５】
　グローバル平均プーリングは、(1)グローバル平均プーリング層の中に余剰のパラメー
タがないので、グローバル平均プーリング層において過剰適合が避けられる、(2)グロー
バル平均プーリングの出力は特徴マップ全体の平均であるので、グローバル平均プーリン
グは空間的な変換に対してよりロバストになる、および(3)ネットワーク全体のすべての
パラメータの50%超を通常は占める、全結合層の中の大量のパラメータにより、それらを
グローバル平均プーリング層で置き換えることで、モデルのサイズを大きく低減すること
ができ、これがグローバル平均プーリングをモデル圧縮において非常に有用なものにする
、という3つの利点を有する。
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【０２１６】
　最後の層の中のより強い特徴がより高い平均値を有することが予想されるので、グロー
バル平均プーリングは理にかなっている。いくつかの実装形態では、グローバル平均プー
リングは、分類スコアのための代理として使用され得る。グローバル平均プーリングのも
とでの特徴マップは、信頼性マップとして解釈されることが可能であり、特徴マップとカ
テゴリとの間の対応付けを強制することができる。グローバル平均プーリングは、最後の
層の特徴が直接分類のために十分抽象化されている場合、特に有効であり得る。しかしな
がら、グローバル平均プーリング自体は、マルチレベル特徴が部分モデルのようなグルー
プへと合成されるべきである場合には十分ではなく、これは、グローバル平均プーリング
の後に、単純な全結合層または他の分類器を追加することによって最良に実行される。
【０２１７】
［ゲノミクスにおける深層学習］
　遺伝的変異は、多くの疾患の説明を助け得る。ヒトはそれぞれが固有の遺伝コードを持
ち、個人のグループ内には多くの遺伝的バリアントがある。有害な遺伝的バリアントの大
半は、自然選択によってゲノムから枯渇している。どの遺伝的変異が病原性または有害で
ある可能性が高いかを特定することが重要である。このことは、研究者が、病原性である
可能性が高い遺伝的バリアントに注目し、多くの疾患の診断および治療を加速させること
を助けるであろう。
【０２１８】
　バリアントの性質および機能的な影響(たとえば、病原性)をモデル化することは重要で
あるが、ゲノミクスの分野においては難しい仕事である。機能的ゲノムシーケンシング技
術の急速な進化にもかかわらず、バリアントの機能的な結果の解釈には、細胞タイプに固
有の転写制御システムの複雑さが原因で、大きな困難が立ちはだかっている。
【０２１９】
　過去数十年にわたる生化学技術の進化は、これまでよりもはるかに低いコストでゲノム
データを高速に生成する、次世代シーケンシング(NGS)プラットフォームをもたらした。
そのような圧倒的に大量のシーケンシングされたDNAは、アノテーションが困難なままで
ある。教師あり機械学習アルゴリズムは通常、大量のラベリングされたデータが利用可能
であるときには性能を発揮する。バイオインフォマティクスおよび多くの他のデータリッ
チな訓練法では、インスタンスをラベリングするプロセスが高価である。しかしながら、
ラベリングされていないインスタンスは、安価であり容易に利用可能である。ラベリング
されたデータの量が比較的少なく、ラベリングされていないデータの量がかなり多いシナ
リオでは、半教師あり学習が、手動のラベリングに対する費用対効果の高い代替手法とな
る。
【０２２０】
　バリアントの病原性を正確に予測する深層学習ベースの病原性分類器を構築するために
、半教師ありアルゴリズムを使用する機会が生じる。人間の診断バイアスがない病原性バ
リアントのデータベースを得ることができる。
【０２２１】
　病原性分類器に関して、深層ニューラルネットワークは、高水準の特徴を連続的にモデ
ル化するために複数の非線形の複雑な変換層を使用する、あるタイプの人工ニューラルネ
ットワークである。深層ニューラルネットワークは、観測される出力と予測される出力と
の差を搬送する逆伝播を介してフィードバックを提供し、パラメータを調整する。深層ニ
ューラルネットワークは、大きな訓練データセット、並列および分散コンピューティング
の能力、および洗練された訓練アルゴリズムが利用可能になることとともに進化してきた
。深層ニューラルネットワークは、コンピュータビジョン、音声認識、および自然言語処
理などの、多数の領域において大きな進化を促進してきた。
【０２２２】
　畳み込みニューラルネットワーク(CNN)および再帰型ニューラルネットワーク(RNN)は、
深層ニューラルネットワークの構成要素である。畳み込みニューラルネットワークは、畳
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み込み層、非線形層、およびプーリング層を備えるアーキテクチャにより、画像認識にお
いて特に成功してきた。再帰型ニューラルネットワークは、パーセプトロン、長短期メモ
リユニット、およびゲート付き回帰型ユニットのようなビルディングブロックの間で、巡
回接続を用いて入力データの連続的情報を利用するように設計される。加えて、深層空間
時間ニューラルネットワーク、多次元再帰型ニューラルネットワーク、および畳み込みオ
ートエンコーダなどの、多くの他の新興の深層ニューラルネットワークが、限られた文脈
に対して提案されている。
【０２２３】
　深層ニューラルネットワークを訓練する目的は、各層における重みパラメータの最適化
であり、このことは、最も適した階層的表現をデータから学習できるように、より単純な
特徴を複雑な特徴へと徐々に合成する。最適化プロセスの単一のサイクルは次のように編
成される。まず、ある訓練データセットのもとで、フォワードパスが各層の中の出力を順
番に計算し、ネットワークを通じて関数信号を前に伝播させる。最後の出力層において、
目的損失関数が、推論された出力と所与のラベルとの間の誤差を測定する。訓練誤差を最
小にするために、バックワードパスは、連鎖律を逆伝播誤差信号に使用し、ニューラルネ
ットワーク全体のすべての重みに関する勾配を計算する。最後に、重みパラメータは、確
率的勾配降下に基づく最適化アルゴリズムを使用して更新される。一方、バッチ勾配降下
は、各々の完全なデータセットに対するパラメータ更新を実行し、確率的勾配降下は、デ
ータ例の各々の小さいセットに対する更新を実行することによって確率的近似を提供する
。いくつかの最適化アルゴリズムは、確率的勾配低下に由来する。たとえば、Adagradお
よびAdam訓練アルゴリズムは、確率的勾配降下を実行しながら、それぞれ、各パラメータ
のための更新頻度および勾配のモーメントに基づいて学習率を適応的に修正する。
【０２２４】
　深層ニューラルネットワークの訓練における別のコア要素は正則化であり、これは、過
剰適応を避けることで良好な一般化性能を達成することを意図した戦略を指す。たとえば
、重み減衰は、重みパラメータがより小さい絶対値へと収束するように、目的損失関数に
ペナルティ項を追加する。ドロップアウトは、訓練の間にニューラルネットワークから隠
れユニットをランダムに除去し、可能性のあるサブネットワークのアンサンブルであると
見なされ得る。ドロップアウトの能力を高めるために、新しい活性化関数であるmaxoutと
、rnnDropと呼ばれる再帰型ニューラルネットワークのためのドロップアウトの変形が提
案されている。さらに、バッチ正規化は、ミニバッチ内の各活性化のためのスカラー特徴
量の正規化と、各平均および分散をパラメータとして学習することとを通じた、新しい正
則化方法を提供する。
【０２２５】
　シーケンシングされたデータが多次元かつ高次元であるとすると、深層ニューラルネッ
トワークは、その広い適用可能性および高い予測能力により、バイオインフォマティクス
の研究に対して高い将来性がある。畳み込みニューラルネットワークは、モチーフの発見
、病原性バリアントの特定、および遺伝子発現の推論などの、ゲノミクスにおける配列に
基づく問題を解決するために適合されてきた。畳み込みニューラルネットワークは、DNA
を研究するのに特に有用である重み共有戦略を使用し、それは、この戦略が、重大な生物
学的機能を有することが推定されるDNAにおける短い反復的なローカルパターンである配
列モチーフを捉えることができるからである。畳み込みニューラルネットワークの特徴は
、畳み込みフィルタの使用である。精巧に設計され人間により作られた特徴に基づく従来
の分類手法とは異なり、畳み込みフィルタは、生の入力データを知識の有用な表現へとマ
ッピングする処理と類似した、特徴の適応学習を実行する。この意味で、畳み込みフィル
タは一連のモチーフスキャナとして機能し、それは、そのようなフィルタのセットが、入
力の中の関連するパターンを認識し、訓練手順の間にそれらを更新することが可能である
からである。再帰型ニューラルネットワークは、タンパク質またはDNA配列などの、可変
の長さの連続的データにおける長距離の依存関係を捉えることができる。
【０２２６】
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　したがって、バリアントの病原性を予測するための強力な計算モデルには、基礎科学研
究と橋渡し研究の両方に対して莫大な利益があり得る。
【０２２７】
　一般的な多型は、多世代の自然選択によりその健康性が試されてきた自然の実験結果を
表している。ヒトのミスセンス置換と同義置換についてアレル頻度分布を比較すると、ヒ
ト以外の霊長類の種における高いアレル頻度でのミスセンスバリアントの存在は、そのバ
リアントがヒトの集団においても自然選択を受けていることを高い信頼度で予測すること
を発見した。対照的に、より遠縁の種における一般的なバリアントは、進化的な距離が長
くなるにつれて、負の選択を受ける。
【０２２８】
　配列だけを使用して臨床的なde novoミスセンス変異を正確に分類する、半教師あり深
層学習ネットワークを訓練するために、ヒト以外の6種の霊長類の種からの一般的な変異
を利用する。500を超える既知の種により、霊長類の系統は、有意性が知られていない大
半のヒトバリアントの影響を系統的にモデル化するのに、十分な一般的な変異を含んでい
る。
【０２２９】
　ヒト基準ゲノムには、7000万個のタンパク質を変化させる可能性のあるミスセンス置換
が隠れており、それらの大半は、ヒトの健康への影響が特性把握されていない稀な変異で
ある。これらの有意性が知られていないバリアントは、臨床上の応用においてゲノム解釈
の課題となっており、集団全体にわたるスクリーニングおよび個別化医療のためのシーケ
ンシングの長期的な採用の障害である。
【０２３０】
　多様なヒトの集団にわたる一般的な変異の目録を作ることが、臨床的に良性の変異を特
定するのに有効な戦略であるが、現代のヒトから入手可能な一般的な変異は、我々の種の
遠い過去におけるボトルネック事象により限られている。ヒトとチンパンジーは99%の配
列相同性を共有しており、これは、チンパンジーバリアントに対して働く自然選択が、ヒ
トにおいて同一状態であるバリアントの影響をモデル化することの可能性を示唆している
。ヒトの集団における自然な多型に対する平均合祖時間は、種の分岐時間の一部であるの
で、自然に発生するチンパンジー変異は大部分が、平衡選択により維持されるハプロタイ
プの稀な事例を除き、ヒト変異と重複しない変異空間に及ぶ。
【０２３１】
　60706人のヒトからの集約されたエクソンデータが最近利用可能になったことで、ミス
センス変異と同義変異に対するアレル頻度スペクトラムを比較することによって、この仮
説を検定することが可能になった。ExACにおけるシングルトンバリアントは、トリヌクレ
オチドコンテクストを使用して変異率を調整した後のde novo変異により予測される、予
想される2.2:1のミスセンス:同義比とよく一致するが、より高いアレル頻度では、観察さ
れるミスセンスバリアントの数は、自然選択による有害なバリアントの除去により減少す
る。アレル頻度スペクトラムにわたるミスセンス:同義比のパターンは、集団における頻
度が0.1%未満であるミスセンスバリアントの大部分が軽度に有害である、すなわち、集団
からの即刻の除去を保証するほど病原性が高くなく、高いアレル頻度で存在することが許
容されるほど中立的でもないということを示しており、これはより限られた集団データに
対する以前の観察と一致している。これらの発見は、0.1%～1%より高いアレル頻度を伴う
バリアントを、平衡選択および創始者効果により引き起こされるよく記録されている少数
の例外を除いて、浸透性の遺伝性疾患に対しては良性である可能性が高いものとして除去
するという、診療室において広く行われている経験的な実践を支持するものである。
【０２３２】
　この分析を、一般的なチンパンジーバリアント(チンパンジー集団のシーケンシングに
おいて1回よりも多く観察される)と同一状態であるヒトバリアントのサブセットについて
繰り返すと、ミスセンス:同義比は、アレル頻度スペクトラムにわたって概ね一定である
ことを発見した。チンパンジーの集団におけるこれらのバリアントの高いアレル頻度は、
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これらのバリアントがチンパンジーの自然選択のふるいにすでにかけられてきたことを示
し、ヒトの集団における健康へのそれらのバリアントの中立的な影響は、ミスセンスバリ
アントに対する選択圧力が2つの種において高度に合致していることの注目すべき証拠を
与えている。チンパンジーにおいて観察されるより低いミスセンス:同義比は、軽度に有
害なバリアントの効率的な除去を可能にする先祖のチンパンジーの集団におけるより大き
い実効集団サイズと一貫している。
【０２３３】
　対照的に、稀なチンパンジーバリアント(チンパンジー集団のシーケンシングにおいて1
回しか観察されない)は、より高いアレル頻度において、ミスセンス:同義比のあまり大き
くない低下を示す。ヒト変異データからの同一サイズのコホートをシミュレートすると、
このサイズのコホートにおいて一度観察されるバリアントの64%しか、集団全体において0
.1%より高いアレル頻度を有せず、それと比べて、コホートにおいて複数回見られるバリ
アントについては99.8%が集団全体において0.1%より高いアレル頻度を有することが推定
され、これは、稀なチンパンジーバリアントのすべてが選択のふるいにかけられたとは限
らないことを示している。全体として、確認されたチンパンジーミスセンスバリアントの
16%が、集団全体において0.1%未満のアレル頻度を有し、より高いアレル頻度では負の選
択を受けることが推定される。
【０２３４】
　次に、他のヒト以外の霊長類の種(ボノボ、ゴリラ、オランウータン、アカゲザル、お
よびマーモセット)において観察される変異と同一状態であるヒトバリアントを特徴付け
る。チンパンジーと同様に、少数の稀なバリアント(約5～15%)の包含によるものであると
推測される高いアレル頻度におけるミスセンス変異のわずかな枯渇を除き、ミスセンス:
同義比がアレル頻度スペクトラムにわたって概ね等しいことを認めた。これらの結果は、
ミスセンスバリアントに対する選択圧が、ヒトの祖先の系統から約3500万年前に分岐した
と推定される新世界ザルまでは少なくとも、霊長類の系統内で概ね合致していることを示
唆する。
【０２３５】
　他の霊長類におけるバリアントと同一状態であるヒトミスセンスバリアントは、ClinVa
rにおける良性の結果に対して強くエンリッチメントされる。未知のまたは矛盾するアノ
テーションを伴うバリアントを除いた後で、霊長類オーソログを伴うヒトバリアントは、
ClinVarにおいて良性または良性の可能性が高いものとしてアノテートされる確率が約95%
であり、それと比較して、ミスセンス変異全般では45%であることが観察される。ヒト以
外の霊長類から病原性であるものとして分類されるClinVarバリアントの小さな割合は、
健康なヒトの同様のサイズのコホートからの稀なバリアントを確認することにより観察さ
れるであろう病原性のClinVarバリアントの割合と同程度である。大きなアレル頻度デー
タベースの出現の前に分類を受けた、病原性であるまたは病原性である可能性が高いもの
としてアノテートされたこれらのバリアントのかなりの割合が、今日では異なるように評
価される可能性がある。
【０２３６】
　ヒトの遺伝学の分野は、ヒト変異の臨床上の影響を推論するためにモデル生物に長い間
依存してきたが、大半の遺伝的に扱いやすい動物モデルまでの進化的距離が長いことで、
これらの発見がヒトに対してどの程度一般化可能であるかについての懸念が生まれている
。ヒトおよびより遠縁の種におけるミスセンスバリアントに対する自然選択の合致を調査
するために、4種の追加の哺乳類の種(ネズミ、ブタ、ヤギ、ウシ)と2種のより遠縁の脊椎
動物(ニワトリ、ゼブラフィッシュ)からの概ね一般的な変異を含めるように、霊長類の系
統を超えて分析を拡張した。以前の霊長類の分析とは対照的に、進化的距離が遠い場合に
は特に、稀なアレル頻度と比較して一般的なアレル頻度ではミスセンス変異が顕著に枯渇
していることが観察され、これは、より遠縁の種における一般的なミスセンス変異のかな
りの割合が、ヒトの集団においては負の選択を受けるであろうことを示している。それで
も、より遠縁の脊椎動物におけるミスセンスバリアントの観察は、良性の結果の確率を高
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め、それは、自然選択により枯渇した一般的なミスセンスバリアントの割合は、基準であ
るヒトミスセンスバリアントに対して約50%よりはるかに低い枯渇率であるからである。
これらの結果と一致して、ネズミ、イヌ、ブタ、およびウシにおいて観察されたヒトミス
センスバリアントは、ClinVarにおいて良性または良性の可能性が高いものとしてアノテ
ートされる確率が約85%であり、それと比較して、霊長類の変異に対しては95%、ClinVar
データベース全体に対しては45%であることを発見した。
【０２３７】
　様々な進化的距離にある近縁の種のペアの存在も、ヒトの集団における固定されたミス
センス置換の機能的な結果を評価するための機会を与える。哺乳類の系図上で近縁の種の
ペア(枝長<0.1)内で、固定されたミスセンス変異が、稀なアレル頻度と比較して一般的な
アレル頻度で枯渇することが観察され、これは、複数の種にわたる固定された置換のかな
りの割合が、霊長類の系統内であってもヒトにおいては非中立的であることを示している
。ミスセンスの枯渇の程度の比較は、複数の種にわたる固定された置換が、同一種内の多
型よりはるかに中立的ではないことを示している。興味深いことに、近縁の哺乳類間での
複数の種にわたる変異は、同一種内の一般的な多型と比較して、ClinVarにおいてはさほ
どより病原性ではなく(良性または良性の可能性が高いものとしてアノテートされる確率
が83%)、これらの変化がタンパク質の機能を無効にするのではなく、むしろ、種固有の適
応的な利益を授けるタンパク質機能の調整を招いていることを示唆する。
【０２３８】
　有意性が知られてない多数の潜在的なバリアントがあること、および臨床上の応用には
正確なバリアント分類が決定的に重要であることにより、機械学習を用いた問題の解決が
多く試みられてきたが、これらの努力は、一般的なヒトバリアントの量が不十分であるこ
と、および精選されたデータベースにおけるアノテーションの品質が疑わしいことにより
大きく制約されてきた。6種のヒト以外の霊長類からの変異は、一般的なヒト変異と重複
せず大部分が良性の結果をもたらす300000個を超える固有のミスセンスバリアントに寄与
し、機械学習手法に使用できる訓練データセットのサイズを大きく拡大した。
【０２３９】
　人間により加工された多数の特徴およびメタ分類器を利用するこれまでのモデルと異な
り、対象のバリアントの側にあるアミノ酸配列および他の種におけるオーソロガスな配列
アラインメントのみを入力として取り込む、単純な深層学習残差ネットワークを適用する
。タンパク質構造についての情報をネットワークに提供するために、配列だけから二次構
造および溶媒接触性を学習するように2つの別々のネットワークを訓練し、これらをサブ
ネットワークとしてより大きな深層学習ネットワークに組み込み、タンパク質構造に対す
る影響を予測する。配列を開始点として使用することで、不完全に確認されている可能性
がある、または矛盾して適用されている可能性がある、タンパク質構造および機能ドメイ
ンのアノテーションにおける存在し得るバイアスが回避される。
【０２４０】
　良性である可能性が高い霊長類バリアントと、変異率およびシーケンシングカバレッジ
について一致するランダムな未知のバリアントとを分離するように、ネットワークのアン
サンブルを最初に訓練することによって、訓練セットが良性のラベルを持つバリアントし
か含まないという問題を克服するために、半教師あり学習を使用する。このネットワーク
のアンサンブルは、未知のバリアントの完全なセットをスコアリングするために、および
、より病原性であるという予測される結果を持つ未知のバリアントに向かってバイアスを
かけることによって分類器の次の反復をシードするように未知のバリアントの選択に影響
を与えるために使用され、モデルが準最適な結果へと尚早に収束するのを防ぐために各反
復において緩やかなステップをとる。
【０２４１】
　一般的な霊長類の変異はまた、メタ分類器の増殖により客観的に評価することが難しく
なっている既存の方法を評価するための、以前に使用された訓練データとは完全に無関係
であるクリーンな評価データセットを提供する。10000個の提供された霊長類の一般的な
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バリアントを使用して、4つの他の人気のある分類アルゴリズム(Sift、Polyphen2、CADD
、M-CAP)とともに、我々のモデルの性能を評価した。すべてのヒトミスセンスバリアント
の概ね50%は、一般的なアレル頻度では自然選択によって除去されるので、変異率によっ
て、10000個の提供された霊長類の一般的なバリアントと一致したランダムに選ばれたミ
スセンスバリアントのセットに対して、各分類器について50パーセンタイルのスコアを計
算し、その閾値を使用して、提出された霊長類の一般的なバリアントを評価した。我々の
深層学習モデルの正確さは、ヒトの一般的なバリアントだけで訓練された深層学習ネット
ワークを使用しても、またはヒトの一般的なバリアントと霊長類のバリアントの両方を使
用しても、この独立の評価データセットについて、他の分類器よりはるかに良好であった
。
【０２４２】
　最近のトリオシーケンシング研究は、神経発達障害を持つ患者と患者の健康な兄弟にお
ける数千個のde novo変異の目録を作っており、症例群vs対照群におけるde novoミスセン
ス変異を分離する際の様々な分類アルゴリズムの強さの評価を可能にしている。4つの分
類アルゴリズムの各々について、症例群vs対照群における各de novoミスセンスバリアン
トをスコアリングし、2つの分布の間の差のウィルコクソンの順位和検定からのp値を報告
し、この臨床シナリオでは、霊長類バリアントについて訓練された深層学習方法(p約10-3
3)が他の分類器(p約10-13から10-19)はるかに良好な性能であったことを示した。このコ
ホートについて以前に報告された予想を超える、de novoミスセンスバリアントの約1.3-f
oldエンリッチメントから、およびミスセンスバリアントの約20%が機能喪失の影響を生む
という以前の推定から、完璧な分類器はp約10-40というp値で2つのクラスを分離すること
が予想され、これは我々の分類器に改善の余地がまだあることを示している。
【０２４３】
　深度学習分類器の正確さは訓練データセットのサイズと符合し、6種の霊長類の各々か
らの変異データは独立に、分類器の正確さを上げることに寄与する。ヒト以外の霊長類の
種が多数かつ多様にあることは、タンパク質を変化させるバリアントに対する選択圧力が
霊長類の系統内で概ね合致していることを示す証拠とともに、臨床上のゲノム解釈を現在
制約している、有意性が知られていない数百万個のヒトバリアントを分類するための効果
的な戦略として、系統的な霊長類集団のシーケンシングを示唆する。504種の知られてい
るヒト以外の霊長類の種のうち、約60%が狩猟および生息地喪失により絶滅に瀕しており
、これらの固有の代わりのいない種と我々自身の両方に利益をもたらすであろう、緊急を
要する世界的な保全の努力に対する動機となっている。
【０２４４】
　ゲノムデータ全体はエクソンデータほど集約された形では利用可能ではないが、深いイ
ントロン領域における自然選択の影響を検出するための能力を制限することで、エクソン
領域から遠く離れた隠れたスプライシング変異の観察されるカウントと予想されるカウン
トを計算することも可能になった。全体として、エクソンイントロン境界から50ntを超え
る距離にある隠れたスプライシング変異において、60%の欠失を認めた。信号の減衰は、
エクソンと比較してゲノムデータ全体ではサンプルサイズがより小さいことと、深いイン
トロンバリアントの影響を予測することがより難しいこととの組合せによるものである可
能性が高い。
【０２４５】
［用語］
　限定はされないが、特許、特許出願、論説、書籍、論文、およびウェブページを含む、
本出願において引用されるすべての文献および同様の資料は、そのような文献および同様
の資料のフォーマットとは無関係に、全体が参照によって明確に引用される。限定はされ
ないが、定義される用語、用語の使用法、説明される技法などを含めて、引用される文献
および同様の資料のうちの1つまたは複数が、本出願とは異なる場合、または本出願と矛
盾する場合、本出願が優先する。
【０２４６】
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　本明細書では、以下の用語は示される意味を有する。
【０２４７】
　塩基は、ヌクレオチド塩基またはヌクレオチド、すなわちA(アデニン)、C(シトシン)、
T(チミン)、またはG(グアニン)を指す。
【０２４８】
　本出願は、「タンパク質」および「翻訳配列」という用語を交換可能に使用する。
【０２４９】
　本出願は、「コドン」および「塩基トリプレット」という用語を交換可能に使用する。
【０２５０】
　本出願は、「アミノ酸」および「翻訳単位」という用語を交換可能に使用する。
【０２５１】
　本出願は、「バリアント病原性分類器」、「バリアント分類のための畳み込みニューラ
ルネットワークベースの分類器」、および「バリアント分類のための深層畳み込みニュー
ラルネットワークベースの分類器」という語句を交換可能に使用する。
【０２５２】
　「染色体」という用語は、生きている細胞の遺伝情報を持っている遺伝子の担体を指し
、これはDNAおよびタンパク質の構成要素(特にヒストン)を備えるクロマチン鎖に由来す
る。従来の国際的に認識されている個々のヒトゲノム染色体ナンバリングシステムが本明
細書で利用される。
【０２５３】
　「サイト」という用語は、基準ゲノム上の一意な場所(たとえば、染色体ID、染色体の
場所および向き)を指す。いくつかの実装形態では、サイトは、残基、配列タグ、または
配列上のセグメントの場所であり得る。「座」という用語は、基準染色体上での核酸配列
または多型の具体的な位置を指すために使用され得る。
【０２５４】
　本明細書の「サンプル」という用語は、典型的には、シーケンシングおよび/もしくは
フェージングされるべき少なくとも1つの核酸配列を含有する核酸もしくは核酸の混合物
を含有する、体液、細胞、組織、器官、または生物体に由来する、サンプルを指す。その
ようなサンプルは、限定はされないが、唾液/口腔液、羊水、血液、血液の断片、細針生
検サンプル(たとえば、直視下生検、細針生検など)、尿、腹膜液、胸膜液、組織外植、器
官培養、および任意の他の組織もしくは細胞の標本、またはそれらの一部もしくはそれら
の派生物、またはそれらから分離されたものを含む。サンプルはしばしば、ヒト対象(た
とえば、患者)から取られるが、サンプルは、限定はされないが、イヌ、ネコ、ウマ、ヤ
ギ、ヒツジ、ウシ、ブタなどを含む、染色体を有する任意の生物体から取ることができる
。サンプルは、生物学的な供給源から得られるものとして直接使用されることがあり、ま
たは、サンプルの特性を修正するための前処理の後に使用されることがある。たとえば、
そのような前処理は、血液から血漿を調製すること、粘液を希釈することなどを含み得る
。前処理の方法はまた、限定はされないが、濾過、沈殿、希釈、蒸留、混合、遠心分離、
凍結、凍結乾燥、濃縮、増幅、核酸断片化、干渉する要素の不活性化、試薬の追加、溶解
などを伴い得る。
【０２５５】
　「配列」という用語は、互いに結合されたヌクレオチドの鎖を含み、または表す。ヌク
レオチドはDNAまたはRNAに基づき得る。1つの配列は複数の部分配列を含み得ることを理
解されたい。たとえば、(たとえばPCRアンプリコン)の単一配列は350個のヌクレオチドを
有し得る。サンプルリードは、これらの350個のヌクレオチド内の複数の部分配列を含み
得る。たとえば、サンプルリードは、たとえば20～50個のヌクレオチドを有する、第1お
よび第2のフランキング部分配列を含み得る。第1および第2のフランキング部分配列は、
対応する部分配列(たとえば、40～100個のヌクレオチド)を有する反復的なセグメントの
両側に位置し得る。フランキング部分配列の各々は、プライマー部分配列(たとえば、10
～30個のヌクレオチド)を含み得る(またはその一部を含み得る)。読むのを簡単にするた
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めに、「部分配列」という用語は「配列」と呼ばれるが、2つの配列は必ずしも共通の鎖
上で互いに別々であるとは限らないことを理解されたい。本明細書で説明される様々な配
列を区別するために、配列は異なるラベル(たとえば、標的配列、プライマー配列、フラ
ンキング配列、基準配列など)を与えられ得る。「アレル」などの他の用語は、同様の物
を区別するために異なるラベルを与えられ得る。
【０２５６】
　「ペアエンドシーケンシング(paired-end sequencing)」という用語は、標的フラグメ
ントの両端をシーケンシングするシーケンシング方法を指す。ペアエンドシーケンシング
は、ゲノム再配置および反復セグメント、ならびに遺伝子融合および新規転写物の検出を
容易にし得る。ペアエンドシーケンシングの方法論は、各々が本明細書において参照によ
って引用される、国際特許出願公開第WO07010252号、国際特許出願第PCTGB2007/003798号
、および米国特許出願公開第2009/0088327号において説明されている。一例では、一連の
操作は次のように実行され得る。(a)核酸のクラスタを生成する。(b)核酸を直線化する。
(c)第1のシーケンシングプライマーをハイブリダイゼーションし、上で記載されたような
延長、走査、およびデブロッキングの繰り返されるサイクルを実行する。(d)相補的なコ
ピーを合成することによってフローセル表面上の標的核酸を「逆にする」。(e)再合成さ
れた鎖を直線化する。(f)第2のシーケンシングプライマーをハイブリダイゼーションし、
上で記載されたような延長、走査、およびデブロッキングの繰り返されるサイクルを実行
する。この逆転操作は、ブリッジ増幅の単一サイクルについて上に記載されたように試薬
を導入するために実行され得る。
【０２５７】
　「基準ゲノム」または「基準配列」という用語は、対象からの特定された配列の基準に
するために使用され得る任意の生物体の任意の特定の既知のゲノム配列を、それが部分的
なものであるか完全なものであるかにかかわらず指す。たとえば、ヒト対象ならびに多く
の他の生物体のために使用される基準ゲノムは、ncbi.nlm.nih.govの米国国立生物工学情
報センターにおいて見つかる。「ゲノム」は、核酸配列で表現される、生物体またはウイ
ルスの完全な遺伝情報を指す。ゲノムは、遺伝子とDNAのノンコーディング配列の両方を
含む。基準配列は、それとアラインメントされるリードより大きいことがある。たとえば
、それは少なくとも約100倍大きいことがあり、または少なくとも約1000倍大きいことが
あり、または少なくとも約10000倍大きいことがあり、または少なくとも約105倍大きいこ
とがあり、または少なくとも約106倍大きいことがあり、または少なくとも約107倍大きい
ことがある。一例では、基準ゲノム配列は、完全な長さのヒトゲノムの基準ゲノム配列で
ある。別の例では、基準ゲノム配列は、13番染色体などの特定のヒト染色体に限定される
。いくつかの実装形態では、基準染色体は、ヒトゲノムバージョンhg19からの染色体配列
である。そのような配列は染色体基準配列と呼ばれ得るが、基準ゲノムという用語がその
ような配列を包含することが意図される。基準配列の他の例には、他の種のゲノム、なら
びに任意の種の染色体、部分染色体領域(鎖など)などがある。様々な実装形態において、
基準ゲノムは、複数の個体に由来するコンセンサス配列または他の組合せである。しかし
ながら、いくつかの適用例では、基準配列は特定の個体から取られることがある。
【０２５８】
　「リード」という用語は、ヌクレオチドサンプルまたは基準のフラグメントを記述する
配列データの集合体を指す。「リード」という用語は、サンプルリードおよび/または基
準リードを指し得る。通常、必須ではないが、リードは、サンプルまたは基準における連
続的な塩基対の短い配列を表す。リードは、サンプルまたは基準フラグメントの塩基対配
列によって文字で(ATCGで)表され得る。リードは、メモリデバイスに記憶され、リードが
基準配列と一致するかどうか、または他の基準を満たすかどうかを決定するために適宜処
理され得る。リードは、シーケンシング装置から直接、またはサンプルに関する記憶され
た配列情報から間接的に得られ得る。いくつかの場合、リードは、たとえば染色体または
ゲノム領域または遺伝子にアラインメントされ具体的に割り当てられ得る、より大きい配
列または領域を特定するために使用され得る、十分な長さの(たとえば、少なくとも約25b
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p)DNA配列である。
【０２５９】
　次世代シーケンシング方法には、たとえば、合成技術によるシーケンシング(Illumina)
、パイロシーケンシング(454)、イオン半導体技術(Ion Torrentシーケンシング)、単一分
子リアルタイムシーケンシング(Pacific Biosciences)、およびライゲーションによるシ
ーケンシング(SOLiDシーケンシング)がある。シーケンシング方法に応じて、各リードの
長さは、約30bpから10000bp以上にまで変動し得る。たとえば、SOLiDシーケンサを使用す
るIlluminaシーケンシング方法は、約50bpの核酸リードを生成する。別の例では、Ion To
rrentシーケンシングは最高で400bpの核酸リードを生成し、454パイロシーケンシングは
約700bpの核酸リードを生成し得る。さらに別の例では、単一分子リアルタイムシーケン
シング方法は、10000bpから15000bpのリードを生成し得る。したがって、いくつかの実装
形態では、核酸配列リードは、30～100bp、50～200bp、または50～400bpの長さを有する
。
【０２６０】
　「サンプルリード」、「サンプル配列」、または「サンプルフラグメント」という用語
は、サンプルからの対象のゲノム配列の配列データを指す。たとえば、サンプルリードは
、フォワードプライマー配列およびリバースプライマー配列を有するPCRアンプリコンか
らの配列データを備える。配列データは、任意の配列選択方法から得られ得る。サンプル
リードは、たとえば、sequencing-by-synthesis(SBS)反応、sequencing-by-ligation反応
、または、そのために反復要素の長さおよび/または正体を決定することが望まれる任意
の他の適切なシーケンシング方法からのものであり得る。サンプルリードは、複数のサン
プルリードに由来するコンセンサス(たとえば、平均または加重)配列であり得る。いくつ
かの実装形態では、基準配列を提供することは、PCRアンプリコンのプライマー配列に基
づいて対象座を特定することを備える。
【０２６１】
　「生フラグメント」という用語は、サンプルリードまたはサンプルフラグメント内で指
定場所または二次的な対象場所と少なくとも部分的に重複する、対象のゲノム配列の部分
に対する配列データを指す。生フラグメントの非限定的な例には、duplex stitchedフラ
グメント、simplex stitchedフラグメント、duplex un-stitchedフラグメント、およびsi
mplex un-stitchedフラグメントがある。「生」という用語は、生フラグメントがサンプ
ルリードの中の潜在的なバリアントに対応しそれが本物であることを証明または確認する
、支持バリアントを呈するかどうかにかかわらず、サンプルリードの中の配列データに対
する何らかの関連を有する配列データを含むことを示すために使用される。「生フラグメ
ント」という用語は、フラグメントが、サンプルリードの中のバリアントコールを妥当性
確認する支持バリアントを必ず含むことを示さない。たとえば、サンプルリードが第1の
バリアントを呈することが、バリアントコールアプリケーションによって決定されるとき
、バリアントコールアプリケーションは、1つまたは複数の生フラグメントが、サンプル
リードの中にそのバリアントがあるとすれば存在することが予想され得る対応するタイプ
の「支持」バリアントを欠いていることを決定し得る。
【０２６２】
　「マッピング」、「アラインメントされる」、「アラインメント」、または「アライン
メントしている」という用語は、リードまたはタグを基準配列と比較し、それにより、基
準配列がリード配列を含むかどうかを決定するプロセスを指す。基準配列がリードを含む
場合、リードは、基準配列にマッピングされることがあり、またはいくつかの実装形態で
は、基準配列の中の特定の位置にマッピングされることがある。いくつかの場合、アライ
ンメントは単に、リードが特定の基準配列のメンバーであるかどうか(すなわち、リード
が基準配列の中に存在するかしないか)を伝える。たとえば、ヒト13番染色体の基準配列
に対するリードのアラインメントは、リードが13番染色体の基準配列の中に存在するかど
うかを伝える。この情報を提供するツールは、セットメンバーシップテスターと呼ばれ得
る。いくつかの場合、アラインメントは追加で、リードまたはタグがマッピングする基準
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配列の中の位置を示す。たとえば、基準配列がヒトゲノム配列全体である場合、アライン
メントは、リードが13番染色体上に存在することを示すことがあり、さらに、リードが13
番染色体の特定の鎖および/またはサイトにあることを示すことがある。
【０２６３】
　「インデル」という用語は、生物体のDNAにおける塩基の挿入および/または欠失を指す
。マイクロインデルは、1～50個のヌクレオチドの正味の変化をもたらすインデルを表す
。ゲノムのコーディング領域において、インデルの長さが3の倍数ではない限り、インデ
ルはフレームシフト変異を生み出す。インデルは点変異と対比され得る。インデルは配列
からヌクレオチドを挿入または削除するが、点変異はDNAの全体の数を変えることなくヌ
クレオチドのうちの1つを置き換えるある形式の置換である。インデルは、タンデム塩基
変異(TBM)とも対比することができ、TBMは隣接するヌクレオチドにおける置換として定義
され得る(主に2つの隣接するヌクレオチドにおける置換、しかし3つの隣接するヌクレオ
チドにおける置換が観察されている)。
【０２６４】
　「バリアント」という用語は、核酸基準と異なる核酸配列を指す。典型的な核酸配列バ
リアントには、限定はされないが、一塩基多型(SNP)、短い欠失および挿入の多型(インデ
ル)、コピー数変異(CNV)、マイクロサテライトマーカー、またはショートタンデムリピー
トおよび構造変異がある。体細胞バリアントコーリング(somatic variant calling)は、D
NAサンプルにおいて低頻度に存在するバリアントを特定するための試みである。体細胞バ
リアントコーリングは、癌治療の文脈において関心の対象である。癌はDNAの変異の蓄積
により引き起こされる。腫瘍からのDNAサンプルは一般に異質であり、いくつかの正常細
胞、癌進行の早期段階にあるいくつかの細胞(少数の変異を伴う)、およびいくつかの後期
段階の細胞(多数の変異を伴う)を含む。この異質さにより、(たとえば、FFPEサンプルか
ら)腫瘍をシーケンシングするとき、体細胞突然変異がしばしば低頻度で現れる。たとえ
ば、ある所与の塩基を含むリードの10%だけにおいて、SNVが見られることがある。バリア
ント分類器によって体細胞性または生殖細胞性であると分類されるべきバリアントは、「
検定対象バリアント(variant under test)」とも本明細書では呼ばれる。
【０２６５】
　「ノイズ」という用語は、シーケンシングプロセスおよび/またはバリアントコールア
プリケーションにおける1つまたは複数のエラーに起因する誤ったバリアントコールを指
す。
【０２６６】
　「バリアント頻度」という用語は、割合または百分率で表される、ある集団の中の特定
の座におけるアレル(遺伝子のバリアント)の相対的な頻度を表す。たとえば、この割合ま
たは百分率は、そのアレルを持つ集団の中のすべての染色体の割合であり得る。例として
、サンプルバリアント頻度は、ある個人からの対象のゲノム配列について取得されたリー
ドおよび/またはサンプルの数に対応する「集団」にわたる、対象のゲノム配列に沿った
特定の座/場所におけるアレル/バリアントの相対的な頻度を表す。別の例として、基準バ
リアント頻度は、1つまたは複数の基準ゲノム配列に沿った特定の座/場所におけるアレル
/バリアントの相対的な頻度を表し、リードおよび/またはサンプルの数に対応する「集団
」は、正常な個人の集団からの1つまたは複数の基準ゲノム配列について取得される。
【０２６７】
　「バリアントアレイ頻度(VAF)」という用語は、標的場所における、バリアントと一致
することが観察されたシーケンシングされたリードをカバレッジ全体で割った百分率を指
す。VAFはバリアントを持つシーケンシングされたリードの比率の尺度である。
【０２６８】
　「場所」、「指定場所」、および「座」という用語は、ヌクレオチドの配列内の1つま
たは複数のヌクレオチドの位置または座標を指す。「場所」、「指定場所」、および「座
」という用語は、ヌクレオチドの配列の中の1つまたは複数の塩基対の位置または座標も
指す。
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【０２６９】
　「ハプロタイプ」という用語は、一緒に受け継がれる染色体上の隣接するサイトにおけ
るアレルの組合せを指す。ハプロタイプは、所与の座のセット間で組み換え事象が発生し
た場合にはその数に依存して、1つの座、いくつかの座、または染色体全体であり得る。
【０２７０】
　本明細書の「閾値」という用語は、サンプル、核酸、またはその一部(たとえば、リー
ド)を特徴付けるためにカットオフとして使用される、数値または数字ではない値を指す
。閾値は経験的な分析に基づいて変動し得る。閾値は、そのような値の示唆をもたらす源
がある特定の方式で分類されるべきであるかどうかを決定するために、測定された値また
は計算された値と比較され得る。閾値は経験的または分析的に特定され得る。閾値の選択
は、ユーザが分類を行うために有することを望む信頼性のレベルに依存する。閾値は特定
の目的で(たとえば、感度と選択度のバランスをとるように)選ばれ得る。本明細書では、
「閾値」という用語は、分析のコースが変更され得る点、および/または活動が惹起され
得る点を示す。閾値は所定の数である必要はない。代わりに、閾値は、たとえば、複数の
要因に基づく関数であり得る。閾値は状況に適応するものであり得る。その上、閾値は、
上限、下限、または制限値間の範囲を示し得る。
【０２７１】
　いくつかの実装形態では、シーケンシングデータに基づく尺度またはスコアが閾値と比
較され得る。本明細書では、「尺度」または「スコア」という用語は、シーケンシングデ
ータから決定された値もしくは結果を含むことがあり、または、シーケンシングデータか
ら決定された値もしくは結果に基づく関数を含むことがある。閾値と同様に、尺度または
スコアは状況に適応するものであり得る。たとえば、尺度またはスコアは正規化された値
であり得る。スコアまたは尺度の例として、1つまたは複数の実装形態は、データを分析
するときにカウントスコアを使用し得る。カウントスコアはサンプルリードの数に基づき
得る。サンプルリードは1つまたは複数のフィルタリング段階を経ていることがあるので
、サンプルリードは少なくとも1つの一般的な特性または品質を有する。たとえば、カウ
ントスコアを決定するために使用されるサンプルリードの各々は、基準配列とアラインメ
ントされていることがあり、または潜在的なアレルとして割り当てられることがある。一
般的な特性を有するサンプルリードの数はリードカウントを決定するためにカウントされ
得る。カウントスコアはリードカウントに基づき得る。いくつかの実装形態では、カウン
トスコアはリードカウントに等しい値であり得る。他の実装形態では、カウントスコアは
リードカウントおよび他の情報に基づき得る。たとえば、カウントスコアは、遺伝子座の
特定のアレルに対するリードカウントおよび遺伝子座に対するリードの総数に基づき得る
。いくつかの実装形態では、カウントスコアは、遺伝子座に対するリードカウントおよび
以前に得られたデータに基づき得る。いくつかの実装形態では、カウントスコアは複数の
所定の値の間の正規化されたスコアであり得る。カウントスコアはまた、サンプルの他の
座からのリードカウントの関数、または対象サンプルと同時に実行された他のサンプルか
らのリードカウントの関数であり得る。たとえば、カウントスコアは、特定のアレルのリ
ードカウントおよびサンプルの中の他の座のリードカウントおよび/または他のサンプル
からのリードカウントの関数であり得る。一例として、他の座からのリードカウントおよ
び/または他のサンプルからのリードカウントが、特定のアレルに対するカウントスコア
を正規化するために使用され得る。
【０２７２】
　「カバレッジ」または「フラグメントカバレッジ」という用語は、配列の同じフラグメ
ントに対するサンプルリードの数のカウントまたは他の尺度を指す。リードカウントは対
応するフラグメントをカバーするリードの数のカウントを表し得る。あるいは、カバレッ
ジは、履歴の知識、サンプルの知識、座の知識などに基づく指定された係数を、リードカ
ウントと乗じることによって決定され得る。
【０２７３】
　「リード深さ」(慣習的に「×」が後に続く数)という用語は、標的場所における重複す
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るアラインメントを伴うシーケンシングされたリードの数を指す。これはしばしば、平均
として、または間隔(エクソン、遺伝子、またはパネルなど)のセットにわたってカットオ
フを超える百分率として表される。たとえば、パネル平均カバレッジが1.105×であり、
カバーされる標的塩基の98%が>100×であるということを、臨床報告が述べることがある
。
【０２７４】
　「塩基コール品質スコア」または「Qスコア」という用語は、単一のシーケンシングさ
れた塩基が正しい確率に反比例する、0～20の範囲のPHREDスケーリングされた確率を指す
。たとえば、Qが20であるT塩基コールは、0.01という信頼性P値を伴い正しい可能性が高
いと見なされる。Q<20であるあらゆる塩基コールは低品質であると見なされるべきであり
、バリアントを支持するシーケンシングされたリードのかなりの部分が低品質であるよう
なあらゆる特定されたバリアントは、偽陽性の可能性があると見なされるべきである。
【０２７５】
　「バリアントリード」または「バリアントリード数」という用語は、バリアントの存在
を支持するシーケンシングされたリードの数を指す。
【０２７６】
［シーケンシングプロセス］
　本明細書に記載される実装形態は、配列の変異を特定するために核酸配列を分析するこ
とに適用可能であり得る。実装形態は、遺伝子の場所/座の潜在的なバリアント/アレルを
分析し、遺伝子座の遺伝子型を決定するために、言い換えると、座に対する遺伝子型コー
ルを提供するために使用され得る。例として、核酸配列は、米国特許出願公開第2016/008
5910号および米国特許出願公開第2013/0296175号において説明される方法およびシステム
に従って分析されることがあり、これらの出願公開の完全な主題の全体が、本明細書にお
いて参照によって明確に引用される。
【０２７７】
　一実装形態では、シーケンシングプロセスは、DNAなどの核酸を含む、または含むこと
が疑われるサンプルを受け取ることを含む。サンプルは、動物(たとえばヒト)、植物、バ
クテリア、または菌類などの、既知のまたは未知の源からのものであり得る。サンプルは
源から直接採取され得る。たとえば、血液または唾液が個体から直接採取され得る。代わ
りに、サンプルは源から直接採取されないことがある。次いで、1つまたは複数のプロセ
ッサは、シーケンシングのためのサンプルを調製するようにシステムに指示する。この調
製は、外来の物質を除去することおよび/または何らかの物質(たとえば、DNA)を隔離する
ことを含み得る。生体サンプルは、特定のアッセイのための特徴を含むように調製され得
る。たとえば、生体サンプルは、sequencing-by-synthesis(SBS)のために調製され得る。
いくつかの実装形態では、調製することは、ゲノムのいくつかの領域の増幅を含み得る。
たとえば、調製することは、STRおよび/またはSNRを含むことが知られている所定の遺伝
子座を増幅することを含み得る。遺伝子座は、所定のプライマー配列を使用して増幅され
得る。
【０２７８】
　次に、1つまたは複数のプロセッサは、サンプルをシーケンシングするようにシステム
に指示する。シーケンシングは、様々な既知のシーケンシングプロトコルを通じて実行さ
れ得る。特定の実装形態では、シーケンシングはSBSを含む。SBSでは、複数の蛍光ラベリ
ングされたヌクレオチドが、光学基板の表面(たとえば、フローセルの中のチャネルを少
なくとも部分的に画定する表面)上に存在する増幅されたDNAの複数のクラスタ(場合によ
っては数百万個のクラスタ)をシーケンシングするために使用される。フローセルはシー
ケンシングのための核酸サンプルを含むことがあり、ここでフローセルは適切なフローセ
ルホルダ内に配置される。
【０２７９】
　核酸は、未知の標的配列に隣接する既知のプライマー配列を備えるように調製され得る
。最初のSBSシーケンシングサイクルを開始するために、1つまたは複数の異なるようにラ
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ベリングされたヌクレオチド、およびDNAポリメラーゼなどが、流体サブシステムによっ
てフローセルの中へと/フローセルを通って流され得る。単一のタイプのヌクレオチドが
一度に追加されるか、または、シーケンシング手順において使用されるヌクレオチドが反
転可能な末端の性質を持つように特別に設計されるかのいずれかであってよく、これによ
り、シーケンシング反応の各サイクルが、いくつかのタイプのラベリングされたヌクレオ
チド(たとえば、A、C、T、G)の存在下で同時に発生することが可能になる。ヌクレオチド
は、蛍光色素などの検出可能なラベル部分を含み得る。4つのヌクレオチドが一緒に混合
される場合、ポリメラーゼは組み込むべき正しい塩基を選択することが可能であり、各配
列は一塩基だけ延長される。組み込まれないヌクレオチドは、洗浄液をフローセルに流す
ことによって洗い落とされ得る。1つまたは複数のレーザーが、核酸を励起して蛍光を誘
導し得る。核酸から放出される蛍光は組み込まれた塩基の蛍光色素に基づき、異なる蛍光
色素は異なる波長の放出光を放出し得る。デブロッキング試薬が、延長され検出されたDN
A鎖から反転可能な末端グループを除去するためにフローセルに追加され得る。次いでデ
ブロッキング試薬が、洗浄液をフローセルに流すことによって洗い落とされ得る。そうす
ると、フローセルは、上に記載されたようなラベリングされたヌクレオチドの導入で開始
するシーケンシングのさらなるサイクルの準備ができる。流体および検出の操作は、シー
ケンシングの実行を完了するために何回か繰り返され得る。例示的なシーケンシング方法
は、たとえば、Bentley他、Nature 456:53-59(2008)、国際特許出願公開第WO 04/018497
号、米国特許第7057026号、国際特許出願公開第WO 91/06678号、国際特許出願公開第WO 0
7/123744号、米国特許第7329492号、米国特許第7211414号、米国特許第7315019号、米国
特許第7405281号、および米国特許出願公開第2008/0108082号において説明されており、
これらの各々が参照によって本明細書において引用される。
【０２８０】
　いくつかの実装形態では、核酸は表面に付着され、シーケンシングの前または間に増幅
され得る。たとえば、増幅は、表面上に核酸クラスタを形成するためにブリッジ増幅を使
用して行われ得る。有用なブリッジ増幅方法は、たとえば、米国特許第5641658号、米国
特許出願公開第2002/0055100号、米国特許第7115400号、米国特許出願公開第2004/009685
3号、米国特許出願公開第2004/0002090号、米国特許出願公開第2007/0128624号、および
米国特許出願公開第2008/0009420号において説明されており、これらの各々の全体が参照
によって本明細書において引用される。表面上で核酸を増幅するための別の有用な方法は
、たとえば、Lizardi他、Nat. Genet. 19:225-232(1998)、および米国特許出願公開第200
7/0099208A1号において説明されるようなローリングサークル増幅(RCA)であり、これらの
各々が参照によって本明細書において引用される。
【０２８１】
　1つの例示的なSBSプロトコルは、たとえば、国際特許出願公開第WO 04/018497号、米国
特許出願公開第2007/0166705A1号、および米国特許第7057026号において説明されるよう
な、除去可能な3'ブロックを有する修正されたヌクレオチドを利用し、これらの各々が参
照によって本明細書において引用される。たとえば、SBS試薬の反復されるサイクルが、
たとえばブリッジ増幅プロトコルの結果として、標的核酸が付着されたフローセルに導入
され得る。核酸クラスタは、直線化溶液を使用して単鎖の形態へと変換され得る。直線化
溶液は、たとえば、各クラスタの1本の鎖を開裂することが可能な制限エンドヌクレアー
ゼを含み得る。とりわけ化学開裂(たとえば、過ヨード酸塩を用いたジオール結合の開裂)
、熱またはアルカリへの曝露によるエンドヌクレアーゼ(たとえば、米国マサチューセッ
ツ州イプスウィッチのNEBにより供給されるような「USER」、部品番号M5505S)を用いた開
裂による無塩基サイトの開裂、そうされなければデオキシリボヌクレオチドからなる増幅
産物へと組み込まれるリボヌクレオチドの開裂、光化学開裂またはペプチドリンカーの開
裂を含む、開裂の他の方法が、制限酵素またはニッキング酵素に対する代替として使用さ
れ得る。直線化操作の後で、シーケンシングプライマーは、シーケンシングされるべき標
的核酸へのシーケンシングプライマーのハイブリダイゼーションのための条件下で、フロ
ーセルに導入され得る。
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【０２８２】
　次いで、フローセルが、単一のヌクレオチドの追加によって各標的核酸にハイブリダイ
ゼーションされるプライマーを延長するための条件下で、除去可能な3'ブロックおよび蛍
光ラベルを伴う修正されたヌクレオチドを有するSBS延長試薬と接触させられ得る。単一
のヌクレオチドだけが各プライマーに追加され、それは、修正されたヌクレオチドが、シ
ーケンシングされているテンプレートの領域と相補的な成長中のポリヌクレオチド鎖へと
組み込まれると、さらなる配列延長を指示するために利用可能な自由な3'-OH基がないの
で、ポリメラーゼがさらなるヌクレオチドを追加できないからである。SBS延長試薬は、
除去され、放射線による励起のもとでサンプルを保護する構成要素を含む走査試薬により
置き換えられ得る。走査試薬の例示的な構成要素は、米国特許出願公開第2008/0280773A1
号および米国特許出願第13/018255号において説明され、これらの各々が参照によって本
明細書に引用される。次いで、延長された核酸が、走査試薬の存在下で蛍光により検出さ
れ得る。蛍光が検出されると、3'ブロックが、使用されるブロッキンググループに適切な
デブロック試薬を使用して除去され得る。それぞれのブロッキンググループに対して有用
な例示的なデブロック試薬は、国際特許出願公開第WO004018497号、米国特許出願公開第2
007/0166705A1号、および米国特許第7057026号において説明されており、これらの各々が
参照によって本明細書において引用される。デブロック試薬は、3'OH基を有する延長され
たプライマーにハイブリダイゼーションされる標的核酸を残して洗浄されてよく、このプ
ライマーはこれで、さらなるヌクレオチドの追加が可能になる。したがって、延長試薬、
走査試薬、およびデブロック試薬を追加するサイクルは、操作のうちの1つまたは複数の
間の任意選択の洗浄とともに、所望の配列が得られるまで繰り返され得る。上記のサイク
ルは、修正されたヌクレオチドの各々に異なるラベルが付けられているとき、特定の塩基
に対応することが知られている、サイクルごとに単一の延長試薬導入操作を使用して行わ
れ得る。異なるラベルが、各組み込み操作の間に追加されるヌクレオチドの区別を容易に
する。代わりに、各サイクルは、延長試薬導入の別個の操作と、それに続く走査試薬導入
と検出の別
個の操作とを含むことがあり、この場合、ヌクレオチドのうちの2つ以上が同じラベルを
有することが可能であり、それらを導入の既知の順序に基づいて区別することができる。
【０２８３】
　シーケンシング操作は特定のSBSプロトコルに関して上で論じられたが、シーケンシン
グのための他のプロトコルおよび様々な他の分子分析法のいずれもが、必要に応じて行わ
れ得ることが理解されるであろう。
【０２８４】
　次いで、システムの1つまたは複数のプロセッサは、後続の分析のためのシーケンシン
グデータを受け取る。シーケンシングデータは、.BAMファイルなどの様々な方式でフォー
マットされ得る。シーケンシングデータは、たとえばいくつかのサンプルリードを含み得
る。シーケンシングデータは、ヌクレオチドの対応するサンプル配列を有する複数のサン
プルリードを含み得る。1つだけのサンプルリードが論じられるが、シーケンシングデー
タは、たとえば、数百個、数千個、数十万個、または数百万個のサンプルリードを含み得
ることを理解されたい。異なるサンプルリードは異なる数のヌクレオチドを有し得る。た
とえば、サンプルリードは、10個のヌクレオチドから約500個以上のヌクレオチドにまで
わたり得る。サンプルリードは源のゲノム全体にわたり得る。一例として、サンプルリー
ドは、疑わしいSTRまたは疑わしいSNPを有する遺伝子座などの、所定の遺伝子座の方を向
いている。
【０２８５】
　各サンプルリードは、サンプル配列、サンプルフラグメント、または標的配列と呼ばれ
得る、ヌクレオチドの配列を含み得る。サンプル配列は、たとえば、プライマー配列、フ
ランキング配列、および標的配列を含み得る。サンプル配列内のヌクレオチドの数は、30
個、40個、50個、60個、70個、80個、90個、100個以上を含み得る。いくつかの実装形態
では、サンプルリード(またはサンプル配列)のうちの1つまたは複数は、少なくとも150個
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のヌクレオチド、200個のヌクレオチド、300個のヌクレオチド、400個のヌクレオチド、5
00個のヌクレオチド、またはそれより多くを含む。いくつかの実装形態では、サンプルリ
ードは、1000個を超えるヌクレオチド、2000個を超えるヌクレオチド、またはそれより多
くを含み得る。サンプルリード(またはサンプル配列)は、一端または両端にプライマー配
列を含み得る。
【０２８６】
　次に、1つまたは複数のプロセッサは、シーケンシングデータを分析して、潜在的なバ
リアントコールおよびサンプルバリアントコールのサンプルバリアント頻度を取得する。
この操作は、バリアントコールアプリケーションまたはバリアントコーラとも呼ばれ得る
。したがって、バリアントコーラはバリアントを特定または検出し、バリアント分類器は
検出されたバリアントを体細胞性または生殖細胞性であるものとして分類する。代替的な
バリアントコーラが本明細書の実装形態に従って利用されることがあり、ここで、異なる
バリアントコーラは、実行されているシーケンシング操作のタイプ、対象のサンプルの特
徴などに基づき使用され得る。バリアントコールアプリケーションの1つの非限定的な例
は、https://github.com/Illumina/Piscesにおいてホストされ、論説Dunn, Tamsenおよび
Berry, GwennおよびEmig-Agius, DorotheaおよびJiang, YuおよびIyer, AnitaおよびUdar
, NitinおよびStromberg, Michael、(2017)、Pisces: An Accurate and Versatile Singl
e Sample Somatic and Germline Variant Caller、595-595、10.1145/3107411.3108203に
おいて説明される、Illumina Inc.(カリフォルニア州サンディエゴ)によるPisces(商標)
アプリケーションであり、上記の論説の完全な主題の全体が、参照によって本明細書にお
いて引用される。
【０２８７】
　そのようなバリアントコールアプリケーションは4つの順番に実行されるモジュールを
備え得る。
【０２８８】
　(1)Pisces Read Stithcer:BAMの中の対になっているリード(同じ分子のリード1および
リード2)をコンセンサスリードへとステッチングすることによってノイズを減らす。出力
はステッチングされたBAMである。
【０２８９】
　(2)Pisces Variant Caller:小さいSNV、挿入および欠失をコールする。Piscesは、リー
ド境界、基本的なフィルタリングアルゴリズム、および単純なポワソンベースのバリアン
ト信頼性スコアリングアルゴリズムによって分解される、合祖バリアントへのバリアント
折り畳み(variant-collapsing)アルゴリズムを含む。出力はVCFである。
【０２９０】
　(3)Pisces Variant Quality Recalibrator(VQR):バリアントコールが熱損傷またはFFPE
脱アミノ化と関連付けられるパターンに圧倒的に従う場合、VQRステップは疑わしいバリ
アントコールのバリアントQスコアを下げる。出力は調整されたVCFである。
【０２９１】
　(4)Pisces Variant Phaser(Scylla):クローンの亜集団から少数のバリアントを複雑な
アレルへと組み立てるために、read-backed greedy clustering法を使用する。このこと
は、下流のツールによる機能的な結果のより正確な決定を可能にする。出力は調整された
VCFである。
【０２９２】
　加えて、または代わりに、この操作は、https://github.com/Illumina/strelkaにおい
てホストされ、論説T Saunders, ChristopherおよびWong, WendyおよびSwamy, Sajaniお
よびBecq, JenniferおよびJ Murray, LisaおよびCheetham, Keira、(2012)、Strelka: Ac
curate somatic small-variant calling from sequenced tumor-normal sample pairs、B
ioinformatics (Oxford, England)、28、1811-7、10.1093/bioinformatics/bts271におい
て説明される、Illumina Inc.によるバリアントコールアプリケーションStrelka(商標)ア
プリケーションを利用することがあり、上記の論説の完全な主題の全体が、参照によって
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本明細書において明確に引用される。さらに、加えて、または代わりに、この操作は、ht
tps://github.com/Illumina/strelkaにおいてホストされ、論説Kim, S、Scheffler, K、H
alpern, A.L.、Bekritsky, M.A、Noh, E、Kallberg, M、Chen, X、Beyter, D、Krusche, 
P、およびSaunders, C.T、(2017)、Strelka2: Fast and accurate variant calling for 
clinical sequencing applicationsにおいて説明される、Illumina Inc.によるバリアン
トコールアプリケーションStrelka2(商標)アプリケーションを利用することがあり、上記
の文書の完全な主題の全体が、参照によって本明細書において明確に引用される。その上
、加えて、または代わりに、この操作は、https://github.com/Illumina/Nirvana/wikiに
おいてホストされ、論説Stromberg, MichaelおよびRoy, RajatおよびLajugie, Julienお
よびJiang, YuおよびLi, HaochenおよびMargulies, Elliott、(2017)、Nirvana: Clinica
l Grade Variant Annotator、596-596、10.1145/3107411.3108204において説明される、I
llumina Inc.によるNirvana(商標)アプリケーションなどのバリアントアノテーション/コ
ールツールを利用することがあり、上記の文書の完全な主題の全体が、参照によって本明
細書において明確に引用される。
【０２９３】
　そのようなバリアントアノテーション/コールツールは、Nirvanaにおいて開示されるも
のなどの異なるアルゴリズム技法を適用することができる。
【０２９４】
　a.区間アレイ(Interval Array)を用いてすべての重複する転写産物を特定する。機能的
なアノテーションのために、バリアントと重複するすべての転写産物を特定することがで
き、区間木を使用することができる。しかしながら、区間のセットは静的であり得るので
、区間木を区間アレイへとさらに最適化することが可能であった。区間木は、O(min(n,k 
lg n))時間においてすべての重複する転写産物を返し、ここでnは木の中の区間の数であ
り、kは重複する区間の数である。実際には、kは大半のバリアントに対してnと比較して
本当に小さいので、区間木上での実効的なランタイムはO(k lg n)である。我々は、最初
の重複する区間を見つけて、次いで残りの(k-1)にわたって数え上げるだけでよいように
、ソートされたアレイにすべての区間が記憶されるような区間アレイを作成することによ
って、O(lg n+k)へと改善した。
【０２９５】
　b.CNV/SV(Yu):コピー数変異および構造変異のためのアノテーションが提供され得る。
小さいバリアントのアノテーションと同様に、SVと重複する転写産物、および以前に報告
された構造変異も、オンラインデータベースにおいてアノテートされ得る。小さいバリア
ントと異なり、すべての重複する転写産物がアノテートされる必要はなく、それは、あま
りにも多くの転写産物が大きなSVと重複するからである。代わりに、部分的な重複遺伝子
に属するすべての重複する転写産物がアノテートされ得る。具体的には、これらの転写産
物に対して、影響を受けるイントロン、エクソン、および構造変異により引き起こされる
結果が報告され得る。すべての重複する転写産物の出力を許可するための選択肢が可能で
あるが、遺伝子名、転写産物との正規の(canonical)重複であるか部分的な重複であるか
のフラグなどの、これらの転写産物の基本情報が報告され得る。各SV/CNVに対して、これ
らのバリアントが研究されているかどうか、および異なる集団におけるそれらの頻度を知
ることも関心事である。したがって、1000 genomes、DGV、およびClinGenなどの外部デー
タベースにおいて重複するSVを報告した。どのSVが重複しているかを決定するための恣意
的なカットオフを使用するのを避けるために、代わりに、すべての重複する転写産物が使
用されてよく、相互の重複率、すなわち、重複する長さをこれらの2つのSVの長さのうち
の短い方で割ったものが計算されてよい。
【０２９６】
　c.補足アノテーションを報告する。補足アノテーションには、小さいバリアントと構造
バリアント(SV)という2つのタイプがある。SVは、区間としてモデル化されてよく、重複
するSVを特定するために上で論じられた区間アレイを使用することができる。小さいバリ
アントは、点としてモデル化され、場所および(任意選択で)アレルによって照合される。
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したがって、それらは二分探索様のアルゴリズムを使用して検索される。補足アノテーシ
ョンデータベースは非常に大きいことがあるので、補足アノテーションが存在するファイ
ル位置に染色体場所をマッピングするために、はるかにより小さなインデックスが作成さ
れる。インデックスは、場所を使用して二分探索され得るオブジェクト(染色体場所とフ
ァイル位置からなる)のソートされたアレイである。インデックスサイズを小さく保つた
めに、(ある最大のカウントまでの)複数の場所が、第1の場所の値と後続の場所に対する
差分のみを記憶する1つのオブジェクトへと圧縮される。二分探索を使用するので、ラン
タイムはO(lg n)であり、nはデータベースの中の項目の数である。
【０２９７】
　d.VEPキャッシュファイル
【０２９８】
　e.転写産物データベース:転写産物キャッシュ(キャッシュ)および補足データベース(SA
db)ファイルは、転写産物および補足アノテーションなどのデータオブジェクトのシリア
ル化されたダンプである。キャッシュのためのデータソースとして、Ensembl VEPキャッ
シュを使用する。キャッシュを作成するために、すべての転写産物が区間アレイに挿入さ
れ、アレイの最終状態がキャッシュファイルに記憶される。したがって、アノテーション
の間に、事前に計算された区間アレイをロードしてそれについて探索を実行するだけでよ
い。キャッシュはメモリへとロードされて探索は非常に高速(上で説明された)であるため
、重複する転写産物を見つけることはNirvanaにおいては非常に高速である(総ランタイム
の1%未満であると鑑定されている?)。
【０２９９】
　f.補足データベース:SAdbのデータソースは補足材料のもとで列挙される。小さいバリ
アントに対するSAdbは、データベースの中の各オブジェクト(参照名および場所によって
特定される)がすべての関連する補足アノテーションを保持するように、すべてのデータ
ソースのk-wayマージによって生み出される。データソースファイルを解析する間に遭遇
する問題は、Nirvanaのホームページにおいて詳細に文書化されている。メモリ使用量を
制限するために、SAインデックスのみがメモリにロードされる。このインデックスは、補
足アノテーションのためのファイル位置の高速なルックアップを可能にする。しかしなが
ら、データはディスクからフェッチされなければならないので、補足アノテーションを追
加することは、Nirvanaの最大のボトルネックであると特定されている(総ランタイムの約
30%であると鑑定されている)。
【０３００】
　g.結果および配列オントロジー(Consequence and Sequence Ontology):Nirvanaの機能
的アノテーション(提供されるとき)は、Sequence Ontology(SO)(http://www.sequenceont
ology.org/)ガイドラインに従う。時として、現在のSOにおける問題を特定して、アノテ
ーションの状態を改善するためにSOチームと協力する機会があった。
【０３０１】
　そのようなバリアントアノテーションツールは、前処理を含み得る。たとえば、Nirvan
aは、ExAC、EVS、1000 Genomes project、dbSNP、ClinVar、Cosmic、DGV、およびClinGen
のような、外部データソースからの多数のアノテーションを含んでいた。これらのデータ
ベースを完全に利用するには、それらからの情報をサニタイジングしなければならない。
我々は、様々なデータソースからの存在する様々な矛盾に対処するための異なる戦略を実
施した。たとえば、同じ場所および代替のアレルに対する複数のdbSNPエントリがある場
合、すべてのidをカンマで分けられたidのリストへと加える。同じアレルに対する異なる
CAF値を伴う複数のエントリがある場合、第1のCAF値を使用する。矛盾するExACエントリ
とEVSエントリに対して、サンプルカウントの数を考慮し、よりサンプルカウントの高い
エントリが使用される。1000 Genome Projectsでは、矛盾するアレルのアレル頻度を除去
した。別の問題は不正確な情報である。我々は主に、1000 Genome Projectsからアレル頻
度情報を抽出したが、GRCh38について、情報フィールドにおいて報告されているアレル頻
度が利用可能ではない遺伝子型を伴うサンプルを除外していないことに気付き、これは、
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すべてのサンプルに対して利用可能ではないバリアントに対する頻度の低下につながる。
我々のアノテーションの正確さを保証するために、個体レベルの遺伝子型のすべてを使用
して真のアレル頻度を計算する。知られているように、同じバリアントは異なるアライン
メントに基づく異なる表現を有し得る。すでに特定されたバリアントについての情報を正
確に報告できることを確実にするために、異なるリソースからのバリアントを前処理して
それらを一貫した表現にしなければならない。すべての外部データソースに対して、基準
アレルと代替アレルの両方における重複したヌクレオチドを除去するためにアレルをトリ
ミングした。ClinVarについては、xmlファイルを直接解析し、すべてのバリアントに対す
る5'アラインメントを実行した。この手法はしばしばvcfファイルにおいて使用される。
異なるデータベースは同じ情報のセットを含み得る。不必要な重複を避けるために、一部
の重複した情報を除去した。たとえば、1000 genomesにおけるこれらのバリアントをより
詳細な情報とともにすでに報告したので、1000 genome projectsをデータソースとして有
するDGVの中のバリアントを除去した。
【０３０２】
　少なくともいくつかの実装形態によれば、バリアントコールアプリケーションは、低頻
度バリアント、生殖細胞系コーリングなどに対するコールを提供する。非限定的な例とし
て、バリアントコールアプリケーションは、腫瘍のみのサンプルおよび/または腫瘍-正常
ペアサンプルに対して実行され得る。バリアントコールアプリケーションは、一塩基変異
(SNV)、多塩基変異(MNV)、インデルなどを探索し得る。バリアントコールアプリケーショ
ンは、バリアントを特定しながら、シーケンシングまたはサンプル調製エラーによる不一
致をフィルタリングする。各バリアントに対して、バリアントコーラは、基準配列、バリ
アントの場所、および可能性のあるバリアント配列(たとえば、AからCへのSNV、またはAG
からAへの欠失)を特定する。バリアントコールアプリケーションは、サンプル配列(また
はサンプルフラグメント)、基準配列/フラグメント、およびバリアントコールを、バリア
ントが存在することを示すものとして特定する。バリアントコールアプリケーションは、
生フラグメントを特定し、生フラグメントの指定、潜在的なバリアントコールを検証する
生フラグメントの数のカウント、支持バリアントが発生した生フラグメント内での場所、
および他の関連する情報を特定し得る。生フラグメントの非限定的な例には、duplex sti
tchedフラグメント、simplex stitchedフラグメント、duplex un-stitchedフラグメント
、およびsimplex un-stitchedフラグメントがある。
【０３０３】
　バリアントコールアプリケーションは、.VCFファイルまたは.GVCFファイルなどの様々
なフォーマットでコールを出力し得る。単なる例として、バリアントコールアプリケーシ
ョンは、MiSeqReporterパイプラインに含まれ得る(たとえば、MiSeq(登録商標)シーケン
サ装置で実装されるとき)。任意選択で、このアプリケーションは様々なワークフローを
用いて実装され得る。分析は、所望の情報を得るために指定された方式でサンプルリード
を分析する、単一のプロトコルまたはプロトコルの組合せを含み得る。
【０３０４】
　次いで、1つまたは複数のプロセッサは、潜在的なバリアントコールに関連して妥当性
確認操作を実行する。妥当性確認操作は、以下で説明されるように、品質スコア、および
/または階層化された検定のヒエラルキーに基づき得る。妥当性確認操作が、潜在的なバ
リアントコールを確証または実証するとき、妥当性確認操作は(バリアントコールアプリ
ケーションからの)バリアントコール情報をサンプル報告生成器に渡す。代わりに、妥当
性確認操作が潜在的なバリアントコールを無効とするとき、または失格と判定するとき、
妥当性確認操作は対応する指示(たとえば、否定的インジケータ、コールなしインジケー
タ、無効コールインジケータ)をサンプル報告生成器に渡す。妥当性確認操作はまた、バ
リアントコールが正しいことまたは無効なコール指定が正しいことの信頼性の程度に関す
る信頼性スコアを渡し得る。
【０３０５】
　次に、1つまたは複数のプロセッサがサンプル報告を生成して記憶する。サンプル報告
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は、たとえば、サンプルに関する複数の遺伝子座に関する情報を含み得る。たとえば、遺
伝子座の所定のセットの各遺伝子座に対して、サンプル報告は、遺伝子型コールを提供す
ること、遺伝子型コールを行えないことを示すこと、遺伝子型コールの確実さについての
信頼性スコアを提供すること、または、1つまたは複数の遺伝子座に関するアッセイにつ
いての潜在的な問題を示すことのうちの少なくとも1つを行い得る。サンプル報告はまた
、サンプルを提供した個体の性別を示し、かつ/またはサンプルが複数の源を含むことを
示し得る。本明細書では、「サンプル報告」は、ある遺伝子座もしくは遺伝子座の所定の
セットのデジタルデータ(たとえば、データファイル)および/または遺伝子座もしくは遺
伝子座のセットの印刷された報告を含み得る。したがって、生成することまたは提供する
ことは、データファイルを作成することおよび/もしくはサンプル報告を印刷すること、
またはサンプル報告を表示することを含み得る。
【０３０６】
　サンプル報告は、バリアントコールが決定されたが妥当性確認されなかったことを示す
ことがある。バリアントコールが無効であると決定されるとき、サンプル報告は、バリア
ントコールの妥当性を確認できないという決定の基礎に関する追加の情報を示し得る。た
とえば、報告の中の追加の情報は、生フラグメントの記述と、生フラグメントがバリアン
トコールを支持または否定する程度(たとえば、カウント)とを含み得る。加えて、または
代わりに、報告の中の追加の情報は、本明細書で説明される実装形態に従って得られる品
質スコアを含み得る。
【０３０７】
［バリアントコールアプリケーション］
　本明細書で開示される実装形態は、潜在的なバリアントコールを特定するためにシーケ
ンシングデータを分析することを含む。バリアントコールは、以前に実行されたシーケン
シング操作について記憶されたデータに対して実行され得る。加えて、または代わりに、
バリアントコーリングは、シーケンシング操作が実行されている間にリアルタイムで実行
され得る。サンプルリードの各々が、対応する遺伝子座を割り当てられる。サンプルリー
ドは、サンプルリードのヌクレオチドの配列、または言い換えると、サンプルリード内の
ヌクレオチドの順序(たとえば、A、C、G、T)に基づいて、対応する遺伝子座に割り当てら
れ得る。この分析に基づいて、サンプルリードは、特定の遺伝子座の潜在的なバリアント
/アレルを含むものとして指定され得る。サンプルリードは、遺伝子座の潜在的なバリア
ント/アレルを含むものとして指定された他のサンプルリードとともに収集(または集約ま
たは貯蔵)され得る。割当て操作はコーリング操作とも呼ばれることがあり、コーリング
操作において、サンプルリードは特定の遺伝子場所/座と関連付けられる可能性があるも
のとして特定される。サンプルリードは、サンプルリードを他のサンプルリードから区別
するヌクレオチドの1つまたは複数の識別配列(たとえば、プライマー配列)を位置特定す
るために分析され得る。より具体的には、識別配列は、特定の遺伝子座と関連付けられる
ものとしてサンプルリードを他のサンプルリードから特定し得る。
【０３０８】
　割当て操作は、識別配列の一連のn個のヌクレオチドが選択配列のうちの1つまたは複数
と実質的に一致するかどうかを決定するために、識別配列の一連のn個のヌクレオチドを
分析することを含み得る。特定の実装形態では、割当て操作は、サンプル配列の最初のn
個のヌクレオチドが選択配列のうちの1つまたは複数と実質的に一致するかどうかを決定
するために、サンプル配列の最初のn個のヌクレオチドを分析することを含み得る。数nは
様々な値を有することがあり、この値はプロトコルへとプログラムされることがあり、ま
たはユーザにより入力されることがある。たとえば、数nは、データベース内の最短の選
択配列のヌクレオチドの数として定義され得る。数nは所定の数であり得る。所定の数は
、たとえば、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、
27、28、29、または30個のヌクレオチドであり得る。しかしながら、他の実装形態では、
より少数または多数のヌクレオチドが使用され得る。数nはまた、システムのユーザなど
の個人によって選択されてもよい。数nは1つまたは複数の条件に基づき得る。たとえば、
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数nは、データベース内の最短のプライマー配列のヌクレオチドの数または指定された数
のうちの小さい方の数として定義され得る。いくつかの実装形態では、15個未満のヌクレ
オチドであるあらゆるプライマー配列が例外として指定され得るように、15などのnの最
小値が使用され得る。
【０３０９】
　いくつかの場合、識別配列の一連のn個のヌクレオチドは、選択配列のヌクレオチドと
正確に一致しないことがある。それでも、識別配列は、選択配列とほぼ同一である場合、
選択配列と実質的に一致し得る。たとえば、識別配列の一連のn個のヌクレオチド(たとえ
ば、最初のn個のヌクレオチド)が、不一致が指定された数(たとえば、3)を超えずに、か
つ/またはシフトが指定された数(たとえば、2)を超えずに、選択配列と一致する場合、サ
ンプルリードが遺伝子座に対してコールされ得る。各不一致またはシフトが、サンプルリ
ードとプライマー配列との間の差としてカウントされ得るように、規則が確立され得る。
差の数が指定された数未満である場合、サンプルリードは、対応する遺伝子座(すなわち
、対応する遺伝子座に割り当てられる)に対してコールされ得る。いくつかの実装形態で
は、サンプルリードの識別配列と遺伝子座に関連付けられる選択配列との間の差の数に基
づく、マッチングスコアが決定され得る。マッチングスコアが指定されたマッチング閾値
に合格する場合、選択配列に対応する遺伝子座は、サンプルリードに対する潜在的な座と
して指定され得る。いくつかの実装形態では、サンプルリードが遺伝子座に対してコール
されるかどうかを決定するために、後続の分析が実行され得る。
【０３１０】
　サンプルリードがデータベースの中の選択配列のうちの1つと実質的に一致する(すなわ
ち、厳密に一致する、または上で説明されたようにほぼ一致する)場合、サンプルリード
は、選択配列と相関する遺伝子座に割り当てられ、または指定される。これは、座コーリ
ングまたは予備的座コーリングと呼ばれることがあり、選択配列に相関する遺伝子座に対
してサンプルリードがコールされる。しかしながら、上で論じられたように、サンプルリ
ードは2つ以上の遺伝子座に対してコールされ得る。そのような実装形態では、潜在的な
遺伝子座のうちの1つだけに対するサンプルリードをコールするために、または割り当て
るために、さらなる分析が実行され得る。いくつかの実装形態では、基準配列のデータベ
ースと比較されるサンプルリードは、ペアエンドシーケンシングからの最初のリードであ
る。ペアエンドシーケンシングを実行するとき、サンプルリードに相関する第2のリード(
生フラグメントを表す)が得られる。割当ての後で、割り当てられたリードについて実行
される後続の分析は、割り当てられたリードに対してコールされた遺伝子座のタイプに基
づき得る。
【０３１１】
　次に、潜在的なバリアントコールを特定するために、サンプルリードが分析される。と
りわけ、分析の結果は、潜在的なバリアントコール、サンプルバリアント頻度、基準配列
、および対象のゲノム配列内でのバリアントが発生した場所を特定する。たとえば、遺伝
子座がSNPを含むことが知られている場合、遺伝子座に対してコールされた割り当てられ
たリードは、割り当てられたリードのSNPを特定するための分析を経ることがある。遺伝
子座が多型の反復的なDNA要素を含むことが知られている場合、サンプルリード内の多型
の反復的なDNA要素を特定するために、または特徴付けるために、割り当てられるリード
が分析され得る。いくつかの実装形態では、割り当てられるリードがSTR座およびSNP座と
実質的に一致する場合、警告またはフラグがサンプルリードに割り当てられ得る。サンプ
ルリードは、STR座とSNP座の両方として指定され得る。この分析は、割り当てられたリー
ドの配列および/または長さを決定するために、割当てプロトコルに従って割り当てられ
たリードをアラインメントすることを含み得る。アラインメントプロトコルは、全体が参
照によって本明細書において引用される、2013年3月15日に出願された国際特許出願第PCT
/US2013/030867号(公開番号第WO 2014/142831号)において説明される方法を含み得る。
【０３１２】
　次いで、1つまたは複数のプロセッサは、支持バリアントが生フラグメント内の対応す
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る場所に存在するかどうかを決定するために、生フラグメントを分析する。様々なタイプ
の生フラグメントが特定され得る。たとえば、バリアントコーラは、元のバリアントコー
ルを妥当性確認するバリアントを示すあるタイプの生フラグメントを特定し得る。たとえ
ば、そのタイプの生フラグメントは、duplex stitchedフラグメント、simplex stitched
フラグメント、duplex un-stitchedフラグメント、またはsimplex un-stitchedフラグメ
ントを表し得る。任意選択で、前述の例の代わりに、またはそれに加えて、他の生フラグ
メントが特定され得る。各タイプの生フラグメントを特定することに関連して、バリアン
トコーラはまた、支持バリアントが発生した生フラグメント内での場所、ならびに、支持
バリアントを示した生フラグメントの数のカウントを特定する。たとえば、バリアントコ
ーラは、生フラグメントの10個のリードが、特定の場所Xにおいて支持バリアントを有す
るduplex stitchedフラグメントを表すことが特定されたことを示すものを、出力し得る
。バリアントコーラはまた、生フラグメントの5個のリードが、特定の場所Yにおいて支持
バリアントを有するsimplex un-stitchedフラグメントを表すことが特定されたことを示
すものを、出力し得る。バリアントコーラはまた、基準配列に対応し、したがって対象の
ゲノム配列における潜在的なバリアントコールを妥当性確認する証拠を提供する支持バリ
アントを含まなかった、生フラグメントの数を出力し得る。
【０３１３】
　次に、支持バリアント、ならびに支持バリアントが発生した場所を含む、生フラグメン
トのカウントが維持される。加えて、または代わりに、(サンプルリードまたはサンプル
フラグメントの中の潜在的なバリアントコールの場所に対する相対的な)対象の場所にお
いて支持バリアントを含まなかった生フラグメントのカウントが維持され得る。加えて、
または代わりに、基準配列に対応し潜在的なバリアントコールを確証または確認しない、
生フラグメントのカウントが維持され得る。潜在的なバリアントコールを支持する生フラ
グメントのカウントおよびタイプ、生フラグメントの中の支持バリアントの場所、潜在的
なバリアントコールを支持しない生フラグメントのカウントなどを含む、決定された情報
が、バリアントコール妥当性確認アプリケーションに出力される。
【０３１４】
　潜在的なバリアントコールが特定されるとき、プロセスは、潜在的なバリアントコール
、バリアント配列、バリアント場所、およびそれらと関連付けられる基準配列を示すもの
を出力する。エラーはコールプロセスに誤ったバリアントを特定させ得るので、バリアン
トコールは「潜在的な」バリアントを表すように指定される。本明細書の実装形態によれ
ば、誤ったバリアントまたは偽陽性を減らして除去するために、潜在的なバリアントコー
ルが分析される。加えて、または代わりに、プロセスは、サンプルリードと関連付けられ
る1つまたは複数の生フラグメントを分析し、生フラグメントと関連付けられる対応する
バリアントコールを出力する。
【０３１５】
［良性訓練セットの生成］
　数百万個のヒトゲノムおよびエクソンがシーケンシングされているが、それらの臨床上
の応用は、疾患を引き起こす変異を良性の遺伝的変異から区別することの難しさにより限
られたままである。ここで我々は、他の霊長類の種における一般的なミスセンスバリアン
トが、ヒトにおいて大部分が臨床的に良性であることを実証し、病原性の変異が除去のプ
ロセスによって系統的に特定されることを可能にする。6種のヒト以外の霊長類の種の集
団シーケンシングからの数十万個の一般的なバリアントを使用して、88%の正確さで稀な
疾患の患者における病原性の変異を特定し、ゲノムワイド有意性(genome-wide significa
nce)で知的障害における14個の新たな遺伝子候補の発見を可能にする、深層ニューラルネ
ットワークを訓練した。追加の霊長類の種からの一般的な変異の目録を作ることで、数百
万個の有意性が不確かなバリアントに対する解釈が改善し、ヒトゲノムシーケンシングの
臨床上の利用がさらに進む。
【０３１６】
　診断シーケンシングの臨床上の使用可能性は、ヒトの集団における稀な遺伝子バリアン
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トを解釈しそれらの疾患リスクに対する影響を推測することが難しいことにより、限られ
ている。臨床的に有意な遺伝子バリアントは、それらの健康に対する有害な影響により、
集団において極めて稀である傾向があり、大半については、ヒトの健康に対する影響が決
定されていない。臨床的な有意性が不確かであるこれらのバリアントが多数あること、お
よびそれらが稀であることは、個人化された医療および集団全体の健康スクリーニングに
対するシーケンシングの採用に対する手強い障壁となっている。
【０３１７】
　大半の浸透性のメンデル性の疾患は集団において非常に有病率が低いので、集団におけ
る高頻度でのバリアントの観察は、良性の結果を支持する強い証拠である。多様なヒトの
集団にわたって一般的な変異を評価することは、良性のバリアントの目録を作るための有
効な戦略であるが、現生人類における一般的な変異の総数は、祖先の多様性の大部分が失
われた我々の種の最近の歴史におけるボトルネック事象により、限られている。現生人類
の集団の研究は、過去15000～65000年以内の10000人未満の個人という有効個体数(Ne)か
らの顕著な膨張を示しており、一般的な多型のプールが小さいことは、このサイズの集団
における変異の容量が限られていることに由来する。基準ゲノムの中の7000万個の潜在的
なタンパク質を変化させるミスセンス置換のうち、全体で0.1%を超える集団アレル頻度を
持つものは、概ね1000個のうちの1個しか存在しない。
【０３１８】
　現生人類の集団以外では、チンパンジーが次に近い現存する種を構成し、99.4%のアミ
ノ酸配列相同性を共有する。ヒトとチンパンジーにおけるタンパク質コーディング配列の
近い相同性は、チンパンジーのタンパク質コーディングバリアントに対して作用する純化
選択が、同一状態であるヒトの変異の健康に対する結果もモデル化し得ることを示唆する
。
【０３１９】
　中立的な多型がヒトの祖先の系統(約4Ne世代)において持続する平均時間は、種の分岐
時間(約600万年前)の一部であるので、自然に発生するチンパンジーの変異は、平衡選択
により維持されるハプロタイプの稀な事例を除き、偶然を除いて大部分が重複しない変異
空間に及ぶ。同一状態である多型が2つの種において同様に健康に影響する場合、チンパ
ンジーの集団における高いアレル頻度でのバリアントの存在は、ヒトにおける良性の結果
を示すはずであり、その良性の結果が純化選択によって確立されている既知のバリアント
の目録を拡大する。
【０３２０】
［結果-他の霊長類における一般的なバリアントはヒトにおいて大部分が良性である］
　Exome Aggregation Consortium(ExAC)およびGenome Aggregation Database(gnomAD)に
おいて収集された123136人のヒトを含む、集約されたエクソンデータが最近利用可能にな
ったことで、アレル頻度スペクトラムにわたるミスセンス変異と同義変異に対する自然選
択の影響を測ることが可能になった。コホートにおいて1回しか観察されない稀なシング
ルトンバリアントは、変異率に対するトリヌクレオチドコンテクストの影響を調整した後
の、de novo変異によって予測される、予想される2.2/1のミスセンス/同義比とよく一致
する(図49A、図51、ならびに図52A、図52B、図52C、および図52D)が、より高いアレル頻
度では、観察されるミスセンスバリアントの数は、自然選択による有害な変異の一掃によ
り減少する。アレル頻度の増大に伴うミスセンス/同義比の段階的な低下は、集団頻度が<
0.1%であるミスセンスバリアントのかなりの部分が、健康な個人において観察されるにも
かかわらず軽度に有害な結果を有することと一致する。これらの発見は、0.1%～約1%より
高いアレル頻度を伴うバリアントを、平衡選択および創始者効果により引き起こされるよ
く記録されている少数の例外を除いて、浸透性の遺伝性疾患に対しては良性である可能性
が高いものとして除去するという、診療室において広く行われている経験的な実践を支持
するものである。
【０３２１】
　我々は、24体の親類ではない個体のコホートにおいて2回以上サンプリングされた、一
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般的なチンパンジーバリアントを特定した。これらのバリアントの99.8%が一般のチンパ
ンジー集団において一般的である(アレル頻度(AF)>0.1%)ことが推定され、これは、これ
らのバリアントが純化選択のふるいにすでにかけられていることを示す。我々は、複数の
配列アラインメントにおける1対1のマッピングを欠いているバリアントとともに、延長さ
れた主要組織適合遺伝子複合体領域を平衡選択の既知の領域として除いて、対応する同一
状態のヒトバリアントに対するヒトアレル頻度スペクトラムを調査した(図49B)。一般的
なチンパンジーバリアントと同一状態であるヒトバリアントについて、ミスセンス/同義
比はヒトアレル頻度スペクトラムにわたって概ね一定であり(カイ二乗(χ2)検定によりP>
0.5)、これは、ヒトの集団における、一般的なチンパンジーバリアントに対する負の選択
がないことと、2つの種におけるミスセンスバリアントに対する選択係数が合致している
ことと一致する。一般的なチンパンジーバリアントと同一状態であるヒトバリアントにお
いて観察される低いミスセンス/同義比は、チンパンジーのより大きな有効個体数(Ne約73
000)と一致し、これは軽度に有害な変異のより効率的な除去を可能にする。
【０３２２】
　対照的に、シングルトンチンパンジーバリアント(コホートにおいて1回しかサンプリン
グされない)について、一般的なアレル頻度においてミスセンス/同義比の大幅な低下が観
察され(P<5.8×10-6、図49C)、これは、シングルトンチンパンジーミスセンスバリアント
の24%が、0.1%より高いアレル頻度ではヒトの集団における純化選択によってフィルタリ
ングされるであろうことを示している。この枯渇は、チンパンジーシングルトンバリアン
トの大部分が、その健康に対する有害な影響によりいずれの種においても一般的なアレル
頻度に達することが妨げられた、稀な有害変異であることを示している。我々は、シング
ルトンバリアントの69%だけが、一般のチンパンジー集団において一般的である(AF>0.1%)
と推定する。
【０３２３】
　次に、6種のヒト以外の霊長類の種のうちの少なくとも1種において観察される変異と同
一状態であるヒトバリアントを特定した。6種の各々における変異は、大型類人猿ゲノム
プロジェクト(チンパンジー、ボノボ、ゴリラ、およびオランウータン)から確認され、ま
たは、霊長類ゲノムプロジェクト(アカゲザル、マーモセット)から一塩基多型データベー
ス(dbSNP)に提出され、シーケンシングされた個体の数が限られていること、および各種
について観察されたミスセンス:同義比(補足テーブル1)が低いことに基づいて、大部分が
一般的なバリアントを表す。チンパンジーと同様に、6種のヒト以外の霊長類の種からの
バリアントのミスセンス/同義比は、少ない割合(チンパンジーにおいて0.1%未満のアレル
頻度、および他の種ではシーケンシングされた個体がより少ないことによってより低いア
レル頻度のもとで、約16%)の稀なバリアントが含まれることにより予想される一般的なア
レル頻度におけるミスセンス変異の軽度の枯渇(図49D、図53、図54、および図55、補足デ
ータファイル1)を除き、ヒトアレル頻度スペクトラムにわたって概ね等しいことを発見し
た。これらの結果は、同一状態のミスセンスバリアントに対する選択係数が、ヒトの祖先
の系統から約3500万年前に分岐したと推定される少なくとも新世界ザルまでの霊長類の系
統内で合致していることを示唆する。
【０３２４】
　観察された霊長類のバリアントと同一状態であるヒトミスセンスバリアントは、ClinVa
rデータベースにおける良性の結果に対して強くエンリッチされることを発見した。有意
性が不確かであるバリアントおよび矛盾するアノテーションを伴うバリアントを除外した
後で、少なくとも1種のヒト以外の霊長類の種において存在するClinVarバリアントは、平
均で90%の事例で良性または良性である可能性が高いものとしてアノテートされ、それと
比較して、ClinVarミスセンスバリアント全般では35%である(P<10-40、図49E)。霊長類バ
リアントに対するClinVarアノテーションの病原性は、精選バイアスを減らすために1%よ
り高いアレル頻度を伴うヒトバリアントを除く健康なヒトの同様のサイズのコホートをサ
ンプリングすることから観察されるもの(約95%が良性または良性である可能性が高い結果
、P=0.07)より、わずかに高い。
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【０３２５】
　ヒトの遺伝学の分野は、ヒト変異の臨床上の影響を推論するためにモデル生物に長い間
依存してきたが、大半の遺伝的に扱いやすい動物モデルまでの進化的距離が長いことで、
モデル生物についての発見がヒトに対してどの程度一般化可能であるかについての懸念が
生まれている。我々は、4種の追加の哺乳類の種(ネズミ、ブタ、ヤギ、ウシ)と2種のより
遠縁の脊椎動物(ニワトリ、ゼブラフィッシュ)からの概ね一般的な変異を含めるように、
霊長類の系統を超えて分析を拡張した。我々は、dbSNPにおいてゲノムワイドの変異の確
認が十分にとれている種を選択し、これらが概ね一般的なバリアントであることを、ミス
センス/同義比が2.2/1よりはるかに小さいことに基づいて確認した。我々の霊長類の分析
とは対照的に、より遠縁の種における変異と同一状態であるヒトミスセンス変異は、一般
的なアレル頻度では顕著に枯渇しており(図50A)、この枯渇の程度はより長い進化的距離
において増大する(図50Bおよび補足テーブル2および3)。
【０３２６】
　ヒトにおいて有害であるが、より遠縁の種では高いアレル頻度で耐えているミスセンス
変異は、同一状態のミスセンス変異に対する選択の係数が、ヒトとより遠縁の種との間で
かなり離れていることを示す。それでも、より遠縁の哺乳類におけるミスセンスバリアン
トの存在は良性の結果の確率を高め、それは、一般的なアレル頻度において自然選択によ
り枯渇するミスセンスバリアントの割合が、ヒトミスセンスバリアント全般について観察
される約50%の枯渇率より低いからである(図49A)。これらの結果と一致して、ネズミ、ブ
タ、ヤギ、およびウシにおいて観察されているClinVarミスセンスバリアントは、良性の
結果または良性である可能性が高い結果をアノテートされる確率が73%であり、それと比
較して、霊長類の変異に対しては90%であり(P<2×10-8、図50C)、ClinVarデータベース全
体に対しては35%であることを発見した。
【０３２７】
　家畜化によるアーティファクトではなく進化的距離が選択係数の相違の主な原因である
ことを確認するために、我々は、広範囲の進化的距離にわたって、種内多型の代わりに近
縁の種のペア間での固定された置換を使用して、分析を繰り返した(図50D、補足テーブル
4、および補足データファイル2)。我々は、種間の固定された置換と同一状態であるヒト
ミスセンスバリアントの枯渇率が、進化的な枝長とともに増大し、家畜化を受けた種と比
較して野生種に対する識別可能な差がないことを発見した。これは、同一状態の固定され
たミスセンス置換の数が分岐した系統において偶然により予想されるものよりも低かった
ことを発見した、ハエおよび酵母菌における以前の成果と一致している。
【０３２８】
［バリアントの病原性分類のための深層学習ネットワーク］
　開示される技術は、バリアントの病原性分類のための深層学習ネットワークを提供する
。臨床上の応用に対するバリアント分類の重要性は、教師あり機械学習を問題の対処のた
めに使用する多くの試みを引き起こしてきたが、これらの努力は、訓練のために確信をも
ってラベリングされた良性のバリアントおよび病原性のバリアントを含む適切なサイズの
真実データセット(truth dataset)がないことにより、妨げられている。
【０３２９】
　専門家により精選されたバリアントの既存のデータベースはゲノム全体を代表しておら
ず、ClinVarデータベースの中のバリアントの約50%がわずか200個の遺伝子(ヒトのタンパ
ク質コーディング遺伝子の約1%)に由来する。その上、系統的な研究により、多くの専門
家のアノテーションには証拠が疑わしいものがあることが特定されており、単一の患者に
おいてのみ観察され得る稀なバリアントを解釈することの難しさを示している。専門家の
解釈はますます厳密になっているが、分類のガイドラインは、大部分が合意された習慣に
沿って策定されており、既存の傾向を強めるリスクがある。人による解釈のバイアスを減
らすために、最近に分類器は、一般的なヒト多型または固定されたヒト-チンパンジーの
置換に対して訓練されているが、これらの分類器も、人により精選されたデータベース上
で訓練された以前の分類器の予測スコアを入力として使用している。これらの様々な方法
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の性能の客観的なベンチマーキングは、独立でバイアスのない真実データセットがなけれ
ば、達成が難しい。
【０３３０】
　6種のヒト以外の霊長類(チンパンジー、ボノボ、ゴリラ、オランウータン、アカゲザル
、およびマーモセット)からの変異は、一般的なヒト変異と重複しない300000個を超える
固有のミスセンスバリアントに寄与し、大部分が純化選択のふるいにかけられた良性の結
果の一般的なバリアントを表し、機械学習の手法に利用可能な訓練データセットを大きく
拡大する。平均すると、各霊長類の種は、ClinVarデータベースの全体より多くのバリア
ント(2017年11月現在で、有意性が不確かなバリアントおよび矛盾するアノテーションを
伴うバリアントを除いた後で、約42000個のミスセンスバリアント)に寄与する。加えて、
この内容は人の解釈によるバイアスがない。
【０３３１】
　一般的なヒトバリアント(AF>0.1%)および霊長類の変異(補足テーブル5(図58))を備える
データセットを使用して、我々は新しい深層残差ネットワークPrimateAIを訓練した。Pri
mateAIは、対象のバリアントの側にあるアミノ酸配列および他の種におけるオーソロガス
配列アラインメントを入力として取り込む(図2および図3)。人により加工された特徴量を
利用する既存の分類器と異なり、我々の深層学習ネットワークは、元の配列から直接特徴
量を抽出するように学習する。タンパク質構造についての情報を組み込むために、二次構
造および溶媒接触性を配列だけから予測するように別々のネットワークを訓練し、次いで
これらを完全なモデルにおけるサブネットワークとして含めた(図5および図6)。結晶化に
成功している少数のヒトタンパク質を仮定すれば、元の配列から構造を推論することには
、不完全なタンパク質構造および機能ドメインのアノテーションによるバイアスが避けら
れるという利点がある。ネットワークの全体の深さは、含まれるタンパク質構造とともに
、およそ400000個の訓練可能なパラメータを備える36層の畳み込みであった。
【０３３２】
　良性のラベルを伴うバリアントのみを使用して分類器を訓練するために、
我々は、所与の変異が集団において一般的なバリアントとして観察される可能性が高いか
どうかということとして、予測問題を形作った。いくつかの要因が高いアレル頻度でのバ
リアントの観察の確率に影響し、我々はそれらのバリアントの有害性だけに関心がある。
他の要因には、変異率、シーケンシングカバレッジなどの技術的なアーティファクト、お
よび遺伝子変換などの中立的な遺伝的浮動に影響する要因がある。
【０３３３】
　我々は、これらの区別できない要因の各々を考慮して、良性の訓練セットの中の各バリ
アントをExACデータベースからの123136個のエクソンに存在しなかったミスセンス変異と
照合し、良性のバリアントと照合された対照群とを区別するように深層学習ネットワーク
を訓練した(図24)。ラベリングされていないバリアントの数は、ラベリングされた良性の
訓練データセットのサイズを大きく超えるので、良性の訓練データセットと照合されたラ
ベリングされていないバリアントの異なるセットを各々使用して、8個のネットワークを
並列に訓練し、コンセンサス予測を得た。
【０３３４】
　元のアミノ酸配列のみを入力として使用して、深層学習ネットワークは、てんかん、自
閉症、および知的障害における主要な疾患遺伝子である電位依存性ナトリウムチャネルSC
N2Aについて示されるように(図20)、有用なタンパク質機能ドメインにおける残基に高い
病原性スコアを正確に割り当てている。SCN2Aの構造は、各々が6つの膜貫通ヘリックス(S
1～S6)を含む4つの相同なリピートを備える。膜の脱分極により、正に荷電したS4膜貫通
ヘリックスが膜の細胞外の側に向かって動き、S4-S5リンカーを介してS5/S6孔形成ドメイ
ンを開口させる。てんかん性脳症の早期の兆候と臨床的に関連付けられる、S4、S4-S5リ
ンカー、およびS5ドメインにおける変異は、遺伝子において最高の病原性スコアを有する
ものとしてネットワークにより予測され、健康な集団におけるバリアントに対して枯渇し
ている(補足テーブル6)。我々はまた、ネットワークが、ドメイン内の重要なアミノ酸の
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場所を認識し、転写因子のDNA接触残基および酵素の触媒残基などの、これらの場所にお
ける変異に最高の病原性スコアを割り当てていることも発見した(図25A、図25B、図25C、
および図26)。
【０３３５】
　深層学習ネットワークがタンパク質の構造および機能についての洞察を元の配列からど
れだけ導いているかをより理解するために、ネットワークの最初の3層からの訓練可能な
パラメータを視覚化した。これらの層内で、Granthamスコアなどのアミノ酸距離の既存の
測定結果に近い、異なるアミノ酸の重みと重みの間の相関を、ネットワークが学習するこ
とが観察された(図27)。これらの初期の層の出力はより後の層の入力になり、深層学習ネ
ットワークがデータの次第により高次の表現を構築することを可能にする。
【０３３６】
　訓練を保留された10000個の一般的な霊長類バリアントを使用して、既存の分類アルゴ
リズムを用いたネットワークの性能を比較した。すべての新たに生じたヒトミスセンスバ
リアントの約50%が一般的なアレル頻度で純化選択によってフィルタリングされるので(図
49A)、変異率およびシーケンシングカバレッジによって10000個の一般的な霊長類バリア
ントと照合された10000個のランダムに選択されたバリアントのセットに対する各分類器
の50パーセンタイルスコアを求め、その閾値における各分類器の正確さを評価した(図21D
、図28A、および補足データファイル4)。10000個の保留された一般的な霊長類バリアント
に良性の結果を割り当てることについて、我々の深層学習ネットワーク(91%の正確さ)は
他の分類器の性能(次に良いモデルで80%の正確さ)を上回った。
【０３３７】
　ヒト変異データのみを用いて訓練されたネットワークの正確さ(図21D)と比較した場合
、既存の方法を超える改善の概ね半分は、深層学習ネットワークを使用することに由来し
、半分は訓練データセットを霊長類の変異で補強することに由来する。ある臨床シナリオ
における有意性が不確かなバリアントの分類を検定するために、神経発達障害の患者vs健
康な対照群において発生するde novo変異を区別する、深層学習ネットワークの能力を評
価した。有病率により、神経発達障害は稀な遺伝子疾患の最大のカテゴリのうちの1つを
構成しており、最近のトリオシーケンシング研究は、de novoミスセンス変異およびタン
パク質切断変異の中心的な役割を示唆している。
【０３３８】
　各々確信をもってコールされている、Deciphering Developmental Disorders(DDD)コホ
ートからの4293人の影響を受けている個人におけるde novoミスセンスバリアントvs Simo
n's Simplex Collection(SSC)コホートにおける2517人の影響を受けていない兄弟からのd
e novoミスセンスバリアントを分類し、ウィルコクソンの順位和検定を用いて2つの分布
の間での予測スコアの差を評価した(図21Eおよび図29Aおよび図29B)。深層学習ネットワ
ークは、このタスクについて他の分類器を明確に上回った(P<10-28、図21Fおよび図28B)
。その上、保留された霊長類バリアントデータセットと、DDD症例群vs対照群データセッ
トとに対する、様々な分類器の性能が相関付けられ(スピアマンρ=0.57、P<0.01)、全く
異なる源および方法を使用しているにもかかわらず、病原性の評価について2つのデータ
セットの間で良好な一致を示した(図30A)。
【０３３９】
　次に、同じ遺伝子内で良性変異vs病原性変異を分類することについての、深層学習ネッ
トワークの正確さを推定することを試みる。DDD集団の大部分が、影響を受けている第一
度近親者のいない、影響を受けている子供のインデックスケースを備えると仮定すると、
分類器がde novo優性遺伝モードを持つ遺伝子の病原性を過剰評価することによって正確
さを釣り上げていないことを示すのが重要である。我々は、タンパク質切断変異(P<0.05)
だけから計算された、DDD研究において疾患との関連について名目上有意であった605個の
遺伝子に分析を制約した。これらの遺伝子内で、de novoミスセンス変異は、予想と比較
して3/1エンリッチされており(図22A)、約67%が病原性であることを示している。
【０３４０】
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　深層学習ネットワークは、遺伝子の同じセット内で病原性のde novoバリアントと良性
のde novoバリアントを区別することが可能であり(P<10-15、図22B)、他の方法の性能を
大きく上回った(図22Cおよび図28C)。0.803以上というバイナリカットオフでは(図22Dお
よび図30B)、症例群におけるde novoミスセンス変異の65%が病原性であるものとして深層
学習ネットワークにより分類され、それと比較して、対照群においてはde novoミスセン
ス変異の14%が病原性であり、これは88%という分類の正確さに対応する(図22Eおよび図30
C)。神経発達障害における頻繁な不完全な浸透性および変化する表現性を考慮すると、こ
の数字は、対照群において部分的に浸透している病原性バリアントが含まれていることに
より、我々の分類器の正確さをおそらく過小評価している。
【０３４１】
［新しい遺伝子候補の発見］
　病原性ミスセンス変異を階層化するために0.803以上の閾値を適用することは、DDD患者
におけるde novoミスセンス変異のエンリッチメントを、1.5-foldからタンパク質切断変
異(2.5-fold)に近い2.2-foldへと増大させ、一方で、予想を超えてエンリッチされるバリ
アントの総数の3分の1未満を捨てる。このことは、統計能力をかなり高め、元のDDD研究
ではゲノムワイド有意性閾値にこれまで達していなかった知的障害における14個の追加の
遺伝子候補の発見を可能にしている(テーブル1)。
【０３４２】
［専門家による精選との比較］
　ClinVarデータベースからの最近の専門家により精選されたバリアントに対する様々な
分類器の性能を調査したが、ClinVarデータセットに対する分類器の性能は、保留された
霊長類バリアントデータセットとも、DDD症例群vs対照群データセットとも強く相関して
いなかったことを発見した(それぞれP=0.12およびP=0.34)(図31Aおよび図31B)。我々は、
既存の分類器には専門家の精選によるバイアスがあるという仮説を立てており、人の経験
則は正しい方向にある傾向にあるものの最適ではないことがある。1つの例は、ClinVarに
おける病原性バリアントと良性バリアントとの間のGranthamスコアの平均の差であり、こ
れは、605個の疾患関連遺伝子内での、DDD症例群vs対照群におけるde novoバリアントの
差の2倍である(テーブル2)。それと比べて、専門家による精選は、タンパク質構造を、特
に、他の分子と相互作用することが可能になり得る表面に曝露されている残基の重要性を
、十分に活用していないように見える。我々は、ClinVar病原性変異とDDD de novo変異の
両方が、予測される溶媒に曝露される残基と関連付けられるが、良性のClinVarバリアン
トと病原性のClinVarバリアントとの間の溶媒接触性の差はDDD症例群vs対照群について見
られる差の半分にすぎないことを観察した。これらの発見は、Granthamスコアおよび保存
率などの、専門家にとって解釈がより簡単な要因を優先する確認バイアスを示唆するもの
である。人により精選されたデータベース上で訓練された機械学習分類器は、これらの傾
向を強化することが予想される。
【０３４３】
　我々の結果は、系統的な霊長類集団のシーケンシングが、臨床上のゲノム解釈を現在制
約している、数百万個の有意性が不確かなヒトバリアントを分類するための有効な戦略で
あることを示唆している。保留された一般的な霊長類バリアントと臨床上のバリアントの
両方に対する我々の深層学習ネットワークの正確さは、ネットワークを訓練するために使
用される良性バリアントの数とともに高まる(図23A)。その上、6種のヒト以外の霊長類の
種の各々からのバリアントについての訓練は、ネットワークの性能の向上に独立に寄与し
、一方で、より遠縁の哺乳類からのバリアントについての訓練はネットワークの性能に負
の影響を与える(図23Bおよび図23C)。これらの結果は、一般的な霊長類バリアントが、浸
透性のメンデル性疾患に関してヒトにおいて大部分が良性である一方で、より遠縁の種に
おける変異については同じことが言えないという主張を、支持している。
【０３４４】
　本研究において調査されるヒト以外の霊長類ゲノムの数は、シーケンシングされてきた
ヒトゲノムおよびエクソンの数と比較して少ないが、これらの追加の霊長類は、一般的な
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良性変異についての不相応な量の情報に寄与していることに留意することが重要である。
ExACを用いたシミュレーションは、一般的なヒトバリアント(>0.1%アレル頻度)の発見は
わずか数百の個体の後ですぐに停滞するが(図56)、数百万人までのさらなる健康な集団の
シーケンシングが主に追加の稀なバリアントに寄与することを示している。アレル頻度に
基づいて大部分が臨床的に良性であることが知られている一般的なバリアントと異なり、
健康な集団における稀なバリアントは、劣性の遺伝的疾患または浸透性が不完全である優
性の遺伝的疾患を引き起こし得る。各霊長類の種は一般的なバリアントの異なるプールを
持つので、各種の数十の個体をシーケンシングすることは、霊長類の系統における良性ミ
スセンス変異の目録を系統的に作るのに有効な戦略である。実際に、本研究で調査された
6種のヒト以外の霊長類の種からの134の個体が、ExAC研究からの123136人のヒトの4倍近
く多くの一般的なミスセンス変異に寄与している(補足テーブル5(図58))。数百の個体に
関する霊長類集団のシーケンシング研究は、野生の保護区域および動物園に住む比較的少
数の親類ではない個体でも現実的であり得るので、野生の集団に対する外乱が最小限にな
り、これはヒト以外の霊長類の保全および倫理的な取り扱いの観点から重要である。
【０３４５】
　現生人類の集団は、大半のヒト以外の霊長類の種よりはるかに遺伝的な多様性が低く、
チンパンジー、ゴリラ、およびテナガザルと比べて、個体ごとの一塩基バリアントの数が
概ね半分であり、オランウータンと比べて個体ごとのバリアントが3分の1である。ヒト以
外の霊長類の種の大半の遺伝的多様性のレベルは知られていないが、多数の現存するヒト
以外の霊長類の種により、潜在的な良性のヒトミスセンスの場所の大半が少なくとも1つ
の霊長類の種における一般的なバリアントによってカバーされる可能性が高いと推定する
ことが可能になり、病原性バリアントが除去のプロセスによって系統的に特定されること
が可能になる(図23D)。シーケンシングされるこれらの種のサブセットのみでも、訓練デ
ータサイズを大きくすることで、機械学習を用いたミスセンスの結果のより正確な予測が
可能になる。最終的に、我々の発見はミスセンス変異に注目しているが、この戦略は、バ
リアントが同一状態であるかどうかを明確に決定するための十分なアラインメントがヒト
ゲノムと霊長類ゲノムとの間にある保存された制御領域においては特に、非コーディング
変異の結果を推論することにも適用可能であり得る。
【０３４６】
　504種の既知のヒト以外の霊長類の種のうち、約60%が密猟および大規模な生息地の喪失
により絶滅に瀕している。これらの種における個体数の減少と起こり得る絶滅は、遺伝的
多様性における代わりのない損失となり、これらの固有の代わりのいない種と我々自身の
両方に利益をもたらすであろう、緊急を要する世界的な保全の努力に対する動機となって
いる。
【０３４７】
［データ生成およびアラインメント］
　アプリケーションの中の座標は、複数の配列アラインメントを使用してhg19にマッピン
グされる他の種におけるバリアントに対する座標を含む、ヒトゲノムbuild UCSC hg19/GR
Ch37を参照する。タンパク質コーディングDNA配列に対する正規の転写産物および99種の
脊椎動物ゲノムの複数の配列アラインメントおよび枝長が、UCSCゲノムブラウザからダウ
ンロードされた。
【０３４８】
　Exome Aggregation Consortium(ExAC)/Genome Aggregation Database(gnomAD exomes)v
2.0から、ヒトエクソン多型データを取得した。24体のチンパンジー、13体のボノボ、27
体のゴリラ、および10体のオランウータンに対する全体のゲノムシーケンシングデータお
よび遺伝子型を備える、大型類人猿ゲノムシーケンシングプロジェクトからの霊長類変異
データを取得した。チンパンジーおよびボノボの別の研究からの35体のチンパンジーから
の変異も含めたが、バリアントコーリング方法の違いにより、集団分析からはこれらを除
外し、深層学習モデルの訓練にのみそれらを使用した。加えて、アカゲザルの個体16体お
よびマーモセットの個体9体が、これらの種に対する元のゲノムプロジェクトにおける変
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異を評価するために使用されたが、個体レベルの情報が利用可能ではなかった。アカゲザ
ル、マーモセット、ブタ、ウシ、ヤギ、ネズミ、ニワトリ、およびゼブラフィッシュにつ
いての変異データをdbSNPから取得した。dbSNPは追加のオランウータンバリアントも含ん
でおり、我々はそれを深層学習モデルの訓練にのみ使用した。それは、個体の遺伝子型情
報が集団分析に利用可能ではなかったからである。平衡選択による影響を避けるために、
集団分析のための延長された主要組織適合遺伝子複合体領域(chr6:28,477,797-33,448,35
4)内からのバリアントも除外した。
【０３４９】
　ヒトタンパク質コーディング領域へのオーソロガスな1対1のマッピングを確実にし、偽
遺伝子へのマッピングを防ぐために、99種の脊椎動物の多種アラインメントを使用した。
バリアントが基準方向/代替方向のいずれかで発生した場合、バリアントを同一状態であ
るものとして受け入れた。バリアントがヒトと他の種の両方において同じ予測されるタン
パク質コーディング結果を有することを確実にするために、ミスセンスバリアントと同義
バリアントの両方に対して、コドンの中の他の2つのヌクレオチドが種間で同一であるこ
とを要求した。分析に含まれる各種からの多型は補足データファイル1において列挙され
、詳細な尺度は補足テーブル1に示されている。
【０３５０】
　4つのアレル頻度カテゴリの各々に対して(図49A)、96個の潜在的なトリヌクレオチドコ
ンテクストの各々における同義バリアントとミスセンスバリアントの予想される数を推定
するために、および、変異率を訂正するために(図51および補足テーブル7、8(図59))、イ
ントロン領域における変異を使用した。我々はまた、同一状態のCpGジヌクレオチドおよ
び非CpGジヌクレオチドバリアントを別々に分析し、ミスセンス/同義比が両方のクラスに
対してアレル頻度スペクトラムにわたって平坦であったことを検証した。これは、CpGバ
リアントと非CpGバリアントの両方に対して、それらの変異率の違いが大きいにもかかわ
らず、我々の分析が適用できることを示している(図52A、図52B、図52C、および図52D)。
【０３５１】
［他の種における多型と同一状態であるヒトミスセンスバリアントの枯渇率］
　他の種に存在するバリアントがヒトにおいて一般的なアレル頻度(>0.1%)で耐えられる
かどうかを評価するために、他の種における変異と同一状態であったヒトバリアントを特
定した。バリアントの各々に対して、それらをヒト集団におけるそれらのアレル頻度に基
づいて、4つのカテゴリ(シングルトン、シングルトンより多い～0.01%、0.01%～0.1%、>0
.1%)のうちの1つに割り当て、稀(<0.1%)なバリアントと一般的(>0.1%)なバリアントとの
間でのミスセンス/同義比(MSR)の低下を推定した。一般的なヒトアレル頻度(>0.1%)での
同一状態のミスセンスバリアントの枯渇率は、ヒトにおける一般的なアレル頻度で自然選
択により除去されるのに十分に有害な他の種からのバリアントの割合を示す。
【０３５２】
【数４０】

【０３５３】
　ミスセンス/同義比と枯渇の割合は、種ごとに計算され、図50Bおよび補足テーブル2に
示される。加えて、チンパンジーの一般的なバリアント(図49B)、チンパンジーのシング
ルトンバリアント(図49C)、および哺乳類バリアント(図50A)について、稀なバリアントと
一般的なバリアントとの間でのミスセンス/同義比の差が有意であったかどうかを検定す
るために、2×2の分割表上で相同性のカイ二乗検定(χ2)を実行した。
【０３５４】
　シーケンシングは大型類人猿ゲノムプロジェクトからの限られた数の個体についてのみ
実行されたので、一般的なチンパンジー集団において稀(<0.1%)または一般的(>0.1%)であ
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ったサンプリングされたバリアントの割合を推定するために、ExACからのヒトアレル頻度
スペクトラムを使用した。ExACアレル頻度に基づいて24人のヒトのコホートをサンプリン
グし、このコホートにおいて一度、または一度より多く観察されたミスセンスバリアント
を特定した。一度より多く観察されたバリアントは一般の集団において一般的(>0.1%)で
ある確率が99.8%であったが、コホートにおいて一度しか観察されなかったバリアントは
一般の集団において一般的である確率が69%であった。より遠縁の哺乳類におけるミスセ
ンスバリアントに対する観察される枯渇が、よく保存されておりしたがってより正確にア
ラインメントされている遺伝子の区別できない影響によるものではなかったことを検証す
るために、ヒトと比較した11種の霊長類および50種の哺乳類の複数の配列アラインメント
において50%を超える平均ヌクレオチド相同性を持つ遺伝子のみに限定して、上記の分析
を繰り返した(補足テーブル3参照)。
【０３５５】
　これは、結果に大きな影響を与えることなく、分析からヒトタンパク質コーディング遺
伝子の約7%を取り除いた。加えて、結果がバリアントコーリングまたは家畜化によるアー
ティファクト(dbSNPから選択された種の大半が家畜化されているので)の問題により影響
を受けなかったことを確実にするために、種間多型の代わりに、近縁の種のペアからの固
定された置換を使用して分析を繰り返した(図50D、補足テーブル4、および補足データフ
ァイル2)。
【０３５６】
［ヒト、霊長類、哺乳類、および他の脊椎動物に対する多型データのClinVar分析］
　他の種と同一状態であるバリアントの臨床上の影響を調査するために、矛盾する病原性
のアノテーションを持っていたバリアントまたは有意性が不確かなバリアントとしてのみ
ラベリングされたバリアントを除いて、ClinVarデータベースをダウンロードした。補足
テーブル9に示されるフィルタリングステップの後で、合計で、病原性カテゴリの中の248
53個のミスセンスバリアントおよび良性カテゴリの中の17775個のミスセンスバリアント
がある。
【０３５７】
　ヒト、ヒト以外の霊長類、哺乳類、および他の脊椎動物における変異と同一状態であっ
た、病原性ClinVarバリアントおよび良性ClinVarバリアントの数をカウントした。ヒトに
ついては、ExACアレル頻度からサンプリングされた30人のヒトのコホートをシミュレート
した。各種に対する良性バリアントと病原性バリアントの数が補足テーブル10に示されて
いる。
【０３５８】
［モデル訓練のための良性バリアントとラベリングされていないバリアントの生成］
　機械学習のために、ヒトおよびヒト以外の霊長類からの大部分が一般的である良性ミス
センスバリアントの良性訓練データセットを構築した。このデータセットは、一般的なヒ
トバリアント(>0.1%のアレル頻度、83546個のバリアント)、ならびにチンパンジー、ボノ
ボ、ゴリラ、およびオランウータン、アカゲザル、およびマーモセットからのバリアント
(301690個の固有の霊長類バリアント)を備える。各源が寄与する良性訓練バリアントの数
が補足テーブル5に示されている。
【０３５９】
　トリヌクレオチドコンテクスト、シーケンシングカバレッジ、およびそれらの種とヒト
との間のアラインメント可能性を考慮するために、照合されたラベリングされた良性バリ
アントのセットとバリアントのラベリングされていないセットとを区別するように、深層
学習ネットワークを訓練した。ラベリングされていない訓練データセットを得るために、
正規のコーディング領域におけるすべての潜在的なミスセンスバリアントで開始した。Ex
ACからの123136個のエクソンにおいて観察されたバリアントと、開始コドンまたは終止コ
ドンにおけるバリアントとを除外した。合計で、68,258,623個のラベリングされていない
ミスセンスバリアントが生成された。これは、シーケンシングカバレッジが悪い領域、お
よび霊長類バリアントに対する照合されたラベリングされていないバリアントを選択する
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ときにヒトゲノムと霊長類ゲノムとの間で1対1のアラインメントがなかった領域について
修正するために、フィルタリングされた。
【０３６０】
　ラベリングされた良性バリアントの同じセットと、ラベリングされていないバリアント
の8個のランダムにサンプリングされたセットとを使用する、8個のモデルを訓練し、それ
らの予測の平均をとることによって、コンセンサス予測を得た。妥当性確認および検定の
ために、10000個の霊長類バリアントの2つのランダムにサンプリングされたセットも除外
し、それらについては訓練を保留した(補足データファイル3)。これらのセットの各々に
対して、トリヌクレオチドコンテクストによって照合された10000個のラベリングされて
いないバリアントをサンプリングし、これらを、異なる分類アルゴリズム間で比較すると
きに各分類器の閾値を正規化するために使用した(補足データファイル4)。他の実装形態
では、2個～500個にわたる、より少数のまたは追加のモデルがアンサンブルにおいて使用
され得る。
【０３６１】
　一方は一般的なヒトバリアントのみを用いて訓練され、もう一方は一般的なヒトバリア
ントと霊長類バリアントの両方を含む完全な良性のラベリングされたデータセットを用い
た訓練された、深層学習ネットワークの2つのバージョンの分類の正確さを評価した。
【０３６２】
［深層学習ネットワークのアーキテクチャ］
　各バリアントに対して、病原性予測ネットワークは、対象のバリアントを中心とする長
さ51のアミノ酸配列と、二次構造および溶媒接触性ネットワーク(図2および図3)の出力と
を、中心の場所において置換されるミスセンスバリアントとともに入力として取り込む。
11種の霊長類のための1つの場所頻度行列と、霊長類を除く50種の哺乳類のための1つの場
所頻度行列と、霊長類と哺乳類を除く38種の脊椎動物のための1つの場所頻度行列とを含
む、3つの長さ51の場所頻度行列が、99種の脊椎動物の複数の配列アラインメントから生
成される。
【０３６３】
　二次構造深層学習ネットワークは、各アミノ酸の場所における3状態の二次構造、すな
わちαヘリックス(H)、βシート(B)、およびコイル(C)を予測する(補足テーブル11)。溶
媒接触性ネットワークは、各アミノ酸の場所における3状態の溶媒接触性、すなわち、埋
もれている(buried)(B)、中間(intermediate)(I)、および露出している(exposed)(E)を予
測する(補足テーブル12)。両方のネットワークが、入力としてフランキングアミノ酸配列
のみを取り込み、Protein DataBankにおける既知の冗長ではない結晶構造からのラベルを
使用して訓練された(補足テーブル13)。事前訓練された3状態二次構造ネットワークおよ
び3状態溶媒接触性ネットワークへの入力のために、やはり長さが51であり深さが20であ
る、すべての99種の脊椎動物に対する複数の配列アラインメントから生成された単一の長
さ場所頻度行列を使用した。Protein DataBankからの既知の結晶構造についてネットワー
クを事前訓練した後で、二次構造および溶媒モデルに対する最終的な2つの層が除去され
、ネットワークの出力は病原性モデルの入力に直接接続された。3状態2次構造予測モデル
について達成される最良の検定の正確さは79.86%であった(補足テーブル14)。結晶構造を
有していた約4000個のヒトタンパク質に対するDSSP(Define Secondary Structure of Pro
teins)とアノテートされた構造ラベルを使用するときと、予測される構造ラベルのみを使
用するときとでニューラルネットワークの予測を比較すると、大きな差はなかった(補足
テーブル15)。
【０３６４】
　病原性予測のための我々の深層学習ネットワーク(PrimateAI)と、二次構造および溶媒
接触性を予測するための深層学習ネットワークの両方が、残基ブロックのアーキテクチャ
を採用した。PrimateAIの詳細なアーキテクチャは、(図3)および補足テーブル16(図4A、
図4B、および図4C)において説明されている。二次構造および溶媒接触性を予測するため
のネットワークの詳細なアーキテクチャは、図6および補足テーブル11(図7Aおよび図7B)
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および12(図8Aおよび図8B)において説明されている。
【０３６５】
［10000個の霊長類バリアントの保留された検定セットに対する分類器性能のベンチマー
キング］
　深層学習ネットワーク、ならびに、データベースdbNSFPから予測スコアを取得した他の
20個のこれまでに公開されている分類器のベンチマークをとるために、検定データセット
において10000個の保留された霊長類バリアントを使用した。10000個の保留された霊長類
バリアント検定セットに対する分類器の各々の性能も図28Aにおいて与えられる。異なる
分類器は大きく変動するスコア分布を有していたので、各分類器に対する50パーセンタイ
ル閾値を特定するために、トリヌクレオチドコンテクストによって検定セットと照合され
た10000個のランダムに選択されたラベリングされていないバリアントを使用した。方法
間での公平な比較を確実にするために、その分類器に対して50パーセンタイルの閾値で良
性であるものとして分類された、10000個の保留された霊長類バリアント検定セットの中
のバリアントの割合について、各分類器のベンチマークをとった。
【０３６６】
　分類器の各々に対して、50パーセンタイル閾値を使用して良性であるものとして予測さ
れる保留された霊長類検定バリアントの割合も、図28Aおよび補足テーブル17(図34)に示
されている。PrimateAIの性能は、バリアントの場所におけるアラインメントされた種の
数に関してロバストであり、哺乳類からの十分な保存情報が利用可能である限り全般的に
良好な性能であることも示し、これは大半のタンパク質コーディング配列について当ては
まる(図57)。
【０３６７】
［DDD研究からのde novoバリアントの分析］
　DDD研究からの公開されているde novoバリアントと、SSC自閉症研究における健康な兄
弟の対照群からのde novoバリアントとを取得した。DDD研究はde novoバリアントの信頼
性レベルを提供しており、我々は、バリアントコーリングエラーによる潜在的な偽陽性と
して、閾値が0.1未満であるバリアントをDDDデータセットから除外した。一実装形態では
、全体で、DDDの影響を受けている個人から3512個のミスセンスde novoバリアントと、健
康な対照群からの1208個のミスセンスde novoバリアントがあった。99種の脊椎動物の複
数配列アラインメントのためにUCSCによって使用された正規の転写産物アノテーションは
、DDDにより使用される転写産物アノテーションとわずかに異なり、ミスセンスバリアン
トの総数の小さな違いをもたらしている。DDDの影響を受けている個人におけるde novoミ
スセンスバリアントと、自閉症研究からの影響を受けていない兄弟の対照群におけるde n
ovoミスセンスバリアントとを、この分類方法が区別する能力について評価した。各分類
器に対して、2つの分布に対する予測スコア間の差のウィルコクソンの順位和検定からのP
値を報告した(補足テーブル17(図34))。
【０３６８】
　同じ疾患遺伝子内での良性変異と病原性変異を様々な分類器が区別する際の正確さを測
るために、DDDコホートにおけるde novoタンパク質切断変異についてエンリッチされた(P
<0.05、ポワソン正確検定)、605個の遺伝子のサブセットに対して分析を繰り返した(補足
テーブル18)。これらの605個の遺伝子内で、予想を超えるde novoミスセンス変異の3/1エ
ンリッチメントに基づき、DDDデータセットの中のde novoバリアントの3分の2が病原性で
あり、3分の1が良性であったと推定した。最小限の不完全な浸透と、健康な対照群におけ
るde novoミスセンス変異が良性であったこととを仮定した。各分類器に対して、同じ数
の良性の予測または病原性の予測を生み出した閾値を、これらのデータセットにおいて観
察される経験的な割合として特定し、この閾値を、症例群vs対照群におけるde novo変異
を各分類器が区別する際の正確さを推定するためのバイナリカットオフとして使用した。
受信者動作特性曲線を構築するために、de novo DDDバリアントの病原性の分類を真陽性
のコールとして扱い、健康な対照群における病原性としてのde novoバリアントの分類を
偽陽性のコールとして扱った。DDDデータセットは3分の1の良性のde novoバリアントを含
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むので、理論的に完璧な分類器に対する曲線下面積(AUC)は1より小さい。したがって、良
性バリアントと病原性バリアントを完璧に分離する分類器は、DDD患者におけるde novoバ
リアントの67%を真陽性として、DDD患者におけるde novoバリアントの33%を偽陽性として
、対照群におけるde novoバリアントの100%を真陰性として分類し、0.837という最大の可
能なAUCを生む(図29Aおよび図29Bおよび補足テーブル19(図35))。
【０３６９】
［新しい遺伝子候補の発見］
　観察されるde novo変異の数をヌル変異モデルのもとで予想される数と比較することに
よって、遺伝子におけるde novo変異のエンリッチメントを検定した。DDD研究において実
行されるエンリッチメント分析を繰り返し、PrimateAIスコアが0.803を超えるde novoミ
スセンス変異のみをカウントするときに新たにゲノムワイド有意である遺伝子を報告した
。0.803を超えるPrimateAI閾値を満たすミスセンスバリアントの割合(ゲノム全体で概ね
すべての潜在的なミスセンス変異の5分の1)によって、de novoの損害を与えるミスセンス
変異に対するゲノムワイド期待値を調整した。DDD研究ごとに、各遺伝子は4つの検定を必
要とし、1つはタンパク質切断エンリッチメントを検定し、1つはタンパク質を変化させる
de novo変異のエンリッチメントを検定し、両方が、DDDコホートだけのために、および神
経発達トリオシーケンシングコホートのより大きなメタ分析のために検定される。タンパ
ク質を変化させるdee novo変異のエンリッチメントは、コーディング配列内のミスセンス
de novo変異のクラスタリングの検定と、Fisherの方法によって組み合わされた(補足テー
ブル20、21)。各遺伝子に対するP値が4つの検定の最小値から取られ、ゲノムワイド有意
性がP<6.757×10-7として決定された(α=0.05、4つの検定を用いた18500個の遺伝子)。
【０３７０】
［ClinVar分類の正確さ］
　既存の分類器の大半は、ClinVar上で訓練される分類器からの予測スコアを使用するな
どして、ClinVarコンテンツ上で直接または間接的にのいずれかで訓練されるので、2017
年以降に追加されたClinVarバリアントのみを使用するように、ClinVarデータセットの分
析を限定した。最近のClinVarバリアントと他のデータベースとの間にはかなりの重複が
あったので、ExACにおいて一般的なアレル頻度(>0.1%)で見つかるバリアント、または、H
GMD(Human Gene Mutation Database)、LOVD(Leiden Open Variation Database)、またはU
niprot(Universal Protein Resource)に存在するバリアントを除去するために、さらにフ
ィルタリングを行った。有意性が不確かであるものとしてだけアノテートされたバリアン
トおよび矛盾するアノテーションを伴うバリアントを取り除いた後で、良性のアノテーシ
ョンを伴う177個のミスセンスバリアントおよび病原性のアノテーションを伴う969個のミ
スセンスバリアントが残った。これらのClinVarバリアントを、深層学習ネットワークと
他の分類方法の両方を使用してスコアリングした。各分類器に対して、同じ数の良性予測
と病原性予測を生み出した閾値を、これらのデータベースにおいて観察される経験的な割
合として特定し、この閾値を、各分類器の正確さを推定するためのバイナリカットオフと
して使用した(図31Aおよび図31B)。
【０３７１】
[訓練データサイズを大きくすることおよび訓練データの異なる源を使用することの影響]
　深層学習ネットワークの性能に対する訓練データサイズの影響を評価するために、3852
36個の霊長類および一般的なヒトのバリアントの良性とラベリングされた訓練セットから
、バリアントのサブセットをランダムにサンプリングし、背後の深層学習ネットワークア
ーキテクチャを同一に保った。各々の個別の霊長類の種からのバリアントが分類の正確さ
に寄与する一方で、各々の個別の哺乳類の種からのバリアントはより低い分類の正確さに
寄与することを示すために、一実装形態に従って、83546個のヒトバリアントと、各種に
対するランダムに選択された一定の数のバリアントとを備える訓練データセットを使用し
て、深層学習ネットワークを訓練し、背後のネットワークアーキテクチャを再び同じに保
った。訓練セットに追加したバリアントの一定の数(23380)は、ミスセンスバリアントの
数が最小である種、すなわちボノボにおいて利用可能なバリアントの総数であった。各分
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類器に対する性能の中央値を得るために、訓練手順を5回繰り返した。
【０３７２】
［シーケンシングされる霊長類集団の数の増大に伴うすべての潜在的なヒトミスセンス変
異の飽和］
　ExACにおいて観察される一般的なヒトミスセンスバリアント(>0.1%のアレル頻度)のト
リヌクレオチドコンテクストに基づいてバリアントをシミュレートすることによって、50
4種の現存する霊長類の種において存在する一般的なバリアントによる、すべての約7000
万個の潜在的なヒトミスセンス変異の予想される飽和を調査した。各霊長類の種に対して
、ヒトにおいて観察される一般的なミスセンスバリアントの数(アレル頻度が0.1%を超え
る約83500個のミスセンスバリアント)の4倍をシミュレートした。それは、ヒトが、他の
霊長類の種と比べて個体あたりのバリアントの数が概ね半分であり、0.1%を超えるアレル
頻度では、純化選択によって約50%のヒトミスセンスバリアントが取り除かれているから
である(図49A)。
【０３７３】
　調査されるヒトのコホートのサイズの増大に伴って発見される一般的なヒトミスセンス
バリアント(>0.1%のアレル頻度)の割合をモデル化するために(図56)、ExACアレル頻度に
従って遺伝子型をサンプリングし、これらのシミュレートされるコホートにおいて少なく
とも1回観察された一般的なバリアントの割合を報告した。
【０３７４】
　一実装形態では、PrimateAIスコアの現実的な応用のために、優性遺伝モードを伴う遺
伝子においては、対照群と比較した症例群におけるde novoバリアントのエンリッチメン
トに基づいて(図21D)、>0.8という閾値が病原性の可能性が高いという分類に対して好ま
しく、<0.6が良性である可能性が高いという分類に対するものであり、0.6～0.8が中間で
あり、劣性遺伝モードを伴う遺伝子においては、>0.7という閾値が病原性である可能性が
高いという分類に対するものであり、<0.5が良性である可能性が高いという分類に対する
ものである。
【０３７５】
　図2は、本明細書で「PrimateAI」と呼ばれる、病原性予測のための深層残差ネットワー
クの例示的なアーキテクチャを示す。図2において、1Dは1次元畳み込み層を指す。予測さ
れる病原性は、0(良性)から1(病原性)までの目盛り上にある。ネットワークは、ヒトアミ
ノ酸(AA)基準およびバリアントを中心とする代替配列(51個のAA)、99種の脊椎動物の種か
ら計算された位置特定的重み行列(PWM)保存プロファイル、ならびに二次構造および溶媒
接触性予測深層学習ネットワークの出力を入力として取り込み、この深層学習ネットワー
クは、3状態のタンパク質二次構造(ヘリックス-H、βシート-B、およびコイル-C)と、3状
態の溶媒接触性(埋もれている-B、中間-I、および露出している-E)とを予測する。
【０３７６】
　図3は、病原性分類のための深層学習ネットワークアーキテクチャであるPrimateAIの概
略図を示す。モデルへの入力は、基準配列と置換されるバリアントを伴う配列との両方に
対するフランキング配列の51個のアミノ酸(AA)と、霊長類、哺乳類、および脊椎動物のア
ラインメントからの3つの長さ51AAの位置特定的重み行列により表される保存率と、事前
訓練された二次構造ネットワークおよび溶媒接触性ネットワークの出力(やはり長さは51A
Aである)とを含む。
【０３７７】
　図4A、図4B、および図4Cは、病原性予測深層学習モデルPrimateAIの例示的なモデルア
ーキテクチャの詳細を示す、補足テーブル16である。形状はモデルの各層における出力テ
ンソルの形状を指定し、活性化は層のニューロンに与えられる活性化である。モデルへの
入力は、バリアントの周りのフランキングアミノ酸配列に対する位置特定的頻度行列(長
さ51AA、深さ20)、ワンホット符号化された(one-hot encoded)ヒト基準配列および代替配
列(長さ51AA、深さ20)、ならびに、二次構造および溶媒接触性モデルからの出力(長さ51A
A、深さ40)である。
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【０３７８】
　示される例は1D畳み込みを使用する。他の実装形態では、このモデルは、2D畳み込み、
3D畳み込み、拡張畳み込みまたは膨張畳み込み、転置畳み込み(transposed convolution)
、分離可能畳み込み(separable convolution)、および深さごとの(depthwise)分離可能畳
み込みなどの、異なるタイプの畳み込みを使用することができる。一部の層は、シグモイ
ドまたは双曲線正接などの飽和する非線形性と比較して確率的勾配降下の収束を大きく加
速する、ReLU活性化関数も使用する。開示される技術によって使用され得る活性化関数の
他の例には、parametric ReLU、leaky ReLU、および指数関数的線形ユニット(ELU)がある
。
【０３７９】
　一部の層はバッチ正規化(IoffeおよびSzegedy、2015年)も使用する。バッチ正規化に関
して、畳み込みニューラルネットワーク(CNN)における各層の分布は訓練の間に変化し、
層によって変化する。このことは、最適化アルゴリズムの収束速度を低下させる。バッチ
正規化はこの問題を克服するための技法である。バッチ正規化層の入力をxで表し、その
出力をzを使用して表すと、バッチ正規化はxについての以下の変換を適用する。
【０３８０】
【数４１】

【０３８１】
　バッチ正規化は、μおよびσを使用して入力xに対する平均-分散の正規化を適用し、γ
およびβを使用してそれを線形にスケーリングしてシフトする。正規化パラメータμおよ
びσは、指数移動平均と呼ばれる方法を使用して訓練セットにわたって現在の層に対して
計算される。言い換えると、それらは訓練可能なパラメータではない。対照的に、γおよ
びβは訓練可能なパラメータである。訓練の間に計算されるμおよびσの値は、推論の間
にフォワードパスにおいて使用される。
【０３８２】
　図5および図6は、タンパク質の二次構造および溶媒接触性を予測するために使用される
深層学習ネットワークアーキテクチャを示す。モデルに対する入力は、RaptorXソフトウ
ェア(Protein Data Bank配列について訓練するための)または99種の脊椎動物のアライン
メント(ヒトタンパク質配列についての訓練および推論のための)によって生成される保存
率を使用した、位置特定的重み行列である。長さが51AAである、第2の層から最後の層の
出力は、病原性分類のための深層学習ネットワークに対する入力になる。
【０３８３】
　図7Aおよび図7Bは、3状態二次構造予測深層学習(DL)モデルの例示的なモデルアーキテ
クチャの詳細を示す補足テーブル11である。形状はモデルの各層における出力テンソルの
形状を指定し、活性化は層のニューロンに与えられる活性化である。モデルへの入力は、
バリアントの周りのフランキングアミノ酸配列に対する位置特定的頻度行列(長さ51AA、
深さ20)であった。
【０３８４】
　図8Aおよび図8Bは、3状態溶媒接触性予測深層学習モデルの例示的なモデルアーキテク
チャの詳細を示す補足テーブル12である。形状はモデルの各層における出力テンソルの形
状を指定し、活性化は層のニューロンに与えられる活性化である。モデルへの入力は、バ
リアントの周りのフランキングアミノ酸配列に対する位置特定的頻度行列(長さ51AA、深
さ20)であった。
【０３８５】
　図20は、重要な機能ドメインに対してアノテートされた、SCN2A遺伝子における各アミ
ノ酸の位置における予測される病原性スコアを示す。遺伝子に沿ってプロットされている
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のは、各アミノ酸の位置におけるミスセンス置換に対する平均PrimateAIスコアである。
【０３８６】
　図21Dは、訓練を保留された10000個の一般的な霊長類バリアントの検定セットに対する
良性の結果を予測することにおける分類器の比較を示す。y軸は、各分類器の閾値を変異
率について照合された10000個のランダムなバリアントのセットについての50パーセンタ
イルスコアへと正規化した後の、良性であるものとして正しく分類された霊長類バリアン
トの百分率を表す。
【０３８７】
　図21Eは、Deciphering Developmental Disorders(DDD)患者において発生するde novoミ
スセンスバリアントに対するPrimateAI予測スコアの分布を、影響を受けていない兄弟と
比較して、対応するウィルコクソンの順位和のP値とともに示す。
【０３８８】
　図21Fは、DDD症例群vs対照群におけるde novoミスセンスバリアントを分離することに
おける分類器の比較を示す。ウィルコクソンの順位和検定のP値が各分類器に対して示さ
れている。
【０３８９】
　図22A、図22B、図22C、図22D、および図22Eは、P<0.05である605個のDDD遺伝子内の分
類の正確さを示す。図22Aは、de novoタンパク質切断変異(P<0.05)に対して有意であった
605個の関連する遺伝子内の、DDDコホートからの影響を受けている個人における予想を超
えるde novoミスセンス変異のエンリッチメントを示す。図22Bは、605個の関連する遺伝
子内での、DDD患者vs影響を受けていない兄弟において発生するde novoミスセンスバリア
ントに対するPrimateAI予測スコアの分布を、対応するウィルコクソンの順位和のP値とと
もに示す。
【０３９０】
　図22Cは、605個の遺伝子内での、症例群vs対照群におけるde novoミスセンスバリアン
トを分離する際の様々な分類器の比較を示す。y軸は、各分類器に対するウィルコクソン
の順位和検定のP値を示す。
【０３９１】
　図22Dは、受信者動作特性曲線上で示される、様々な分類器の比較を、各分類器に対し
て示されるAUCとともに示す。
【０３９２】
　図22Eは、各分類器に対する分類の正確さとAUCを示す。示される分類の正確さは、図22
Aにおいて示されるエンリッチメントに基づいて予測されるのと同じ数の病原性バリアン
トと良性バリアントを分類器が予測するような閾値を使用した、真陽性と真陰性のエラー
率の平均である。DDD de novoミスセンスバリアントの33%がバックグラウンドとなるとい
う事実を考慮するために、完璧な分類器に対する最大の達成可能なAUCが点線で示される
。
【０３９３】
　図23A、図23B、図23C、および図23Dは、訓練のために使用されるデータの、分類の正確
さに対する影響を示す。深層学習ネットワークは、完全なデータセット(385236個のバリ
アント)まで、増大する数の霊長類およびヒトの一般的なバリアントを用いて訓練される
。図23Aにおいて、ネットワークの各々の分類性能のベンチマークが、10000個の保留され
た霊長類バリアントと、DDD症例群vs対照群におけるde novoバリアントとに対して正確さ
についてとられる。
【０３９４】
　図23Bおよび図23Cは、一実装形態による、83546個の一般的なヒトバリアントと、単一
の霊長類の種または哺乳類の種からの23380個のバリアントとを備えるデータセットを使
用して訓練された、ネットワークの性能を示す。10000個の保留された霊長類バリアント(
図23B)と、DDD症例群vs対照群におけるde novoミスセンスバリアント(図23C)とについて
ベンチマークがとられた、一般的な変異の異なる源を用いて訓練された各ネットワークに
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対して、結果が示されている。
【０３９５】
　図23Dは、504種の現存する霊長類の種における同一状態の一般的なバリアント(>0.1%)
による、すべての潜在的な良性のヒトミスセンスの位置の予想される飽和を示す。y軸は
少なくとも1つの霊長類の種において観察されるヒトミスセンスバリアントの割合を示し
、CpGミスセンスバリアントが緑で示され、すべてのミスセンスバリアントが青で示され
ている。各霊長類の種における一般的なバリアントをシミュレートするために、置き換え
を伴うすべての潜在的な一塩基置換のセットからサンプリングし、ExACにおける一般的な
ヒトバリアント(>0.1%のアレル頻度)について観察されるトリヌクレオチドコンテクスト
分布を照合した。
【０３９６】
　図24は、一般的な霊長類バリアントの確認に対するシーケンシングカバレッジの影響を
訂正することを示す。ヒト以外の霊長類の種において所与のバリアントを観察する確率は
、ExAC/gnomADエクソンデータセットの中のその位置におけるシーケンシング深度と逆の
相関がある。対照的に、より低いgnomADリードの深さは、その位置における一般的なヒト
バリアント(>0.1%のアレル頻度)を観察する確率に影響を与えなかった。それは、シーケ
ンシングされる多数のヒトエクソンが、一般的な変異の確認をほとんど保証されたものに
するからである。ネットワークを訓練するための霊長類バリアントの各々に対する一致し
たバリアントを選ぶとき、あるバリアントを選ぶ確率は、変異率および遺伝子変換を考慮
するためのトリヌクレオチドコンテクストに対する照合に加えて、シーケンシングの深さ
の影響について調整された。
【０３９７】
　図25A、図25B、図25C、および図26は、開示されたニューラルネットワークによるタン
パク質モチーフの認識を示す。図25A、図25B、および図25Cに関して、タンパク質ドメイ
ンのニューラルネットワークによる認識を例示するために、3つの異なるタンパク質ドメ
インの中の各アミノ酸位置におけるバリアントに対する平均PrimateAIスコアを示す。図2
5Aにおいて、反復するGXXモチーフの中にグリシンを伴う、COL1A2というコラーゲン鎖が
強調されている。コラーゲン遺伝子における臨床的に特定されている変異は、大部分がGX
Xリピートにおけるグリシンのミスセンス変異によるものであり、それは、これらがコラ
ーゲンの正常な組み立てと干渉し、強いドミナントネガティブ効果を及ぼすからである。
図25Bにおいて、IDSスルファターゼ酵素の活性サイトが強調されており、これは、ホルミ
ルグリシンへと翻訳後修飾されるシステインを活性サイトに含む。図25Cにおいて、MYC転
写因子のbHLHzipドメインが示されている。基本ドメインは、負に荷電した糖リン酸の骨
格と相互作用する正に荷電したアルギニンおよびリジン残基(強調されている)を介して、
DNAに接触する。ロイシンジッパードメインは、二量体化のために決定的に重要である、7
個のアミノ酸だけ離隔されたロイシン残基(強調されている)を備える。
【０３９８】
　図26は、バリアントに対する予測される深層学習スコアへの、バリアントの中および周
りの各位置を摂動させることの影響を示す線のプロットを含む。バリアントの周りの近く
のアミノ酸(位置-25～+25)における入力をシステム的に0に設定し、ニューラルネットワ
ークによるバリアントの予測される病原性の変化を測定した。プロットは、5000個のラン
ダムに選択されたバリアントに対する各々の近くのアミノ酸位置における摂動に対する、
予測される病原性スコアの平均の変化を示す。
【０３９９】
　図27は、重みの相関パターンがBLOSUM62スコア行列およびGranthamスコア行列を模倣す
ることを示す。二次構造深層学習ネットワークの最初の3つの層からの重みの相関パター
ンは、BLOSUM62スコア行列およびGranthamスコア行列に類似するアミノ酸間の相関を示す
。左のヒートマップは、ワンホット表現を使用して符号化されたアミノ酸間の二次構造深
層学習ネットワークの2つの初期アップサンプリング層に続く、第1の畳み込み層からのパ
ラメータ重みの相関を示す。中間のヒートマップは、アミノ酸のペア間のBLOSUM62スコア
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を示す。右のヒートマップはアミノ酸間のGrantham距離を示す。深層学習重みとBLOSUM62
スコアとの間のPearson相関は0.63(P=3.55×10-9)である。深層学習重みとGranthamスコ
アとの間の相関は-0.59(P=4.36×10-8)である。BLOSUM62スコアとGranthamスコアとの間
の相関は-0.72(P=8.09×10-13)である。
【０４００】
　図28A、図28B、および図28Cは、深層学習ネットワークPrimateAIと他の分類器の性能評
価を示す。図28Aは、訓練を保留された10000個の霊長類バリアントの検定セットに対する
良性の結果を予測することにおける深層学習ネットワークPrimateAIの正確さと、SIFT、P
olyPhen-2、CADD、REVEL、M-CAP、LRT、MutationTaster、MutationAssessor、FATHMM、PR
OVEAN、VEST3、MetaSVM、MetaLR、MutPred、DANN、FATHMM-MKL_coding、Eigen、GenoCany
on、integrated_fitCons、およびGERPを含む、他の分類器との比較とを示す。y軸は、変
異率および遺伝子変換を考慮するためにトリヌクレオチドコンテクストについて霊長類バ
リアントと照合された、10000個のランダムに選択されたバリアントのセットを使用して
、各分類器に対する閾値を50パーセンタイルスコアへと正規化したことに基づいて、良性
であるものとして分類された霊長類バリアントの百分率を表す。
【０４０１】
　図28Bは、上で列挙された20個の既存の方法とともに、DDD症例群vs対照群におけるde n
ovoミスセンスバリアントを分離する際のPrimateAIネットワークの性能の比較を示す。y
軸は、各分類器に対するウィルコクソンの順位和検定のP値を示す。
【０４０２】
　図28Cは、上で列挙された20個の方法とともに、605個の疾患関連遺伝子内での、DDD症
例群vs影響を受けていない対照群におけるde novoミスセンスバリアントを分離する際のP
rimateAIネットワークの性能の比較を示す。y軸は、各分類器に対するウィルコクソンの
順位和検定のP値を示す。
【０４０３】
　図29Aおよび図29Bは、4つの分類器の予測スコアの分布を示す。DDD症例群vs影響を受け
ていない対照群において発生するde novoミスセンスバリアントに対する、SIFT、PolyPhe
n-2、CADD、およびREVELを含む4つの分類器の予測スコアのヒストグラムを、対応するウ
ィルコクソンの順位和のP値とともに示す。
【０４０４】
　図30A、図30B、および図30Cは、605個の疾患関連遺伝子における病原性バリアントと良
性バリアントを分類する際の、PrimateAIネットワークと他の分類器の正確さを比較する
。図30Aの散布図は、DDD症例群vs対照群に対する分類器の各々の性能(y軸)と、保留され
た霊長類データセットに対する良性予測の正確さ(x軸)とを示す。図30Bは、各分類器に対
して示される曲線下面積(AUC)とともに、受信者動作特性(ROC)曲線上に示される、605個
の遺伝子内での症例群vs対照群におけるde novoミスセンスバリアントを分離することに
おいて異なる分類器を比較する。図30Cは、図28A、図28B、および図28Cにおいて列挙され
る、PrimateAIネットワークおよび20個の分類器に対する分類の正確さとAUCを示す。示さ
れる分類の正確さは、図22Aにおけるエンリッチメントに基づいて予想されるものと同じ
数の病原性バリアントと良性バリアントを分類器が予測するような閾値を使用した、真陽
性と真陰性の率の平均である。DDD症例群におけるde novoミスセンスバリアントは67%が
病原性バリアントであり33%が良性であり、対照群におけるde novoミスセンスバリアント
は100%良性であると仮定して、完璧な分類器に対する最大の達成可能なAUCが点線で示さ
れている。
【０４０５】
　図31Aおよび図31Bは、専門家により精選されたClinVarバリアントに対する分類器の性
能と、経験的なデータセットに対する性能との相関を示す。図31Aの散布図は、ヒトのみ
のデータで訓練された、またはヒト+霊長類のデータで訓練された、20個の他の分類器の
各々およびPrimateAIネットワークに対する、10000個の保留された霊長類バリアントにつ
いての分類の正確さ(x軸)と、ClinVarバリアントについての分類の正確さ(y軸)とを示す
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。Spearman相関係数rhoおよび関連するP値が示されている。分類器を訓練するために使用
されなかったデータへと評価を限定するために、2017年1月から2017年11月の間に追加さ
れたClinVarバリアントのみを使用し、ExAC/gnomADからの一般的なヒトバリアント(>0.1%
のアレル頻度)を除外した。示されるClinVar分類の正確さは、ClinVarデータセットにお
いて観察されるのと同じ数の病原性バリアントと良性バリアントを分類器が予測するよう
な閾値を使用した、真陽性と真陰性の率の平均である。
【０４０６】
　図31Bの散布図は、ヒトのみのデータで訓練された、またはヒト+霊長類のデータで訓練
された、20個の他の分類器およびPrimateAIネットワークの各々に対する、DDD症例群vs対
照群の完全なデータセット(x軸)と、ClinVarバリアントに対する分類の正確さ(y軸)を示
す。
【０４０７】
　図32は、訓練のための6367個の、妥当性確認のための400個の、および検定のための500
個の関連しないタンパク質配列を使用した、Protein DataBankからのアノテートされたサ
ンプルに対する、3状態二次構造予測モデルおよび3状態溶媒接触性予測モデルの性能を示
す、補足テーブル14である。配列の相同性が25%未満であるタンパク質のみがProtein Dat
aBankから選択された。3つのクラスは二次構造と溶媒接触性のいずれについても大きく偏
ってはいないので、深層学習ネットワークの正確さを性能の尺度として報告する。
【０４０８】
　図33は、予測される二次構造ラベルを使用する深層学習ネットワークとともに、DSSPデ
ータベースからのヒトタンパク質のアノテートされた二次構造ラベルが利用であるときに
それを使用した、深層学習ネットワークの性能比較を示す補足テーブル15である。
【０４０９】
　図34は、評価した20個の分類器の各々についての、10000個の保留された霊長類バリア
ントに対する正確さの値と、DDD症例群vs対照群におけるde novoバリアントに対するp値
とを示す補足テーブル17である。ヒトのデータのみを用いたPrimateAIモデルは、一般的
なヒトバリアント(集団において>0.1%である83500個のバリアント)のみからなるラベリン
グされた良性の訓練データセットを使用して訓練された我々の深層学習ネットワークであ
るが、ヒト+霊長類のデータを用いたPrimateAIモデルは、一般的なヒトバリアントと霊長
類バリアントの両方を備える、385000個のラベリングされた良性バリアントの完全なセッ
トについて訓練された我々の深層学習ネットワークである。
【０４１０】
　図35は、605個の疾患関連遺伝子に制約された、DDD症例群vs対照群データセットにおけ
るde novoバリアントに対する異なる分類器の性能の比較を示す、補足テーブル19である
。異なる方法の間で正規化するために、各分類器に対して、DDDセットと対照群セットと
におけるエンリッチメントに基づいて予想されるのと同じ数の病原性バリアントおよび良
性バリアントを分類器が予測するような閾値を特定した。示される分類の正確さは、この
閾値における真陽性と真陰性のエラー率の平均である。
【０４１１】
　図49A、図49B、図49C、図49D、および図49Eは、ヒトアレル頻度スペクトラムにわたる
ミスセンス/同義比を示す。図49Aは、ExAC/gnomADデータベースからの123136人のヒトに
おいて観察されるミスセンスバリアントおよび同義バリアントが、アレル頻度によって4
つのカテゴリへと分割されたことを示す。灰色の影付きの棒は各カテゴリにおける同義バ
リアントのカウントを表し、濃緑の棒はミスセンスバリアントを表す。各棒の高さは各ア
レル頻度カテゴリにおける同義バリアントの数に対してスケーリングされ、ミスセンス/
同義カウントおよび比は変異率を調整した後で表示される。図49Bおよび図49Cは、チンパ
ンジーの一般的なバリアント(図49B)およびチンパンジーのシングルトンバリアント(図49
C)と同一状態(IBS)であるヒトミスセンスバリアントおよび同義バリアントに対する、ア
レル頻度スペクトラムを示す。稀なヒトアレル頻度(<0.1%)と比較して一般的なヒトアレ
ル頻度(>0.1%)を持つチンパンジーミスセンスバリアントの枯渇率が、付随するカイ二乗(
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χ2)検定のP値とともに、赤いボックスによって示されている。
【０４１２】
　図49Dは、ヒト以外の霊長類の種のうちの少なくとも1つにおいて観察されるヒトバリア
ントを示す。図49Eは、ClinVarデータベース全体における良性ミスセンスバリアントと病
原性ミスセンスバリアントのカウント(上の行)を、ExAC/gnomADアレル頻度からサンプリ
ングされる30人のヒトのコホートにおけるClinVarバリアントのカウント(中間の行)、お
よび霊長類において観察されるバリアントのカウント(下の行)と比較して示す。矛盾する
良性と病原性の判定と、有意性が不確かなものとしてだけアノテートされたバリアントは
、除外された。
【０４１３】
　図50A、図50B、図50C、および図50Dは、他の種と同一状態であるミスセンスバリアント
に対する純化選択を示す。図50Aは、4種の霊長類以外の哺乳類の種(ネズミ、ブタ、ヤギ
、およびウシ)において存在するバリアントと同一状態である、ヒトミスセンスバリアン
トおよび同義バリアントに対するアレル頻度スペクトラムを示す。一般的なヒトアレル頻
度(>0.1%)を持つミスセンスバリアントの枯渇率が、付随するカイ二乗(χ2)検定のP値と
ともに、赤いボックスによって示されている。
【０４１４】
　図50Bは、一般的なヒトアレル頻度(>0.1%)で他の種において観察されるミスセンスバリ
アントの枯渇率と、枝長(ヌクレオチドの位置当たりの置換の平均の数)の単位で表される
、ヒトからの種の進化的距離とを比較して示す散布図である。各種とヒトとの間の枝長の
合計が、種の名前の隣に示されている。親類の個体を含んでいたゴリラを除いて、シング
ルトンバリアントおよび一般的なバリアントに対する枯渇値が、バリアント頻度が入手可
能であった種に対して示されている。
【０４１５】
　図50Cは、ExAC/gnomADアレル頻度からサンプリングされた30人のヒトのコホートにおけ
る良性ミスセンスバリアントと病原性ミスセンスバリアントのカウント(上の行)を、霊長
類において観察されるバリアントのカウント(中間の行)、ならびに、ネズミ、ブタ、ヤギ
、およびウシにおいて観察されるバリアントのカウント(下の行)と比較して示す。矛盾す
る良性と病原性の判定と、有意性が不確かなものとしてだけアノテートされたバリアント
は、除外された。
【０４１６】
　図50Dは、一般的なヒトアレル頻度(>0.1%)で近縁の種のペアにおいて観察される固定さ
れたミスセンス置換の枯渇率と、ヒトからの種の進化的距離(平均の枝長の単位で表され
る)とを比較して示す、散布図である。
【０４１７】
　図51は、純化選択がないときのヒトアレル頻度スペクトラムにわたる予想されるミスセ
ンス:同義比を示す。灰色の影付きの棒は同義バリアントの数を表し、濃緑の棒はミスセ
ンスバリアントの数を表す。点線は同義バリアントによって形成される基準を示す。ミス
センス:同義比は各アレル頻度カテゴリに対して示される。一実装形態によれば、各アレ
ル頻度カテゴリにおける予想されるミスセンスカウントおよび同義カウントは、123136個
のエクソンを備えるExAC/gnomADデータセットからイントロンバリアントを取り込み、変
異率および遺伝子変換におけるGCバイアスを考慮するバリアントのトリヌクレオチドコン
テクストに基づいて、4つのアレル頻度カテゴリの各々に該当することが予想されるバリ
アントの割合を推定するためにそれらのイントロンバリアントを使用することによって、
計算された。
【０４１８】
　図52A、図52B、図52C、および図52Dは、CpGバリアントおよび非CpGバリアントに対する
ミスセンス:同義比を示す。図52Aおよび図52Bは、ExAC/gnomADエクソンからのすべてのバ
リアントを使用した、ヒトアレル頻度スペクトラムにわたるCpGバリアントに対するミス
センス:同義比(図52A)および非CpGバリアントに対するミスセンス:同義比(図52B)を示す
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。図52Cおよび図52Dは、一般的なチンパンジー多型と同一状態であるヒトバリアントのみ
に制約された、ヒトアレル頻度スペクトラムにわたるCpGバリアントに対するミスセンス:
同義比(図52C)および非CpGバリアントに対するミスセンス:同義比(図52D)を示す。
【０４１９】
　図53、図54、および図55は、6種の霊長類と同一状態であるヒトバリアントのミスセン
ス:同義比を示す。チンパンジー、ボノボ、ゴリラ、オランウータン、アカゲザル、およ
びマーモセットにおいて存在する変異と同一状態であるExAC/gnomADバリアントに対する
、ヒトアレル頻度スペクトラムにわたるミスセンス:同義比のパターンを示す。
【０４２０】
　図56は、調査されるヒトのコホートのサイズを増大させることによって発見される、新
しい一般的なミスセンスバリアントの飽和を示すシミュレーションである。シミュレーシ
ョンにおいて、各サンプルの遺伝子型は、gnomADアレル頻度に従ってサンプリングされた
。発見された一般的なgnomADバリアントの割合は、10から100000の各サンプルサイズに対
して100回のシミュレーションにわたって平均される。
【０４２１】
　図57は、ゲノムにおける様々な保存プロファイルにわたるPrimateAIの正確さを示す。x
軸は、99種の脊椎動物のアラインメントとの、ある配列の周りの51個のAAの百分率のアラ
インメント可能性を表す。y軸は、10000個の保留された霊長類バリアントの検定データセ
ットについてベンチマークがとられた、保存ビンの各々におけるバリアントに対するPrim
ateAIの正確さの分類性能を表す。
【０４２２】
　図58は、一般的なヒトバリアントおよびヒト以外の霊長類において存在するバリアント
からのラベリングされた良性の訓練データセットへの寄与を示す、補足テーブル5である
。
【０４２３】
　図59は、予想されるミスセンス:同義比に対するアレル頻度の影響を示す補足テーブル8
である。同義バリアントとミスセンスバリアントの予想されるカウントは、変異率および
遺伝子変換バイアスを考慮するためにトリヌクレオチドコンテクストを使用して、エクソ
ン境界から少なくとも20～30nt離れたイントロン領域におけるバリアントのアレル頻度ス
ペクトラムに基づいて計算された。
【０４２４】
　図60は、ClinVar分析を示す補足テーブル9である。一実装形態によれば、ClinVarデー
タベースの2017年11月のビルドからダウンロードされたバリアントが、矛盾するアノテー
ションを伴うミスセンスバリアントを除外し、有意性が不確かであるバリアントを削除す
るようにフィルタリングされ、17775個の良性バリアントおよび24853個の病原性バリアン
トが残った。
【０４２５】
　図61は、一実装形態による、ClinVarにおいて発見された他の種からのミスセンスバリ
アントの数を示す補足テーブル10である。バリアントは、対応するヒトバリアントと同一
状態であることと、同じコーディング結果を保証するためにリーディングフレームの中の
他の2つの位置において同一のヌクレオチドを有することとが必要とされた。
【０４２６】
　図62は、元のDDD研究においてはゲノムワイド有意性の閾値にこれまで達していなかっ
た、知的障害における14個の追加の遺伝子候補の発見の一実装形態を示すテーブル1であ
る。
【０４２７】
　図63は、ClinVarにおける病原性バリアントと良性バリアントとの間のGranthamスコア
の平均の差の一実装形態を示すテーブル2であり、この差は、605個の疾患関連遺伝子内で
のDDD症例群vs対照群におけるde novoバリアントの差の2倍である。
【０４２８】
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［データ生成］
　本明細書において使用されるすべての座標は、このセクションで説明される手順を使用
して複数配列アラインメントを使用してhg19にマッピングされた他の種におけるバリアン
トに対する座標を含めて、ヒトゲノムbuild UCSC hg19/GRCh37を参照する。ヒトとの99種
の脊椎動物ゲノムのタンパク質コーディングDNA配列および複数配列アラインメントが、h
g19 buildのためのUCSCゲノムブラウザからダウンロードされた(http://hgdownload.soe.
ucsc.edu/goldenPath/hg19/multiz100way/alignments/knownCanonical.exonNuc.fa.gz)。
複数の正規の遺伝子アノテーションを伴う遺伝子については、最長のコーディング転写産
物が選択された。
【０４２９】
　世界中の8つの亜集団からの123136人の個人の全エクソンシーケンシング(WES)データを
収集した、Exome Aggregation Consortium(ExAC)/genome Aggregation Database(gnomAD)
v2.0からヒトエクソン多型データをダウンロードした(http://gnomad.broadinstitute.or
g/)。ExAC VCFファイルにおいてアノテートされるようなデフォルトの品質制御フィルタ
を通過しないバリアント、または正規のコーディング領域の外側にあるバリアントを除外
した。平衡選択による影響を避けるために、霊長類分析のための延長されたMHC領域(chr6
:28,477,797～33,448,354)内からのバリアントも除外した。大型類人猿ゲノムシーケンシ
ングプロジェクトは、24体のチンパンジー、13体のボノボ、27体のゴリラ、および10体の
オランウータン(スマトラ亜種からの5体およびボルネオ亜種からの5体を含む、これらを
下流分析のために折り畳んだ)に対する、全ゲノムシーケンシングデータおよび遺伝子型
を提供する。チンパンジーおよびボノボについての研究は、追加の35体のチンパンジーの
ゲノム配列を提供する。しかしながら、これらの追加のチンパンジーに対するバリアント
は、大型類人猿ゲノムシーケンシングプロジェクトと同じ方法を使用してコールされなか
ったので、それらをアレル頻度スペクトラム分析から除外し、深層学習モデルを訓練する
ためだけに使用した。これらの霊長類多様性研究からの変異はすでに、ヒト基準(hg19)に
マッピングされていた。加えて、マーモセットおよびアカゲザルについては、16体のアカ
ゲザルの個体および9体のマーモセットの個体がこれらの種のゲノムの元のシーケンシン
グにおける変異を評価するために使用されたが、個体レベルの情報は利用可能ではない。
【０４３０】
　大型類人猿ゲノムシーケンシングプロジェクト4は、24体のチンパンジー、13体のボノ
ボ、27体のゴリラ、および10体のオランウータン(スマトラ亜種からの5体およびボルネオ
亜種からの5体を含む、これらを下流での分析のために折り畳んだ)に対する、全ゲノムシ
ーケンシングデータおよび遺伝子型を提供する。チンパンジーおよびボノボについての研
究は、追加の35体のチンパンジーのゲノム配列を提供する。しかしながら、これらの追加
のチンパンジーに対するバリアントは、大型類人猿ゲノムシーケンシングプロジェクトと
同じ方法を使用してコールされなかったので、それらをアレル頻度スペクトラム分析から
除外し、深層学習モデルを訓練するためだけに使用した。これらの霊長類多様性研究から
の変異はすでに、ヒト基準(hg19)にマッピングされていた。加えて、マーモセットおよび
アカゲザルについては、16体のアカゲザルの個体および9体のマーモセットの個体がこれ
らの種のゲノムの元のシーケンシングにおける変異を評価するために使用されたが、個体
レベルの情報は利用可能ではない。
【０４３１】
　他の霊長類および哺乳類と比較するために、アカゲザル、マーモセット、ブタ、ウシ、
ヤギ、ネズミ、ニワトリ、およびゼブラフィッシュを含む、他の種のSNPもdbSNPからダウ
ンロードした。dbSNPは追加のオランウータンバリアントも含んでおり、それを我々は深
層学習モデルを訓練するためだけに使用した。それは、個体の遺伝子型情報がアレル頻度
スペクトラム分析に対して利用可能ではなかったからである。イヌ、ネコ、またはヒツジ
などの他の種については、それらの種に対する限られた数のバリアントしかdbSNPが提供
しないので、廃棄した。
【０４３２】
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　バリアントをヒトにマッピングするために、99種の脊椎動物の多種アラインメントを使
用して、ヒトタンパク質コーディング領域へのオーソロガスな1:1のマッピングを確実に
した。オーソロガスな多種アラインメントを使用するバリアントのマッピングが、偽遺伝
子またはレトロトランスポジションを受けた配列によって引き起こされるアーティファク
トを取り除くために必須であった。このアーティファクトは、多数対1のマッピングを可
能にするliftOverなどのツールを使用して種間で直接SNPをマッピングするときに発生す
る。dbSNPにおける種のゲノムビルドが99種の脊椎動物の複数配列アラインメントにおけ
る種のゲノムビルドと一致しなかった場合、複数配列アラインメントにおいて使用される
ゲノムビルドへとバリアントを更新するためにliftOverを使用した。バリアントが基準/
代替方向において発生した場合、バリアントを同一状態であるものとして受け入れた。た
とえば、ヒト基準がGであり代替アレルがAであった場合、これは、基準がAであり代替ア
レルがGであった別の種におけるバリアントと同一状態であると見なされた。バリアント
がヒトと他の種の両方において同じ予測されるタンパク質コーディング結果を有すること
を確実にするために、ミスセンスバリアントと同義バリアントの両方に対して、コドンの
中の他の2つのヌクレオチドが種間で同一であることを要求した。分析に含まれる各種か
らの多型が補足データファイル1において列挙され、詳細な尺度が補足テーブル1に示され
ている。
【０４３３】
　各dbSNP提出者バッチからのバリアントが、高品質でありヒトに正しくアラインメント
されることを確実にするために、各バッチに対するミスセンス:同義比を計算し、これが2
.2:1という予想される比より小さかったことと、大半の種、特に非常に大きい有効個体数
を有することが予想されるゼブラフィッシュおよびネズミが、1:1より小さい比を有して
いたこととを確認した。さらなる分析から、異常に高いミスセンス:同義比を有していた
ウシから、SNPの2つのバッチを除外した(比が1.391であるsnpBatch_1000_BULL_GENOMES_1
059190.gzおよび比が2.568であるsnpBatch_COFACTOR_GENOMICS_1059634.gz)。残りのウシ
のバッチに対する平均のミスセンス:同義比は0.8:1であった。
【０４３４】
［ミスセンス:同義比、変異率、遺伝的浮動、およびGCバイアス(GC-Biased)遺伝子変換に
対するアレル頻度の影響の訂正］
　純化選択の活動に加えて、高いアレル頻度でのヒトミスセンスバリアントの観察される
枯渇率は、自然選択に関連しない要因によっても影響を受け得る。集団において特定のア
レル頻度で現れる自然変異の確率は、変異率、遺伝子変換、および遺伝的浮動の関数であ
り、これらの要因は、選択圧がなくてもアレル頻度スペクトラムにわたってミスセンス:
同義比にバイアスをもたらす可能性がある。
【０４３５】
　タンパク質コーディング選択がないときの各アレル頻度カテゴリにおける予想されるミ
スセンス:同義比を計算するために、各エクソンの31～50bp上流および21～50bp下流のイ
ントロン領域内のバリアントを選択した。これらの領域は、延長されたスプライスモチー
フの影響を避けるのに十分遠くなるように選ばれた。これらの領域は、ExAC/gnomADエク
ソンに対するエクソン捕捉配列の端に近いので、バリアントの公平な確認を確実にするた
めに、あらゆるchrX領域を除去し、平均リード深さが30未満である領域を取り除いた。各
バリアントおよびそのすぐ上流および下流のヌクレオチドは、64個のトリヌクレオチドコ
ンテクストのうちの1つの中にある。中間のヌクレオチドを3つの他の塩基へと変異させる
場合、全体で64×3=192個のトリヌクレオチド構成が可能である。トリヌクレオチド構成
およびそれらの逆相補配列は等価であるので、実質的に96個のトリヌクレオチドコンテク
ストがある。トリヌクレオチドコンテクストは変異率に対して非常に強い影響があり、GC
バイアス遺伝子変換に対する影響がより小さいことが観察され、これにより、これらの変
数をモデル化するためにトリヌクレオチドコンテクストが有効になる。
【０４３６】
　これらのイントロン領域内で、アレル頻度の4つのカテゴリ(シングルトン、シングルト
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ンより多い～0.01%、0.01～0.1%、>0.1%)および192個のトリヌクレオチドコンテクストに
基づいて、126136個のExAC/gnomADエクソンから各バリアントを取り込み、それらを4×19
2個のカテゴリへと分離した。そのトリヌクレオチドコンテクスト(イントロン配列の中の
各ヌクレオチドを3つの異なる方式で置換することによって得られる)で潜在的なバリアン
トの総数を割ることによって、4×192個のカテゴリ(アレル頻度×トリヌクレオチドコン
テクスト)の各々において観察されるバリアントの数を正規化した。192個のトリヌクレオ
チドコンテクストの各々に対して、タンパク質コーディング選択がないとき、4つのアレ
ル頻度カテゴリの各々に該当するバリアントの予想される割合をこうして得た。これは、
トリヌクレオチドコンテクストの差による、変異率、GCバイアス遺伝子変換、および遺伝
的浮動の影響を暗黙的にモデル化する(補足テーブル7)。
【０４３７】
　各アレル頻度カテゴリにおける予想されるミスセンス:同義比を得るために、一塩基置
換によって入手可能なヒトゲノムにおける潜在的な同義変異およびミスセンス変異の総数
をカウントし、それらの各々を192個のトリヌクレオチドコンテクストのうちの1つに割り
当てた。各コンテクストに対して、4つのアレル頻度カテゴリの各々に該当することが予
想されるバリアントの数を計算するために、4×192個のテーブルを使用した。最後に、19
2個のトリヌクレオチドコンテクストにわたる同義バリアントおよびミスセンスバリアン
トの数を合計して、4つのアレル頻度カテゴリの各々における同義バリアントとミスセン
スバリアントの合計の予想される数を得た(図51および補足テーブル8(図59))。
【０４３８】
　予想されるミスセンス:同義比が2.46:1であったシングルトンバリアントを除き、予想
されるミスセンス:同義比は、アレル頻度スペクトラムにわたってほぼ一定であり、自然
選択がない場合にde novoバリアントについて予想される2.23:1という比に近かった。こ
のことは、タンパク質コーディング選択圧力とは独立の要因(変異率、遺伝子変換、遺伝
的浮動)の活動により、ExAC/gnomADにおけるシングルトンアレル頻度カテゴリのバリアン
トが、デフォルトでde novo変異より約10%高いミスセンス:同義比を有することが予想さ
れることを示す。これを訂正するために、アレル頻度分析において、シングルトンに対す
るミスセンス:同義比を10%だけ下に調整した(図49A、図49B、図49C、図49D、および図49E
、ならびに図50A、図50B、図50C、および図50D)。この小さい調整は、霊長類および他の
哺乳類において存在する一般的なヒトバリアントに対する推定されるミスセンス枯渇率を
およそ3.8%低下させた(図49A、図49B、図49C、図49D、および図49E、ならびに図50A、図5
0B、図50C、および図50Dに示される)。シングルトンバリアントに対するより高いミスセ
ンス:同義比は、トランスバージョン変異(これはミスセンス変化を作り出す可能性がより
高い)より高い変異率が原因で、トランジション変異(これは同義変化を作り出す可能性が
より高い)がより高いアレル頻度を有することが原因である。
【０４３９】
　その上、このことは、2.23:1というde novo変異について予想される比を超える、ExAC/
gnomADにおけるシングルトンバリアントに対する2.33:1という観察されるミスセンス:同
義比を説明する。ミスセンス:同義比に対するアレル頻度スペクトラムの影響を考慮した
後で、これは実際には予想と比較して5.3%のシングルトンバリアントの枯渇を反映してお
り、これはおそらく、de novo優性遺伝モードを持つ病原性ミスセンス変異に対する選択
によるものである。実際に、機能喪失の確率が高い(pLI>0.9)ハプロ不全遺伝子だけを考
慮するとき、ExAC/gnomADシングルトンバリアントに対するミスセンス:同義比は2.04:1で
あり、ハプロ不全遺伝子内で約17%前後の枯渇率を示す。この結果は、ある程度の不完全
な浸透を仮定するとき、ミスセンス変異の20%が機能喪失変異と等価であるという以前の
推定と合致する。
【０４４０】
　変異率の大きな違いによる、ヒトアレル頻度スペクトラムにわたるCpGバリアントおよ
び非CpGバリアントに対するミスセンス:同義比も具体的に調査した(図52A、図52B、図52C
、および図52D)。CpG変異と非CpG変異の両方に対して、一般的なチンパンジー多型と同一
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状態であるヒトバリアントは、アレル頻度スペクトラムにわたってほぼ一定のミスセンス
:同義比を有することを確認した。
【０４４１】
［他の種における多型と同一状態であるヒトミスセンスバリアントの枯渇率］
　他の種からのバリアントがヒトにおいて一般的なアレル頻度(>0.1%)で耐えられるかど
うかを評価するために、他の種における変異と同一状態であったヒトバリアントを特定し
た。バリアントの各々に対して、ヒト集団におけるアレル頻度(シングルトン、シングル
トンより多い～0.01%、0.01%～0.1%、>0.1%)に基づいて、それらを4つのカテゴリのうち
の1つに割り当て、稀なバリアント(<0.1%)と一般的なバリアント(>0.1%)との間でのミス
センス:同義比(MSR)の低下を推定した。一般的なヒトアレル頻度(>0.1%)における同一状
態のミスセンスバリアントの枯渇率は、ヒトにおいて一般的なアレル頻度では自然選択に
より除去されるのに十分有害な、他の種からのバリアントの割合を示す。
【０４４２】
【数４２】

【０４４３】
　ミスセンス:同義比および枯渇の百分率は、種毎に計算され、図50Bおよび補足テーブル
2に示されている。加えて、一般的なチンパンジーバリアント(図49A)、チンパンジーシン
グルトンバリアント(図49C)、および哺乳類バリアント(図50A)に対して、稀なバリアント
と一般的なバリアントとの間のミスセンス:同義比の差が有意であったかどうかを検定す
るために、2×2の分割表上で相同性のカイ二乗(χ2)検定を実行した。
【０４４４】
　シーケンシングは大型類人猿多様性プロジェクトからの限られた数の個体に対してのみ
実行されたので、一般のチンパンジー集団において稀(<0.1%)または一般的(>0.1%)であっ
たサンプリングされたバリアントの割合を推定するために、ExAC/gnomADからのヒトアレ
ル頻度スペクトラムを使用した。ExAC/gnomADアレル頻度に基づく24体の個体のコホート
をサンプリングし、このコホートにおいて一度観察された、または一度より多く観察され
たミスセンスバリアントを特定した。一度より多く観察されたバリアントは、一般の集団
において一般的(>0.1%)である確率が99.8%であったのに対し、コホートにおいて一度だけ
観察されたバリアントは、一般の集団において一般的である確率が69%であった。図49Bお
よび図49Cにおいて、チンパンジーシングルトンバリアントの一部が稀な有害な変異であ
ることの結果として、ヒトにおいて高いアレル頻度でシングルトンチンパンジーバリアン
トの枯渇が観察されるが、一般的なチンパンジーバリアントについてはそれが観察されな
いということが示される。24体の個体のコホートにおいて観察されるチンパンジーバリア
ントの概ね半分は一度だけ観察され、概ね半分は一度より多く観察された。
【０４４５】
　より遠縁の哺乳類におけるミスセンスバリアントに対する観察される枯渇率は、よく保
存されている、したがってより正確にアラインメントされている遺伝子の混乱をもたらす
影響によるものではなかったことを確認するために、ヒトと比較して11種の霊長類および
50種の哺乳類の複数配列アラインメントにおける50%を超える平均ヌクレオチド相同性を
持つ遺伝子のみに制約して、上記の分析を繰り返した(補足テーブル3参照)。これは、結
果に実質的な影響を与えることなく、分析から約7%のヒトタンパク質コーディング遺伝子
を除去した。
【０４４６】
［霊長類、哺乳類、および遠縁の脊椎動物の間で固定された置換］
　バリアントデータについての問題、または家畜化によるアーティファクト(dbSNPから選
択された種の大半は家畜化されているので)により、dbSNP変異を使用した我々の結果が影
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響を受けなかったことを確実にするために、種内多型の代わりに近縁の種のペアからの固
定された置換を使用した分析も繰り返した。枝長で測定される進化系統距離(場所当たり
のヌクレオチド置換の平均の数)とともに、UCSCゲノムブラウザから100種の脊椎動物の種
の進化系統樹をダウンロードした(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/mu
ltiz100way/hg19.100way.commonNames.nh)。さらなる分析のために、近縁の種のペア(枝
長<0.25)を選択した。近縁の種のペア間の固定された置換を特定するために、ヒトとの99
種の脊椎動物ゲノムの複数配列アラインメントのための、ならびにヒトとの19種の哺乳類
(16種の霊長類)ゲノムのアラインメントのための、コーディング領域をUCSCゲノムブラウ
ザからダウンロードした。追加の19種の哺乳類の複数種アライメントは、ボノボなどの霊
長類の種の一部が99種の脊椎動物アラインメントにおいて存在しなかったので必要であっ
た(http://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz20way/alignments/knownCa
nonical.exo nNuc.fa.gz)。全体で、図50Dおよび補足テーブル4に列挙されるように、5つ
の霊長類ペアを含む、近縁の種の15個のペアを得た。
【０４４７】
　正規のコーディング領域内でのヒトとの19種の哺乳類ゲノムまたは99種の脊椎動物ゲノ
ムの複数配列アライメントを取り込み、補足データファイル2において列挙される、脊椎
動物の各々の選択されたペア間でのヌクレオチド置換を得た。コドンの中の他の2つのヌ
クレオチドがヒトと他の種との間で変わらなかったことを条件とし、かつ基準方向と代替
方向のいずれかのバリアントを受け入れて、これらの置換がヒトゲノムにマッピングされ
た。関連する種のペアからの固定された置換と同一状態であったヒトバリアントを使用し
て、稀な(<0.1%)アレル頻度カテゴリのバリアントと一般的な(>0.1%)アレル頻度カテゴリ
のバリアントに対するミスセンス:同義比を計算し、補足テーブル4において示されるよう
に、負の選択のもとで固定された置換の割合を得た。
【０４４８】
［ヒト、霊長類、哺乳類、および他の脊椎動物に対する多型データのClinVar分析］
　他の種と同一状態であるバリアントの臨床上の影響を調査するために、ClinVarデータ
ベース(2017年11月2日に発表されたftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/clinvar_2
0171029.vcf.gz)12のリリースバリアントサマリ(release variant summary)をダウンロー
ドした。このデータベースは、hg19ゲノムビルド上の324698個のバリアントを含み、その
うち122884個がタンパク質コーディング遺伝子の我々のリストにマッピングするミスセン
ス一塩基バリアントであった(補足テーブル9)。ClinVarデータベースの中のバリアントの
大半はミスセンスの結果をもたらさず、除外された。次に、矛盾する病原性の解釈を持つ
バリアントをフィルタリングし、良性、良性である可能性が高い、病原性、および病原性
である可能性が高いアノテーションを伴うバリアントのみを残した。良性のアノテーショ
ンおよび良性である可能性が高いというアノテーションを持つバリアントを単一のカテゴ
リへと統合し、病原性のアノテーションまたは病原性である可能性が高いというアノテー
ションを持つバリアントも統合した。補足テーブル9に示されるフィルタリングステップ
の後で、全体で病原性カテゴリの中の24853個のバリアントおよび良性カテゴリの中の177
75個のバリアントがあり、残りは有意性が知られていないまたは矛盾するアノテーション
を伴うバリアントであるので、除外された。
【０４４９】
　ヒト集団におけるClinVarミスセンスバリアントに対する基準を得るために、ExAC/gnom
ADアレル頻度からサンプリングされた30人の個人のコホートにおいてClinVarミスセンス
バリアントを調査した。このコホートサイズは、霊長類多様性プロジェクト研究において
シーケンシングされた個人の数を概ね反映するように選ばれた。100個のそのようなシミ
ュレーションからの、30人のヒトのコホートにおける病原性バリアントと良性バリアント
の平均の数を報告する(図49E)。専門家は、ClinVarにおいて一般的なヒトバリアントを良
性の結果で系統的にアノテートしてきたので、この精選のバイアスを避けるためにアレル
頻度が1%より高いバリアントを除外した。
【０４５０】
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　霊長類、哺乳類、および他の脊椎動物における変異と同一状態であったClinVarバリア
ントを分析した。各種に対する良性バリアントおよび病原性バリアントの数が補足テーブ
ル10に示されている。ヒト、霊長類、およびより遠縁の哺乳類において存在したClinVar
バリアントの数の概要が、良性バリアントと病原性バリアントの比の差についての相同性
のカイ二乗(χ2)検定からの結果とともに、図49Eおよび図50Bにおいて示されている。
【０４５１】
［モデル訓練のための良性バリアントの生成］
　ヒト集団において一般的なバリアントは、創始者効果または平衡選択の稀な事例を除い
て大部分が中立的であり、これにより、それらのバリアントは、人の解釈によるバイアス
の影響を受けていない機械学習のための良性訓練データセットとして適切なものになる。
フィルタを通過しなかったバリアントを除いて、ExAC/gnomADデータベース(リリースv2.0
)からの123136個のエクソンからアレル頻度データを使用し、正規のタンパク質コーディ
ング転写産物内で全体の集団アレル頻度が0.1%以上である83546個のミスセンスバリアン
トが残った。
【０４５２】
　霊長類において存在するバリアントは大部分がヒトにおいて良性であることを示す我々
の以前の結果に基づいて、一般的なヒトバリアント(>0.1%のアレル頻度)、大型類人猿多
様性プロジェクトおよび追加の霊長類シーケンシングからのチンパンジー、ボノボ、ゴリ
ラ、およびオランウータンからのバリアント、ならびに、dbSNPからのアカゲザル、オラ
ンウータン、およびマーモセットのバリアントを備える、機械学習のための良性訓練デー
タセットを作成した。一実装形態によれば、全体で、良性訓練セットに301690個の固有の
霊長類バリアントが追加された。各源が寄与した良性訓練バリアントの数が補足テーブル
5に示されている。
【０４５３】
　注意すべき点は、大半の霊長類バリアントはそれらのそれぞれの集団において一般的で
あり、少数派が稀なバリアントであるこということである。ヒト以外の霊長類の種は、シ
ーケンシングされた個体の数が限られていたので、確認されたバリアントのセットは全般
に、一般的な変異を表すことが予想される。実際に、霊長類の種の各々からのバリアント
に対するミスセンス:同義比は、de novo変異に対する予想される2.23:1の比の半分未満で
あることが見出され、これらの大半が選択のふるいにすでにかけられてきた一般的なバリ
アントであることを示している。その上、チンパンジーのコホートに対して、確認された
バリアントの約84%が、それらのそれぞれの集団において一般的なアレル頻度(>0.1%)で存
在することが推定された。新しく見つかったミスセンス変異の約50%が一般的なヒトアレ
ル頻度(>0.1%)において純化選択によってフィルタリングされるので(図49A)、この数字は
、観察された霊長類変異と同一状態であるヒトミスセンスバリアントの8.8%という観察さ
れた枯渇率を説明する、約16%の稀なバリアントと一致している(図49D)。
【０４５４】
　ヒトミスセンス変異の約20%が機能喪失と等価であるという推定を適用すると、霊長類
バリアントは3.2%の完全に病原性の変異と、91.2%の良性の変異(>0.1%のアレル頻度に耐
える)と、完全には遺伝子の機能を失わず一般的なアレル頻度(>0.1%)で除去されるほど十
分に有害ではない5.6%の中間的な変異とを含むことが予想される。この訓練データセット
は不完全であることが知られているが、深層学習ネットワークの分類の正確さは、一般的
なヒトバリアントと霊長類バリアントの両方を備える良性訓練データセット上で訓練され
たとき、一般的なヒトバリアントのみの場合と比較してはるかに良好であった。したがっ
て、現在の分類の正確さでは、利用可能な訓練データの量はより強い制限であるように見
える。より多数の個体が各霊長類の種においてシーケンシングされるにつれて、より高い
割合の一般的な霊長類バリアントを含む訓練データセットを準備することが可能になり、
訓練データセットにおける病原性バリアントからの汚染が減り、分類性能がさらに改善す
る。
【０４５５】
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［良性訓練データセットを補足するためのラベリングされていないバリアントの生成］
　すべての潜在的なミスセンスバリアントが、正規のコーディング領域の各塩基場所から
、その場所におけるヌクレオチドを他の3つのヌクレオチドで置換することによって生成
された。ExAC/gnomADからの123136個のエクソンにおいて観察されたバリアントと、開始
コドンまたは終止コドンにおけるバリアントを除外した。全体で、68,258,623個のラベリ
ングされていないバリアントが生成された。ラベリングされていないバリアントの各々を
、96個の異なるトリヌクレオチドコンテクストカテゴリのうちの1つに割り当てた。トリ
ヌクレオチドコンテクストによって良性データセットの中のバリアントと一致する、この
ラベリングされていないデータセットからバリアントをサンプリングし、良性の訓練例と
ラベリングされていない訓練例を区別するように分類器を訓練することによって、半教師
ありの手法を使用して深層学習ネットワークを訓練した。
【０４５６】
［ラベリングされていないバリアントの追加のフィルタリング］
　良性バリアントおよびラベリングされていないバリアントの例をフランキングアミノ酸
配列とともに提示することによって、深層学習ネットワークは、変異に対して高度に耐性
のないタンパク質の領域を学習する。しかしながら、タンパク質配列の領域に一般的なバ
リアントがないことは、強い純化選択によるものであることがあり、または、バリアント
が領域においてコールされるのを妨げる技術的なアーティファクトによるものであること
がある。後者を訂正するために、ExAC/gnomADデータセットが1より小さい平均カバレッジ
を有していた領域から、良性データセットとラベリングされていないデータセットの両方
からのバリアントを除去した。同様に、ラベリングされていないバリアントを訓練の間に
良性データセットの中の霊長類バリアントと照合するとき、霊長類が複数配列アラインメ
ントにおいてヒトとのオーソロガスなアラインメント可能な配列を有しなかった領域から
、ラベリングされていないバリアントを除外した。
【０４５７】
［妥当性確認および検定のための保留された霊長類バリアント、ならびに影響を受けてい
る個人および影響を受けていない個人からのde novoバリアント］
　深層学習ネットワークの妥当性確認および検定のために、妥当性確認および検定のため
に10000個の霊長類バリアントの2つのセットをランダムにサンプリングし、これらについ
ては訓練を保留した。霊長類バリアントの残りは、一般的なヒトバリアント(>0.1%のアレ
ル頻度)とともに、深層学習ネットワークを訓練するための良性データセットとして使用
された。加えて、妥当性確認セットおよび検定セットのために、保留された霊長類バリア
ントと照合された10000個のラベリングされていないバリアントの2つのセットもサンプリ
ングした。
【０４５８】
　2つのセットの中のバリアントを区別するためのネットワークの能力を測ることによっ
て、訓練の過程の間に深層学習ネットワークの性能を監視するために、妥当性確認セット
の中の10000個の保留された霊長類バリアントを使用し、10000個のラベリングされていな
いバリアントを照合した。これにより、ネットワークの性能が飽和すると、訓練の停止点
を決定して、過剰適応を避けることが可能になった。
【０４５９】
　深層学習ネットワークならびに他の20個の分類器のベンチマークをとるために、検定デ
ータセットの中の10000個の保留された霊長類バリアントを使用した。異なる分類器は大
きく変化するスコア分布を有していたので、これらのラベリングされていないバリアント
を使用して、各分類器に対する50パーセンタイル閾値を特定した。方法間の公平な比較を
確実にするために、その分類器に対して50パーセンタイル閾値で良性であるものと分類さ
れた、10000個の保留された霊長類バリアント検定セットの中のバリアントの割合につい
て、各分類器のベンチマークをとった。
【０４６０】
　神経発達障害を持つ影響を受けている個人におけるde novoバリアントと、健康な対照
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群におけるde novoバリアントとを使用して、臨床上の環境において深層学習ネットワー
クの性能を評価するために、Deciphering Developmental Disorders(DDD)研究からのde n
ovoバリアントと、Simons Simplex Collection(SSC)自閉症研究における健康な兄弟の対
照群からのde novoバリアントとをダウンロードした。DDD研究はde novoバリアントに対
する信頼性レベルを提供し、バリアントコーリングエラーによる潜在的な偽陽性として、
閾値が0.1未満であるDDDデータセットからのバリアントを除外した。全体で、DDDの影響
を受けている個人からの3512個のミスセンスde novoバリアントおよび健康な対照群から
の1208個のミスセンスde novoバリアントがあった。
【０４６１】
　疾患遺伝子候補の顔ぶれの中で、有意性が不確かな良性バリアントおよび病原性バリア
ントを区別するという現実世界の臨床上のシナリオをより良くモデル化するために、タン
パク質切断変異だけから計算された(補足テーブル18)、DDD研究において疾患と関連付け
られた(p<0.05)605個の遺伝子内のde novoバリアントのみに分析を限定した。遺伝子固有
の変異率および考慮される染色体の数を仮定して、de novo変異の予想される数のヌル仮
説のもとで統計的有意性を計算することによって、タンパク質切断de novo変異の遺伝子
固有のエンリッチメントを評価した。名目のP値が0.05未満である605個の遺伝子を選択し
た。605個の遺伝子内の同義de novo変異およびミスセンスde novo変異の余剰(図22A)を、
観察されるde novo変異vs予想されるde novo変異のカウントの比として、ならびに、観察
されるde novo変異から予想されるde novo変異を引いた差分として計算した。これらの60
5個の遺伝子内で、DDDの影響を受けている個人から380個のde novoミスセンス変異を観察
した(図22A)。我々自身の分類器を含む分類器の各々に対して、小さい割合のバリアント
は予測を有せず、それは全般に、それらのバリアントが分類器によって使用される同じ転
写産物モデルにマッピングしなかったからである。したがって、我々の深層学習ネットワ
ークでは、DDDの影響を受けている個人からの362個のde novoミスセンス変異および健康
な対照群からの65個のde novoミスセンス変異を使用して、図22A、図22B、図22C、図22D
、および図22Eにおいて下流分析を実行した。
【０４６２】
［シーケンシングされた霊長類集団の数の増大に伴うすべての潜在的なヒトミスセンス変
異の飽和］
　504種の現存する霊長類の種において存在する一般的なバリアントによる、すべての700
0万個の潜在的なヒトミスセンス変異の予想される飽和を調査した。各霊長類の種に対し
て、ヒトにおいて観察される一般的なミスセンスバリアントの数(アレル頻度が0.1%より
高い約83500個のミスセンスバリアント)を4回シミュレートした。それは、他の霊長類の
種と比べてヒトの個体当たりのバリアントの数が概ね半分であるように見え、ヒトミスセ
ンスバリアントの約50%が0.1%を超えるアレル頻度において純化選択により除去されてい
るからである(図49A)。96個のトリヌクレオチドコンテクストにおける一般的なヒトミス
センスバリアントの観察される分布に基づいて、シミュレートされたバリアントを割り当
てた。たとえば、一般的なヒトミスセンスバリアントの2%が、CCC>CTGのトリヌクレオチ
ドコンテクストからのものであった場合、シミュレートされるバリアントの2%がランダム
にサンプリングされたCCG>CTG変異であったことを要求した。これは、トリヌクレオチド
コンテクストを使用して、変異率、遺伝的浮動、および遺伝子変換バイアスの影響を考慮
する効果を有する。
【０４６３】
　図23Dの曲線は、各霊長類の種におけるすべての一般的なバリアント(>0.1%のアレル頻
度)を確認していることを仮定して、504種の霊長類の種のいずれかに存在する一般的なバ
リアントによる約7000万個の潜在的なヒトミスセンス変異の累積的な飽和を示す。図49A
から、ヒトミスセンス変異の概ね約50%が、ヒトと他の霊長類の両方において、一般的な
アレル頻度(>0.1%)に達するのを妨げるのに十分有害であるので、図23Dの曲線は、無害な
ヒトミスセンス変異の割合が、霊長類の種の数が増えるにつれて一般的な霊長類変異によ
り飽和することを表す。504種の霊長類の種を用いると、無害なヒトミスセンス変異の大
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半が飽和し、無害なCpG変異は変異率がより高いことが原因ではるかに少数の種で飽和す
る。
【０４６４】
　調査されたヒトのコホートのサイズを大きくすることで発見された一般的なヒトミスセ
ンスバリアント(>0.1%のアレル頻度)の割合をモデル化するために(図36)、gnomADアレル
頻度に従って遺伝子型をサンプリングした。発見された一般的なgnomADミスセンスバリア
ントの割合は、10から100000までの各サンプルサイズに対する100回のシミュレーション
にわたって平均された。
【０４６５】
［二次構造および溶媒接触性の予測］
　病原性予測のための深層学習ネットワークは、二次構造および溶媒接触性予測ネットワ
ークのための19個の畳み込み層と、二次構造および溶媒接触性ネットワークの結果を入力
として取り込む主病原性予測ネットワークのための17個の畳み込み層とを含む、全体で36
個の畳み込み層を含む。大半のヒトタンパク質の結晶構造は知られていないので、ネット
ワークが一次配列からタンパク質構造を学習することを可能にするために2つのモデルを
訓練した。両方のモデルが、図6に示される同じネットワークアーキテクチャおよび入力
を使用した。二次構造および溶媒接触性ネットワークへの入力は、99種の他の脊椎動物と
のヒトの複数配列アラインメントからの保存情報を符号化する、長さ51×20個のアミノ酸
の位置特定的頻度行列である。
【０４６６】
　二次構造ネットワークは、αヘリックス(H)、βシート(B)、およびコイル(C)という3状
態の二次構造を予測するように訓練される。溶媒接触性ネットワークは、埋もれている(B
)、中間(I)、および露出している(E)という3状態の溶媒接触性を予測するように訓練され
る。両方のネットワークが一次配列のみを入力として取り込み、Protein DataBankにおけ
る既知の結晶構造からのラベルを使用して訓練された。モデルは各アミノ酸残基に対して
1つの状態を予測する。
【０４６７】
［二次構造および溶媒接触性の予測のためのデータ準備］
　モデルを訓練するために、Protein Databankからの関連しない結晶構造を使用した。25
%を超える配列相動性を持つアミノ酸配列が除去された。全体で、6367個のタンパク質配
列が訓練のために使用され、400個が妥当性確認のために使用され、500個が検定のために
使用された(補足テーブル13)。アミノ酸配列および二次構造と溶媒接触性ラベルを含む、
訓練のために使用されたデータは、RaptorXウェブサイト:http://raptorx.uchicago.edu/
download/から入手可能である。
【０４６８】
　大半の解かれている結晶構造はヒト以外のタンパク質のものであるので、二次構造およ
び溶媒モデルを事前訓練するために、RaptorXスイート(PSI-BLASTに基づく)を使用して関
連する配列を取得した。それは、ヒトベースの複数配列アラインメントが一般に入手可能
ではなかったからである。RaptorXからCNFsearch1.66_releaseツールを使用してタンパク
質に対する複数配列アラインメントを生成し、99個の最も近いアラインメントから各場所
におけるアミノ酸をカウントして位置特定的頻度行列を形成した。たとえば、1u71A.fast
aタンパク質に対する複数配列アラインメントを読み出すためのRaptorXを使用する具体的
なコマンドは次の通りであった。
% ./buildFeature-i 1u71A.fasta-c 10-o ./TGT/1u71A.tgt
% ./CNFsearch-a 30-q 1u71A
【０４６９】
　データセットの中の各アミノ酸の場所に対して、51個のフランキングアミノ酸に対応す
る位置特定的頻度行列からウィンドウを取り込み、これを使用して長さ51のアミノ酸配列
の中心にあるアミノ酸に対する二次構造または溶媒接触性のいずれかのためのラベルを予
測した。二次構造および相対的な溶媒接触性のためのラベルは、DSSPソフトウェアを使用
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してタンパク質の既知の3D結晶構造から直接取得され、一次配列からの予測を必要としな
かった。二次構造および溶媒接触性ネットワークを病原性予測ネットワークの一部として
組み込むために、ヒトベースの99種の脊椎動物の複数配列アラインメントから位置特定的
頻度行列を計算した。これらの2つの方法から生成された保存行列は一般に類似している
が、パラメータ重みの精密な調整を可能にするために、病原性予測のための訓練の間に二
次構造および溶媒接触性モデルを通じた逆伝播を可能にした。
【０４７０】
［モデルアーキテクチャおよび訓練］
　タンパク質の二次構造および相対的な溶媒接触性を予測するように、2つの別々の深層
畳み込みニューラルネットワークモデルを訓練した。2つのモデルは、同一のアーキテク
チャおよび入力データを有するが、予測状態については異なる。最高の性能に向けてモデ
ルを最適化するために、詳細なハイパーパラメータ探索を行った。病原性予測のための我
々の深層学習ネットワークと、二次構造および溶媒接触性を予測するための深層学習ネッ
トワークの両方が、画像分類における成功により広く採用されている残差ブロックのアー
キテクチャを採用した。残差ブロックは、より前の層からの情報が残差ブロックをスキッ
プすることを可能にするスキップ接続が散在する、反復する畳み込みのユニットを備える
。各残差ブロックにおいて、入力層がまずバッチ正規化され、正規化線形ユニット(ReLU)
を使用する活性化層がそれに続く。活性化は次いで1D畳み込み層を通される。1D畳み込み
層からのこの中間の出力は、再びバッチ正規化およびReLU活性化され、別の1D畳み込み層
がそれに続く。第2の1D畳み込みの終わりに、その出力を元の入力と合計して残差ブロッ
クにし、このことが、元の入力情報が残差ブロックをバイパスすることを可能にすること
によってスキップ接続として活動する。著者により深層残差学習ネットワークと名付けら
れるそのようなアーキテクチャでは、入力は元の状態で保存され、残差接続にはモデルか
らの非線形の活性化がない状態に保たれ、より深いネットワークの効果的な訓練が可能に
なる。詳細なアーキテクチャは、図6および補足テーブル11(図7Aおよび図7B)および図12(
図8Aおよび図8B)において提供される。
【０４７１】
　残差ブロックに続いて、ソフトマックス層が各アミノ酸に対する3状態の確率を計算し
、それらの中で最大のソフトマックス確率がアミノ酸の状態を決定する。モデルは、ADAM
最適化器を使用して、タンパク質配列全体に対する累積カテゴリクロスエントロピー損失
関数(accumulated categorical cross entropy loss function)を用いて訓練される。ネ
ットワークが二次構造および溶媒接触性について事前訓練されると、病原性予測ネットワ
ークのための入力としてネットワークの出力を直接取り込む代わりに、ソフトマックス層
の前の層を取り込み、それによって、より多くの情報が病原性予測ネットワークを通る。
【０４７２】
　3状態二次構造予測モデルについて達成される最高の検定の正確さは79.86%(補足テーブ
ル14)であり、DeepCNF model30により予測される最新の正確さと同様である。3状態溶媒
接触性予測モデルに対する最高の検定の正確さは60.31%(補足テーブル14)であり、同様の
訓練データセット上でRaptorXによって予測される現在の最高の正確さと同様である。結
晶構造を有していた約4000個のヒトタンパク質に対するDSSPでアノテートされた構造ラベ
ルを使用するときと、予測された構造ラベルのみを使用する標準的なPrimateAIモデルを
使用するときの、ニューラルネットワークの予測の比較も行った。DSSPでアノテートされ
たラベルを使用するとき、病原性予測の正確さにおけるさらなる改善は得られなかった(
補足テーブル15)。
【０４７３】
［病原性予測のための深層学習モデルの入力特徴量］
　病原性予測ネットワークのための訓練データセットは、フィルタリングの後で、385236
個の良性とラベリングされたバリアントと、68258623個のラベリングされていないバリア
ントとを含む。各バリアントに対して、以下の入力特徴量を生成した。各バリアントの第
1の入力特徴量は、バリアントの配列コンテクストを深層学習モデルに提供するための、
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長さ51のフランキングアミノ酸配列、すなわち、hg19の基準配列から得られたバリアント
の各側への25個のアミノ酸である。全体で、このフランキング基準配列は長さが51個のア
ミノ酸である。経験的な観察結果を通じて、タンパク質配列のアミノ酸表現が、ヌクレオ
チドを使用してタンパク質コーディング配列を表現することより効果的であったことを発
見した。
【０４７４】
　第2の特徴量は、バリアントによって中心の場所において置換された代替アミノ酸を伴
う、長さ51のフランキングヒトアミノ酸配列である。代替フランキング配列は、配列の中
央の場所が基準アミノ酸の代わりに代替アミノ酸を含むことを除き、第1の特徴量におけ
る基準フランキング配列と同じである。基準ヒトアミノ酸配列と代替ヒトアミノ酸配列の
両方が、長さ51×20のワンホット符号化されたベクトルへと変換され、各アミノ酸は、値
0を伴う19個のアミノ酸および値1を伴う単一のアミノ酸のベクトルによって表される。
【０４７５】
　11種の霊長類のための1つの位置特定的頻度行列(PFM)、霊長類を除く50種の哺乳類のた
めの1つのPFM、および霊長類と哺乳類を除く38種の脊椎動物のための1つのPFMを含む、3
つのPFMが、バリアントに対する99種の脊椎動物の複数配列アラインメントから生成され
る。各PFMはL×20の次元を有し、Lはバリアントの周りのフランキング配列の長さである(
我々の事例では、Lは51個のアミノ酸を表す)。
【０４７６】
　事前訓練された3状態二次構造および3状態溶媒接触性ネットワークへの入力のために、
やはり長さが51であり深さが20である、すべての99種の脊椎動物に対する複数配列アライ
ンメントから生成される単一のPFM行列を使用した。Protein DataBankからの既知の結晶
構造についてネットワークを事前訓練した後で、二次構造および溶媒モデルに対する最後
の2つの層が除去され(グローバル最大プーリング層および出力層)、以前の層の出力の51
×40の形状が、病原性予測ネットワークに対する入力として使用された。パラメータを精
密に調整するために、ネットワークの構造層を通じた逆伝播を許容した。
【０４７７】
［半教師あり学習］
　半教師あり学習アルゴリズムは、訓練プロセスにおいてラベリングされたインスタンス
とラベリングされていないインスタンスの両方を使用するので、訓練に利用可能な少量の
ラベリングされたデータしかない完全教師あり（completely supervised）学習アルゴリ
ズムよりも高い性能を達成する分類器を生み出すことができる。半教師あり学習の背後に
ある原理は、ラベリングされたインスタンスだけを使用する教師ありモデルの予測能力を
強化するために、ラベリングされていないデータ内の固有の知識を活用できるということ
であり、それにより半教師あり学習の潜在的な利益がもたらされる。少量のラベリングさ
れたデータから教師あり分類器により学習されるモデルパラメータは、ラベリングされて
いないデータによって、より現実的な分布(これは検定データの分布によく似ている)に向
かって導かれ得る。
【０４７８】
　バイオインフォマティクスにおいて広まっている別の課題はデータ不均衡の問題である
。データ不均衡現象は、予測されるべきクラスのうちの1つがデータにおいて過小評価さ
れているときに生じ、それは、そのクラスに属するインスタンスが稀であり(注目に値す
る事例)、または取得が難しいからである。皮肉なことに、少数派のクラスが通常は最も
学習に重要であり、それはそれらが特別な事例と関連付けられ得るからである。
【０４７９】
　不均衡なデータ分布に対処するためのアルゴリズム手法は、分類器のアンサンブルに基
づく。ラベリングされたデータの量が限られていることは、当然より弱い分類器につなが
るが、弱い分類器のアンサンブルはどのような単一の構成分類器の性能も超える傾向があ
る。その上、アンサンブルは通常、複数のモデルを学習することと関連付けられる労力お
よびコストの妥当性を立証する要因によって、単一の分類器から取得される予測の正確さ
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を改善する。直観的には、いくつかの分類器を集約することはより優れた過剰適合の制御
につながり、それは、個々の分類器の高い変動制を平均化することは分類器の過剰適合も
平均化するからである。
【０４８０】
　高い信頼性でラベリングされた病原性バリアントの適切なサイズのデータセットがなか
ったので、半教師あり学習の戦略を追求した。ClinVarデータベースは300000個のエント
リを有するが、有意性が不確かなバリアントを除去した後で、病原性の解釈が矛盾しない
ミスセンスバリアントは約42000個しか残らなかった。
【０４８１】
　系統的な検討により、これらのエントリがアノテートされた病原性を支持するのに十分
な臨床的エビデンスを持っていないことも発見された。その上、人により精選されたデー
タベースの中のバリアントの大半は、遺伝子の非常に小さい集合の中にある傾向があり、
これにより、それらのバリアントが、一般的なヒトバリアントまたはチンパンジーとヒト
とで固定された置換を使用してゲノムワイドで確認された良性訓練データセットの中のバ
リアントと一致しなくなる。データセットがどれだけ異なるように確認されたかを考慮す
ると、人により精選されたバリアントを病原性セットとして、およびゲノム全体の一般的
なバリアントを良性セットとして用いて、教師あり学習モデル訓練することは、重大なバ
イアスをもたらす可能性が高い。
【０４８２】
　バイアスを除去するように注意深く照合された、ラベリングされた良性バリアントのセ
ットとバリアントのラベリングされていないセットとを区別するように、深層学習ネット
ワークを訓練した。一実装形態によれば、385236個のラベリングされた良性バリアントの
セットは、ExAC/gnomADデータベースからの一般的なヒトバリアント(>0.1%アレル頻度)お
よびヒト以外の霊長類の6つの種からのバリアントを含んでいた。
【０４８３】
　(変異率、遺伝的浮動、および遺伝子変換を考慮するために)トリヌクレオチドコンテク
ストでの良性バリアントとの一致を条件とし、バリアント確認に対するアラインメント可
能性およびシーケンスカバレッジの影響を調整して、ラベリングされていないバリアント
のセットをサンプリングした。ラベリングされていないバリアントの数はラベリングされ
た良性バリアントを大きく超えるので、ラベリングされた良性バリアントの同じセットお
よびラベリングされていないバリアントの8つのランダムにサンプリングされたセットを
使用する8つのモデルを訓練し、それらの予測の平均をとることによって、コンセンサス
予測を得た。
【０４８４】
　半教師あり学習を選ぶ動機は、人により精選されたバリアントデータベースが、信頼で
きずノイズが多く、特に、信頼性のある病原性バリアントを欠いているということにある
。gnomADからの一般的なヒトバリアントおよび霊長類バリアントから、信頼性のある良性
バリアントのセットを得た。病原性バリアントについては、未知のバリアントのセット(
臨床的な有意性がアノテートされていないVUSバリアント)からの病原性バリアントを最初
にサンプリングすることに対して、反復的バランスサンプリング(iterative balanced sa
mpling)手法を採用した。
【０４８５】
　サンプリングバイアスを下げるために、良性訓練バリアントの同じセットおよび病原性
バリアントの8つの異なるセットを使用する、8つのモデルのアンサンブルを訓練した。最
初に、病原性バリアントを表現するために未知のバリアントをランダムにサンプリングし
た。次に、反復的に、モデルのアンサンブルが、前の訓練サイクルに関与していなかった
未知のバリアントのセットをスコアリングするために使用される。次いで、上位のスコア
リングされた病原性バリアントが、前のサイクルにおけるランダムな未知のバリアントの
5%を置き換えるために取得される。必要とされるよりも25%多くの上位にスコアリングさ
れる病原性バリアントを保持したので、8つのモデルに対するランダム性を高める未知の
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バリアントを置き換えるために、スコアリングされた病原性バリアントの8つの異なるセ
ットをサンプリングできることに留意されたい。次いで、新しい病原性訓練セットが形成
され、新しい訓練のサイクルが実行される。このプロセスは、最初のランダムにサンプリ
ングされた未知のバリアントが、アンサンブルモデルによって予測される信頼性の高い病
原性バリアントによりすべて置き換えられるまで繰り返される。図42は、反復的バランス
サンプリングプロセスの例示である。
【０４８６】
［良性訓練セットおよび未知の訓練セットのバランスをとること］
　良性バリアントと一致している未知のバリアントのサンプリング方式は、我々のモデル
訓練のバイアスを低減するのに有用である。未知のバリアントがランダムにサンプリング
されるとき、深層学習モデルはしばしば、偏った情報を抽出して自明解を提示する。たと
えば、アミノ酸置換K→Mが良性バリアントより未知のバリアントにおいて頻繁に発生する
場合、深層学習モデルはK→Mの置換を常に病原性として分類する傾向がある。したがって
、2つの訓練セットの間でアミノ酸配列の分布のバランスをとることが重要である。
【０４８７】
　CpGトランジションのようなより変異可能性の高いクラスは、一般的な良性バリアント
において大きな表現バイアスを有する。他の霊長類からのオーソロガスバリアントもヒト
の変異率に従い、良性訓練セット全体における変異可能性の高いクラスのエンリッチメン
トを示唆する。未知のバリアントのサンプリング手順があまり制御されておらず、バラン
スがとれていない場合、深層学習モデルは、トランスバージョンまたは非CpGトランジシ
ョンなどのより出現しないクラスと比較して、CpGトランジションを良性として分類する
可能性がより高い傾向がある。
【０４８８】
　深層学習モデルが自明で非生物学的な解に収束するのを防ぐために、良性バリアントお
よび未知のバリアントのトリヌクレオチドコンテクストのバランスをとることを考える。
トリヌクレオチドは、バリアントの前の塩基、バリアントの基準塩基、およびバリアント
の後の塩基によって形成される。そして、バリアントの基準塩基は他の3つのヌクレオチ
ドへと変更され得る。全体で、64×3個のトリヌクレオチドコンテクストがある。
【０４８９】
［反復的バランスサンプリング］
　サイクル1
　各トリヌクレオチドコンテクストに対する良性バリアントの厳密な数と一致するように
未知のバリアントをサンプリングした。言い換えると、最初のサイクルにおいて、バリア
ントのトリヌクレオチドコンテクストに関して良性訓練セットおよび病原性訓練セットを
鏡写しにした。そのようなサンプリング方法の背後にある直観は、良性セットと未知のセ
ットの間で変異率が同一であるバリアントの等しい表現があるということである。このこ
とは、モデルが変異率に基づいて自明解に収束するのを防ぐ。
【０４９０】
　サイクル2～サイクル20
　サイクル2に対して、サイクル1からの訓練されたモデルを適用してサイクル1に関与し
ていない未知のバリアントのセットをスコアリングし、上位の予測される病原性バリアン
トで未知のバリアントの5%を置き換えた。このセットは純粋にモデルによって生成され、
このセットの中のトリヌクレオチドコンテクストに対するバランシングは適用しなかった
。訓練に必要な未知のバリアントの残りの95%は、良性バリアントの中の各ヌクレオチド
コンテクストのカウントの95%となるようにサンプリングされる。
【０４９１】
　直観的には、サイクル1は完全に一致した訓練セットを使用するので、上位の予測され
る病原性バリアントはどのような変異率のバイアスも伴わずに生成される。したがって、
このセットにおいてはどのようなバイアスも考慮する必要はない。データの残りの95%は
依然として、モデルが自明解へ収束するのを防ぐために、トリヌクレオチドコンテクスト
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変異率のために制御される。
【０４９２】
　各サイクルに対して、置き換えられた未知のバリアントの百分率は5%ずつ上昇する。サ
イクル3では、サイクル3のモデルからの上位の予測される病原性バリアントで未知のバリ
アントの5%を置き換えた。累積すると、病原性バリアントの割合は10%に上昇し、トリヌ
クレオチドコンテクストと鏡写しにされた未知のバリアントの割合は90%に下落する。サ
ンプリングプロセスは残りのサイクルに対しても同様である。
【０４９３】
　サイクル21
　最後のサイクルであるサイクル21では、病原性訓練セット全体が、純粋に深層学習モデ
ルから予測される上位の病原性バリアントからなる。各サイクルにおいて変異率のバイア
スを明確に考慮してきたので、病原性バリアントは、訓練データとして使用するのに信頼
性が高く、変異率のバイアスの影響を受けていない。したがって、訓練の最後のサイクル
は、病原性予測のための最後の深層学習モデルを生み出す。
【０４９４】
［ラベリングされた良性訓練セットとラベリングされていない訓練セットの照合］
　ラベリングされていないバリアントのバランスサンプリングが、バリアントの有害性に
関連しないバイアスを除去するのに決定的に重要である。混乱をもたらす影響の適切な制
御がないと、深層学習は容易に、不注意にもたらされたバイアスを選択してクラスを区別
することがある。一般的なヒトバリアントは、CpGアイランド上のバリアントなどの、変
異可能性の高いクラスからのバリアントについてエンリッチされる傾向がある。同様に、
霊長類多型はヒトの変異率にも従い、良性訓練セット全体における変異可能性の高いバリ
アントのエンリッチメントを示唆する。ラベリングされていないバリアントのサンプリン
グ手順がよく制御されておらずバランスがとれていない場合、深層学習ネットワークは、
バリアントを分類するために変異率のバイアスに頼る傾向があるので、トランスバージョ
ンまたは非CpGトランジションなどのより出現しないクラスと比較して、CpGトランジショ
ンを良性として分類する可能性がより高い。我々は、96個のトリヌクレオチドコンテクス
ト(上で論じられた)の各々において、ラベリングされた良性バリアントと厳密に同じ数の
ラベリングされていないバリアントをサンプリングした。
【０４９５】
　ラベリングされた良性データセットの中の霊長類バリアントに対してラベリングされて
いないバリアントを照合するとき、我々は、複数配列アラインメントにおいて霊長類の種
がアラインメントされなかったヒトゲノムの領域から、ラベリングされていないバリアン
トが選択されるのを認めなかった。それは、その場所においてその霊長類の種の中のバリ
アントをコールすることが可能ではなかったからである。
【０４９６】
　96個のトリヌクレオチドコンテクストの各々の中で、霊長類バリアントに対するシーケ
ンシングカバレッジを訂正した。シーケンシングされるヒトの数が多いので、ヒト集団に
おける一般的なバリアントは、シーケンシングカバレッジが低いエリアにおいても、それ
らが十分に確認されるほど十分に頻繁に観察される。同じことは霊長類バリアントに当て
はまらず、それは、少数の個体しかシーケンシングされなかったからである。ExAC/gnomA
Dエクソンにおけるシーケンシングカバレッジに基づいて、ゲノムを10個のビンへと分割
した。各ビンに対して、ラベリングされた良性データセットvsラベリングされていないデ
ータセットにおける霊長類バリアントの割合を測定した。シーケンシングカバレッジのみ
に基づいて、線形回帰を使用して、霊長類バリアントがラベリングされた良性データセッ
トのメンバーである確率を計算した(図24)。ラベリングされた良性データセットにおける
霊長類バリアントと照合すべきラベリングされていないバリアントを選択するとき、回帰
係数を使用してその場所におけるシーケンシングカバレッジに基づいてバリアントをサン
プリングする確率を重み付けた。
【０４９７】
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［良性バリアントおよび未知のバリアントの生成］
　　ヒト集団における一般的なバリアント
　最近の研究は、ヒト集団における一般的なバリアントが全般に良性であることを実証し
ている。一実装形態によれば、gnomADは、正規のコーディング領域内でマイナーアレル頻
度(MAF)が0.1%以上である90958個の非同義SNPを提供する。フィルタを通過したバリアン
トが保持される。インデルが除外される。開始コドンまたは終止コドンにおいて発生する
バリアント、ならびにタンパク質切断バリアントが除去される。亜集団を精査すると、各
亜集団内のMAFが0.1%以上であるミスセンスバリアントの総数は、一実装形態によれば245
360個まで増える。これらのバリアントは、良性バリアントの訓練セットの一部を形成す
る。
【０４９８】
　　大型類人猿における一般的な多型
　コーディング領域は高度に保存的であることが知られているので、多型が大型類人猿の
集団において高い頻度で分離しているかどうかを仮定するのは簡単であり、多型は健康に
対する軽度の影響も有し得る。大型類人猿ゲノムプロジェクトおよび他の研究からの、ボ
ノボ、チンパンジー、ゴリラ、およびオランウータンの多型データは、dbSNPからのアカ
ゲザルおよびマーモセットのSNPと統合された。
【０４９９】
　　未知のバリアントの生成
　すべての潜在的なバリアントが、正規のコーディング領域の各塩基場所から、その場所
におけるヌクレオチドを他の3つのヌクレオチドに置換することによって生成される。新
しいコドンが形成され、その場所におけるアミノ酸の潜在的な変更につながる。同義変化
はフィルタリングされる。
【０５００】
　gnomADデータセットにおいて観察されるバリアントが除去される。開始コドンまたは終
止コドンにおいて発生するバリアント、ならびに終止コドンを形成するバリアントが除去
される。複数の遺伝子アノテーションを持つSNPに対して、正規の遺伝子アノテーション
が、SNPのアノテーションを表すために選択される。全体で、一実装形態によれば、68258
623個の未知のバリアントが生成される。
【０５０１】
　　バリアントの追加のフィルタリング
　ヒトゲノムの一部の領域では、リードをアラインメントするのが難しいことが知られて
いる。それらの領域を含めると、訓練データセットおよび検定データセットに混乱をもた
らす影響を引き起こす。たとえば、高い選択圧を受ける領域は、多型の数が限られる傾向
がある。一方、シーケンシングが難しい領域もより少数の多型を有する。我々のモデルへ
のそのような混乱をもたらす入力を避けるために、gnomADによってシーケンシングされな
かった遺伝子からのバリアントを除去した。
【０５０２】
　一般に、良性バリアントは、複数の種にわたって保存される傾向があるよくシーケンシ
ングされた領域において発見される。一方で、未知のバリアントは、いくつかのカバー率
の低い領域を含むゲノム全体でランダムにサンプリングされる。これは、良性セットと未
知のセットとの間に確認バイアスを引き起こす。バイアスを減らすために、gnomADにおい
てリード深さが10未満であるバリアントを除去した。すべての哺乳類の種にわたるフラン
キング配列アラインメントにおいて10%を超える欠けているデータがあるすべてのバリア
ントも除去した。
【０５０３】
　　妥当性確認および検定のためのデータ
　病原性モデルの妥当性確認および検定のために、一実装形態によれば、妥当性確認およ
び検定のために、それぞれ10000個の良性バリアントの2つのセットを、良性バリアントの
大きいプールからランダムにサンプリングした。良性バリアントの残りは、深層学習モデ
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ルを訓練するために使用される。これらのバリアントは特に、方法間の公平な比較を確実
にするためにオーソロガスな霊長類バリアントからサンプリングされ、それは、一部の方
法が一般的なヒトバリアントについて訓練されるからである。一実装形態によれば、妥当
性確認および検定のために別々に、10000個の未知のバリアントの2つのセットをランダム
にサンプリングした。192個のトリヌクレオチドコンテクストの各々の中の未知のバリア
ントの数が、妥当性確認セットおよび検定セットに対するそれぞれの良性バリアントの数
と一致することを確実にする。
【０５０４】
　自閉症または発育不全障害(DDD)を持つ影響を受けている子供と、影響を受けていない
兄弟のde novoバリアントを使用して、臨床上の環境において複数の方法の性能を評価し
た。全体で、一実装形態によれば、DDDの症例群からの3821個のミスセンスde novoバリア
ントがあり、自閉症の症例群からの2736個のミスセンスde novoバリアントがある。一実
装形態によれば、影響を受けていない兄弟について1231個のミスセンスde novoバリアン
トがある。
【０５０５】
［深層学習ネットワークアーキテクチャ］
　病原性予測ネットワークは、二次構造および溶媒接触性ネットワークを介して、5つの
直接入力および2つの間接入力を受け取る。5つの直接入力は、長さ51個のアミノ酸配列×
深さ20(20個の異なるアミノ酸を符号化する)であり、バリアントを伴わない基準ヒトアミ
ノ酸配列(1a)と、バリアントで置換された代替ヒトアミノ酸配列(1b)と、霊長類の種の複
数配列アラインメントからのPFM(1c)と、哺乳類の種の複数配列アラインメントからのPFM
(1d)と、より遠縁の脊椎動物の種の複数配列アラインメントからのPFM(1e)とを備える。
二次構造および溶媒接触性ネットワークは各々、複数配列アラインメント(1f)および(1g)
からのPFMを入力として受け取り、主な病原性予測ネットワークへの入力として出力を提
供する。二次構造および溶媒接触性ネットワークは、Protein DataBankのための既知のタ
ンパク質結晶構造について事前訓練され、病原性モデル訓練の間の逆伝播を可能にする。
【０５０６】
　5つの直接入力チャネルは、線形活性化を伴う40個のカーネルのアップサンプリング畳
み込み層を通される。ヒト基準アミノ酸配列(1a)は、霊長類、哺乳類、および脊椎動物の
複数配列アラインメントからのPFMと統合される(マージ1a)。同様に、ヒト代替アミノ酸
配列(1b)は、霊長類、哺乳類、および脊椎動物の複数配列アラインメントからのPFMと統
合される(マージ1b)。これは2つの並列な経路を作り出し、1つは基準配列のためのもので
あり、1つはバリアントで置換された代替配列のためのものである。
【０５０７】
　基準チャネルと代替チャネルの両方の統合された特徴マップ(マージ1aおよびマージ1b)
は、一連の6つの残差ブロックを通される(層2a～7a、マージ2aおよび層2b～7b、マージ2b
)。残差ブロックの出力(マージ2aおよびマージ2b)は、サイズ(51,80)の特徴マップを形成
するために一緒に連結され(マージ3a、マージ3b)、これは基準チャネルと代替チャネルか
らのデータを完全に混合する。次に、データは、セクション2.1において定義されるよう
な2つの畳み込み層を各々含む一連の6つの残差ブロックを通じて(マージ3～9、層21、層3
4を除く層9～46)、または、1D畳み込みを通った後の1つおきの残差ブロックの出力を接続
するスキップ接続を介して(層21、層37、層47)のいずれかで、ネットワークを並列に通る
ための2つの経路を有する。最終的に、統合された活性化(マージ10)が別の残差ブロック
に供給される(層48～53、マージ11)。マージ11からの活性化は、フィルタサイズ1の1D畳
み込みおよびシグモイド活性化に与えられ(層54)、次いで、ネットワークによるバリアン
ト病原性の予測を表す単一の値を選ぶグローバル最大プーリング層に通される。モデルの
概略的な図示が図3および補足テーブル16に示されている(図4A、図4B、および図4C)。
【０５０８】
［モデル概要］
　バリアントの病原性を予測するために、半教師あり深層畳み込みニューラルネットワー
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ク(CNN)モデルを開発した。モデルへの入力特徴量は、フランキングバリアントのタンパ
ク質配列および保存プロファイルと、特定の遺伝子領域におけるミスセンスバリアントの
枯渇率とを含む。深層学習モデルによって二次構造および溶媒接触性へバリアントによっ
て引き起こされる変化を予測し、それを我々の病原性予測モデルへと統合した。モデルを
訓練するために、ヒト亜集団の一般的なバリアントからの良性バリアントと、霊長類から
のオーソロガスバリアントとを生成した。しかしながら、病原性バリアントに対する信頼
性のある源が依然として欠けている。最初に、良性バリアントおよび未知のバリアントを
用いてモデルを訓練し、次いで、半教師あり反復的バランスサンプリング(IBS)アルゴリ
ズムを使用して、高い信頼性で予測される病原性バリアントのセットで未知のバリアント
を徐々に置き換えた。最終的に、ヒトにおいて発育不全障害を引き起こすde novoバリア
ントを良性のバリアントから区別する際に、我々のモデルが既存の方法を上回ることを実
証した。
【０５０９】
［残差ブロックの採用］
　図17は残差ブロックを示す。病原性予測の我々の深層学習モデルと、二次構造および溶
媒接触性を予測するための深層学習モデルの両方が、において最初に示された残差ブロッ
クの定義を採用する。残差ブロックの構造は以下の図において示される。入力層は、まず
バッチ正規化され、非線形活性化「ReLU」がそれに続く。活性化は次いで1D畳み込み層に
通される。1D畳み込み層からのこの中間出力は、再びバッチ正規化およびReLU活性化され
、別の1D畳み込み層が後に続く。第2の1D畳み込みの終わりにおいて、その出力を元の出
力と統合する。そのようなアーキテクチャでは、入力は元の状態に保たれ、残差接続はモ
デルの非線形活性化がない状態に保たれる。
【０５１０】
　膨張/拡張畳み込みは、少数の訓練可能なパラメータで大きな受容野を可能にする。膨
張/拡張畳み込みは、膨張畳み込み率または拡張係数とも呼ばれる、何らかのステップを
用いて入力値をスキップすることによって、カーネルがその長さより大きいエリアにわた
って適用されるような畳み込みである。膨張/拡張畳み込みは、畳み込み演算が実行され
るときにより長い間隔の隣接する入力エントリ(たとえば、ヌクレオチド、アミノ酸)が考
慮されるように、畳み込みフィルタ/カーネルの要素間に間隔を追加する。これにより、
入力に長距離のコンテクスト依存性を組み込むことが可能になる。膨張畳み込みは、隣り
合うヌクレオチドが処理される際に再使用するために部分的な畳み込み計算結果を保存す
る。
【０５１１】
［我々のモデルの新規性］
　我々の方法は、3つの点でバリアントの病原性を予測するための既存の方法と異なる。
第1に、我々の方法は、半教師あり深層畳み込みニューラルネットワークの新規のアーキ
テクチャを採用する。第2に、信頼性のある良性バリアントがgnomADからの一般的なヒト
バリアントおよび霊長類バリアントから取得され、一方で、確実性の高い病原性訓練セッ
トは、人により精選された同一のバリアントデータベースを使用したモデルの循環的な訓
練および検定を避けるために、反復的バランスサンプリングおよび訓練を通じて生成され
る。第3に、二次構造および溶媒接触性のための深層学習モデルは、我々の病原性モデル
のアーキテクチャへと統合される。構造および溶媒モデルから得られる情報は、特定のア
ミノ酸残基に対するラベル予測に限定されない。むしろ、リードアウト層が構造および溶
媒モデルから除去され、事前訓練されたモデルが病原性モデルと統合される。病原性モデ
ルを訓練する間、事前訓練された構造および溶媒層はまた、誤差を最小限にするために逆
伝播する。これは、事前訓練された構造および溶媒モデルが、病原性予測問題に集中する
ことを助ける。
【０５１２】
［二次構造および溶媒接触性モデルの訓練］
　　データ準備
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　タンパク質の3状態の二次構造および3状態の溶媒接触性を予測するために、深層畳み込
みニューラルネットワークを訓練した。PDBからのタンパク質アノテーションが、モデル
を訓練するために使用される。一実装形態によれば、配列プロファイルと25%を超える相
同性を有する配列が除去される。一実装形態によれば、全体で、6293個のタンパク質配列
が訓練のために使用され、392個が妥当性確認のために使用され、499個が検定のために使
用される。
【０５１３】
　タンパク質に対する位置特定的スコアリング行列(PSSM)保存プロファイルが、UniRef90
を探すためにE値の閾値0.001および3回の反復という条件でPSI-BLASTを実行することによ
って生成される。あらゆる未知のアミノ酸ならびにその二次構造は、空白として設定され
る。また、すべてのヒト遺伝子に対する同様のパラメータ設定を用いてPSI-BLASTを実行
し、それらのPSSM保存プロファイルを収集する。これらの行列は、構造モデルを病原性予
測へと統合するために使用される。タンパク質配列のアミノ酸は次いで、ワンホット符号
化ベクトルへと変換される。そして、タンパク質配列およびPSSM行列はL×20の行列へと
形状変更され、Lはタンパク質の長さである。二次構造に対する3つの予測されるラベルは
、ヘリックス(H)、βシート(B)、およびコイル(C)を含む。溶媒接触性に対する3つのラベ
ルは、埋もれている(B)、中間(I)、および露出している(E)を含む。1つのラベルは1つの
アミノ酸残基に対応する。ラベルは次元=3のワンホット符号化ベクトルとしてコーディン
グされる。
【０５１４】
　　モデルアーキテクチャおよび訓練
　タンパク質の3状態の二次構造および3状態の溶媒接触性をそれぞれ予測するために、2
つのエンドツーエンドの深層畳み込みニューラルネットワークモデルを訓練した。2つの
モデルは同様の構成を有し、一方はタンパク質配列に対する、他方はタンパク質保存プロ
ファイルに対する、2つの入力チャネルを含む。各入力チャネルは次元L×20を有し、Lは
タンパク質の長さを示す。
【０５１５】
　入力チャネルの各々は、40個のカーネルおよび線形活性化を伴う1D畳み込み層(層1aお
よび層1b)を通される。この層は入力次元を20から40にアップサンプリングするために使
用される。モデル全体ですべての他の層が40個のカーネルを使用することに留意されたい
。2つの層(1aおよび1b)の活性化は、40個の次元の各々にわたって値を加算することによ
って一緒に統合される(すなわち、マージモード=「加算」)。マージノードの出力は、1D
畳み込みの単一の層(層2)に、続いて線形活性化に通される。
【０５１６】
　層2からの活性化は、上で定義されたような一連の9個の残差ブロック(層3～層11)を通
される。層3の活性化は層4に供給され、層4の活性化は層5に供給され、以下同様である。
3つごとの残差ブロック(層5、層8、および層11)の出力を直接合計するスキップ接続もあ
る。統合された活性化は次いで、ReLU活性化とともに2つの1D畳み込み(層12および層13)
へと供給される。層13からの活性化はソフトマックスリードアウト層に与えられる。ソフ
トマックスは、所与の入力に対する3クラスの出力の確率を計算する。
【０５１７】
　最良の二次構造モデルでは、1D畳み込みは1という膨張率を有する。溶媒接触性モデル
に対して、最後の3つの残差ブロック(層9、層10、および層11)は、カーネルのカバレッジ
を上げるために2という膨張率を有する。タンパク質の二次構造は、近くにあるアミノ酸
の相互作用に強く依存する。したがって、カーネルカバレッジがより高いモデルは、性能
をわずかに改善する。一方で、溶媒接触性は、アミノ酸間の長距離の相互作用により影響
を受ける。したがって、膨張畳み込みを使用する、カーネルのカバレッジが高いモデルに
対して、その正確さはカバレッジが低いモデルの正確さより2%高い。
【０５１８】
　以下の表は、一実装形態による、3状態二次構造予測モデルの各層に対する活性化およ
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【０５１９】
【表２】

【０５２０】
　一実装形態による、溶媒接触性モデルの詳細が以下の表に示されている。
【０５２１】
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【表３】

【０５２２】
　特定のアミノ酸残基の二次構造クラスは、最大の予測されるソフトマックス確率によっ
て決定される。モデルは、逆伝播を最適化するためのADAM最適化器を使用してタンパク質
配列全体に対して累積カテゴリクロスエントロピー損失関数を用いて訓練される。
【０５２３】
　3状態二次構造予測モデルに対する最高の検定の正確さは80.32%であり、同様の訓練デ
ータセット上でDeepCNFモデルによって予測される最新の正確さと同様である。
【０５２４】
　3状態溶媒接触性予測モデルに対する最高の検定の正確さは64.83%であり、同様の訓練
データセット上でRaptorXによって予測される現在の最高の正確さと同様である。
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【０５２５】
　以下で説明されるように、事前訓練された3状態二次構造および溶媒接触性予測モデル
を、我々の病原性予測モデルへと統合した。
【０５２６】
［バリアントの病原性を予測するようにモデルを訓練すること］
　　病原性予測モデルの入力特徴量
　上で論じられたように、病原性予測問題に対して、病原性モデルを訓練するための良性
バリアント訓練セットおよび未知のバリアント訓練セットがある。各バリアントに対して
、我々のモデルに供給するために以下の入力特徴量を準備した。
【０５２７】
　各バリアントの第1の入力特徴量は、バリアントの配列コンテクストの深層学習モデル
を提供するための、バリアントのフランキングアミノ酸配列、すなわち、hg19の基準配列
から得られたバリアントの各側の25個のアミノ酸である。全体で、このフランキング基準
配列は、51個のアミノ酸の長さを有する。
【０５２８】
　第2の特徴量は、バリアントを引き起こした代替アミノ酸である。基準アミノ酸と代替
アミノ酸のペアを直接提供する代わりに、代替フランキング配列をモデルに提供する。代
替フランキング配列は、配列の中間の場所が基準アミノ酸ではなく代替アミノ酸を含むこ
とを除き、第1の特徴量における基準フランキング配列と同じである。
【０５２９】
　次いで、両方の配列が長さ51×20のワンホット符号化されたベクトルへと変換され、各
アミノ酸は20個の0または1のベクトルによって表される。
【０５３０】
　次いで、12種の霊長類のための1つの位置特定的重み行列(PWM)、霊長類を除く47種の哺
乳類のための1つのPWM、および霊長類と哺乳類を除く40種の脊椎動物のための1つのPWMを
含む、3つのPWMが、バリアントに対する99種の脊椎動物の複数配列アラインメント(MSA)
から生成される。各PWMはL×20という次元を有し、Lはバリアントの周りのフランキング
配列の長さである(我々の場合ではLは51個のアミノ酸を表す)。これは、種の各カテゴリ
において見られるアミノ酸のカウントを備える。
【０５３１】
　psi blastから、51個のアミノ酸のバリアントフランキング配列に対するPSSM行列も生
成する。これは、病原性予測のための、3状態二次構造予測モデルおよび溶媒接触性予測
モデルの統合に使用される。
【０５３２】
　基準配列(入力1)、代替配列(入力2)、霊長類のためのPWM行列(入力3)、哺乳類(入力4)
、脊椎動物(入力5)、ならびに3状態二次構造および溶媒接触性モデルからの情報を用いて
、病原性モデルを訓練する。
【０５３３】
［深層学習モデルの訓練］
　図19は、深層学習モデルワークフローの概要を提供するブロック図である。病原性訓練
モデルは、5つの直接入力および4つの間接入力を備える。5つの直接入力特徴量は、基準
配列(1a)、代替配列(1b)、霊長類保存率(1c)、哺乳類保存率(1d)、および脊椎動物保存率
(1e)を含む。間接入力は、基準配列ベース二次構造(1f)、代替配列ベース二次構造(1g)、
基準配列ベース溶媒接触性(1h)、および代替配列ベース溶媒接触性(1i)を含む。
【０５３４】
　間接入力1fおよび1gに対して、ソフトマックス層を除く、二次構造予測モデルの事前訓
練された層をロードする。入力1fに対して、事前訓練された層は、バリアントに対してPS
I-BLASTによって生成されるPSSMとともにバリアントに対するヒト基準配列に基づく。同
様に、入力1gに対して、二次構造予測モデルの事前訓練された層は、PSSM行列とともに入
力としてのヒト代替配列に基づく。入力1hおよび1iは、それぞれ、バリアントの基準配列
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および代替配列に対する溶媒接触性情報を含む同様の事前訓練されたチャネルに対応する
。
【０５３５】
　5つの直接入力チャネルは、線形活性化を伴う40個のカーネルのアップサンプリング畳
み込み層を通される。層1a、層1c、層1d、および層1eは、40個の特徴量の次元にわたって
加算された値と統合されて、層2aを作り出す。言い換えると、基準配列の特徴マップは、
3つのタイプの保存率特徴マップと統合される。同様に、1b、1c、1d、および1eは、40個
の特徴量の次元にわたって加算された値と統合されて、層2bを生成する。すなわち、代替
配列の特徴量は、3つのタイプの保存率特徴量と統合される。
【０５３６】
　層2aおよび2bは、ReLUの活性化を用いてバッチ正規化され、各々フィルタサイズ40の1D
畳み込み層に通される(3aおよび3b)。層3aおよび層3bの出力は、互いに連結された特徴マ
ップを伴う1f、1g、1h、および1iと統合される。言い換えると、保存プロファイルを伴う
基準配列の特徴マップ、および保存プロファイルを伴う代替配列は、基準配列および代替
配列の二次構造特徴マップ、ならびに基準配列および代替配列の溶媒接触性特徴マップと
統合される(層4)。
【０５３７】
　層4の出力は、6つの残差ブロック(層5、層6、層7、層8、層9、層10)を通される。最後
の3つの残差ブロックは、カーネルにより高いカバレッジを与えるために、1D畳み込みに
対して2という膨張率を有する。層10の出力は、フィルタサイズ1の1D畳み込みおよび活性
化シグモイドを通される(層11)。層11の出力は、バリアントに対する単一の値を選ぶグロ
ーバル最大プールを通される。この値はバリアントの病原性を表す。病原性予測モデルの
一実装形態の詳細が以下の表に示される。
【０５３８】
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【表４Ａ】

【０５３９】
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【表４Ｂ】

【０５４０】
［アンサンブル］
　一実装形態では、我々の方法の各サイクルに対して、同じ良性データセットおよび8つ
の異なる未知のデータセットで訓練する8つの異なるモデルを実行し、8つのモデルにわた
って評価データセットの予測を平均した。未知のバリアントの複数のランダムにサンプリ
ングされたセットがモデルに提示されると、サンプリングバイアスを減らしてよく制御す
ることができる。
【０５４１】
　さらに、アンサンブルのアンサンブルという手法の採用が、我々の評価データセットに
対する我々のモデルの性能を改善することができる。CADDは、10個のモデルのアンサンブ
ルを使用して、バリアントをスコアリングするために10個すべてのモデルにわたる平均ス
コアを得る。ここで、同様のアンサンブル手法を使用することを試みた。1つのアンサン
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ブルを使用して結果のベンチマークをとり、次いで、アンサンブルの数を増やして性能の
向上を評価した。各アンサンブルは、同じ良性データセットおよび8つの異なる未知のデ
ータセットで訓練する8つのモデルを有することに留意されたい。異なるアンサンブルに
対して、乱数生成器のシード値は別個であるので、ランダムなバリアントのセットが互い
に異なるように導かれる。
【０５４２】
　一実装形態による詳細な結果が以下の表に示される。
【０５４３】
【表５】

【０５４４】
　1つのアンサンブルと比較して、5つのアンサンブルおよび10個のアンサンブルが、DDD
データセットを使用して評価されるときにより大きなp値を生み出した。しかし、アンサ
ンブルの数を増やすことでさらに性能が向上することはなく、アンサンブルに対する飽和
を示している。アンサンブルは、多様な未知のバリアントを用いてサンプリングバイアス
を減らす。しかしながら、良性クラスと病原性クラスとで192個のトリヌクレオチドコン
テクストを照合することも必要とされ、これは我々のサンプリング空間をかなり制限し、
早い飽和につながる。アンサンブルのアンサンブルという手法は、モデル性能を大きく改
善し、モデルについての我々の理解をさらに深めると結論付ける。
【０５４５】
［病原性モデルを訓練するための早期打ち切り］
　信頼性のあるアノテートされた病原性バリアントサンプルが欠けているので、モデル訓
練のための打ち切り基準を定義するのは困難である。モデル評価における病原性バリアン
トの使用を避けるために、一実装形態では、オーソロガスな霊長類からの10000個の良性
妥当性確認バリアントと、10000個のトリヌクレオチドコンテクストが照合された未知の
バリアントとを使用した。モデルの各エポックを訓練した後、良性妥当性確認バリアント
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および未知の妥当性確認バリアントを評価した。妥当性確認バリアントセットの両方の確
率分布の差を評価するために、ウィルコクソン順位和検定を使用した。
【０５４６】
　検定のp値は、モデルが良性バリアントを未知のバリアントのセットから区別する能力
の向上に伴って、より大きくなる。モデル訓練の任意の5つの連続するエポックの間に、2
つの分布を区別するモデルの能力に改善が観察されない場合、訓練を打ち切る。
【０５４７】
　事前に、10000個の保留された霊長類バリアントの2つの別個のセットを訓練から除外し
、我々はこれらのセットを妥当性確認セットおよび検定セットと名付けた。モデル訓練の
間の早期打ち切りを評価するために、10000個の保留された霊長類バリアントおよび10000
個のトリヌクレオチドコンテクストについて照合されたラベリングされていないバリアン
トの妥当性確認セットを使用した。各訓練エポックの後で、ラベリングされた良性妥当性
確認セットおよびラベリングされていない一致した対照群におけるバリアントを区別する
ための、深層ニューラルネットワークの能力を評価し、ウィルコクソン順位和検定を使用
して予測されるスコアの分布の差を測った。5つの連続的な訓練エポックの後でさらなる
改善が観察されないと、過剰適合を防ぐために訓練を打ち切った。
【０５４８】
［分類器の性能のベンチマーキング］
　1つは一般的なヒトバリアントのみを用いて訓練され、1つは一般的なヒトバリアントと
霊長類バリアントの両方を含む良性とラベリングされた完全なデータセットを用いて訓練
された、2つのバージョンの深層学習ネットワークの分類の正確さを、以下の分類器、す
なわちSIFT、PolyPhen-2、CADD、REVEL、M-CAP、LRT、MutationTaster、MutationAssesso
r、FATHMM、PROVEAN、VEST3、MetaSVM、MetaLR、MutPred、DANN、FATHMM-MKL_coding、Ei
gen、GenoCanyon、およびGERP++13,32-48に加えて評価した。他の分類器の各々のスコア
を得るために、dbNSFP 49(https://sites.google.com/site/jpopgen/dbNSFP)からすべて
のミスセンスバリアントに対するスコアをダウンロードし、10000個の保留された霊長類
バリアント検定セット、およびDDD症例群vs対照群におけるde novoバリアントについて方
法のベンチマークをとった。本明細書に含めるものには、SIFT、PolyPhen-2、およびCADD
、ならびにREVELを選択した。それは、SIFT、PolyPhen-2、およびCADDについては、それ
らが最も広く使用されている方法であるからであり、REVELについては、様々な評価モー
ドにわたって、評価した20個の既存の分類器の中で最良のものの1つとして傑出していた
からである。評価したすべての分類器の性能が図28Aにおいて提供される。
【０５４９】
　深層学習ネットワークの性能に対する、利用可能な訓練データサイズの影響を評価する
ために、385236個の霊長類バリアントと一般的なヒトバリアントのラベリングされた良性
訓練セットからランダムにサンプリングすることによって、図6の各データ点において深
層学習ネットワークを訓練した。分類器の性能におけるランダムなノイズを減らすために
、初期パラメータ重みのランダムなインスタンス化を各回において使用してこの訓練手順
を5回実行し、10000個の保留された霊長類バリアントとDDD症例群vs対照群データセット
の両方についての中央値の性能を図6に示した。偶然にも、385236個のラベリングされた
良性バリアントの完全なデータセットを用いた分類器の中央値の性能は、DDDデータセッ
トについて本明細書の残りで使用したものよりわずかに高かった(ウィルコクソン順位和
検定でP<10-28ではなくP<10-29)。各々の個別の霊長類の種からのバリアントが分類の正
確さに寄与しており、一方で各々の個別の哺乳類の種からのバリアントが分類の正確さを
下げることを示すために、一実装形態によれば、83546個のヒトバリアントと、各種に対
する一定数のランダムに選択されたバリアントとを備える訓練データセットを使用して深
層学習ネットワークを訓練した。一実装形態によれば、訓練セットに追加したバリアント
の一定の数(23380)は、ミスセンスバリアントの数が最小の種、すなわちボノボにおいて
利用可能なバリアントの総数である。ノイズを減らすために、訓練手順を再び5回繰り返
し、分類器の中央値の性能を報告した。
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【０５５０】
［モード評価］
　一実装形態では、反復的バランスサンプリング手順に続いて、深層学習モデルを21回の
サイクルにわたり訓練した。我々の分類器の性能を評価するために、2つのタイプの評価
を実行した。2つの尺度で我々のモデルとPolyphen2、SIFT、およびCADDの比較も行い、臨
床的なアノテーションに対する我々のモデルの適用の可能性を評価した。
【０５５１】
　　方法1:良性検定セットの正確さ
　一実装形態では、10000個の良性バリアントおよび未知のバリアントを、8つの異なる訓
練されたモデルのアンサンブルを使用してそれらの予測される確率を計算することによっ
て、評価した。上で言及された他の既存の方法によってスコアリングされる、それらの予
測される確率も取得した。
【０５５２】
　次いで、評価において使用される方法の各々に対する未知の検定バリアントにわたる予
測される確率の中央値を取得した。中央値スコアを使用して、方法の各々によって使用さ
れる良性バリアントおよび病原性バリアントのアノテーションに応じ、スコアが中央値の
上または下である良性バリアントの数を発見した。SIFT、CADD、および我々の方法は、病
原性バリアントを1として、良性バリアントを0としてラベリングする。したがって、スコ
アが中央値の下である良性バリアントの数をカウントした。Polyphenは反対のアノテーシ
ョンを使用し、中央値を上回る良性バリアントの数をカウントした。スコアが中央値の上
/下である良性バリアントの数を良性バリアントの総数で割った比は、良性バリアントの
予測の正確さを表す。
　良性の正確さ=中央値を上回る(下回る*)良性バリアントの総数÷良性バリアントの総数
【０５５３】
　この評価方法の背後にある我々の理論は、gnomADにおけるバリアントの選択圧力の分析
に依拠している。gnomADにおけるシングルトンに対して、ミスセンスバリアントと同義バ
リアントの比は約2.26:1である。一方、gnomADにおける一般的なバリアント(MAF>0.1%)で
は、ミスセンス対同義比は約1.06:1である。これは、ランダムな未知のバリアントのセッ
トから、約50%が自然選択によって排除されることが予想され、残りの50%は軽度であり集
団において一般的になる傾向があることを示している。
【０５５４】
【表６】

【０５５５】
　上の表に示されるように、我々の方法の性能は2番目に良い方法であるCADDより8%を超
えて優れている。これは、良性バリアントを分類する我々のモデルの能力の大きな向上を
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示している。そのような実証は我々のモデルの能力を証明するが、以下の方法2は、臨床
的な解釈のための臨床的なデータセットに対する我々のモデルの有用性を示す。
【０５５６】
　　方法2:臨床的なデータセットの評価
　一実装形態では、発育不全障害(DDD)症例群-対照群データセットを含む、臨床的なデー
タセットに対してこれらの病原性予測方法を評価した。DDDデータセットは、影響を受け
ている子供からの3821個のde novoミスセンスバリアントおよび影響を受けていない兄弟
からの1231個のde novoミスセンスバリアントを備える。我々の仮説は、影響を受けてい
る子供からのde novoバリアントが影響を受けていない兄弟からのde novoバリアントより
有害である傾向があるというものである。
【０５５７】
　臨床的な検定データセットは病原性バリアントを明確にラベリングしないので、それら
の方法の性能を測るために、(影響を受けている群および影響を受けていない群からの)de
 novoバリアントの2つのセットの分離を使用した。de novoバリアントのこれらの2つのセ
ットの分離がどれだけ優れているかを評価するために、ウィルコクソン順位和検定を適用
した。
【０５５８】
【表７】

【０５５９】
　上の表によれば、我々の半教師あり深層学習モデルは、de novoバリアントの影響を受
けているセットと影響を受けていないセットとを区別する際の性能がはるかに高い。これ
は、我々のモデルが臨床的な解釈に対して既存の方法より適切であることを示している。
これはまた、ゲノム配列および保存プロファイルから特徴量を抽出するという全般的な手
法が、人により精選されたデータセットに基づく人が加工した特徴量より優れていること
を確証する。
【０５６０】
［10000個の霊長類バリアントの保留された検定セットについての良性予測の正確さ］
　深層学習ネットワークならびに他の20個の分類器のベンチマークをとるために、検定デ
ータセットの中の10000個の保留された霊長類バリアントを使用した。異なる分類器は大
きく変動するスコア分布を有していたので、各分類器に対する50パーセンタイル閾値を特
定するために、トリヌクレオチドコンテクストにより検定セットと照合された、10000個
のランダムに選択されたラベリングされていないバリアントを使用した。方法間の公平な
比較を確実にするために、その分類器に対して50パーセンタイルの閾値で良性であると分
類された、10000個の保留された霊長類バリアント検定セットの中のバリアントの割合に
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ついて、各分類器のベンチマークをとった。
【０５６１】
　良性バリアントを特定するために50パーセンタイルを使用することの背後にある我々の
理論は、ExAC/gnomADデータセットの中のミスセンスバリアントに対して観察される選択
圧力に基づく。シングルトンアレル頻度で発生するバリアントでは、ミスセンス:同義比
は～2.2:1であるが、一般的なバリアント(>0.1%アレル頻度)では、ミスセンス:同義比は
約1.06:1である。これは、ミスセンスバリアントの約50%が一般的なアレル頻度では自然
選択により排除されることが予想され、残りの50%が遺伝子的浮動を介して集団において
一般的になる可能性を有するのに十分軽度であることを示している。
【０５６２】
　分類器の各々に対して、50パーセンタイル閾値を使用して良性であるものとして予測さ
れる保留された霊長類検定バリアントの割合が示されている(図28Aおよび補足テーブル17
(図34))。
【０５６３】
［DDD研究からのde novoバリアントの分析］
　DDDの影響を受けている個人におけるde novoミスセンスバリアントと、影響を受けてい
ない兄弟の対照群におけるde novoミスセンスバリアントとを区別する能力について、分
類方法のベンチマークをとった。各分類器に対して、2つの分布に対する予測スコア間の
差のウィルコクソン順位和検定からのp値を報告した(図28Bおよび図28Cおよび補足テーブ
ル17(図34))。
【０５６４】
　モデルの性能を分析するための我々の2つの尺度が異なる源および方法から導かれると
仮定し、2つの異なる尺度についての分類器の性能が相関していたかどうかを検定した。
実際に、我々はこれらの2つの尺度が相関していたことを発見し、保留された霊長類検定
セットに対する良性分類の正確さと、DDD症例群vs対照群におけるde novoミスセンスバリ
アントに対するウィルコクソン順位和検定のp値との間で、spearman ρ=0.57(P<0.01)で
あった。これは、分類器のベンチマークをとることについて、保留された霊長類検定セッ
トの正確さと、DDD症例群vs対照群のp値との間に、良い一致があることを示す(図30A)。
【０５６５】
　さらに、深層学習ネットワークが疾患と関連付けられる遺伝子の発見を助け得るかどう
かを検定した。観察されたde novo変異の数をヌル変異モデルのもとで予想される数と比
較することによって、遺伝子におけるde novo変異のエンリッチメントを検定した。
【０５６６】
　すべてのミスセンスde novo変異からの結果と、スコアが0.803より大きいミスセンス変
異からの結果とを比較して、深層学習ネットワークの性能を調査した。すべてのミスセン
スde novoを検定することにはデフォルトのミスセンス率を使用したが、フィルタリング
されたミスセンスde novoを検定することにはスコアが0.803より大きいサイトから計算さ
れたミスセンス変異率を使用した。各遺伝子には4つの検定が必要であり、1つはタンパク
質切断エンリッチメントを検定し、1つはタンパク質を変化させるde novo変異のエンリッ
チメントを検定し、両方がDDDコホートだけに対して、および神経発達トリオシーケンシ
ングコホートのより大きなメタ分析に対して検定される。タンパク質を変化させるde nov
o変異のエンリッチメントは、コーディング配列内のミスセンスde novo変異のクラスタリ
ングの検定とともに、Fisherの方法によって合成された(補足テーブル20および21)。各遺
伝子に対するp値は4回の検定の最小値から取られ、ゲノムワイド有意性がP<6.757×10-7

と決定された(α=0.05、18500個の遺伝子、4回の検定)。
【０５６７】
［605個のDDD疾患関連遺伝子内での受信者操作特性曲線および分類の正確さの計算］
　深層学習ネットワークが本当に同じ遺伝子内の病原性バリアントと良性バリアントとを
区別していたかどうかを検定するために、de novo優性遺伝モードを伴う遺伝子における
病原性を優先するのではなく、DDDコホートにおいてp値が0.05未満である(de novoタンパ
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ク質切断変異のみを使用して計算される)神経発達疾患と関連付けられた605の遺伝子のセ
ットを特定した(補足テーブル18)。DDDデータセットおよび対照群データセットにおいて6
05個の遺伝子の中のバリアントの確率分布を分類器が分離する能力について、すべての分
類器に対するウィルコクソン順位和のp値を報告する(図28Cおよび補足テーブル19(図35))
。
【０５６８】
　605個の遺伝子のこのセット内で、変異率だけから予想されるものの3倍のde novoミス
センスバリアントのエンリッチメント比を観察した。これは、影響を受けているDDD患者
におけるde novoミスセンスバリアントが、約67%の病原性バリアントと33%のバックグラ
ウンドバリアントを備え、一方で、健康な対照群におけるde novoミスセンスバリアント
が、不完全な浸透の事例を除いて大半はバックグラウンドバリアントからなることを示し
ている。
【０５６９】
　病原性バリアントと良性バリアントを完璧に区別する分類器に対する最大の可能なAUC
を計算するために、605個の遺伝子内の影響を受けている個人におけるde novoミスセンス
バリアントの67%だけが病原性であり、残りがバックグラウンドであったことを考慮した
。受信者操作特性曲線を構築するために、病原性であるものとしてのde novo DDDバリア
ントの分類を真陽性のコールとして扱い、病原性であるものとしての健康な対照群におけ
るde novoバリアントの分類を偽陽性のコールとして扱った。したがって、完璧な分類器
は、DDD患者におけるde novoバリアントの67%を真陽性として、DDD患者におけるde novo
バリアントの33%を偽陽性として、対照群におけるde novoバリアントの100%を真陰性とし
て分類する。受信者操作特性曲線の視覚化は、プロットの(0%,0%)の角および(100%,100%)
の角へ直線によって接続された、真陽性率が67%であり偽陽性率が0%である単一の点を示
すだけであり、良性変異と病原性変異の完璧な区別についての分類器に対する0.837とい
う最大AUCが得られる(図30Bおよび補足テーブル19(図35))。
【０５７０】
　合成されたDDDのデータセットおよび健康な対照群のデータセットにおける605個の遺伝
子内での病原性バリアントの予想される割合を推定することによって、病原性バリアント
と良性バリアントとをバイナリ閾値で分離するための深層学習ネットワークの分類の正確
さを計算した。DDDデータセットは、予想を超える249個のde novoミスセンスバリアント
の余剰を伴う379個のde novoバリアントを含み、対照群データセットは65個のde novoバ
リアントを含んでいたので、全体で444個のバリアントのうち249個の病原性バリアントを
予測した(図22A)。この予想される比率に従って、444個のde novoミスセンスバリアント
を良性または病原性カテゴリへと分離した各分類器に対する閾値を選択し、これをバイナ
リカットオフとして使用して各分類器の正確さを評価した。我々の深層学習モデルに対し
て、この閾値は、真陽性率が65%、偽陽性率が14%である0.803以上のカットオフにおいて
達成された。DDDの個人における約33%のバックグラウンドバリアントの存在について調整
された分類の正確さを計算するために、バックグラウンドであったde novo DDDバリアン
トの33%が、健康な対照群において観察したのと同じ偽陽性率で分類されるであろうと仮
定した。これは、DDDデータセットにおける真陽性分類イベントの14%×0.33=4.6%が実際
にはバックグラウンドバリアントからの偽陽性であることに対応する。深層学習ネットワ
ークに対する調整された真陽性率を、(65%-4.6%)/67%=90%と推定する。深層学習ネットワ
ークに対しては88%である、真陽性率および真陰性率の平均を報告する(図30Cおよび補足
テーブル19(図35))。この推定は、神経発達障害において不完全な浸透が広く見られるこ
とにより、分類器の真の正確さを過小評価する可能性が高い。
【０５７１】
［ClinVar分類の正確さ］
　既存の分類器の大半はClinVar上で訓練される。ClinVar上で直接訓練しない分類器も、
ClinVar上で訓練される分類器からの予測スコアを使用することによって影響を受けるこ
とがある。加えて、一般的なヒトバリアントは良性のClinVarの結果に対して高度にエン



(105) JP 6834029 B2 2021.2.24

10

20

30

40

50

リッチされ、それは、アレル頻度が、良性の結果をバリアントに割り当てるための基準の
一部であるからである。
【０５７２】
　我々は、ClinVarデータセットを分析に適したものにするために、2017年に追加されたC
linVarバリアントだけを使用することによって、ClinVarデータセットにおける循環性を
最小限にすることを試みた。それは、他の分類方法がその前の年に公開されたからである
。2017年のClinVarバリアントの中でも、ExACにおいて一般的なアレル頻度(>0.1%)で存在
するあらゆるバリアント、またはHGMD、LSDB、もしくはUniprotにおいて存在するあらゆ
るバリアントを除外した。すべてのそのようなバリアントをフィルタリングした後で、お
よび有意性が不確かであり矛盾するアノテーションを伴うバリアントを除外した後で、Cl
inVarにおいて良性アノテーションを伴う177個のバリアントおよび病原性アノテーション
を伴う969個のバリアントが残った。
【０５７３】
　深層学習ネットワークと既存の方法の両方を使用してすべてのClinVarバリアントをス
コアリングした。このデータセット内の良性バリアントおよび病原性バリアントの観察さ
れる比率に従って、ClinVarバリアントを良性カテゴリまたは病原性カテゴリに分離した
各分類器に対する閾値を選択し、これをバイナリカットオフとして使用して各分類器の正
確さを評価した。各分類器に対する真陽性率および真陰性率の平均を報告する(図31Aおよ
び図31B)。ClinVarデータセットについての分類器の性能は、10000個の保留された霊長類
バリアントに対する分類の正確さについての分類器の性能、またはDDD症例群vs対照群デ
ータセットに対するウィルコクソン順位和のp値についての分類器の性能のいずれとも大
きく相関しなかった(図31Aおよび図31B)。
【０５７４】
　我々は、既存の分類器は専門家の行動を正確にモデル化しているが、人の経験則は経験
的なデータにおいて病原性変異と良性変異とを区別するのに完全に最適ではないことがあ
るという仮説を立てている。1つのそのような例はGranthamスコアであり、これはアミノ
酸置換の相同性または非相同性を特徴付けるための距離の尺度を与える。完全なClinVar
データセット(約42000個のバリアント)内の病原性バリアントおよび良性バリアントに対
する平均Granthamスコアを計算し、これを605個の遺伝子内の影響を受けているDDDの個人
および影響を受けていない個人におけるde novoバリアントに対する平均Granthamスコア
と比較した。影響を受けているDDDの個人における約33%のバックグラウンドバリアントの
存在を訂正するために、DDD症例群vs対照群の間のGranthamスコアの差を50%増大させたが
、それでもこれは、ClinVarにおける病原性バリアントと良性バリアントとの差より小さ
かった。1つの可能性は、専門家が、アミノ酸置換距離などの、測定しやすい尺度を重視
しすぎている一方で、専門家にとって定量化がより難しいタンパク質構造などの要因を軽
視しているということである。
【０５７５】
［深層学習モデルの解釈］
　機械学習アルゴリズムが問題を解く手段を理解するのは難しいことが多い。バリアント
の病原性を予測するために深層学習ネットワークが学習して抽出した特徴量を理解するた
めに、深層学習ネットワークの初期層を視覚化した。事前訓練された3状態二次構造予測
モデルの最初の3つの層(2つのアップサンプリング層とそれに続く第1の畳み込み層)内で
の異なるアミノ酸に対する相関係数を計算し、BLOSUM62行列またはGrantham距離と非常に
似た特徴量を畳み込み層の重みが学習することを示した。
【０５７６】
　異なるアミノ酸の間の相関係数を計算するために、二次構造モデルにおいて3つのアッ
プサンプリング層(層1a、層1b、および層1c)が前にある第1の畳み込み層の重みから始め
た。3つの層の間の行列乗算を実行し、次元が(20,5,40)である行列を得た。ここで、20は
アミノ酸の数であり、5は畳み込み層のウィンドウサイズであり、40はカーネルの数であ
る。最後の2つの次元を平坦化することによって次元(20,200)を有するように行列を形状
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変更し、20個のアミノ酸の各々に対して作用する重みが長さ200のベクトルとして表され
るような行列を得た。20個のアミノ酸間の相関行列を計算した。各次元が各アミノ酸を表
すので、相関係数行列を計算することによって、深層学習ネットワークが訓練データから
学習したことに基づいて、アミノ酸間の相関と、深層学習ネットワークに対してアミノ酸
がどれだけ類似しているように見えるかということとを計算している。相関係数行列の視
覚化が図27に示されており(アミノ酸はBLOSUM62の行列順序でソートされている)、疎水性
アミノ酸(メチオニン、イソロイシン、ロイシン、バリン、フェニルアラニン、チロシン
、トリプトファン)および親水性アミノ酸(アスパラギン、アスパラギン酸、グルタミン酸
、グルタミン、アルギニン、およびリジン)を備える2つの顕著なクラスタを示す。これら
の初期層の出力はより後の層の入力になり、深層学習ネットワークがデータのますます複
雑な階層的表現を構築することを可能にする。
【０５７７】
　ニューラルネットワークが予測において使用するアミノ酸配列のウィンドウを示すため
に、5000個のランダムに選択されたバリアント内のおよびその周辺の各場所を摂動させて
、バリアントに対する予測されるPrimateAIスコアに対する影響を観察した(図25B)。バリ
アントの周りの各々の近くのアミノ酸場所(-25～+25)における入力を系統的に0にして、
ニューラルネットワークにより予測されるバリアントの病原性の変化を測定し、5000個の
バリアントにわたってその変化の平均絶対値をプロットした。バリアントの近くのアミノ
酸が最も大きい影響を受けており、概ね対称的な分布で、バリアントからの距離が長くな
るにつれて徐々に影響が小さくなる。重要なことに、このモデルは、バリアントの場所に
おけるアミノ酸だけに基づくのではなく、タンパク質モチーフを認識するために必要とさ
れるであろうより広いウィンドウからの情報を使用することによって、予測を行う。タン
パク質サブドメインが比較的小型のサイズであることと一致して、51個を超えるアミノ酸
へとウィンドウのサイズを延長することが、さらに正確さを改善しないことを経験的に観
察した。
【０５７８】
　深層学習分類器のアラインメントに対する感度を評価するために、バリアント分類の正
確さに対するアラインメントの深さの影響を次のように調査した。アラインメントにおけ
る種の数に基づいてデータを5つのビンへと分割し、各ビンにおけるネットワークの正確
さを評価した(図57)。トリヌクレオチドコンテクストに対して照合された(図21Dのように
、しかし各ビンに対して別々に実行される)ランダムに選択された変異から、保留された
良性変異のセットを分離する際のネットワークの正確さは、上位の3つのビンにおいて最
も高く、下位の2つのビンにおいて顕著に弱いことを発見した。99種の脊椎動物の多種ア
ラインメントは、11種のヒト以外の霊長類、50種の哺乳類、および38種の脊椎動物を備え
、下位の2つのビンは、他の非霊長類の哺乳類からのまばらなアラインメント情報を有す
るタンパク質を表す。深層学習ネットワークは、アラインメント情報が霊長類および哺乳
類全体に及ぶときにロバストかつ正確であり、より遠縁の脊椎動物からの保存情報はより
重要性が低い。
【０５７９】
［正規のコーディング領域の定義］
　正規のコーディング領域を定義するために、コーディングDNA配列(CDS)領域(knownCano
nical.exonNuc.fa.gz)に対するヒトとの99種の脊椎動物ゲノムの複数アラインメントがUC
SCゲノムブラウザからダウンロードされた。ヒトについては、エクソンの座標はBuild hg
19のもとにある。エクソンは統合されて遺伝子を形成する。常染色体上の遺伝子およびch
rXが保持される。相同ではない遺伝子は除去され、相同な遺伝子のリストはNCBI ftp://f
tp.ncbi.nih.gov/pub/HomoloGene/current/homologene.dataからダウンロードされた。複
数の遺伝子アノテーションを伴うSNPに対しては、SNPのアノテーションを表すために最長
の転写産物が選択される。
【０５８０】
［ヒト、類人猿、および哺乳類の多型データ］
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　世界中の8つの亜集団からの123136人の個人の全エクソンシーケンシングデータを収集
した、最近の大規模な研究であるgenome Aggregation Database(gnomAD)から、ヒトエク
ソン多型データをダウンロードした。そして、フィルタを通過し正規のコーディング領域
に該当するバリアントを抽出した。
【０５８１】
　大型類人猿ゲノムシーケンシングプロジェクトは、24体のチンパンジー、13体のボノボ
、27体のゴリラ、および10体のオランウータン(5体のスマトラオランウータンおよび5体
のボルネオオランウータンを含む)の全ゲノムシーケンシングデータを提供する。チンパ
ンジーおよびボノボについての研究は、追加の25体の類人猿のWGSを提供する。すべての
シーケンシングデータはhg19にマッピングされたので、これらの研究からVCFファイルを
ダウンロードし、正規のコーディング領域内でバリアントを直接抽出した。
【０５８２】
　他の類人猿および哺乳類と比較するために、アカゲザル、マーモセット、ブタ、ウシ、
ヤギ、ネズミ、およびニワトリを含む少数の他の種のSNPもdbSNPからダウンロードした。
イヌ、ネコ、またはヒツジなどの他の種は廃棄した。それは、dbSNPがそれらの種に対し
て限られた数のバリアントを提供するからである。最初に、各種のSNPをhg19にリフトオ
ーバーした。バリアントの約20%が偽遺伝子領域にマッピングされることが判明した。次
いで、正規のコーディング領域の100種の脊椎動物の複数のアラインメントファイルから
各種のエクソン座標を取得し、それらのエクソン内のバリアントを抽出した。次いで、そ
れらの抽出されたSNPはhg19にリフトオーバーされた。バリアントがアラインメントとは
異なる種のゲノムビルド上にある場合、まずアラインメントのゲノムビルドにバリアント
をリフトした。
【０５８３】
　ウシSNPデータは様々な研究に由来するので、ウシバリアントのすべての大きなバッチ
をdbSNPからダウンロードし(VCFファイルが100MBより大きい16個のバッチ)、各バッチに
対するミスセンス対同義比を計算することによってウシSNPの様々なバッチの品質を評価
した。ミスセンス対同義比の中央値は0.781であり、中央絶対偏差(MAD)は0.160である(平
均は0.879でありSDは0.496である)。異常値の比を伴う2つのバッチ(比が1.391であるsnpB
atch_1000_BULL_GENOMES_1059190.gzおよび比が2.568であるsnpBatch_COFACTOR_GENOMICS
_1059634.gz)はさらなる分析から除外された。
【０５８４】
［類人猿および哺乳類における多型の性質の評価］
　大型類人猿SNPの有用性を実証するために、シングルトンSNPと一般的なSNP(アレル頻度
(AF)>0.1%)の数の比を測定するエンリッチメントスコアを考案した。同義バリアントは、
良性でありどのような選択圧力も受けずに一般に中立的に進化することが知られている。
有害なミスセンスバリアントは、自然選択によって徐々に排除されるので、そのアレル頻
度分布は同義バリアントと比較して稀なバリアントが多い傾向がある。
【０５８５】
　霊長類、哺乳類、および家禽において観察されるSNPと重複するgnomAD SNPに注目した
。種毎の同義バリアントおよびミスセンスバリアントの数をカウントした。ミスセンスバ
リアントについては、「ミスセンス同一(missense identical)」と名付けられる、別の種
において同一のアミノ酸変化を共有するタイプと、「ミスセンス相違(missense differen
t)」と名付けられる、別の種において異なるアミノ酸変化を有するタイプという、2つの
タイプへとさらに分類した。次いで、シングルトンバリアントの数と一般的なバリアント
の数の比として、エンリッチメントスコアが種毎に計算された。
【０５８６】
　加えて、各種について同義バリアントとミスセンス同一バリアントとの間でエンリッチ
メントスコアを比較するために、2×2の分割表に対して相同性のカイ二乗(χ2)検定を実
行した。すべての霊長類が、同義バリアントとミスセンス同一バリアントとの間でエンリ
ッチメントスコアに有意な差を示さないが、ウシ、ネズミ、およびニワトリは有意な差を
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【０５８７】
　この結果は、大型類人猿において同一のアミノ酸変化を共有するSNPが、同義SNPと非常
に類似するエンリッチメントスコアを有する傾向があることを明らかにしており、それら
のSNPに、ヒトの健康に対する軽度の影響があることを示唆している。異なるアミノ酸変
化を有する、または大型類人猿において存在しないSNPは、同義SNPのエンリッチメントス
コアから有意に逸脱するエンリッチメントスコアを有するが、非霊長類の種からのミスセ
ンス多型も、同義バリアントと異なるアレル頻度分布を有する。結論は、大型類人猿にお
いて同一のアミノ酸変化を共有するSNPを、良性バリアントの訓練セットに追加すること
ができるということである。
【０５８８】
　我々の仮定は、大半のバリアントが独立に派生したものであり、家系同一性(IBD)によ
り生成されるのではないということである。したがって、IBD SNPにおける稀なバリアン
トのエンリッチメント分析を実行して、それらのエンリッチメントスコアの様々な挙動を
評価した。IBD SNPは、チンパンジー、ボノボ、ゴリラ、S.オランウータン、およびB.オ
ランウータンを含む、2つ以上の大型類人猿の種とヒトとの両方において現れる、ヒトSNP
として定義される。次いで、シングルトンの数を一般的なバリアント(AF>0.1%)の数で割
ったものとして定義されるエンリッチメントスコアが、ミスセンスバリアントおよび同義
バリアントに対して別々に計算され、同義バリアントは中立的であると考えられ比較の基
準として働く。
【０５８９】
［哺乳類の種間での固定された置換］
　　固定された置換のエンリッチメント分析
　種間の置換の稀なバリアントエンリッチメント分析も研究した。UCSCゲノムブラウザ(h
ttp://hgdownload.soe.ucsc.edu/goldenPath/hg19/multiz100way/hg19.100way.commonNam
es.nh)から100種の脊椎動物の種の進化系統樹をダウンロードした。次いで、計算された
ペア毎の進化系統的距離を計算し、近縁の種のペア(距離<0.3)を選択した。霊長類の種の
ペアを得るために、UCSCゲノムブラウザからCDS領域に対するヒトとの19種の哺乳類(16種
の霊長類)ゲノムのアラインメント(hg38)をダウンロードした。4つの霊長類のペアが13個
の脊椎動物のペアに追加された。以下の表は、一実装形態による、近縁の種の複数のペア
の遺伝的距離を示す。
【０５９０】
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【表８】

【０５９１】
　正規のコーディング領域内でヒトとの19種の哺乳類または99種の脊椎動物のゲノムの複
数アラインメントを取り込み、脊椎動物の各々の選択されたペア間のヌクレオチド置換を
得た。これらの置換は、種のペアとヒトバリアントとの間のコドン変化が同一であること
を条件として、gnomADからヒトエクソンSNPにマッピングされた。バリアントを、同義バ
リアント、別の種において同一のアミノ酸変化を共有するミスセンスバリアント、および
別の種において異なるアミノ酸変化を有するミスセンスバリアントという、3つのタイプ
へと分類した。エンリッチメントスコアが種のペア毎に各クラスに対して計算された。
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【０５９２】
　　種内多型および種間多型の比較
　チンパンジー、アカゲザル、マーモセット、ヤギ、ネズミ、およびニワトリを含む6つ
の種が、種内多型および種間多型の比較を実行するために選択され、それは、これらの種
については種内バリアントと種間バリアントの両方が利用可能であったからである。種内
バリアントおよび種間バリアントのエンリッチメントスコアの比較は、2つの2×2の分割
表のオッズ比の比較に類似している。通常は、分割表間のオッズ比の相同性を評価するた
めに、Woolf検定が適用される。したがって、Woolf検定を利用して、種内多型と種間多型
との間のエンリッチメントスコアの差を評価した。
【０５９３】
［遺伝子毎のエンリッチメント分析］
　図64は、遺伝子毎のエンリッチメント分析の一実装形態を示す。一実装形態では、深層
畳み込みニューラルネットワークベースのバリアント病原性分類器はさらに、病原性であ
ると決定されたバリアントの病原性を確認する遺伝子毎のエンリッチメント分析を実施す
るように構成される。遺伝的疾患を持つ個人のコホートからサンプリングされた特定の遺
伝子に対して、遺伝子毎のエンリッチメント分析は、病原性である特定の遺伝子における
バリアント候補を特定するために深層畳み込みニューラルネットワークベースのバリアン
ト病原性分類器を適用することと、バリアント候補の観察されるトリヌクレオチド変異率
を合計してその合計を送信カウントおよびコホートのサイズと乗じることに基づいて特定
の遺伝子に対する変異の基準数を決定することと、病原性である特定の遺伝子の中のde n
ovoミスセンスバリアントを特定するために深層畳み込みニューラルネットワークベース
のバリアント病原性分類器を適用することと、変異の基準数をde novoミスセンスバリア
ントのカウントと比較することとを含む。比較の出力に基づいて、遺伝子毎のエンリッチ
メント分析は、特定の遺伝子が遺伝子障害と関連付けられることと、de novoミスセンス
バリアントが病原性であることとを確認する。いくつかの実装形態では、遺伝子障害は自
閉スペクトラム障害(ASDと省略される)である。他の実装形態では、遺伝的障害は発達遅
延障害(DDDと省略される)である。
【０５９４】
　図64に示される例では、特定の遺伝子の中の5つのバリアント候補は、深層畳み込みニ
ューラルネットワークベースのバリアント病原性分類器によって病原性であるものとして
分類された。これらの5つのバリアント候補は、10-8、10-2、10-1、105、および101とい
う観察されたそれぞれのトリヌクレオチド変異率を有する。特定の遺伝子に対する変異の
基準数は、5つのバリアント候補のそれぞれの観察されたトリヌクレオチド変異率を合計
し、その合計を送信/染色体カウント(2)およびコホートのサイズ(1000)と乗じることに基
づいて、10-5であると決定される。これが次いでde novoバリアントカウント(3)と比較さ
れる。
【０５９５】
　いくつかの実装形態では、深層畳み込みニューラルネットワークベースのバリアント病
原性分類器はさらに、出力としてp値を生み出す統計的検定を使用して比較を実行するよ
うに構成される。
【０５９６】
　他の実装形態では、深層畳み込みニューラルネットワークベースのバリアント病原性分
類器はさらに、変異の基準数をde novoミスセンスバリアントのカウントと比較し、比較
の出力に基づいて、特定の遺伝子が遺伝的疾患と関連付けられないことと、de novoミス
センスバリアントが良性であることとを確認するように構成される。
【０５９７】
［ゲノムワイドエンリッチメント分析］
　図65は、ゲノムワイドエンリッチメント分析の一実装形態を示す。別の実装形態では、
深層畳み込みニューラルネットワークベースのバリアント病原性分類器はさらに、病原性
と決定されたバリアントの病原性を確認するゲノムワイドエンリッチメント分析を実施す
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るように構成される。ゲノムワイドエンリッチメント分析は、健康な個人のコホートから
サンプリングされた複数の遺伝子において病原性であるde novoミスセンスバリアントの
第1のセットを特定するために深層畳み込みニューラルネットワークベースのバリアント
病原性分類器を適用することと、遺伝子障害を持つ個人のコホートからサンプリングされ
る複数の遺伝子において病原性であるde novoミスセンスバリアントの第2のセットを特定
するために深層畳み込みニューラルネットワークベースのバリアント病原性分類器を適用
することと、第1のセットおよび第2のセットのそれぞれのカウントを比較することと、比
較の出力に基づいて、de novoミスセンスバリアントの第2のセットが遺伝的障害を持つ個
人のコホートにおいてエンリッチされ、したがって病原性であることを確認することとを
含む。いくつかの実装形態では、遺伝的疾患は自閉スペクトラム障害(ASDと省略される)
である。他の実装形態では、遺伝的障害は発達遅延障害(DDDと省略される)である。
【０５９８】
　いくつかの実装形態では、深層畳み込みニューラルネットワークベースのバリアント病
原性分類器はさらに、p値を出力として生み出す統計的検定を使用して比較を実行するよ
うに構成される。一実装形態では、比較はさらにそれぞれのコホートサイズによってパラ
メータ化される。
【０５９９】
　いくつかの実装形態では、深層畳み込みニューラルネットワークベースのバリアント病
原性分類器はさらに、第1のセットおよび第2のセットのそれぞれのカウントを比較し、比
較の出力に基づいて、de novoミスセンスバリアントの第2のセットが遺伝的障害を持つ個
人のコホートにおいてエンリッチされず、したがって良性であることを確認するように構
成される。
【０６００】
　図65に示される例では、健康なコホートにおける変異率(0.001)および影響を受けてい
るコホートにおける変異率(0.004)が、個人毎の変異率(4)とともに示されている。
【０６０１】
［具体的な実装形態］
　バリアント病原性分類器を構築するためのシステム、方法、および製造物品を説明する
。実装形態の1つまたは複数の特徴は基本の実装形態と組み合わされ得る。相互に排他的
ではない実装形態は合成可能であると教示される。実装形態の1つまたは複数の特徴は他
の実装形態と合成され得る。本開示は定期的にこれらの選択肢をユーザに思い起こさせる
。これらの選択肢を繰り返し述べる記載がいくつかの実装形態において省略されているこ
とは、先行するセクションにおいて教示された合成を限定するものと解釈されるべきでは
なく、これらの記載は以後の実装形態の各々へと前方に参照によって組み込まれる。
【０６０２】
　開示される技術のシステム実装形態は、メモリに結合される1つまたは複数のプロセッ
サを含む。メモリは、ゲノム配列(たとえば、ヌクレオチド配列)におけるスプライスサイ
トを特定するスプライスサイト検出器を訓練するためのコンピュータ命令をロードされる
。
【０６０３】
　図48および図19に示されるように、システムは畳み込みニューラルネットワークベース
のバリアント病原性分類器を訓練し、これはメモリに結合される多数のプロセッサ上で実
行される。システムは、良性バリアントおよび病原性バリアントから生成されたタンパク
質配列ペアの、良性訓練例および病原性訓練例を使用する。良性バリアントは、一般的な
ヒトミスセンスバリアントと、ヒトと一致する基準コドン配列を共有する代替のヒト以外
の霊長類コドン配列上で発生するヒト以外の霊長類ミスセンスバリアントとを含む。「タ
ンパク質配列ペア」という語句は、基準タンパク質配列および代替タンパク質配列を指し
、基準タンパク質配列は基準トリプレットヌクレオチド塩基(基準コドン)によって形成さ
れる基準アミノ酸を備え、代替タンパク質配列は代替トリプレットヌクレオチド塩基(代
替コドン)によって形成される代替アミノ酸を備えるので、代替タンパク質配列は基準タ
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ンパク質配列の基準アミノ酸を形成する基準トリプレットヌクレオチド塩基(基準コドン)
において発生するバリアントの結果として作り出される。バリアントは、SNP、挿入、ま
たは欠失であり得る。
【０６０４】
　このシステムの実装形態および開示される他のシステムは任意選択で、以下の特徴のう
ちの1つまたは複数を含む。システムはまた、開示される方法に関連して説明される特徴
を含み得る。簡潔にするために、システム特徴の代替的な組合せは個別に列挙されない。
システム、方法、製造物品に適用可能な特徴は、基本の特徴の各々のstatutory classの
セットに対して繰り返されない。このセクションにおいて特定される特徴がどのように他
のstatutory classの中の基本の特徴と容易に組み合わされ得るかを、読者は理解するで
あろう。
【０６０５】
　図44に示されるように、一般的なヒトミスセンスバリアントは、少なくとも100000人の
ヒトからサンプリングされたヒト集団バリアントデータセットにわたって0.1%より高いマ
イナーアレル頻度(MAFと省略される)を有する。
【０６０６】
　図44に示されるように、サンプリングされたヒトは異なるヒト亜集団に属し、一般的な
ヒトミスセンスバリアントはそれぞれのヒト亜集団バリアントデータセット内で0.1%より
高いMAFを有する。
【０６０７】
　ヒト亜集団は、アフリカ人/アフリカ系アメリカ人(AFRと省略される)、アメリカ人(AMR
と省略される)、アシュケナージ系ユダヤ人(ASJと省略される)、東アジア人(EASと省略さ
れる)、フィンランド人(FINと省略される)、フィンランド人以外のヨーロッパ人(NFEと省
略される)、南アジア人(SASと省略される)、および他(OTHと省略される)を含む。
【０６０８】
　図43および図44に示されるように、ヒト以外の霊長類ミスセンスバリアントは、チンパ
ンジー、ボノボ、ゴリラ、B.オランウータン、S.オランウータン、アカゲザル、およびマ
ーモセットを含む、複数のヒト以外の霊長類の種からのミスセンスバリアントを含む。
【０６０９】
　図45および図46に示されるように、エンリッチメント分析に基づいて、システムは、あ
る特定のヒト以外の霊長類の種を、良性バリアントにその特定のヒト以外の霊長類の種の
ミスセンスバリアントを含めるために受け入れる。エンリッチメント分析は、特定のヒト
以外の霊長類の種に対して、特定のヒト以外の霊長類の種の同義バリアントの第1のエン
リッチメントスコアを、特定のヒト以外の霊長類の種のミスセンス同一バリアントの第2
のエンリッチメントスコアと比較することを含む。
【０６１０】
　図45は、ヒトオーソロガスミスセンスSNPの一実装形態を示す。ヒト以外の種における
ミスセンスSNPは、ヒトと一致する基準コドンおよび代替コドンを有する。図45に示され
るように、ミスセンス同一バリアントは、ヒトと一致する基準コドン配列および代替コド
ン配列を共有するミスセンスバリアントである。
【０６１１】
　図46および図47に示されるように、第1のエンリッチメントスコアは、MAFが0.1%より大
きい一般的な同義バリアントに対する、MAFが0.1%より小さい稀な同義バリアントの比を
決定することによって、作り出される。第2のエンリッチメントスコアは、MAFが0.1%より
大きい一般的なミスセンス同一バリアントに対する、MAFが0.1%より小さい稀なミスセン
ス同一バリアントの比を決定することによって、作り出される。稀なバリアントは、シン
グルトンバリアントを含む。
【０６１２】
　図46および図47に示されるように、第1のエンリッチメントスコアと第2のエンリッチメ
ントスコアの差は所定の範囲内にあり、良性バリアントに特定のヒト以外の霊長類のミス
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センスバリアントを含めるために、その特定のヒト以外の霊長類の種を受け入れることを
さらに含む。差が所定の範囲にあることは、ミスセンス同一バリアントが同義バリアント
と同じ程度の自然選択を受けているので、同義バリアントと同じくらい良性であることを
示す。
【０６１３】
　図48に示されるように、システムは、良性バリアントにヒト以外の霊長類の種のミスセ
ンスバリアントを含めるために、複数のヒト以外の霊長類の種を受け入れるようにエンリ
ッチメント分析を繰り返し適用する。システムはさらに、ヒト以外の霊長類の種の各々に
対する同義バリアントの第1のエンリッチメントスコアとミスセンス同一バリアントの第2
のエンリッチメントスコアを比較するための、相同性のカイ二乗検定を含む。
【０６１４】
　図48に示されるように、ヒト以外の霊長類ミスセンスバリアントのカウントは少なくと
も100000である。ヒト以外の霊長類ミスセンスバリアントのカウントは385236である。一
般的なヒトミスセンスバリアントのカウントは少なくとも50000である。一般的なヒトミ
スセンスバリアントのカウントは83546である。
【０６１５】
　他の実装形態は、上で説明されたシステムの活動を実行するようにプロセッサによって
実行可能な命令を記憶する、非一時的コンピュータ可読記憶媒体を含み得る。さらに別の
実装形態は、上で説明されたシステムの活動を実行する方法を含み得る。
【０６１６】
　開示される技術の別のシステムの実装形態は、一塩基多型(SNPと省略される)病原性分
類器を構築することを含む。システムは畳み込みニューラルネットワークベースのSNP病
原性分類器を訓練し、これは、良性SNPおよび病原性SNPによって表されるアミノ酸配列の
良性訓練例および病原性訓練例を使用して、メモリに結合された多数のプロセッサ上で実
行される。良性訓練例は、アミノ酸配列ペアとして表されるヌクレオチド配列の第1のセ
ットおよび第2のセットを含み、各アミノ酸配列は、上流および下流のアミノ酸が側にあ
る中心アミノ酸を含む。各アミノ酸配列ペアは、基準ヌクレオチド配列によって表される
アミノ酸の基準配列と、SNPを含む代替ヌクレオチド配列によって表されるアミノ酸の代
替配列とを含む。
【０６１７】
　図9に示されるように、第1のセットはヒトヌクレオチド配列ペアを備え、各ペアは、SN
Pを含みヒト集団内で一般的であると見なされるマイナーアレル頻度(MAFと省略される)を
有するヒト代替ヌクレオチド配列を含む。第2のセットは、ヒト以外の霊長類代替ヌクレ
オチド配列とペアにされたヒト以外の霊長類基準ヌクレオチド配列を備える。ヒト以外の
霊長類基準ヌクレオチド配列は、オーソロガスなヒトヌクレオチド基準配列を有する。ヒ
ト以外の霊長類代替ヌクレオチド配列はSNPを含む。
【０６１８】
　第1のシステムの実装形態についてこの特定の実装セクションにおいて論じられる特徴
の各々は、このシステムの実装形態に等しく適用される。上で示されたように、すべての
システム特徴はここで繰り返されず、参照によって繰り返されるものと見なされるべきで
ある。
【０６１９】
　他の実装形態は、上で説明されたシステムの活動を実行するようにプロセッサによって
実行可能な命令を記憶する、非一時的コンピュータ可読記憶媒体を含み得る。さらに別の
実装形態は、上で説明されたシステムの活動を実行する方法を含み得る。
【０６２０】
　図48および図19に示されるように、開示される技術の第1の方法の実装形態は、バリア
ント病原性分類器を構築するステップを含む。方法はさらに、畳み込みニューラルネット
ワークベースのバリアント病原性分類器を訓練するステップを含み、これは、良性バリア
ントおよび病原性バリアントから生成されるタンパク質配列ペアの良性訓練例および病原
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性訓練例を使用して、メモリに結合される多数のプロセッサ上で実行される。良性バリア
ントは、一般的なヒトミスセンスバリアントと、ヒトと一致する基準コドン配列を共有す
る代替的なヒト以外の霊長類コドン配列上で発生するヒト以外の霊長類ミスセンスバリア
ントとを含む。
【０６２１】
　第1のシステム実装形態についてこの特定の実装セクションにおいて論じられる特徴の
各々は、この方法の実装形態に等しく適用される。上で示されたように、すべてのシステ
ム特徴はここで繰り返されず、参照によって繰り返されるものと見なされるべきである。
【０６２２】
　他の実装形態は、上で説明された方法を実行するようにプロセッサによって実行可能な
命令を記憶する非一時的コンピュータ可読記憶媒体を含み得る。さらに別の実装形態は、
メモリと、上で説明された方法を実行するためにメモリに記憶された命令を実行するよう
に動作可能な1つまたは複数のプロセッサとを含む、システムを含み得る。
【０６２３】
　図48および図19に示されるように、開示される技術の第2の方法の実装形態は、一塩基
多型(SNPと省略される)病原性分類器を構築するステップを含む。方法はさらに、畳み込
みニューラルネットワークベースのSNP病原性分類器を訓練するステップを含み、これは
、良性SNPおよび病原性SNPによって表されるアミノ酸配列の良性訓練例および病原性訓練
例を使用して、メモリに結合される多数のプロセッサ上で実行される。良性訓練例は、ア
ミノ酸配列のペアとして表されるヌクレオチド配列の第1のセットおよび第2のセットを含
み、各アミノ酸配列は上流および下流のアミノ酸が側にある中心アミノ酸を含み、各アミ
ノ酸配列のペアは、基準ヌクレオチド配列によって表されるアミノ酸の基準配列およびSN
Pを含む代替ヌクレオチド配列によって表されるアミノ酸の代替配列を含む。第1のセット
はヒトヌクレオチド配列ペアを備え、各ペアは、SNPを含みヒト集団内で一般的であると
見なされるマイナーアレル頻度(MAFと省略される)を有する、ヒト代替ヌクレオチド配列
を含む。第2のセットは、ヒト以外の霊長類代替ヌクレオチド配列とペアにされた、ヒト
以外の霊長類基準ヌクレオチド配列を備える。ヒト以外の霊長類基準ヌクレオチド配列は
オーソロガスなヒトヌクレオチド基準配列を有し、ヒト以外の霊長類代替ヌクレオチド配
列はSNPを含む。
【０６２４】
　第2のシステム実装形態についてこの特定の実装セクションにおいて論じられる特徴の
各々は、この方法の実装形態に等しく適用される。上で示されたように、すべてのシステ
ム特徴はここで繰り返されず、参照によって繰り返されるものと見なされるべきである。
【０６２５】
　他の実装形態は、上で説明された方法を実行するようにプロセッサによって実行可能な
命令を記憶する非一時的コンピュータ可読記憶媒体を含み得る。さらに別の実装形態は、
メモリと、上で説明された方法を実行するためにメモリに記憶された命令を実行するよう
に動作可能な1つまたは複数のプロセッサとを含む、システムを含み得る。
【０６２６】
　二次構造および溶媒接触性分類器を伴う深層畳み込みニューラルネットワークベースの
バリアント病原性分類器を使用するためのシステム、方法、および製造物品を説明する。
実装形態の1つまたは複数の特徴は基本の実装形態と合成され得る。相互に排他的ではな
い実装形態は、合成可能であると教示される。実装形態の1つまたは複数の特徴は他の実
装形態と合成され得る。本開示は定期的にこれらの選択肢をユーザに思い起こさせる。こ
れらの選択肢を繰り返し述べる記載がいくつかの実装形態において省略されていることは
、先行するセクションにおいて教示された合成を限定するものと解釈されるべきではなく
、これらの記載は以後の実装形態の各々へと前方に参照によって組み込まれる。
【０６２７】
　開示される技術のシステム実装形態は、メモリに結合される1つまたは複数のプロセッ
サを含む。メモリは、二次構造および溶媒接触性分類器を伴う深層畳み込みニューラルネ
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ットワークベースのバリアント病原性分類器を実行するためのコンピュータ命令をロード
される。
【０６２８】
　システムは、タンパク質配列内のアミノ酸位置において3状態二次構造を予測するよう
に訓練される、メモリに結合された多数のプロセッサ上で実行される第1の二次構造サブ
ネットワークを備える。システムはさらに、タンパク質配列内のアミノ酸位置において3
状態溶媒接触性を予測するように訓練される、メモリに結合された多数のプロセッサ上で
実行される第2の溶媒接触性サブネットワークを備える。
【０６２９】
　3状態二次構造は、複数のDNA二次構造状態であるαヘリックス(H)、βシート(B)、およ
びコイル(C)のうちの1つを指す。
【０６３０】
　3状態溶媒接触性は、複数のタンパク質溶媒接触性である埋もれている(B)、中間(I)、
および露出している(E)のうちの1つを指す。
【０６３１】
　多数のプロセッサのうちの少なくとも1つで実行される位置特定的頻度行列(PFMと省略
される)生成器は、霊長類PFM、哺乳類PFM、および脊椎動物PFMを生成するために、霊長類
、哺乳類、および霊長類と哺乳類を除く脊椎動物の3つの配列グループに適用される。
【０６３２】
　言い換えると、これは、PFM生成器を霊長類配列データに適用して霊長類PFMを生成する
ことと、PFM生成器を哺乳類配列データに適用して哺乳類PFMを生成することと、PFM生成
器を霊長類配列データおよび哺乳類配列データを含まない脊椎動物配列データに適用して
脊椎動物PFMを生成することとを含む。
【０６３３】
　入力プロセッサは、標的バリアントアミノ酸の上流および下流の側に各方向への少なく
とも25個のアミノ酸があるバリアントアミノ酸配列を受け入れ、一塩基バリアントが標的
バリアントアミノ酸を生み出す。多数のプロセッサのうちの少なくとも1つで実行される
補足データ割振器は、そのバリアントアミノ酸配列とアラインメントされた、標的基準ア
ミノ酸の上流および下流の側に各方向への少なくとも25個のアミノ酸がある基準アミノ酸
配列を割り振る。これに続いて、補足データ割振器は、基準アミノ酸配列のために第1の
サブネットワークおよび第2のサブネットワークによって作り出される基準状態分類を割
り振る。この後で、補足データ割振器は、バリアントアミノ酸配列のために第1のサブネ
ットワークおよび第2のサブネットワークによって作り出されるバリアント状態分類を割
り振る。最後に、補足データ割振器は、基準アミノ酸配列とアラインメントされる霊長類
PFM、哺乳類PFM、および脊椎動物PFMを割り振る。
【０６３４】
　本出願の文脈では、「とアラインメントされる」という語句は、基準アミノ酸配列また
は代替アミノ酸配列の中の各アミノ場所に対する霊長類PFM、哺乳類PFM、および脊椎動物
PFMを場所毎に決定し、アミノ酸場所が基準アミノ酸配列または代替アミノ酸配列におい
て発生するのと同じ順序で場所毎にまたは場所の序数に基づいてその決定の結果を符号化
して記憶することを指す。
【０６３５】
　システムはまた、バリアントアミノ酸配列、割り振られた基準アミノ酸配列、割り振ら
れた基準状態分類およびバリアント状態分類、ならびに割り振られたPFMを処理したこと
に基づいて、良性または病原性であるものとしてバリアントアミノ酸配列を分類するよう
に訓練された、多数のプロセッサで実行される深層畳み込みニューラルネットワークを含
む。システムは、バリアントアミノ酸配列に対する病原性スコアを少なくとも報告する出
力プロセッサを含む。
【０６３６】
　このシステム実装形態および開示される他のシステムは任意選択で、以下の特徴のうち
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の1つまたは複数を含む。システムはまた、開示される方法に関連して説明される特徴を
含み得る。簡潔にするために、システム特徴の代替的な組合せは個別に列挙されない。シ
ステム、方法、および製造物品に適用可能な特徴は、基本の特徴の各statutory classセ
ットに対して繰り返されない。読者は、このセクションにおいて特定される特徴が他のst
atutory classにおける基本の特徴とどのように容易に合成され得るかを理解するであろ
う。
【０６３７】
　深層畳み込みニューラルネットワークベースのバリアント病原性分類器を備えるシステ
ムはさらに、病原性スコアに基づいて良性または病原性として一塩基バリアントを分類す
るように構成される。
【０６３８】
　システムは、深層畳み込みニューラルネットワークが、少なくとも、バリアントアミノ
酸配列、割り振られた基準アミノ酸配列、割り振られたバリアント二次構造状態分類、割
り振られた基準二次構造状態分類、割り振られたバリアント溶媒接触性状態分類、割り振
られた基準溶媒接触性状態分類、割り振られた霊長類PFM、割り振られた哺乳類PFM、およ
び割り振られた脊椎動物PFMを、入力として並列に受け入れるような、深層畳み込みニュ
ーラルネットワークベースのバリアント病原性分類器を備える。
【０６３９】
　システムは、バッチ正規化層、ReLU非線形性層、および次元変更層を使用して、バリア
ントアミノ酸配列、割り振られた基準アミノ酸配列、割り振られた霊長類PFM、割り振ら
れた哺乳類PFM、および割り振られた脊椎動物PFMを前処理するように構成される。システ
ムはさらに、前処理された特性評価を合計し、その合計を、割り振られたバリアント二次
構造状態分類、割り振られた基準二次構造状態分類、割り振られたバリアント溶媒接触性
状態分類、および割り振られた基準溶媒接触性状態分類と連結して、連結された入力を生
み出すように構成される。システムは、次元変更層を通じて連結された入力を処理し、処
理された連結された入力を受け入れて深層畳み込みニューラルネットワークの残差ブロッ
クを開始する。
【０６４０】
　深層畳み込みニューラルネットワークは、配列において最低から最高まで並べられる残
差ブロックのグループを備える。深層畳み込みニューラルネットワークは、残差ブロック
の数、スキップ接続の数、および非線形活性化を伴わない残差接続の数によってパラメー
タ化される。深層畳み込みニューラルネットワークは、先行する入力の空間次元および特
徴量次元を形状変更する次元変更層を備える。
【０６４１】
　システムはさらに、霊長類、哺乳類、および脊椎動物にわたってアライメントされた基
準アミノ酸配列において保存されている標的基準アミノ酸から標的バリアントアミノ酸を
作り出す、一塩基バリアントを病原性として分類するように訓練するように構成される。
【０６４２】
　保存率は、標的基準アミノ酸の機能的な有意性を表し、PFWから決定される。システム
はさらに、バリアントアミノ酸配列と基準バリアントアミノ酸配列との間で異なる二次構
造を引き起こす一塩基バリアントを病原性として分類するように訓練するように構成され
る。
【０６４３】
　システムはさらに、バリアントアミノ酸配列と基準バリアントアミノ酸配列との間で異
なる溶媒接触性を引き起こす一塩基バリアントを病原性として分類するように訓練するよ
うに構成される。
【０６４４】
　PFMは、他の種のアライメントされるタンパク質配列にわたるヒトタンパク質配列にお
けるアミノ酸の出現の頻度を位置ごとに決定することによって、他の種のアライメントさ
れるタンパク質配列にわたるヒトタンパク質配列におけるアミノ酸の保存率を表す。
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【０６４５】
　二次構造の3状態は、ヘリックス、シート、およびコイルである。第1の二次構造サブネ
ットワークは、入力タンパク質配列と、入力タンパク質配列内のアミノ酸位置とアライメ
ントされる霊長類PFM、哺乳類PFM、および脊椎動物PFMとを受け入れ、アミノ酸位置の各
々において3状態二次構造を予測するように訓練される。溶媒接触性の3状態は、露出して
いる、埋もれている、および中間である。
【０６４６】
　二次溶媒接触性サブネットワークは、入力タンパク質配列と、入力タンパク質配列内の
アミノ酸位置とアラインメントされている霊長類PFM、哺乳類PFM、および脊椎動物PFMと
を受け入れ、アミノ酸位置の各々において3状態溶媒接触性を予測するように訓練される
。入力タンパク質配列は基準タンパク質配列である。入力タンパク質配列は代替タンパク
質配列である。第1の二次構造サブネットワークは、配列において最低から最高まで並べ
られる残差ブロックのグループを備える。第1の二次構造サブネットワークは、残差ブロ
ックの数、スキップ接続の数、および非線形活性化を伴わない残差接続の数によってパラ
メータ化される。
【０６４７】
　第1の二次構造サブネットワークは、先行する入力の空間次元および特徴量次元を形状
変更する次元変更層を備える。第2の溶媒接触性サブネットワークは、配列において最低
から最高まで並べられる残差ブロックのグループを備える。第2の溶媒接触性サブネット
ワークは、残差ブロックの数、スキップ接続の数、および非線形活性化を伴わない残差接
続の数によってパラメータ化される。第2の溶媒接触性サブネットワークは、先行する入
力の空間次元および特徴量次元を形状変更する次元変更層を備える。
【０６４８】
　各残差ブロックは、少なくとも1つのバッチ正規化層、少なくとも1つの正規化線形ユニ
ット(ReLUと省略される)層、少なくとも1つの次元変更層、および少なくとも1つの残差接
続を備える。各残差ブロックは、2つのバッチ正規化層、2つのReLU非線形性層、2つの次
元変更層、および1つの残差接続を備える。
【０６４９】
　深層畳み込みニューラルネットワーク、第1の二次構造サブネットワーク、および第2の
溶媒接触性サブネットワークは各々、最終分類層を備える。最終分類層はシグモイドベー
スの層である。最終分類層はソフトマックスベースの層である。
【０６５０】
　システムはさらに、深層畳み込みニューラルネットワークとの協調のために、第1の二
次構造サブネットワークおよび第2の溶媒接触性サブネットワークの最終分類層を除去す
るように構成される。
【０６５１】
　システムはさらに、深層畳み込みニューラルネットワークの訓練の間に、誤差をサブネ
ットワークに逆伝播してサブネットワーク重みを更新することを含めて、第1の二次構造
サブネットワークおよび第2の溶媒接触性サブネットワークを病原性分類についてさらに
訓練するように構成される。
【０６５２】
　第2の溶媒接触性サブネットワークは少なくとも膨張畳み込み層を備える。システムは
さらに、発達遅延障害(DDDと省略される)を引き起こすバリアントを病原性として分類す
るように構成される。バリアントアミノ酸配列および基準アミノ酸配列はフランキングア
ミノ酸を共有する。システムはさらに、深層畳み込みニューラルネットワークへの入力を
符号化するためにワンホット符号化を使用するように構成される。
【０６５３】
　図1Qは、開示される技術が動作することのできる例示的なコンピューティング環境を示
す。深層畳み込みニューラルネットワーク、第1の二次構造サブネットワーク、および第2
の溶媒接触性サブネットワークは、1つまたは複数の訓練サーバ上で訓練される。訓練さ
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れた深層畳み込みニューラルネットワーク、第1の訓練された二次構造サブネットワーク
、および訓練された第2の溶媒接触性サブネットワークは、要求側のクライアントから入
力配列を受け取る1つまたは複数の本番サーバ上に展開される。本番サーバは、深層畳み
込みニューラルネットワーク、第1の二次構造サブネットワーク、および第2の溶媒接触性
サブネットワークのうちの少なくとも1つを通じて入力配列を処理して、クライアントに
送信される出力を作り出す。
【０６５４】
　他の実装形態は、上で説明されたシステムの活動を実行するようにプロセッサによって
実行可能な命令を記憶する、非一時的コンピュータ可読記憶媒体を含み得る。さらに別の
実装形態は、上で説明されたシステムの活動を実行する方法を含み得る。
【０６５５】
　開示される技術の別のシステム実装形態は、メモリに結合された多数のプロセッサ上で
実行される、深層畳み込みニューラルネットワークベースのバリアント病原性分類器を含
む。システムは、霊長類PFMおよび哺乳類PFMを生成するために霊長類および哺乳類の2つ
の配列グループに適用される、多数のプロセッサのうちの少なくとも1つで実行される、
位置特定的頻度行列(PFMと省略される)生成器を含む。システムはまた、標的バリアント
アミノ酸の上流および下流の側に各方向への少なくとも25個のアミノ酸があるバリアント
アミノ酸配列を受け入れる入力プロセッサを含み、一塩基バリアントが標的バリアントア
ミノ酸を生み出す。システムはまた、バリアントアミノ酸配列とアラインメントされる、
標的基準アミノ酸の上流および下流の側に各方向への少なくとも25個のアミノ酸がある基
準アミノ酸配列を割り振る、多数のプロセッサのうちの少なくとも1つで実行される補足
データ割振器を含む。補足データ割振器はまた、基準アミノ酸配列とアラインメントされ
た霊長類PFMおよび哺乳類PFMを割り振る。システムはさらに、バリアントアミノ酸配列、
割り振られた基準アミノ酸配列、および割り振られたPFMを処理することに基づいてバリ
アントアミノ酸配列を良性または病原性として分類するように訓練される、多数のプロセ
ッサ上で実行される深層畳み込みニューラルネットワークを含む。最後に、システムは、
バリアントアミノ酸配列に対する病原性スコアを少なくとも報告する出力プロセッサを含
む。
【０６５６】
　このシステム実装形態および開示される他のシステムは任意選択で、以下の特徴のうち
の1つまたは複数を含む。システムはまた、開示される方法に関連して説明される特徴を
含み得る。簡潔にするために、システム特徴の代替的な組合せは個別に列挙されない。シ
ステム、方法、および製造物品に適用可能な特徴は、基本の特徴の各statutory classに
対して繰り返されない。このセクションにおいて特定される特徴が他のstatutory class
の中の基本の特徴とどのように容易に組み合わされ得るかを、読者は理解するであろう。
【０６５７】
　システムはさらに、病原性スコアに基づいて一塩基バリアントを良性または病原性とし
て分類するように構成される。深層畳み込みニューラルネットワークは、バリアントアミ
ノ酸配列、割り振られた基準アミノ酸配列、割り振られた霊長類PFM、および割り振られ
た哺乳類PFMを並列に受け入れて処理する。システムはさらに、霊長類および哺乳類にわ
たって基準アミノ酸配列において保存されている標的基準アミノ酸から標的バリアントア
ミノ酸を作り出す、一塩基バリアントを病原性として分類するように訓練するように構成
される。保存率は、標的基準アミノ酸の機能的な有意性を表し、PFWから決定される。
【０６５８】
　第1のシステム実装形態に対してこの特定の実装セクションにおいて論じられる特徴の
各々はこのシステム実装形態に等しく適用される。上で示されたように、すべてのシステ
ム特徴は、ここでは繰り返されず、参照によって繰り返されるものと見なされるべきであ
る。
【０６５９】
　他の実装形態は、上で説明されたシステムの活動を実行するようにプロセッサによって
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実行可能な命令を記憶する非一時的コンピュータ可読記憶媒体を含み得る。さらに別の実
装形態は、上で説明されたシステムの活動を実行する方法を含み得る。
【０６６０】
　開示される技術の第1の方法の実装形態は、タンパク質配列内のアミノ酸位置において3
状態二次構造を予測するように訓練される、メモリに結合された多数のプロセッサ上で第
1の二次構造サブネットワークを実行するステップを含む。タンパク質配列内のアミノ酸
位置において3状態溶媒接触性を予測するように訓練される、メモリに結合される多数の
プロセッサ上で第2の溶媒接触性サブネットワークを実行すること。多数のプロセッサの
うちの少なくとも1つで実行すること。霊長類位置特定的頻度行列(PFMと省略される)、哺
乳類PFM、および脊椎動物PFMを生成するために、霊長類、哺乳類、および霊長類と哺乳類
を除く脊椎動物の3つの配列グループに適用される、PFM生成器。標的バリアントアミノ酸
の上流および下流の側に各方向への少なくとも25個のアミノ酸があるバリアントアミノ酸
配列入力プロセッサを受け入れること。一塩基バリアントは標的バリアントアミノ酸を作
り出す。バリアントアミノ酸配列とアラインメントされた、標的基準アミノ酸の上流およ
び下流の側に各方向への少なくとも25個のアミノ酸がある基準アミノ酸配列を割り振る補
足データ割振器を、多数のプロセッサのうちの1つで実行すること。補足データ割振器は
また、基準アミノ酸配列のために第1のサブネットワークおよび第2のサブネットワークに
よって作り出される基準状態分類を割り振る。補足データ割振器はさらに、バリアントア
ミノ酸配列のために第1のサブネットワークおよび第2のサブネットワークによって作り出
されるバリアント状態分類を割り振る。補足データ割振器は、基準アミノ酸配列とアライ
ンメントされた、霊長類PFM、哺乳類PFM、および脊椎動物PFMを割り振る。バリアントア
ミノ酸配列、割り振られた基準アミノ酸配列、割り振られた基準状態分類およびバリアン
ト状態分類、ならびに割り振られたPFMを処理することに基づいて、バリアントアミノ酸
配列を良性または病原性として分類するように訓練される深層畳み込みニューラルネット
ワークを、多数のプロセッサ上で実行すること。出力プロセッサを通じてバリアントアミ
ノ酸配列に対する病原性スコアを少なくとも報告すること。
【０６６１】
　第1のシステム実装形態に対するこの特定の実装セクションにおいて論じられる特徴の
各々はこの方法の実装形態に等しく適用される。上で示されたように、すべてのシステム
特徴はここで繰り返されず、参照によって繰り返されるものと見なされるべきである。
【０６６２】
　他の実装形態は、上で説明された方法を実行するようにプロセッサによって実行可能な
命令を記憶する非一時的コンピュータ可読記憶媒体を含み得る。さらに別の実装形態は、
メモリと、上で説明された方法を実行するためにメモリに記憶された命令を実行するよう
に動作可能な1つまたは複数のプロセッサとを含む、システムを含み得る。
【０６６３】
　開示される技術の第2の方法の実装形態は、深層畳み込みニューラルネットワークベー
スのバリアント病原性分類器を、メモリに結合された多数のプロセッサ上で実行するステ
ップを含む。霊長類PFMおよび哺乳類PFMを生成するために霊長類と哺乳類の2つの配列グ
ループに適用される、多数のプロセッサのうちの少なくとも1つで位置特定的頻度行列(PF
Mと省略される)生成器を実行すること。入力プロセッサにおいて、標的バリアントアミノ
酸の上流および下流の側に各方向への少なくとも25個のアミノ酸があるバリアントアミノ
酸配列を受け入れること。一塩基バリアントは標的バリアントアミノ酸を作り出す。バリ
アントアミノ酸配列とアラインメントされる、標的基準アミノ酸の上流および下流の側に
各方向への少なくとも25個のアミノ酸がある基準アミノ酸配列を割り振り、基準アミノ酸
配列とアラインメントされる霊長類PFMおよび哺乳類PFMを割り振る、多数のプロセッサの
うちの少なくとも1つで補足データ割振器を実行すること。バリアントアミノ酸配列、割
り振られた基準アミノ酸配列、および割り振られたPFMを処理することに基づいて、バリ
アントアミノ酸配列を良性または病原性として分類するように訓練される深層畳み込みニ
ューラルネットワークを、多数のプロセッサ上で実行すること。出力プロセッサにおいて
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バリアントアミノ酸配列に対する病原性スコアを少なくとも報告すること。
【０６６４】
　第2のシステム実装形態に対するこの特定の実装セクションにおいて論じられる特徴の
各々は、この方法の実装形態に等しく適用される。上で示されたように、すべてのシステ
ム特徴はここで繰り返されず、参照によって繰り返されるものと見なされるべきである。
【０６６５】
　他の実装形態は、上で説明された方法を実行するようにプロセッサによって実行可能な
命令を記憶する非一時的コンピュータ可読記憶媒体を含み得る。さらに別の実装形態は、
メモリと、上で説明された方法を実行するためにメモリに記憶された命令を実行するよう
に動作可能な1つまたは複数のプロセッサとを含む、システムを含み得る。
【０６６６】
　開示される技術のさらに別のシステム実装形態は、一塩基多型(SNPと省略される)病原
性分類器を訓練するための大規模な病原性訓練データを生成するシステムを含む。
【０６６７】
　図19に示されるように、システムは、良性SNPの訓練セットと、組合せで生成されたSNP
の合成セットからカリング(cull)される予測されるエリート病原性SNPの訓練セットとを
使用して、メモリに結合された多数のプロセッサ上で実行されるSNP病原性分類器を訓練
する。本出願の文脈では、予測されるエリート病原性SNPは、アンサンブルによって出力
されるような、平均病原性スコアまたは最大病原性スコアに基づいて各サイクルの終わり
に作成/選択されるSNPである。「エリート」という用語は、遺伝的アルゴリズムの語彙か
ら借用され、遺伝的アルゴリズムの出版物において通常与えられる意味を有することが意
図される。
【０６６８】
　図37、図38、図39、図40、図41、および図42に示されるように、システムはサイクルの
中で反復的にエリートセットを構築する。このとき、予測されるSNPがない状態から始め
て、合成セットから異常値SNPをカリングすることによって予測されるSNPの完全なセット
を累積する。合成セットは、良性セットに存在しない、組合せで生成されるSNPである疑
似病原性SNPを備え、異常値SNPがエリートセットへの包含のために合成セットから反復的
にカリングされるにつれてセットのメンバー数が減少する。本出願の文脈では、「カリン
グする」という用語は、以前の集団をフィルタリングすること、新しい集団で置き換える
こと、更新すること、または選択することを意味する。「カリングする」という用語は、
遺伝的アルゴリズムの語彙から借用され、遺伝的アルゴリズムの出版物において通常与え
られる意味を有することが意図される。
【０６６９】
　図37、図38、図39、図40、図41、および図42に示されるように、システムは、サイクル
において反復的に、合成セットから異常値SNPをカリングするために、SNP病原性分類器の
アンサンブルを訓練して適用する。これは、良性SNPの一般訓練セット、予測されるエリ
ート病原性SNPの一般訓練セット、および置換を伴わずに合成セットからサンプリングさ
れる疑似病原性SNPの別個の訓練セットを使用して、アンサンブルを訓練することを含む
。これはまた、現在のサイクルにおいてアンサンブルを訓練するために使用されなかった
合成セットからの少なくともいくつかのSNPをスコアリングするために、訓練されたアン
サンブルを適用し、スコアリングされたSNPから、一般エリートセットにおいて累積すべ
き現在のサイクルの異常値SNPをスコアリングされたSNPから選択するためにスコアを使用
することによって、合成セットから異常値SNPをカリングしてカリングされた異常値SNPを
一般エリートセットにおいて累積するように、訓練されたアンサンブルを適用することを
含む。
【０６７０】
　本出願の文脈では、「疑似病原性SNP」は、訓練の目的で病原性としてラベリングされ
、訓練の間に置換を伴わずに合成的に生成されたバリアントからサンプリングされるSNP
である。
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【０６７１】
　また、予測されるエリート病原性SNPの訓練セットは、複数のサイクルにわたって反復
的に構築される。
【０６７２】
　図37、図38、図39、図40、図41、および図42に示されるように、システムは次いで、訓
練によって導かれた分類器パラメータ、複数のサイクルにわたって完成され一般良性セッ
トの所定の範囲内にある一般エリートセットと、SNP病原性分類器を訓練するための一般
良性セットとを、メモリに記憶する。
【０６７３】
　図37、図38、図39、図40、図41、および図42に示されるように、予測されるエリート病
原性SNPは、アンサンブルによって予測されるSNPの上位5%である。いくつかの実装形態で
は、それらは20000個などの固定された数の上位にスコアリングされるSNPである。
【０６７４】
　SNP病原性分類器およびSNP病原性分類器のアンサンブルは各々、深層畳み込みニューラ
ルネットワーク(DCNNと省略される)である。アンサンブルは4個から16個のDCNNを含む。
図37、図38、図39、図40、図41、および図42に示されるように、アンサンブルは8個のDCN
Nを含む。
【０６７５】
　図37、図38、図39、図40、図41、および図42に示されるように、システムは、サイクル
の間のエポックにおいてDCNNのアンサンブルを訓練し、妥当性確認サンプルに対する予測
が良性予測と病原性予測の別々の確率分布クラスタを形成するとき、特定のサイクルに対
する訓練を終了する。
【０６７６】
　図37、図38、図39、図40、図41、および図42に示されるように、システムは、スコアを
使用して、DCNNのアンサンブルからのスコアを合計することによって現在のサイクルの異
常値SNPを選択する。
【０６７７】
　図37、図38、図39、図40、図41、および図42に示されるように、システムは、スコアを
使用して、DCNNのアンサンブルによってスコアリングされるSNPの各々に対する最大平均
値をとることによって現在のサイクルの異常値SNPを選択する。
【０６７８】
　図37、図38、図39、図40、図41、および図42に示されるように、現在のサイクルの間の
置換を伴わないサンプリングは、現在のサイクルの間の疑似病原性SNPの互いに素の別々
の訓練セットをもたらす。
【０６７９】
　システムは、終了条件に達するまでサイクルを続ける。終了条件はサイクルの所定の数
であり得る。図37、図38、図39、図40、図41、および図42に示されるように、サイクルの
所定の数は21である。
【０６８０】
　図37、図38、図39、図40、図41、および図42に示されるように、終了条件は、予測され
るエリート病原性セットサイズが良性セットサイズの所定の範囲内にあるときである。
【０６８１】
　分類器パラメータは、少なくとも畳み込みフィルタ重みおよび学習率であり得る。
【０６８２】
　システムは、SNP病原性分類器としてアンサンブルの中のSNP病原性分類器のうちの1つ
を選択することができる。選択されるSNP病原性分類器は、最終のサイクルにおいて評価
される妥当性確認サンプルについてアンサンブルの中の他のSNP病原性分類器より予測が
優れていた分類器であり得る。
【０６８３】
　図37、図38、図39、図40、図41、および図42に示されるように、複数のサイクルにわた
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って完成する一般エリートセットは、少なくとも400000個の予測されるエリート病原性SN
Pを有し得る。
【０６８４】
　図37、図38、図39、図40、図41、および図42に示されるように、システムは、各サイク
ルにおいて、予測されるエリート病原性SNPにおける変異率バイアスを防ぐために、良性S
NPとサンプリングされた疑似病原性SNPとの間でトリヌクレオチドコンテクストを照合す
ることができる。
【０６８５】
　図37、図38、図39、図40、図41、および図42に示されるように、同期セットからの疑似
病原性SNPのサンプリングは、各々の連続するサイクルにおいて5%ずつ減少し得る。
【０６８６】
　図37、図38、図39、図40、図41、および図42に示されるように、システムは、訓練のた
めに現在のサイクルにおいてサンプリングされる疑似病原性SNPによって現在のサイクル
においてスコアリングされる合成SNP、予測されるエリート病原性SNP、および訓練のため
に現在のサイクルにおいて使用される良性SNPをフィルタリングすることができる。
【０６８７】
　第1のシステム実装形態に対するこの特定の実装セクションにおいて論じられる特徴の
各々が、このシステム実装形態に等しく適用される。上で示されるように、すべてのシス
テム特徴はここで繰り返されず、参照によって繰り返されるものと見なされるべきである
。
【０６８８】
　他の実装形態は、上で説明されたシステムの活動を実行するようにプロセッサによって
実行可能な命令を記憶する非一時的コンピュータ可読記憶媒体を含み得る。さらに別の実
装形態は、メモリと、上で説明されたシステムの活動を実行するようにメモリに記憶され
ている命令を実行するように動作可能な1つまたは複数のプロセッサとを含む、システム
を含み得る。
【０６８９】
　開示される技術の別の実装形態は、図36に示されるように、畳み込みニューラルネット
ワーク(CNNと省略される)ベースの半教師あり学習器を含む。
【０６９０】
　図36に示されるように、半教師あり学習器は、良性訓練セットおよび病原性訓練セット
について反復的に訓練される、メモリに結合された多数のプロセッサ上で実行されるCNN
のアンサンブルを含み得る。
【０６９１】
　図36に示されるように、半教師あり学習器は、訓練されたアンサンブルによる合成セッ
トの評価に基づいて病原性訓練セットのセットサイズを次第に増強する、プロセッサのう
ちの少なくとも1つで実行されるセット増強器を含み得る。
【０６９２】
　各反復において、評価は、セット増強器によって病原性訓練セットに追加される、予測
されるエリート病原性セットを作り出す。
【０６９３】
　半教師あり学習器は、CNN、増強された病原性訓練セット、および良性訓練セットのう
ちの少なくとも1つを使用して、一塩基多型(SNPと省略される)病原性分類器を構築して訓
練する、ビルダを含み得る。
【０６９４】
　第1のシステム実装形態に対するこの特定の実装セクションにおいて論じられる特徴の
各々が、このシステム実装形態に等しく適用される。上で示されるように、すべてのシス
テム特徴はここで繰り返されず、参照によって繰り返されるものと見なされるべきである
。
【０６９５】
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　他の実装形態は、上で説明されたシステムの活動を実行するようにプロセッサによって
実行可能な命令を記憶する非一時的コンピュータ可読記憶媒体を含み得る。さらに別の実
装形態は、メモリと、上で説明されたシステムの活動を実行するようにメモリに記憶され
ている命令を実行するように動作可能な1つまたは複数のプロセッサとを含む、システム
を含み得る。
【０６９６】
　先行する説明は、開示される技術の作成および使用を可能にするために提示される。開
示される実装形態に対する様々な修正が明らかであり、本明細書で定義される一般原理は
、開示される技術の趣旨および範囲から逸脱することなく、他の実装形態および適用例に
適用され得る。したがって、開示される技術は、示される実装形態に限定されることは意
図されず、本明細書で開示される原理および特徴と一致する最も広い範囲を認められるべ
きである。開示される技術の範囲は添付の特許請求の範囲によって定義される。
【０６９７】
［コンピュータシステム］
　図66は、開示される技術を実装するために使用され得るコンピュータシステムの簡略化
されたブロック図である。コンピュータシステムは通常、バスサブシステムを介していく
つかの周辺デバイスと通信する少なくとも1つのプロセッサを含む。これらの周辺デバイ
スは、たとえば、メモリデバイスおよびファイルストレージサブシステム、ユーザインタ
ーフェース入力デバイス、ユーザインターフェース出力デバイス、ならびにネットワーク
インターフェースサブシステムを含む、ストレージサブシステムを含み得る。入力デバイ
スおよび出力デバイスはコンピュータシステムとのユーザの対話を可能にする。ネットワ
ークインターフェースサブシステムは、他のコンピュータシステムにおける対応するイン
ターフェースデバイスへのインターフェースを含む、外部ネットワークへのインターフェ
ースを提供する。
【０６９８】
　一実装形態では、良性データセット生成器、バリアント病原性分類器、二次構造分類器
、溶媒接触性分類器、および半教師あり学習器などのニューラルネットワークは、ストレ
ージサブシステムおよびユーザインターフェース入力デバイスへ通信可能につながれる。
【０６９９】
　ユーザインターフェース入力デバイスは、キーボードと、マウス、トラックボール、タ
ッチパッド、またはグラフィクスタブレットなどのポインティングデバイスと、ディスプ
レイに組み込まれたタッチスクリーンと、音声認識システムおよびマイクロフォンなどの
オーディオ入力デバイスと、他のタイプの入力デバイスとを含み得る。一般に、「入力デ
バイス」という用語の使用は、コンピュータシステムへ情報を入力するためのすべての可
能なタイプのデバイスおよび方式を含むことが意図される。
【０７００】
　ユーザインターフェース出力デバイスは、ディスプレイサブシステム、プリンタ、fax
マシン、またはオーディオ出力デバイスなどの非視覚的ディスプレイを含み得る。ディス
プレイサブシステムは、陰極線管(CRT)、液晶ディスプレイ(LCD)などのフラットパネルデ
バイス、プロジェクションデバイス、または可視の画像を創造するための何らかの他の機
構を含み得る。ディスプレイサブシステムはまた、オーディオ出力デバイスなどの非視覚
ディスプレイを提供することができる。一般に、「出力デバイス」という用語の使用は、
コンピュータシステムから情報をユーザまたは別の機械もしくはコンピュータシステムに
出力するためのすべての可能なタイプのデバイスおよび方式を含むことが意図される。
【０７０１】
　ストレージサブシステムは、本明細書で説明されるモジュールおよび方法の一部または
すべての機能を提供する、プログラミングおよびデータ構築物を記憶する。これらのソフ
トウェアモジュールは一般に、プロセッサだけによって、または他のプロセッサと組み合
わせて実行される。
【０７０２】
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　ストレージサブシステムにおいて使用されるメモリは、プログラム実行の間の命令およ
びデータの記憶のためのメインランダムアクセスメモリ(RAM)と、固定された命令が記憶
される読取り専用メモリ(ROM)とを含む、いくつかのメモリを含み得る。ファイルストレ
ージサブシステムは、プログラムおよびデータファイルのための永続的なストレージを提
供することができ、ハードディスクドライブ、関連する取り外し可能なメディアを伴うフ
ロッピーディスクドライブ、CD-ROMドライブ、光学ドライブ、または取り外し可能なメデ
ィアカートリッジを含み得る。いくつかの実装形態の機能を実装するモジュールは、スト
レージサブシステムの中の、または他のプロセッサによってアクセス可能な他の機械の中
の、ファイルストレージサブシステムによって記憶され得る。
【０７０３】
　バスサブシステムは、コンピュータシステムの様々な構成要素およびサブシステムに意
図されるように互いに通信させるための機構を提供する。バスサブシステムは単一のバス
として概略的に示されているが、バスサブシステムの代替的な実装形態は複数のバスを使
用することができる。
【０７０４】
　コンピュータシステム自体が、パーソナルコンピュータ、ポータブルコンピュータ、ワ
ークステーション、コンピュータ端末、ネットワークコンピュータ、テレビジョン、メイ
ンフレーム、サーバファーム、緩やかにネットワーク化されたコンピュータの広く分布す
るセット、または、任意の他のデータ処理システムもしくはユーザデバイスを含む、様々
なタイプであってよい。コンピュータおよびネットワークの変わり続ける性質により、図
66に示されるコンピュータシステムの記述は、開示される技術を例示することを目的とす
る特定の例としてのみ意図されている。図66に示されるコンピュータシステムより多数ま
たは少数の構成要素を有する、コンピュータシステムの多くの他の構成が可能である。
【０７０５】
　深層学習プロセッサは、GPUまたはFPGAであってよく、Google Cloud Platform、Xilinx
、およびCirrascaleなどの深層学習クラウドプラットフォームによってホストされてよい
。深層学習プロセッサの例には、GoogleのTensor Processing Unit(TPU)、GX4 Rackmount
 Series、GX8 Rackmount Seriesのようなラックマウントソリューション、NVIDIA DGX-1
、MicrosoftのStratix V FPGA、GraphcoreのIntelligent Processor Unit(IPU)、Snapdra
gonプロセッサを用いたQualcommのZerothプラットフォーム、NVIDIAのVolta、NVIDIAのDR
IVE PX、NVIDIAのJETSON TX1/TX2 MODULE、IntelのNirvana、Movidius VPU、Fujitsu DPI
、ARMのDynamicIQ、IBM TrueNorthなどがある。
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