wo 2012/177576 A2 || IO OO0 OO 00 R AR

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

27 December 2012 (27.12.2012)

(10) International Publication Number

WO 2012/177576 A2

WIPOIPCT

(51
eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification: Not classified

International Application Number:
PCT/US2012/043030

International Filing Date:

18 June 2012 (18.06.2012)
Filing Language: English
Publication Language: English
Priority Data:
13/163,752 20 June 2011 (20.06.2011) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: SPRADLIN, Jeremiah C.; c/o Microsoft Cor-
poration, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). HUNT, Galen;
c/o Microsoft Corporation, LCA - International Patents,
One Microsoft Way, Redmond, Washington 98052-6399
(US). JOHAR, Akshay; c¢/o Microsoft Corporation, LCA -

(8D

(84)

International Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US). MAILLET, Steven; c/o
Microsoft Corporation, LCA - International Patents, One
Microsott Way, Redmond, Washington 98052-6399 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

[Continued on next page]

(54) Title: MEMORY MANAGEMENT MODEL AND INTERFACE FOR NEW APPLICATIONS

f_J
Memory Management System
105 110 115 120
r_J f_J
Metadata : Allocation Memory
Receiving C':)IrlLsgr?gﬁt Request Referencing
Component P Component Component
125 130 135 140
Application Static Dynamic Host
Interface Analysis Analysis Component
Component Component Component p
145 150 155 160
Request Request - Memory
Receiving Storing CAO”noﬁc?)tl;%rllﬁt Action
Component Component p Component
165
r_J
Data Store
Component

100 (57) Abstract: A memory management system is described

herein that receives information from applications describing
how memory is being used and that allows an application
host to exert more control over application requests for using
memory. The system provides an application memory man-
agement application-programming interface (API) that allows
the application to specity more information about memory al-
locations that is helpful for managing memory later. The sys-
tem also provides an ability to statically and/or dynamically
analyze legacy applications to give applications that are not
modified to work with system some ability to participate in
more effective memory management. The system provides
application host changes to leverage information provided by
applications and to manage memory more effectively using
the information and hooks into application's use of memory.
Thus, the system provides a new model for managing
memory that improves application host behavior and allows
applications to use computing resources more efficiently.

wO 2012/177576 A2 W00V 0 S RO A

MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

Declarations under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

MEMORY MANAGEMENT MODEL AND INTERFACE FOR NEW
APPLICATIONS

BACKGROUND
[0001] Memory management in computer systems refers to the manner in which
multiple applications and an operating system agree on the use of memory. Although each
computer system has a fixed amount of physical random access memory (RAM) or other
memory, the operating system may present virtual memory to applications and to
operating system components that represents a size of memory different from the physical
memory. In some cases, virtual memory allows the operating system to restrict each
application to accessing a particular portion of memory, to prevent one application from
interfering with the operation of another application by accidentally or intentionally
modifying the other application’s memory. Operating systems generally provide one or
more functions for allocating and freeing memory in response to application and operating
system component requests. The operating system may provide an application with a
memory pool, from which the application can allocate chunks of memory. If an
application uses or group of applications together use more virtual memory than the
amount of installed physical memory, the operating system may use slower disk-based
storage to extend the apparent size of memory through a swap file in a process called
paging or disk swapping (i.e., storing and retrieving pages of memory to disk).
[0002] Aside from the provided allocation and freeing functions, operating systems
have very little insight into how applications use memory. Many computing devices
contain particular limitations surrounding memory. For example, mobile computing
devices may include a much smaller amount of memory than is typically available on a
desktop computer system (or a system may want to de-power some memory to reduce
energy consumption), creating limits for the device related to how many applications can
run at the same time, how much memory ecach application can request/consume, and so
forth. Other computing environments that host application code within a particular
computing system may also enforce limitations or upper bounds on the memory usage of
the environment. Hosts, such as VMware and MICROSOFT TM Virtual PC, hypervisors,
operating systems, and others may be assigned limited resources. In all of these situations,
effective memory management becomes more noticeable.
[0003] New computing platforms have introduced new techniques or repurposed old
techniques to address the problem of limited memory shared between applications. For

example, mobile phone operating systems may create a memory snapshot of each

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

application, such that when the application is not in the foreground (e.g., being actively
used) the operating system shuts it down and stores an image of the application’s memory
on slower storage (e.g., flash memory or other storage). When the application is selected,
the operating system reloads the stored image into memory and starts the application. The
application may not even be aware that it was shut down. Although such techniques are
helpful, the operating system is still subject to the application’s opaque requests for using
memory. Currently most decisions made regarding dynamic memory usage are made
based upon information found during run time. Examples of such information include the
size and number of references to an allocated memory segment. This information can then
be used to determine which allocations will be paged to disk, cached to high performance
memory, or freed by some sort of automatic memory management system. Unfortunately,
any platform is limited by potentially many years of legacy applications, so adopting new
models in an area as widespread as memory management is difficult.

SUMMARY

[0004] A memory management system is described herein that receives information
from applications describing how memory is being used and that allows an application
host to exert more control over application requests for using memory. Today, an
application host knows very little about an application's use of memory other than how
many memory requests the application has made and what size of memory was requested
by each request. The application host does not know, however, the purpose of each
memory allocation, which memory allocations will be used soon, which memory
allocations could be easily recreated if the application host needed more memory, which
memory allocations will not be used for a while and thus could be paged to disk without
impacting performance of the application, and so forth. Unfortunately, although the
application host is tasked with making these types of decisions, the application possesses
the most information about making these decisions effectively.

[0005] The memory management system overcomes these problems in several ways.
First, the system provides an application memory management application-programming
interface (API) that allows the application to specify more information about memory
allocations that is helpful for managing memory later. The API may also provide an
ability for the application host to inform the application when memory is needed and to
proactively free and recreate memory allocations as needed without the application's
interaction. Second, the system provides an ability to statically and/or dynamically

analyze legacy applications to give applications that are not modified to work with the

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

system some ability to participate in more effective memory management. Third, the
system provides application host changes to leverage the information provided by
applications and to manage memory more effectively using the information and hooks into
the application's use of memory. Thus, the memory management system provides a new
model for managing memory that improves application host behavior and potentially
allows applications to use computing resources more efficiently.

[0006] This Summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is
it intended to be used to limit the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Figure 1 is a block diagram that illustrates components of the memory
management system, in one embodiment.

[0008] Figure 2 is a block diagram that illustrates an operating environment of the
memory management system, in one embodiment.

[0009] Figure 3 is a flow diagram that illustrates processing of the memory
management system within a software application to request allocation and use of
memory, in one embodiment.

[0010] Figure 4 is a flow diagram that illustrates processing of the memory
management system within a host to receive application requests to allocate and use
memory, in one embodiment.

[0011] Figure 5 is a flow diagram that illustrates processing of the memory
management system to analyze an application not specifically designed to provide
memory allocation information, in one embodiment.

[0012] Figure 6 is a flow diagram that illustrates processing of the memory
management system to statically analyze an application and provide a manifest for
enhanced memory information, in one embodiment.

[0013] Figure 7 is a flow diagram that illustrates processing of the memory
management system to take action related to memory in response to detected memory
pressure, in one embodiment.

[0014] Figure 8 is a flow diagram that illustrates processing of the memory
management system to activate an application for which memory has previously been

modified by a host, in one embodiment.

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

DETAILED DESCRIPTION

[0015] A memory management system is described herein that receives information
from applications describing how memory is being used and that allows an application
host to exert more control over application requests for using memory. Today, an
application host knows very little about an application's use of memory other than how
many memory requests the application has made and what size of memory was requested
by each request. The application host does not know, however, the purpose of cach
memory allocation, which memory allocations will be used soon, which memory
allocations could be easily recreated if the application host needed more memory, which
memory allocations will not be used for a while and thus could be paged to disk without
impacting performance of the application, and so forth. Unfortunately, although the
application host is tasked with making these types of decisions, the application possesses
the most information about making these decisions effectively. This conflict is resolved
today by the application host providing a base level of functionality and guessing which
actions to take. In many cases, the application host may page memory to disk just before
the application needs the memory, or the application host may spend extensive effort
managing memory that is of little importance to the application.

[0016] The memory management system overcomes these problems in several ways
discussed further herein. First, the system provides an application memory management
application-programming interface (API) that allows the application to specify more
information about memory allocations that is helpful for managing memory later. The
API may also provide an ability for the application host to inform the application when
memory is needed and to proactively free and recreate memory allocations as needed
without the application's interaction. Second, the system provides an ability to statically
and/or dynamically analyze legacy applications to give applications that are not modified
to work with the system some ability to participate in more effective memory
management. Third, the system provides kernel-level operating system (or host) changes
to leverage the information provided by applications and to manage memory more
effectively using the information and hooks into the application's use of memory. Thus,
the memory management system provides a new model for managing memory that
improves application host behavior and potentially allows applications to use computing
resources more efficiently. An application host, as described herein, may refer to an
operating system that executes an application or another type of host (e.g., an application

that itself runs on an operating system or a virtualization subsystem), such as runtimes

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

provided by SILVERLIGHT TM, .NET, a native Win32 host, or other hosts or virtual
machines provided by VMware and Virtual PC. Each of the three areas introduced above
is described in further detail in the following sections.

Modified Applications

[0017] In many cases, it may be possible for software developers to modify software
applications to interact with the memory management system. For actively developed
applications, the software developer may choose to adopt the memory management system
for the benefits it provides or may be mandated by a particular platform on which the
application operates to adopt the memory management system. In many cases, an
application may keep memory allocated that the application is unlikely to use. For
example, when a user transitions from one part of the application’s user interface to
another, the application may keep information from the prior interface around in case the
user revisits that interface. Today, this memory looks just as needed to the host as other
actively used memory. The memory management system provides a way for the
application to inform the host of situations like these, so that such memory can be
deprioritized. In response, the host may select such memory as a good candidate for
paging or make other memory management decisions that are more efficient because of
the added information from the application.

[0018] In some embodiments, the memory management system provides an
application-programming model or framework that enables the memory manager to make
intelligent decisions about optimizing memory usage during runtime. This is
accomplished by utilizing an application programming model / framework that receives
both metadata and the actions used to allocate and fill a memory allocation specified for
any given memory objects an application requests. The metadata provides information
that the application wants to communicate to the host describing the memory allocation’s
nature or purpose, such as a priority of the memory, quantity of the memory being
allocated, the case of recreating the contents of the memory from scratch (e.g., the
contents may be loaded from a file or calculable by an algorithm), frequency of access,
how soon the application may use the memory, and so forth. The actions used to allocate
and fill the memory may provide enough information to the host to be able to free and
subsequently recreate the freed memory upon the application’s request. By allowing the
developer to specify the metadata and the actions used to fill the memory, the memory
management system can optimize memory usage consistent with the desired usage

specified by the application.

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

[0019] The API provided to the application by the memory management system
provides a means for an application developer to specify, through the application
framework or programming model, metadata that describes the usage of the memory
allocations. In addition, the API allows the application framework to mandate that the
developer utilize standard means to fill or modify the memory through well-known
functions. This allows the memory management system to opportunistically fill memory
for performance reasons, to free up memory during a period of low memory availability
(i.e., when the opportunity cost for freeing the memory is greater than the cost to later
reallocate and re-populate the memory), or for other purposes.

[0020] Optimizing memory usage can encompass many techniques known in the art,
but will generally mean optimizing for either performance or size. In the case of
performance, optimizing might mean allowing as yet unneeded memory allocations to
occur if the means to fulfill them are available. This may be desirable if the current CPU
usage is low and the application is idle. In some cases, the application’s requests to
allocate memory may become notes the host stores for future reference without allocating
anything at the time. Later, when the application requests to use the memory through the
API or when the host determines a suitable time to fulfill the request, the memory
management system actually allocates the requested memory. In the case of size,
optimizing may mean reducing memory footprint or making decisions based upon the
currently allocated memory and future memory needs.

[0021] The actual interface between the application and host may take a variety of
forms that will be recognized by those of ordinary skill in the art. For example, the
application may provide an allocation function for each type of allocation and may pass a
pointer or reference to the allocation to the host in the allocation request. When the host is
ready to perform the allocation, the host invokes the provided allocation function and the
application creates the memory using regular memory allocation functions. Similarly, the
application may pass references to other functions so that the host can request freeing
memory, moving memory, switching memory contents to a different type of storage, and
so forth. The same concept can also be used for allocation — when the application requests
memory from the operating system, the operating system may delay allocation based on a
number of factors. When the operating system is ready to allocate either a function
reference is called back (with the allocated memory) or an event is raised (or similar
mechanism). The interface may also receive metadata such as memory size (which may

differ from the requested size), priority, caching preferences, pageability, how the memory

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

is filled, dependencies or references to the memory, whether the memory is updated, and
so on. In some embodiments, the system provides a memory interface class from which
the allocation derives to define each type of memory allocation. The class may include a
GetPointer function for retrieving the application-specified allocation functions, or other
GetX functions for retrieving functions to perform other memory handling tasks.
Alternatively or additionally, the application may make allocations in the traditional
manner and then call RegisterPointer functions that registers the allocated memory with
the host and specifies the additional information described herein to associate with the
allocated memory. The following pseudo code provides an example of one memory class
that an application could use.
CMemChunk // base class for all memory allocations

{

<Global List of Allocations>

35
CMyMemory : public CMemChunk
{
Allocate (size);
Fill () { <how to fill memory> } // override
Attributes <e.g., priority, pageability, etc.>
35
[0022] Alternatively or additionally, the developer may introduce the framework
described herein into application code using source annotation language (SAL) or other
markup to identify existing memory allocations and to specify additional parameters and
metadata related to each allocation, access, or other memory interaction.
[0023] In some embodiments, the memory management system may operate within
a single application and not be shared with the kernel or other host. The application can
benefit from the improved memory management that its own internal memory manager
can perform with the additional information provided by using the framework described
herein. In some cases, the host may then provide a registration function that the
application can call to get cross-application benefits and allow the host to also use the
well-defined memory allocations and usage. As an example, the system may notify the
application before a malware scan, so that the application can unload any less relevant

memory to speed up the scan. As another example, the application may pre-emptively

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

allocate memory before the CPU goes into an idle state, so that the application can quickly
respond to an event when the user does something and the CPU resumes execution
(enhancing responsiveness to power state changes).

Unmodified Applications

[0024] In cases, where it is not possible for software developers to modify software
applications to interact with the memory management system or where the system is
implemented to operate with unmodified applications (i.e., applications not specifically
designed to work with the system), it is still possible for the system to provide memory
management benefits. To do so, the system gathers information describing how the
application uses memory itself (e.g., based on static analysis and/or profiling the
application — having the application run, intercepting memory allocations, and looking at
the usage across the runtime of the application). This information is useful when
determining performance characteristics and may be used intelligently by the memory
manager of the application’s host. Examples of the way this information may be used
include intelligent garbage collection, intelligent paging to disk, intelligent caching to
higher-performance memory cache, and even warning the user about potential memory
limitations that the application might encounter.

[0025] Utilizing static analysis of a binary, runtime analysis of the binary’s behavior,
and by instrumenting the binary, it is possible to gather additional information about any
of the binary’s given memory allocations and the usage of those allocations. This
information may then be used to drive more intelligent behavior around the loading /
unloading and location of the allocation within physical memory. The memory
management system provides a means to automatically annotate application memory
allocations with metadata describing the potential or actual usage of the allocation itself.
This analysis can be automatically executed, either statically on the binary or dynamically
during runtime, without requiring any developer interaction or re-authoring of existing
applications. Once performed, the analysis may be cached by the system so the host
operating system knows how to treat the application in the future. The analysis may also
be published for discovery by other clients, not just cached locally. In addition, it is
possible for the information to be exposed to the user for optional editing, allowing an
administrator or user to tailor the application’s metadata and how the application host will

deal with the application’s memory allocations.

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

[0026] It is possible to use static and dynamic analysis to derive additional
information about an application’s memory allocations, and this information may then be
used to help direct the overall management of the application and system memory
allocations. An example is when the memory is being touched; it is possible to determine
whether another memory segment is used to help fill this memory allocation. If this
memory allocation is then dependent on another allocation, either this dependency can be
indicated, or the memory allocation may simply be notated by a bit to indicate it was not
generated without input. Static analysis can determine where software code touches the
memory, how memory is used, how memory is filled, how common a code path is (e.g., if
it is write once/read many (WORM)), and how often memory is used. Dynamic analysis
can instrument all allocations and/or accesses (similar to a profiler), and can capture
system environment effects on the code’s operation, user settings that affect operation, and
other data that is not available or difficult to determine statically.

[0027] In some embodiments, the memory management system outputs a manifest
or other description of an application’s memory usage after the application has been
analyzed. This allows the system to cache the results of the analysis and reuse the results
for future execution of the application. An operating system may be designed with the
system to perform this analysis the first time an application binary executes (or during
processes like sequencing of application virtualization), and then to store the analysis for
use each time the binary executes. The kernel or other host can read the manifest data and
take appropriate action through the additional information describing how the application
uses memory. Application usage may vary over time, so the manifest or other cache may
be dynamically updated from time to time. In some cases, the system may allocate whole
pages of memory for each allocation so that each memory access triggers a page fault that
allows the kernel to control how the memory is used and provide the type of indirection
between application references to memory and actual memory allocations described
further herein.

[0028] In some embodiments, the system may provide reports on application
memory behavior. This is another use for the analysis and may help an administrator to
make decisions about the application, such as which server or virtual machine it will run
well on. The system can also provide a marketplace rating of memory usage, so that users
of a mobile phone application store, for example, can know before downloading an
application how the application is going to use the mobile phone’s available memory (e.g.,

high use, low use, and so on). An administrator can also use this information for IT

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

deployment of software across various systems based on collected metadata on memory
consumption.

[0029] The memory management system can use the information derived from
memory usage analysis to preemptively allocate, and potentially fill, memory when the
system is idle or underutilized. Knowing an application’s future usage of memory allows
the system to more efficiently allocate memory and to leverage times when the system is
underutilized to allocate memory that may be used when the system is under heavier load.
This allows the heavier load to have access to more processing or other resources made
available by the work that was completed earlier.

Host Modifications

[0030] The memory management system includes modifications to a kernel or
application host to receive the additional information about memory usage provided by the
application or determined through analysis of the application. Unlike traditional software
memory management, the kernel can do more to manage memory efficiently without the
application’s knowledge or action because of the added insights into memory usage
provided by the metadata and other information communicated from the application
described herein. The kernel may later inform the application what actions were taken or
manage the memory so that it is in place by the time the application needs the memory, so
that the application is unaware or unconcerned with the kernel’s memory related actions.
The kernel can then perform better paging (e.g., by offloading less important or unlikely to
be used memory to slower disk storage), can free memory if memory pressure occurs, and
can take other actions to manage memory on behalf of one or more applications using the
operating environment provided by the kernel. For example, the kernel can better allocate
memory for less fragmentation.

[0031] Memory is a constrained resource in an operating system; hence, it is
important that the kernel properly track where memory is allocated so that it can recover
memory from applications as needed. One solution is to have applications assign priority
to memory as it is allocated to them. Thus, when the system determines that it is low on
memory, the kernel can determine where the lowest priority memory is and deallocate or
page that memory without affecting the performance of other applications with higher
priority memory.

[0032] Traditionally, the priority of memory and its distribution to applications is
determined by the kernel. When the system runs low on memory, the kernel may

arbitrarily free memory that is used by applications with higher priority, thus interrupting

10

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

or degrading the performance of the application. Instead, lower priority memory should
have been deallocated first. There are interesting aspects related to how the kernel
determines from which application to free memory. One solution is to have the
applications determine amongst themselves what the priority order is for the memory
resources. The memory priority scheme asks that applications assign the priority of
memory allocated or deallocated to them at the time of allocation or deallocation. Thus,
when there is memory pressure, the kernel has a memory map ranked by priorities and
may free and locate the lower priority memory first. Alternatively, the kernel may send
notification to the application with the list of allocations that need to be freed. The
memory management system may be completely hosted by the operating system, or may
be cooperative between the operating and application.

[0033] The priority model may be implemented by creating a memory allocation
API that encapsulates the application whenever a memory request is made. This can also
benefit applications that do not register. By utilizing this API, the application and priority
is automatically tracked by the subsystem without having the application actively manage
memory priority. A kernel object incorporates all of the registration, calculation,
signaling, and memory management functionality so each application only has to call this
object (or have it called on the application’s behalf in the case of unmodified applications).
[0034] An alternative solution is to have a master application outside the kernel that
is used to keep track of the various applications that are currently running. When
applications request memory, they are registered to the master application. Thus, when an
application becomes unresponsive, the master application may determine whether to kill
the zombie application to reclaim memory or keep it hanging so that memory may be
returned to the application when memory is needed.

[0035] A kernel or host can use the enhanced memory information to make a variety
of memory management decisions more efficiently. For example, the kernel of a low
power device may choose to turn off banks of memory to save battery life. The system
may kill or swap out processes that have memory in the banks to be turned off. The
system may also defragment memory spread across several banks to achieve some empty
banks that can be shut off. As another example, the kernel may elect to push some
memory allocations to other devices (including a cloud-based storage facility). Many
small-footprint, low-power operating systems do not have the concept of paging, so in this
case memory allocation might be supported over a Representational State Transfer (REST)

interface hosted by another device/service. In a similar way to scrolling through a

11

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

database snapshot, an application does not have the entire database in memory, but is
delivered pieces from the database service/server. The application has no knowledge that
they are seeing a snapshot rather than the entire database. Being able to confidently move
memory around or deallocate memory allows the kernel/host to manage memory better
and still uphold application expectations of memory availability.

[0036] In some embodiments, the system is used with other host-level objects or
components in addition to memory. For example, the system may shut off a graphical
processing unit (GPU) when a display is off, or shut off individual drivers when their
associated hardware is not being used or will not be used for some time. The system can
also be used for hibernation of the system, to first defragment memory and then stream a
linear stream of memory allocations to disk that can be easily reloaded when it is time for
the system to wake up. Unlike traditional hibernation that stores a file equal in size to the
entire physical memory, the memory management system can encourage applications to
free unneeded or easily recovered memory (or can do so for them) before hibernation, and
thus can store a smaller amount of hibernation data. Other items managed in addition to
memory may include file handles, timers, kernel objects, and so forth. The system can
receive usage information about these items (or determine it from static and dynamic
analysis), just like memory usage.

[0037] In some embodiments, the memory management system receives power
states associated with each memory allocation. For example, at power level X, the system
may determine that some memory allocations are no longer needed. This can allow a
battery constrained device to switch to a lower power mode by offloading any memory
that is not needed at that power level. For example, a mobile phone may keep enough
application data in memory to respond to phone calls or alert the user to new email, but
may unload other, lower priority functions or applications. In some cases, applications
may only need to verify pointer validity before using memory in some lower power states,
but may have normal access to memory in higher power states. This can be provided as a
guarantee in the contract between application and host for any given platform.

System Components and Operating Environment

[0038] Figure 1 is a block diagram that illustrates components of the memory
management system, in one embodiment. The system 100 includes a metadata receiving
component 105, a fill specification component 110, an allocation request component 115,
a memory referencing component 120, an application interface component 125, a static

analysis component 130, a dynamic analysis component 135, a host component 140, a

12

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

request receiving component 145, a request storing component 150, an allocation
component 155, a memory action component 160, and a data store component 165. Each
of these components is described in further detail herein.

[0039] Together, the metadata receiving component 105, the fill specification
component 110, the allocation request component 115, and the memory referencing
component 120 make up a memory framework that the system 100 exposes to
applications. Developers that are willing to modify their application code for more
efficient memory management can leverage these components from their applications to
create applications that allow the host or kernel to more effectively manage memory on
the application’s behalf.

[0040] The metadata receiving component 105 receives information associated with
each memory allocation that provides information to an application host describing how
the memory is used by the application. For example, the metadata may indicate how
readily accessible an allocation should be for the application or how frequently the
application plans to access the memory associated with the allocation. The metadata may
also indicate how difficult the memory contents are to generate, and thus how difficult it
would be for the application or the host to replace the memory contents if the contents
were freed or paged to disk. The metadata receiving component 105 may receive
metadata in a call to a memory allocation API or after memory has already been allocated
in a follow up API for providing metadata.

[0041] The fill specification component 110 receives information describing how a
particular memory allocation’s contents are filled. The contents of memory may come
from a variety of sources, such as from reading the contents of a file stored on disk, from
performing one or more calculations on input data, from user input, from network
accessed information (e.g., a database or the Internet), and so forth. In some
embodiments, the application passes a memory filling function to the host so that the host
can invoke the function to fill the memory contents at a time determined by the host. To
efficiently use processing and other resources, the host may choose to delay filling the
memory until resources are underutilized or idle. In addition, the host may also have the
freedom to release or free previously filled memory for other uses, and then reallocate and
refill the memory later before the application expects to use the memory. The received
metadata may provide the information the host uses to know when the application will use
the memory, or the application may inform the host before each attempt to use the

memory so that the host can check the memory’s current state.

13

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

[0042] The allocation request component 115 submits a request from the application
to the host to allocate memory based on the received metadata and fill specification. Note
that although the host receives the request, it is up to the host whether to immediately
service the request in response or to wait until another appropriate time. In an extreme
case, the host may not allocate any memory until it is ready to be accessed, allowing the
host to conserve limited resources until the last possible moment when the memory is
needed by the application and has to be allocated for the application to be able to perform
its work. The allocation request component 115 stores the submitted request in a data
store managed by the host and includes the received metadata and fill specification for use
in later memory management actions.

[0043] The memory referencing component 120 receives an indication from the
application before the application accesses memory that was the subject of a previously
submitted allocation request. Because the host can make memory unavailable or delay
actually allocating memory until it chooses, the application needs a way to ensure that
memory is available when the application is ready to use it. The memory referencing
component 120 serves this purpose, and allows the application to indicate that it is ready
to access a particular memory allocation. In response, the host may pass a pointer to the
actual memory location (if the memory is already available) to the application, or may
create and fill the memory (if the memory is not currently allocated) based on the received
fill specification and metadata. The application may send an indication to release the
memory so that the host is free to once again include the memory in memory management
decisions.

[0044] The application interface component 125 provides a communications
interface between the application and host to negotiate use of memory allocations. The
interface may include one or more functions or base classes used by the application to
request memory allocations and specify information about the allocations, as well as
functions or base classes used by the host to interact with the application’s memory using
user-defined functions provided by the application. The enhanced communication
between the application and host allows the host to have a much higher than usual level of
visibility into the application’s use of memory, and allows the host to manage memory on
behalf of a variety of applications sharing finite resources more effectively.

[0045] For applications not built to specifically to use the memory management
system 100, the application interface component 125 provides interaction between any

instrumented application code determined by static and/or dynamic analysis, and interacts

14

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

with the host in a similar manner to that discussed previously. With applications not built
to use the system 100, the system 100 may have less information about a memory
allocation’s purpose or other specifications, and may be limited to the information the
system 100 can discover through static and dynamic analysis of the application. However,
such analysis can still discover metadata useful for more effectively managing memory
allocated by legacy applications. In some cases, the system 100 may be able to
automatically detect how an application is filling memory and may be able to perform the
same kind of on-demand filling of memory contents described previously without the
application’s explicit cooperation.

[0046] The static analysis component 130 statically analyzes an application binary or
other application code to determine how the application uses memory. The component
130 may analyze binary code, intermediate code (e.g., MICROSOFT TM intermediate
language (IL) code), or other compiled or runnable versions of an application. Static
analysis has advanced substantially over the last few years, and many techniques are well
known in the art for determining what an application binary does and how it does it. The
memory management system 100 uses these techniques to specifically focus on areas
where the application allocates and uses memory. The component 130 may instrument the
application binary to receive information or intercept particular actions of the application
and may replace intercepted actions with new or additional actions. For example, if the
component 130 discovers a call to a memory allocation function, the component 130 may
gather any metadata available from static analysis and call a version of the allocation
function that can receive the metadata as a parameter. In this way, the host receives
metadata information from the application just as if the application were modified by its
developer to provide such information. Likewise, the system may determine how the
application fills or accesses a particular memory allocation, so that the fill specification
and information describing memory references can be provided to the host.

[0047] The dynamic analysis component 135 dynamically analyzes a running
application to gather additional information related to the application’s use of memory that
is difficult to determine with static analysis. Often applications include programming
steps that frustrate static analysis (either intentionally or simply because the steps turn out
that way). Dynamic analysis has information available, such as the contents of responses
received from external components and the actual contents of memory used by the
application, for which only guesses or approximations are available during static analysis.

Thus, dynamic analysis can find memory use and other application activity that is not

15

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

found during static analysis. The component 135 can also use dynamic analysis to
confirm results of static analysis. The dynamic analysis component 135 provides the
determined information to the host to further allow legacy applications to leverage at least
some functionality provided by the system 100.

[0048] The host component 140 includes an environment in which the application
runs and provides access to the memory management provided by the system 100.
Depending on the platform, a host can include a variety of software entities. For
traditional desktop computing systems, the host is the operating system, which may
include a kernel and other kernel-mode software code, such as drivers. For a managed
software environment, the host may include a runtime such as the MICROSOFT TM NET
TM runtime or the MICROSOFT TM SILVERLIGHT TM runtime. Web applications
may also include an application host and may run in a sandboxed environment that runs
within other server or desktop computing environments. Server computing systems may
include virtualization hardware or software and may include a hypervisor that operates at a
higher level than one or more operating system kernels. The memory management system
100 can be implemented a variety of levels of software code, and thus is not limited to any
particular type of host. The host component 140 represents the component responsible for
interacting with applications and managing resources for the particular platform on which
the system 100 is running.

[0049] Together, the request receiving component 145, the request storing
component 150, the allocation component 155, and the memory action component 160
make up components of a memory manager modified to implement the system 100
described herein.

[0050] The request receiving component 145 receives requests from applications to
allocate memory. Each request includes metadata that provides information to the host
describing how the application uses the allocated memory. The request receiving
component 145 may receive requests from multiple or all applications running on a
particular host, so that the host has a broad range of information describing how memory
is used. The host can then prioritize which allocations to impact upon deciding to take a
particular action (e.g., paging out or freeing memory to reduce memory pressure).

[0051] The request storing component 150 stores received requests and associated
metadata information for subsequent use during memory management decision making.
The host may or may not satisfy the allocation request at the time the request is received.

However, whether the host satisfies the request immediately or later, the host stores

16

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

information provided by the application in association with the allocation, so that the host
has the information available later when memory action is appropriate. In some
embodiments, the host receives metadata and other information in a separate
communication from the application after the application has allocated memory. In such
cases, the host may store allocation information at multiple times or as useful information
is available.

[0052] The allocation component 155 performs an actual action to allocate memory
to satisfy one or more received application allocation requests. The allocation component
155 may allocate memory from an application heap or directly from physical memory
installed in a computer system that is accessible to and managed by the host. After
allocation, the memory is committed to a particular application and cannot be used by
other applications (unless they request to do so through typical shared memory
techniques). The allocation component 155 may work with page tables and virtual
memory to provide a window into physical memory for the allocation, and the provided
memory may be backed by disk or other storage through a swap file.

[0053] The memory action component 160 performs an action to manage memory
on a device and accesses the previously stored received request information to determine
one or more appropriate memory allocations that will be affected by the performed action.
Actions may include swapping memory contents to a swap file, freeing previously
allocated memory, requesting that an application reduce its memory footprint, or any other
action that affects memory used by one or more applications. Typically, the host’s
purpose in performing a memory management action is to handle a current or impending
condition, such as low memory (e.g., memory pressure), gathering sufficient memory to
satisfy an application demand, and so on.

[0054] The data store component 165 stores information used by the host to manage
memory on behalf of one or more applications. The data store component 165 may
include memory set aside for use by the system 100, separate flash or disk storage, or
other facilities for storing data. The data store component 165 may also include data
stored in each application’s memory space that tracks allocations related to that
application and other information used by the host to manage memory on the application’s
behalf.

[0055] The computing device on which the memory management system is
implemented may include a central processing unit, memory, input devices (e.g., keyboard

and pointing devices), output devices (e.g., display devices), and storage devices (e.g.,

17

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

disk drives or other non-volatile storage media). The memory and storage devices are
computer-readable storage media that may be encoded with computer-executable
instructions (e.g., software) that implement or enable the system. In addition, the data
structures and message structures may be stored or transmitted via a data transmission
medium, such as a signal on a communication link. Various communication links may be
used, such as the Internet, a local area network, a wide area network, a point-to-point dial-
up connection, a cell phone network, and so on.

[0056] Embodiments of the system may be implemented in various operating
environments that include personal computers, server computers, handheld or laptop
devices, multiprocessor systems, microprocessor-based systems, programmable consumer
clectronics, digital cameras, network PCs, minicomputers, mainframe computers,
distributed computing environments that include any of the above systems or devices, set
top boxes, systems on a chip (SOCs), and so on. The computer systems may be cell
phones, personal digital assistants, smart phones, personal computers, programmable
consumer electronics, digital cameras, and so on.

[0057] The system may be described in the general context of computer-executable
instructions, such as program modules, executed by one or more computers or other
devices. Generally, program modules include routines, programs, objects, components,
data structures, and so on that perform particular tasks or implement particular abstract
data types. Typically, the functionality of the program modules may be combined or
distributed as desired in various embodiments.

[0058] Figure 2 is a block diagram that illustrates an operating environment of the
memory management system, in one embodiment. The environment includes a
kernel/host 210, one or more applications 220, a memory handling framework 230, stored
allocation metadata 240, and one or more tools 250. The kernel/host 210 manages
memory shared by the one or more applications 220. The memory handling framework
230 provides one or more APIs that the applications 220 can call to allocate memory and
provide memory allocation metadata. The memory handling framework 230 stores
received metadata 240. The tools 250 operate on applications that are not designed to
natively provide allocation information to extract such information through static and

dynamic analysis. Any extracted information is then stored as allocation metadata 240.

18

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

System Operation

[0059] Figure 3 is a flow diagram that illustrates processing of the memory
management system within a software application to request allocation and use of
memory, in one embodiment.

[0060] Beginning in block 310, the application sets allocation metadata that
describes how an application will use a memory allocation. The application may build a
parameter structure for passing to an allocation function, call an API for providing
allocation metadata, or set a parameter of a derived class for allocating memory in
accordance with the memory management system described herein. The allocation
metadata may include a priority level of the memory to the application, how frequently the
application plans to use the allocated memory, how difficult it is for the application to
replace the allocation’s contents, and other information related to the application’s use of
the memory and how the host can manipulate the memory to effectively use physical
memory resources shared by multiple applications.

[0061] Continuing in block 320, the application sets a memory fill function that
populates the contents of the memory allocation. The memory fill function may access
information from a file, perform one or more calculations to generate results stored in the
memory allocation, or perform other actions that populate the memory allocation. By
providing the memory fill function to the host rather than invoking the fill function right
after allocation, the application provides the host with the information needed to release
and repopulate the memory as needed, or to defer allocation and initial population of the
memory until a more appropriate time for the host.

[0062] Continuing in block 330, the application invokes an allocation interface
provided by a host that manages physical memory shared across multiple applications,
where the application provides the set allocation metadata and memory fill function to the
host via the allocation interface. The allocation interface may include an operating system
API, a runtime function, or other manner of passing information between the application
and the host responsible for memory management. The allocation interface provides more
information than is typically provided in memory allocations today, and gives the host
information useful for more efficiently managing memory on a computing device.

[0063] Continuing in block 340, the application receives a reference in response to
invoking the allocation interface, wherein the references serves as an indirect identifier for
subsequent use of the allocated memory by the application. The host may or may not

immediately allocate the memory upon receiving the request. In addition, the host may

19

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

modify the memory from time to time (e.g., releasing it, paging it to disk, and so forth) in
ways for which the host needs to receive control again before the application uses the
memory. Thus, the host provides the application with a reference to the memory, and
when the application wants to use the memory, the application provides the reference to
get direct access to the memory (e.g., a pointer).

[0064] Continuing in decision block 350, if the application detects that the
application is done with the allocated memory, then the application completes, else the
application continues at block 360. Before completing the application may invoke the
allocation interface to deallocate (or free) the previously allocated memory. If the
application did not use the memory, and the host did not actually allocate the memory,
then this action may simply clean up the host’s stored entry related to the allocation and
return control to the application.

[0065] Continuing in decision block 360, if the application detects a use of the
allocated memory in the application, then the application continues at block 370, else the
application loops to block 350 to wait for a memory access or completion of the purpose
of the memory allocation. The application may call a particular function wherever the
memory is accessed in the application software code or may encapsulate the memory
allocation in a class that wraps accesses of the memory with appropriate calls to the host to
make the memory available.

[0066] Continuing in block 370, the application requests direct access to the memory
allocation from the host. If the host has already allocated the memory, then the host
returns a pointer to the application at which the memory can be accessed. If the host has
not allocated the memory or has deallocated and reused the memory, then the host
allocates the memory in response to the application request, invokes the received fill
function to populate the memory contents, and then returns a pointer or other means of
accessing the memory to the application.

[0067] Continuing in block 380, the application accesses the memory allocation
through a received address for the memory from the host. The application may modify the
memory, read information from the memory, or perform other typical memory operations.
When the application is through accessing the memory, the application may indicate to the
host that the host can again perform management operations that may make the memory
unavailable. The application may update data used by the fill function so that if the host
again repopulates the memory, the memory will include the latest changes, if any. After

block 380, these steps conclude.

20

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

[0068] Figure 4 is a flow diagram that illustrates processing of the memory
management system within a host to receive application requests to allocate and use
memory, in one embodiment. Beginning in block 410, the host receives a memory
allocation request from an application. The host may service requests from multiple
applications and may include a memory manager that slices or shares limited physical
memory among multiple applications running on a host platform. The memory allocation
request may include information, such as the requested memory size or other parameters
related to the memory requested.

[0069] Continuing in block 420, the host receives memory allocation metadata that
specifies a manner in which the application plans to use the requested memory allocation.
The metadata may include information such as an importance or priority of the memory
allocation to the application, whether the allocation is suitable for paging to disk, whether
the application can recover the contents of the memory if the host has to free the
allocation, and so forth.

[0070] Continuing in block 430, the host receives a memory fill function from the
application that can be invoked by the host to populate the contents of the requested
memory allocation. Having the means to fill the memory allocation allows the host to
defer allocation of the memory as well as to recover the memory if the host needs to free
the memory allocation to satisfy another application request or to relieve other memory
pressure.

[0071] Continuing in decision block 440, if the host determines that the host can
allocate the memory directly in response to the request, then the host continues at block
450, else the host continues at block 460. The host may determine whether to directly
allocate the memory based on how important the application indicated the memory is to
the application and how frequently the application plans to access the memory. The host
may also consider other factors, such as how busy a computing device on which the host is
running is at the time of the request.

[0072] Continuing in block 450, the host allocates the requested memory from
physical memory available to the host. The host may set up page tables or other virtual
memory through which the application accesses the physical memory. Traditional hosts
allocate memory in direct response to application requests or fail the request if the host
cannot satisfy the request. However, the memory management system may defer requests
or perform other memory management actions to more efficiently use memory and other

host resources.

21

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

[0073] Continuing in block 460, the host stores the rececived request for later
allocation along with the received metadata and fill function. The host may maintain a
data store of memory requested by various applications from which to select when a
memory management action (such as making more memory available) is needed. The
metadata provided by the application helps the host to determine which applications and
allocations within applications will be least negatively impacted by the host’s memory
management action. After block 460, these steps conclude.

[0074] In some cases, an application’s developer is unwilling or unavailable to make
changes to support new operating system features. In such cases, the memory
management system may still be able to provide some enhanced memory management by
analyzing the application binary information to discover information about memory
allocations, as described further with reference to Figures 5 and 6.

[0075] Figure 5 is a flow diagram that illustrates processing of the memory
management system to analyze an application not specifically designed to provide
memory allocation information, in one embodiment.

[0076] Beginning in block 510, the system detects an application for which
information describing memory allocations made by the application is not available. The
application may include a flag or other information on its binary module that specifies
whether the application participates in the memory model provided by the memory
management system, or may provide another indication. The system may cache
previously determined application allocation information so that analysis for each
application is only performed once. Thus, in this step the system also determines that the
analysis has not previously been performed.

[0077] Continuing in block 520, the system performs analysis on the application to
determine memory allocations made by the application. The analysis may include various
forms of static and/or dynamic analysis of the application. Static analysis occurs without
running the application and inspects the application’s binary code to determine behavior of
the application. Dynamic analysis occurs while the application is running and inspects the
application’s in-memory code, data structures, and other information to determine
behavior of the application. The system may look for calls to specific host APIs for
allocating, accessing, and freeing memory and may note locations, surrounding

supplementation information, steps used to fill the allocated memory, and so forth.

22

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

[0078] Continuing in block 530, the system hooks the application to provide
allocation information at locations within the application where the application allocates
memory. Various forms of application hooking technologies are available, such as
MICROSOFT TM Detours and others, that allow redirection of application binary code to
intercept or augment an application’s normal behavior at any point in the program. For
example, the system may provide an application hook that invokes an allocation function
for providing allocation metadata instead of a standard allocation function without
metadata originally called by the application.

[0079] Continuing in block 540, the system receives a request from the application
to allocate memory and associated allocation information provided by the hooked
application code. The request is received by a host that may be able to determine that the
allocation information is coming from an application not specifically designed to provide
allocation information. The host may behave differently for such applications than for
applications designed to work with the system. For example, the host may account for
potentially less information that is provided by applications not designed to work with the
system. In some embodiments, to encourage adoption of new memory models the system
may penalize applications that do not adhere to the new memory model by preferring to
swap their data to disk or perform other memory management actions when memory
pressure occurs. After block 540, these steps conclude.

[0080] Figure 6 is a flow diagram that illustrates processing of the memory
management system to statically analyze an application and provide a manifest for
enhanced memory information, in one embodiment.

[0081] Beginning in block 610, the system receives compiled application code that
does not provide memory allocation information in association with calls to memory
allocation functions. The system may receive the application code upon a first request to
run the application, during bulk processing from a scan of a computing device’s hard drive
or other storage, or in response to a specific user or administrator request. The compiled
application code may include binary code for a particular processor (e.g., x86 or x64
binary code), intermediate language code for a particular runtime, or other forms of non-
source application code. Where source is available, the application can be directly
modified to use the system as described elsewhere herein.

[0082] Continuing in block 620, the system performs static analysis on the received
application code to determine locations within the code where the application allocates

memory. The static analysis may look for calls to memory allocation functions, such as

23

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

through imported modules or other means. Static analysis is good at finding calls to
functions as well as parameters passed in some cases. In some embodiments, the system
augments static analysis with dynamic analysis, and runs the application to identify
information not available or easily detectable statically.

[0083] Continuing in block 630, the system identifies one or more memory-related
code actions in the analyzed application code. A code action may include a memory
allocation, memory access, memory release, and other memory operations. The system
may identify code actions by an address at which the actions occur or by other
identification that can be later provided to a host or modified to change default application
behavior.

[0084] Continuing in block 640, the system identifies surrounding information
related to each identified code action that provides additional information describing how
the allocated memory is used by the application. The surrounding information may tell the
system how long the allocation is stored (e.g., used once in the same function or stored in
a global variable for repeated subsequent use), how easy it is for the application to
populate contents of the memory allocation, and so on. Surrounding information can be
identified through static and/or dynamic analysis.

[0085] Continuing in block 650, the system stores the identified memory-related
code actions and any identified surrounding information in a data store for subsequent
retrieval by a host upon running the application. In some embodiments, the system stores
the identified information in a manifest stored with the application module, so that a host
loading the application can perform any interception or hooking of the identified locations
to provide more information to the host describing memory allocations made by the
application. The host can use this information, for example, to preemptively allocate
memory while the system is idle or underutilized that the application will need at some
time in the future, as determined by the analysis. This allows legacy applications to
participate in the memory model provided by the memory management system. After
block 650, these steps conclude.

[0086] Figure 7 is a flow diagram that illustrates processing of the memory
management system to take action related to memory in response to detected memory
pressure, in one embodiment. Memory pressure can occur when a device with limited
memory is nearing its available memory. For example, system operating systems may

define memory pressure as occurring when 90% of physical RAM has been used.

24

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

[0087] Beginning in block 710, the system receives information describing multiple
memory allocation requests and how the memory allocations are used by one or more
applications. In some cases, the system stores a list or other data structure of allocations
as they are received from applications, as well as associated metadata that describes how
each allocation is used. The allocation use information may include priority or other
information that can help the system determine which allocations can be freed, paged, or
otherwise handled to efficiently manage available memory.

[0088] Continuing in block 720, the system detects memory pressure that indicates a
need to act to continue efficiently running applications. The detected memory pressure
may include a variety of conditions or actions the kernel or other host can take. For
example, a kernel may want to switch off a bank of memory to save power, and may
detect allocations stored on that bank and release or swap out those allocations to disk so
that the bank can be switched off. As another example, the system may defragment
memory banks to achieve empty banks that can be switched off. Where the host is not in
complete control of the memory’s use, it is often difficult to perform operations that move
or release memory without application cooperation. However, the memory management
system described herein allows the host much more information and control over how
memory is managed.

[0089] Continuing in block 730, the system enumerates the received allocation
requests to determine allocations on which to act. The system may traverse the list or
other data structure of allocations to determine allocations that could be easily restored if
they need to be freed, or allocations that an application is unlikely to use again.

[0090] Continuing in block 740, the system selects one or more of the enumerated
allocations on which to act. The system may select allocations based on the received
information describing how the allocation is used by the application that requested the
allocation. In some cases, the system may select multiple allocations depending on
particular goals (e.g., acting on a particular total size of memory and finding allocations
that add up to or exceed that size) of the memory manager.

[0091] Continuing in block 750, the system performs an action on the selected
allocations to relieve the memory pressure. The actions may include freeing previously
allocated memory, swapping memory contents to disk or other storage, moving memory
from a previous location to a new location, and so forth. In some cases, the system

informs the application of the action so the application can modify behavior that depends

25

10

15

20

25

30

WO 2012/177576 PCT/US2012/043030

on the allocation. For example, the application may respond by reallocating the memory
next time it is used by the application. After block 750, these steps conclude.

[0092] Figure 8 is a flow diagram that illustrates processing of the memory
management system to activate an application for which memory has previously been
modified by a host, in one embodiment. In many multitasking systems, applications are
pushed to the background and later reactivated by a user or the operating system. On
mobile devices, users may interact with one application at a time and the operating system
may suspect other applications while a particular application is at the fore. The operating
system may free the other applications’ memory or stream it to disk or other storage.
Upon activation, the operating system may act to prepare the application to run again.
[0093] Beginning in block 810, the system receives an application request to
activate. The request may come from the application itself, from a user, or from the
operating system. The request to activate may simply indicate that the user is once again
interacting with the application, such that the application may request previously allocated
memory.

[0094] Continuing in block 820, the system identifies one or more previously
received application memory allocations. The system may maintain a list or other data
structure of each allocation requested by one or more allocations, so that the system can
identify the previously received memory allocations by traversing the list. The system
may check the status of each allocation, such as whether memory related to the allocation
is still available and still contains the contents last placed there by the application.

[0095] Continuing in decision block 830, if the system determines that the
application’s allocations are all ready, then the system jumps to block 860, else the system
continues in block 840. The system may free, move, page, or otherwise act on application
allocations to provide more memory for other tasks, such as running other applications.
Thus, when it is time to run the application again, the system may restore the previously
acted upon allocations or may inform the application of the actions so that the application
can take appropriate action.

[0096] Continuing in block 840, the system allocates the unready allocations to place
the allocations in a state expected by the application. The system may assign physical
memory to the allocations by allocating available physical memory to satisfy the
allocation. In some cases, the system may provide virtual memory, such as that backed by

physical memory and a swap file.

26

10

15

WO 2012/177576 PCT/US2012/043030

[0097] Continuing in block 850, the system fills the allocated memory contents
using a fill function provided by the application. The application provides sufficient
information to the system so that the system can release and recreate memory allocations
of the applications. This allows the system to make efficient decisions to share resources
between applications, while keeping negative effects on applications low. Ideally, when
the system is under memory or other pressure, the system frees or moves memory that was
not going to be used soon anyway, and then has time to restore the memory before it is
needed again. In traditional systems, the best a host can do is guess, but using the memory
management system herein, the host can very effectively select one or more memory
allocations upon which to act.

[0098] Continuing in block 860, the system activates the requested application and
provides the application with the memory allocations expected by the application. The
system may suspend the application while preparing memory for the application, then
resume the application when all of the application’s memory allocations are ready. After
block 860, these steps conclude.

[0099] From the foregoing, it will be appreciated that specific embodiments of the
memory management system have been described herein for purposes of illustration, but
that various modifications may be made without deviating from the spirit and scope of the

invention. Accordingly, the invention is not limited except as by the appended claims.

27

WO 2012/177576 PCT/US2012/043030

CLAIMS
I/We claim:

1. A computer-implemented method within a software application to
request allocation and use of memory from an enhanced memory management system, the
method comprising:

setting allocation metadata that describes how an application will use a

memory allocation;

setting a memory fill function that populates the contents of the memory

allocation;

invoking an allocation interface provided by a host that manages physical

memory shared across multiple applications, wherein the application
provides the set allocation metadata and memory fill function to the
host via the allocation interface;

receiving a reference in response to invoking the allocation interface, wherein

the reference serves as an indirect identifier for subsequent use of the
memory allocation by the application,

wherein the preceding steps are performed by at least one processor.

2. The method of claim 1 wherein setting allocation metadata comprises
building a parameter structure for passing to an allocation function that receives allocation

metadata.

3. The method of claim 1 wherein setting allocation metadata comprises
calling a separate application-programming interface (API) for providing allocation

metadata after an allocation has occurred.
4. The method of claim 1 wherein setting allocation metadata comprises
setting a parameter of a derived class for allocating memory that receives allocation

metadata to enhance memory management.

5. The method of claim 1 wherein setting allocation metadata comprises

metadata that includes a priority level of the memory to the application.

28

WO 2012/177576 PCT/US2012/043030

6. The method of claim 1 wherein setting allocation metadata comprises

metadata that includes how frequently the application plans to use the allocated memory.

7. The method of claim 1 wherein setting allocation metadata comprises
metadata that includes how difficult it is for the application to replace the allocation’s

contents.

8. The method of claim 1 wherein setting the memory fill function
comprises setting a function that accesses information from a file to populate the contents

of the memory allocation.

9. The method of claim 1 wherein setting the memory fill function
comprises setting a function that can be called later by the host to populate the contents of

memory on the application’s behalf without involving the application.

10. The method of claim 1 wherein setting the memory fill function
comprises providing the host with information needed to release and repopulate the
memory, or to defer allocation and initial population of the memory until a more

appropriate time for the host.

11. The method of claim 1 wherein receiving the reference comprises if
the application wants to use the memory, providing the reference to the host to get direct

access to the memory.

12. The method of claim 1 further comprising, if the application detects
that the application is done with the allocated memory, invoking the allocation interface to

deallocate the previously allocated memory.
13. The method of claim 1 further comprising, after the application

accesses the memory, indicating to the host that the host can again perform management

operations that may make the memory unavailable.

29

WO 2012/177576 PCT/US2012/043030

14. A computer system for providing an application host with more
control over allocation and use of memory within a software application, the system
comprising:

a processor and memory configured to execute software instructions

embodied within the following components;

a metadata receiving component that receives information associated with
each memory allocation that provides information to an application
host describing how the memory is used by the application;

a fill specification component that receives information describing how a
particular memory allocation’s contents are filled;

an allocation request component that submits a request from the application
to the host to allocate memory based on the received metadata and fill
specification;

a memory referencing component that receives an indication from the
application before the application accesses memory that was the
subject of a previously submitted allocation request;

an application interface component that provides a communications interface
between the application and host to negotiate use of memory
allocations; and

a host component that includes an environment in which the application runs
and provides a memory manager that uses the received metadata and

fill specification to manage memory.

15. The system of claim 14 wherein the metadata receiving component
receives information that indicates how readily accessible an allocation
should be for the application or how frequently the application plans to

access the memory associated with the allocation.

30

WO 2012/177576 PCT/US2012/043030

1/8
r—LO ’
Memory Management System
105 110 115 120
f_J r_J
Metadata : Allocation Memory
Receiving le)I:LSgr?ght Request Referencing
Component P Component Component
r—bz i r—1j3 ’ r—1j3 i r—1J4 ’
Application Static Dynamic Host
Interface Analysis Analysis Component
Component Component Component P
145 150 155 160
Request Request - Memory
Receiving Storing Cpgﬁcg%%?]t Action
Component Component P Component
165
/—J
Data Store
Component

FIG. 1

WO 2012/177576 PCT/US2012/043030

2/8
250 240
Tools (Profiler, Stored
Static/Dynamic Allocation
Analysis) Metadata
220 230
Memory
Application(s) Handling
Framework
210
Kernel/Host

FIG. 2

WO 2012/177576

3/8
Gpplication Memory U%
Set Allocation Metadata 310
Set Memory Fill Function 320
Invornigg)cc:tion 330
Receive Memory 340

Reference

Done with

PCT/US2012/043030

Request Memory Access

Access Memory

{ pone >

FIG. 3

" 370

" 380

WO 2012/177576 PCT/US2012/043030

4/8

Host Receive Allocation
Request

Receive Memory
Allocation Request 410

Receive Allocation
Metadata 420

Receive Memory Fill
Function 430

Time to Allocate?

Store Request for Later
Allocation 460

{ pone }

FIG. 4

Allocate Memory 450

WO 2012/177576 PCT/US2012/043030

5/8

Analyze Legacy
Application

Detect Application 510

Perform Analysis to
Determine Memory (520
Usage

Hook Application to
Provide Allocation " 530
Information

Recelive Allocation
Request with Associated —"""540
Information

(pone >

FIG. 5

WO 2012/177576

6/8

Analyze Application and
Create Manifest

Receive Compiled
Application Code

" 610

Perform Analysis on
Received Code

" 620

|dentify Memory-Related

Code Actions

— 630

Determine Information

About Allocations

" 640

Store Determined

Information in Manifest

" 650

C

Done)

FIG. 6

PCT/US2012/043030

WO 2012/177576

7/8

@mdle Memory Pressua

Receive Multiple Memory
Allocation Requests

" 710

Detect Memory Pressure

" 720

Enumerate Received
Requests

" 730

Select Allocation(s)

" 740

Perform Action on Select
Allocations to Relieve
Pressure

" 750

(pone)

FIG. 7

PCT/US2012/043030

WO 2012/177576

8/8

PCT/US2012/043030

< Activate Application)

Receive Application
Activation Request

" 810

|dentify Application
Memory Allocations

" 820

830

Allocations
Ready?

Allocate Unready
Allocations

Fill Allocations Using
Application-Provided Fill
Function

Activate Application

(pone >

FIG. 8

" 840

" 850

" 860

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings

