A signal processing unit that generates data signals for controlling gray-scale levels of electro-optical elements includes a first D/A conversion unit that generates gray-scale signals from gray-scale data for designating the gray-scale levels of the electro-optical elements; a storage unit that stores correction data indicating correction values with respect to the gray-scale signals; a second D/A conversion unit that has resolution different from that of the first D/A conversion unit, and that generates correction signals from the correction data stored in the storage unit; and a synthesizing unit that synthesizes the gray-scale signals generated by the first D/A conversion unit with the correction signals generated by the second D/A conversion unit to generate the data signals.

ABSTRACT

A signal processing unit that generates data signals for controlling gray-scale levels of electro-optical elements includes a first D/A conversion unit that generates gray-scale signals from gray-scale data for designating the gray-scale levels of the electro-optical elements; a storage unit that stores correction data indicating correction values with respect to the gray-scale signals; a second D/A conversion unit that has resolution different from that of the first D/A conversion unit, and that generates correction signals from the correction data stored in the storage unit; and a synthesizing unit that synthesizes the gray-scale signals generated by the first D/A conversion unit with the correction signals generated by the second D/A conversion unit to generate the data signals.
FIG. 1
FIG. 10

PULSE SIGNAL GENERATING CIRCUIT

Sg To

Dg

CLK

61

63

31c

FIG. 11

PULSE SIGNAL GENERATING CIRCUIT

Sg To

Dh

61

Sc

63

32c
FIG. 12

CLK/Sc

Spw0

Spw1

Spw2

Spw3

Spw4

Sg/Sh

FIG. 13

Xj

TIMING CONTROL CIRCUIT

TIMING CONTROL CIRCUIT

Sg

Sh

FIRST DAC

SECOND DAC
FIG. 16

FIG. 17

FIRST DAC [CURRENT/VOLTAGE] SECOND DAC [PULSE]
ELECTRO-OPTICAL DEVICE, METHOD OF DRIVING THE SAME, DATA LINE DRIVING CIRCUIT, SIGNAL PROCESSING CIRCUIT, AND ELECTRONIC APPARATUS

[0001] This is a Continuation of application Ser. No. 11/179,551 filed Jul. 13, 2005, which claims the benefit of Japanese Application No. 2004-283631 filed Sep. 29, 2004. The disclosures of the prior applications are hereby incorporated by reference herein in their entirety.

BACKGROUND OF THE INVENTION

[0002] 1. Technical Field

[0003] The present invention relates to an electro-optical device for correcting gray-scale levels of pixels, to a method of driving the same, to a data line driving circuit, to a signal processing circuit, and to an electronic apparatus.

[0004] 2. Related Art

[0005] A technique of correcting gray-scale levels of pixels has been suggested. For example, a technique of adding correction data to gray-scale data designating the gray-scale level of each pixel and of D/A converting the added data to adjust the gray-scale level of each pixel is disclosed in Japanese Unexamined Patent Publication No. 2000-307424 (paragraph 0005 and FIG. 1).

[0006] However, in the above-mentioned structure, since data signals are generated from the sum of the correction data and the gray-scale data by one D/A converter, the minimum value of the correction amount of the data signal by the correction data is limited to resolution when the gray-scale data is D/A converted (the variation of an analog signal when a least significant bit (LSB) of digital data is varied). That is, since analog data signals are generated from the gray-scale data, it is difficult to correct the data signal by the amount of correction smaller than the resolution set in the D/A converter. Of course, when a D/A converter that is compatible with digital data of a larger number of bits is adopted to improve the resolution, the minimum value of the correction amount is reduced, and thus it is possible to accurately correct the gray-scale level of each pixel. However, in this case, additional problems, such as an increase in the size of the D/A converter and an increase in the manufacturing costs thereof, arise.

SUMMARY

[0007] An advantage of the invention is that it provides a technique for accurately correcting gray-scale levels of pixels regardless of the resolution of D/A conversion with respect to gray-scale data.

[0008] According to an aspect of the invention, a signal processing circuit that generates data signals for controlling gray-scale levels of electro-optical elements includes a first D/A conversion unit that generates gray-scale signals from gray-scale data for designating the gray-scale levels of the electro-optical elements; a storage unit that stores correction data indicating correction values with respect to the gray-scale signals; a second D/A conversion unit that has resolution different from that of the first D/A conversion unit, and that generates correction signals from the correction data stored in the storage unit; and a synthesizing unit that synthesizes the gray-scale signals generated by the first D/A conversion unit with the correction signals generated by the second D/A conversion unit to generate the data signals.

[0009] Here, the ‘resolution’ of the D/A conversion unit means the variation of an analog signal when the least significant bit of the digital data that is input to the D/A conversion unit, that is, the minimum value of the variation of the analog signal that is output from the D/A conversion unit. The higher the resolution of the D/A conversion unit is, the smaller the minimum value of the variation of the analog signal output from the D/A conversion unit becomes. Further, in the invention, the ‘electro-optical element’ means an element having a property capable of converting electrical energy into optical energy, or optical energy into electrical energy. For example, an organic electro-luminescent (EL) element or an organic light-emitting diode (OLED) made of, for example, light-emitting polymer, can be used as the electro-optical element, but the invention is not limited thereto.

[0010] According to this structure, the gray-scale signals are generated from the gray-scale data by the first D/A conversion unit, and the correction signals are generated from the correction data by the second D/A conversion unit having resolution different from that of the first D/A conversion. Therefore, it is possible to arbitrarily select the resolution when the gray-scale data is D/A converted and the resolution when the correction data is D/A converted. Thus, it is possible to accurately correct the gray-scale level of each electro-optical element, regardless of the resolution of D/A conversion with respect to the gray-scale data.

[0011] Further, various memories, such as a ROM (read only memory) and a RAM (random access memory), can be used as the storage unit of the invention. When the ROM is used as a storage unit, for example, the correction data is previously written in the storage unit at the time of the manufacture or shipment of the electro-optical device, and thus it is not necessary to update the contents of the storage unit after manufacture or shipment. On the other hand, in the case in which the ROM is used as a storage unit, for example, even if the characteristics of each element of the electro-optical device (for example, the characteristics of the electro-optical elements and the characteristics of the first and second D/A conversion units) vary with the elapse of time, it is possible to perform the optimum correction on the gray-scale level of each electro-optical element by updating the correction data in the storage unit corresponding to the variation in the characteristics of the elements.

[0012] Furthermore, it is preferable that the synthesizing unit includes an adding unit that adds the gray-scale signals generated by the first D/A conversion unit and the correction signals generated by the second D/A conversion unit (see FIGS. 5, 9, and 13). According to this structure, it is possible to generate data signals with a simple structure. Preferably, the first D/A conversion unit and the second D/A conversion unit both generate current signals or voltage signals. That is, in this structure, the first D/A conversion unit generates the current signals corresponding to the gray-scale data as the gray-scale signals, and the second D/A conversion unit generates the current signals corresponding to the correction data as the correction signals. Alternatively, the first D/A conversion unit generates the voltage signals corresponding to the gray-scale data as the gray-scale signals, and the second D/A conversion unit generates the voltage signals corresponding to the correction data as the correction signals.

[0013] Further, preferably, the first D/A conversion unit generates the gray-scale signals having pulse widths corre-
sponding to the gray-scale data, and the second D/A conversion unit generates the correction signals having pulse widths corresponding to the correction data. In addition, preferably, the synthesizing unit outputs the gray-scale signals in a first period for example, a period T1 in FIG. 14, and outputs the correction signals in a second period for example, a period T2 in FIG. 14 subsequent to the first period. That is, the synthesizing unit generates the data signals by time-division-multiplexing the gray-scale signals and the correction signals (that is, by coupling the gray-scale signals with the correction signals on the time axis).

Further, it is preferable that the synthesizing unit includes a multiplier unit that multiplies the gray-scale signals generated by the first D/A conversion unit by the correction signals generated by the second D/A conversion unit. For example, in a structure in which the first D/A conversion unit generates current signals or voltage signals having the levels corresponding to the gray-scale data as the gray-scale signals and the second D/A conversion unit generates correction signals having pulse widths corresponding to the correction data, the synthesizing unit outputs the gray-scale signals generated by the first D/A conversion unit as data signals in the period corresponding to the pulse widths of the correction signals (see FIG. 17). In addition, a structure to synthesize the gray-scale signal and the correction signal using the synthesizing unit is not limited to the above.

According to another aspect of the invention, signal processing circuits are respectively provided corresponding to data lines, and constitute a data line driving circuit. That is, a data line driving circuit of an electro-optical device in which a plurality of electro-optical elements are respectively provided corresponding to intersections of a plurality of scanning lines and a plurality of data lines includes a plurality of signal processing circuits each of which supplies a data signal to the data line. In addition, each data line driving circuit includes: a first D/A conversion unit that generates gray-scale signals from gray-scale data for designating gray-scale levels of the electro-optical elements; a storage unit that stores correction data indicating correction values with respect to the gray-scale signals; a second D/A conversion unit that has resolution different from that of the first D/A conversion unit, and that generates correction signals from the correction data stored in the storage unit; and a synthesizing unit that synthesizes the gray-scale signals generated by the first D/A conversion unit with the correction signals generated by the second D/A conversion unit to generate data signals. According to the above-mentioned structure, the data line driving circuit makes it possible to accurately correct the gray-scale level of each electro-optical element, regardless of the resolution of D/A conversion with respect to the gray-scale data.

For example, in an electro-optical device in which each electro-optical element emits a light component corresponding to any one of display colors, the characteristics of the electro-optical elements respectively corresponding to the display colors may be different from each other. However, according to the data line driving circuit of the invention, it is possible to correct the difference between the characteristics for each display color and thus to maintain a good white balance. In addition, even if a variation in characteristics occurs in each signal processing circuit of the data line driving circuit, it is possible to correct the variation in characteristics by properly selecting correction data. Further, the characteristics of electro-optical devices of the same type may be different from each other for reasons for a manufacturing process. However, according to the data line driving circuit of the invention, it is possible to compensate for the variation in the characteristic of each electro-optical element and thus to achieve an electro-optical device having high display quality.

Furthermore, it is preferable that the resolution of the second D/A conversion unit of each of the signal processing circuits varies according to resolution adjustment signals to be supplied. According to this structure, the resolution of the second D/A conversion unit is adjusted according to the resolution adjustment signal. Therefore, it is possible to arbitrarily adjust the degree of correction with respect to the gray-scale level of each electro-optical element by properly selecting the resolution adjustment signal. In addition, it is preferable to provide a supply unit for supplying the resolution adjustment signal to the second D/A conversion unit of each signal processing circuit. The supply unit generates the resolution adjustment signals by the operation of a user, and then outputs them to the signal processing circuits, respectively. According to this structure, the user can adjust the gray-scale characteristic while directly confirming images displayed on the electro-optical device.

In particular, a difference in characteristic may occur in electro-optical elements, such as OLED elements, corresponding to each display color. Therefore, it is preferable that the resolution adjustment signals be supplied to the display colors, respectively. That is, in this structure, preferably, the second D/A conversion unit of one of the plurality of signal processing circuits corresponding to one display color has resolution varied according to a first resolution adjustment signal, and the second D/A conversion units of the other signal processing circuits corresponding to the other display colors have resolution varied according to a second resolution adjustment signal different from the first resolution adjustment signal. According to this structure, since the resolution of the second D/A conversion circuits respectively corresponding to the display colors vary according to the respective resolution adjustment signals, it is possible to compensate for a different in characteristics for every display color and thus to achieve high display quality. In addition, the resolution adjustment signals may be respectively supplied to the display colors, or one resolution adjustment signal may be supplied to two or more display colors. For example, in a structure in which each electro-optical element corresponds to any one of red, green, and blue, the resolution of the second D/A conversion units of the signal processing circuits corresponding to two colors may be adjusted by the first resolution adjustment signal, and the resolution of the second D/A conversion unit of the signal processing circuit corresponding to the other color may be adjusted by the second resolution adjustment signal.

Further, the detailed structure of the second D/A conversion unit will be described below, particularly focusing on the relationship with the resolution adjustment signal.

First, according to a first aspect of the second D/A conversion unit, the second D/A conversion unit (which corresponds to the second DAC 32a shown in FIG. 4) includes a current source (transistor 41) that generates a plurality of currents weighted with different weight values on the basis of the level of the resolution adjustment signal and a selection circuit (switch 43) that selects one of the plurality of currents according to the correction data, and generates the correction signals based on the current selected by the selection circuit. According to this structure, the plurality of currents generated by the current source is adjusted according to the level of the
resolution adjustment signal. Therefore, it is possible to arbitrarily adjust the resolution of the second D/A conversion unit by properly adjusting the level of the resolution adjustment signal.

According to a second aspect of the second D/A conversion unit, the second D/A conversion unit (which corresponds to the second DAC 32b shown in FIG. 7) includes a voltage generating circuit that generates a plurality of voltages on the basis of the level of the resolution adjustment signal and a selection circuit (switch S3) that selects one of the plurality of voltages according to the correction data, and generates correction signals on the voltage selected by the selection circuit. According to this structure, the plurality of voltages generated by the voltage generating circuit is adjusted according to the level of the resolution adjustment signal. Therefore, it is possible to arbitrarily adjust the resolution of the second D/A conversion unit by properly adjusting the level of the resolution adjustment signal.

According to a third aspect of the second D/A conversion unit, the resolution adjustment signal is a clock signal, and the second D/A conversion unit (which corresponds to the second DAC 32c shown in FIG. 11) includes a pulse signal generating circuit that generates a plurality of pulse signals respectively having pulse widths which are weighted with different weight values, on the basis of a period of the resolution adjustment signal, and a selection circuit (switch S3) that selects one of the plurality of pulse signals according to the correction data, and generates the correction signals based on the pulse signal selected by the selection circuit. According to this structure, the pulse widths of the plurality of pulse signals generated by the pulse signal generating circuit are adjusted by the period of the resolution adjustment signal. Therefore, it is possible to arbitrarily adjust the resolution of the second D/A conversion unit by properly adjusting the period of the resolution adjustment signal.

In addition, the electro-optical device can be used as display devices of various electronic apparatuses.

Furthermore, according to still yet another aspect of the invention, a method of driving an electro-optical device having a plurality of electro-optical elements whose gray-scale levels are varied according to data signals includes the following processes of: generating gray-scale signals from gray-scale data designating the gray-scale levels of the electro-optical elements by first D/A conversion; generating correction signals from correction data stored in a storage unit by second D/A conversion that is different from the first D/A conversion in resolution; and synthesizing the gray-scale signals generated by the first D/A conversion with the correction signals generated by the second D/A conversion to generate the data signals.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements, and wherein:

FIG. 1 is a block diagram showing the structure of an electro-optical device according to an embodiment of the invention;

FIG. 2 is a block diagram showing the structure of a data line driving circuit of the electro-optical device;

FIG. 3 is a circuit diagram showing the structure of a first current-output-type DAC;

FIG. 4 is a circuit diagram showing the structure of a second current-output-type DAC;

FIG. 5 is a block diagram showing the structure of a synthesizing circuit when the first DAC and the second DAC are of current output types;

FIG. 6 is a circuit diagram showing the structure of a first voltage-output-type DAC;

FIG. 7 is a block diagram showing the structure of a second voltage-output-type DAC;

FIG. 8 is a block diagram showing the structure of a voltage generating circuit of the second voltage-output-type DAC;

FIG. 9 is a block diagram showing the structure of a synthesizing circuit when the first DAC and the second DAC are of voltage output types;

FIG. 10 is a block diagram showing the structure of a first pulse-output-type DAC;

FIG. 11 is a block diagram showing the structure of a second pulse-output-type DAC;

FIG. 12 is a timing chart illustrating the operation of a pulse-output type DAC;

FIG. 13 is a block diagram showing the structure of a synthesizing circuit when the first DAC and the second DAC are of pulse output types;

FIG. 14 is a timing chart illustrating the operation of the synthesizing circuit;

FIG. 15 is a circuit diagram showing the structure of a current driving pixel circuit;

FIG. 16 is a circuit diagram showing the structure of a voltage driving pixel circuit;

FIG. 17 is a block diagram showing the structure of a synthesizing circuit according to a modification;

FIG. 18 is a block diagram showing the structure of a signal processing circuit according to a modification;
FIG. 19 is a perspective view showing the structure of a personal computer equipped with the electro-optical device;

FIG. 20 is a perspective view showing the structure of a cellular phone equipped with the electro-optical device; and

FIG. 21 is a perspective view showing the structure of a personal digital assistant equipped with the electro-optical device.

DESCRIPTION OF THE EMBODIMENTS

Electro-Optical Device

An electro-optical device using OLED elements as electro-optical elements according to the invention will be described below. FIG. 1 is a block diagram showing the structure of the electro-optical device according to an embodiment of the invention. As shown in FIG. 1, an electro-optical device D includes an electro-optical panel 1 for displaying images and a scanning line driving circuit 2 and a data line driving circuit 3 for driving the electro-optical panel 1. The electro-optical panel 1 has m scanning lines 12 that extend in the X direction (row direction) and that are connected to the scanning line driving circuit 2 and n data lines 13 that extend in the Y direction (column direction) perpendicular to the X direction and that are connected to the data line driving circuit 3. Pixel circuits G are provided at intersections of the scanning lines 12 and the data lines 13, respectively. These pixel circuits G are arranged in a matrix of m rows and n columns in the X and Y directions. Each of the pixel circuits G includes an OLED element which emits a light component corresponding to any one of the three primary colors R, G, and B. In this embodiment, the pixel circuits G having the same emission color are arranged in the Y direction (a so-called stripe arrangement).

The scanning line driving circuit 2 is a circuit for sequentially selecting the scanning lines. More specifically, the scanning line driving circuit 2 outputs, to the scanning lines 12, scanning signals Y1, Y2, Y3, ..., Ym which sequentially turn to active levels every horizontal scanning period. Meanwhile, the data line driving circuit 3 outputs, to the data lines 13, data signals X1, X2, X3, ..., Xn corresponding to gray-scale levels to be displayed by the pixel circuits G in a period in the scanning lines 12 are selected, respectively. The OLED elements of the pixel circuits G corresponding to the scanning line 12 selected by the scanning line driving circuit 2 emit light with brightness corresponding to a data signal Xj (where j is an integer satisfying 1 ≤ j ≤ n) that is supplied through the data line 13. In FIG. 1, the scanning line driving circuit 2 and the data line driving circuit 3 are separately provided from the electro-optical panel 1. However, the scanning line driving circuit 2 and the data line driving circuit 3 may be mounted on (built-in) the electro-optical panel 1.

FIG. 2 is a block diagram illustrating the structure of the data line driving circuit 3. As shown in FIG. 2, the data line driving circuit 3 has n signal processing circuit 30 corresponding to different data lines 13. A j-th signal processing circuit 30 generates the data signal Xj corresponding to gray-scale data Dg and then outputs it to the data line 13. The gray-scale data Dg is, for example, 8-bit digital data for designating the brightness (gray-scale level) of the OLED element in each pixel circuit G, and is supplied to the data line driving circuit 3 from an external device, such as a CPU of an electronic apparatus having the electro-optical device D mounted thereon. FIG. 2 shows the detailed structure of only a first signal processing circuit 30, but the other signal processing circuits 30 have the same structure as that of the first signal processing circuit. Therefore, the structure of the first signal processing circuit 30 will be described below, and a detailed description of the other signal processing circuits 30 will be omitted for the convenience of explanation.

A first DAC (digital-to-analog converter) 31 and a second DAC 32 shown in FIG. 2 are units for converting digital data into an analog signal. The first DAC 31 converts digital gray-scale data Dg supplied from an external device into an analog gray-scale signal Sg. In addition, a memory 34 is provided to the front stage of the second DAC 32. The memory 34 of this embodiment is a RAM for storing correction data Dh. The correction data Dh contains 8-bit digital data indicating the degree of correction (the amount of correction) to be performed on a gray-scale signal Sg, and is supplied from an external device to the respective signal processing circuits 30 to be written onto the memory. More specifically, the correction data Dh is supplied at the time immediately after power is applied to the electro-optical device D or at the time within a blocking period, such as a horizontal retrace period or a vertical retrace period, to be written onto the memory 34. The second DAC 32 converts the correction data Dh stored in the memory 34 into an analog correction signal Sh. In addition, a synthesizing circuit 36 synthesizes the gray-scale signal Sg generated by the first DAC 31 and the correction signal Sh generated by the second DAC 32 to generate a data signal X1. The data signal X1 is a signal obtained by correcting the gray-scale signal Sg corresponding to the gray-scale data Dg based on the correction signal Sh corresponding to the correction data Dh (the other data signals X2 to Xn are obtained in the same manner).

As shown in FIG. 2, the data line driving circuit 3 is supplied with three types of resolution adjustment signals Sc (Sc-r, Sc-g, and Sc-b) corresponding to different display colors from an external device. The resolution adjustment signal Sc-r is supplied to the second DAC 32 of the signal processing circuit 30 corresponding to the red pixel circuit G, and the resolution adjustment signal Sc-g is supplied to the second DAC 32 of the signal processing circuit 30 corresponding to the green pixel circuit G. In addition, the resolution adjustment signal Sc-b is supplied to the second DAC 32 of the signal processing circuit 30 corresponding to the blue pixel circuit G. These resolution adjustment signals Sc adjust the resolution of the second DAC 32. In this embodiment, the term “resolution of DAC (the first and second DAC's 31 and 32)” means the variation of an analog signal when a least significant bit of the digital data varies, that is, the minimum value of the variation of the analog signal output from the DAC. That is, the resolution of the first DAC 31 means the variation of the gray-scale signal Sg when a least significant bit of the gray-scale data Dg varies, and the resolution of the second DAC 32 means the variation of the correction signal Sh when a least significant bit of the correction data Dh varies. In this embodiment, the resolution of the second DAC 32 is adjusted according to the resolution adjustment signals Sc input to the second DAC 32, regardless of the resolution of the first DAC 31. Therefore, the resolution of the second DAC 32 is different from that of the first DAC 31. As such, when the resolution of the second DAC 32 is adjusted according to the resolution adjustment signals Sc, the characteristics of correction to be performed on the gray-scale signal Sg generated by the first DAC 31 vary. That is, in this embodiment, the...
characteristics of correction to be performed on the gray-scale signal \(S_g \) are determined by the correction data \(D_h \) and the resolution adjustment signals \(S_c \). More specifically, the resolution adjustment signals \(S_c \) are factors for adjusting the gray-scale characteristic of the entire electro-optical panel \(I \) having a plurality of pixel circuits \(G \) therein for every display color, and the correction data \(D_h \) is a factor for separately adjusting the gray-scale characteristics of these pixel circuits \(G \) for every row.

As described above, in this embodiment, the correction signal \(S_h \) is generated from the correction data \(D_h \) by the second DAC \(32 \) whose resolution is independently selected from the first DAC \(31 \). Therefore, it is possible to accurately correct the gray-scale level of each pixel circuit \(G \), compared to the related art in which the gray-scale data \(D_g \) is added to the correction data \(D_h \) and then D/A conversion is performed on the added data. For example, when the resolution of the second DAC \(32 \) is set higher than that of the first DAC \(31 \), it is possible to adjust the gray-scale signal \(S_g \) by the amount of correction which is sufficiently smaller than the minimum value of the level variation of the gray-scale signal \(S_g \). In other words, it is possible to select the resolution of the first DAC \(31 \), regardless of the resolution required for the second DAC \(32 \) in order to perform the optimum correction. Therefore, even if the resolution must be sufficiently raised to perform correction, the resolution capable of obtaining the desired gray-scale signal \(S_g \) from the gray-scale data \(D_g \) is sufficient for the first DAC \(31 \). Therefore, according to this embodiment, it is possible to perform accurate correction using the first DAC \(31 \) while preventing an increase in the size of the circuit and a complicated circuit structure.

Further, in this embodiment, the resolution of the second DAC \(32 \) can be adjusted by the resolution adjustment signals \(S_c \), which makes it possible to effectively adjust the gray-scale characteristic of the entire electro-optical panel \(I \). Particularly, in this embodiment, the resolution of the second DACs \(32 \) in the signal processing circuits \(30 \) corresponding to the respective display colors is adjusted according to the three types of resolution adjustment signals \(S_c \) (\(S_{c-r} \), \(S_{c-g} \), and \(S_{c-b} \)) corresponding to different display colors. Therefore, it is possible to easily adjust the white balance of the entire electro-optical panel \(I \) by performing correction on every display color.

Furthermore, a RAM is used as the memory \(34 \) for storing the correction data \(D_h \). Therefore, even if the characteristics of each element of the electro-optical device \(D \) (for example, the characteristics of each pixel circuit \(G \), the OLED element included in the pixel circuit \(G \), and the first and second DACs \(31 \) and \(32 \)) vary with the elapse of time, it is possible to always perform the optimum correction on the gray-scale characteristic of the electro-optical panel \(I \) by updating the correction data \(D_h \) of the memory, corresponding to the varied characteristics of the elements. However, a ROM may be used as the memory \(34 \). In this case, for example, the correction data \(D_h \) is previously written in the memory \(34 \) before the manufacture or shipment of the electro-optical device \(D \), and thus it is not necessary to update the content of the memory \(34 \) after the variation in characteristics.

Structure of First and Second DACs \(31 \) and \(32 \)

Next, the structure of the first and second DACs \(31 \) and \(32 \) will be described in detail.
adjustment signal S_{c}. Therefore, the value of current passing through each transistor T_1 is varied by adjusting the level of the resolution adjustment signal S_{c} (however, the ratio of currents is not varied), which causes the resolution of the second DAC $32a$ to be changed.

[0060] FIG. 5 is a block diagram illustrating the structure of the signal processing circuit 30 using the first and second current-output-type DACs $31a$ and $32a$, paying attention to the synthesizing circuit 36. As shown in FIG. 5, in a synthesizing circuit $36a$, an output terminal To of the first DAC $31a$ and an output terminal To of the second DAC $32a$ are connected to each other. The data signal X_j output from the signal processing circuit 30 is a current signal obtained by adding the gray-scale signal S_g output from the first DAC $31a$ and the correction signal S_h output from the second DAC $32a$. That is, the synthesizing circuit $36a$ serves as a unit for adding the gray-scale signal S_g and the correction signal S_h. As such, when both the first DAC 31 and the second DAC $32a$ are of current output types, the structure of the synthesizing circuit $36a$ can be simplified.

Voltage-Output-Type DAC

[0061] FIG. 6 is a block diagram illustrating the structure of a first voltage-output-type DAC. As shown in FIG. 6, a first DAC $31b$ includes a voltage generating circuit 51, 256 switches 53, and a decoder 55. The voltage generating circuit 51 divides the reference voltage V_r supplied from an external device to generate 256 kinds of voltages V_0 to V_{255}. Meanwhile, an end of each switch 53 is connected to any one of 256 output terminals of the voltage generating circuit 51 from which voltages V_0 to V_{255} are output. The other ends of these switches 53 are commonly connected to the output terminal To of the gray-scale signal S_g. The decoder 55 decodes the gray-scale data D_g to generate a signal for selectively causing one of the switches 53 to be turned on. In this structure, when the switch 53 corresponding to the gray-scale data D_g is turned on, one of the voltage V_0 to V_{255} corresponding to the switch 53 is supplied to the output terminal To as the gray-scale signal S_g.

[0062] Next, FIG. 7 is a block diagram illustrating the structure of a second voltage-output-type DAC. In FIG. 7, components having the same functions as those in FIG. 6 have the same reference numerals. As shown in FIG. 7, a second DAC $32b$ has the same structure as the first DAC $31b$ except that the switching of the respective switches 53 is controlled according to the result obtained by decoding the correction data D_h and the resolution adjustment signal S_{c} is supplied to the voltage generating circuit 51. In this structure, when one of the switches 53 corresponding to the result obtained by decoding the correction data D_h is turned on, the voltage (one of the voltages V_0 to V_{255}) corresponding to the switch 53 is supplied to the output terminal To as the correction signal S_h.

[0063] FIG. 8 is a circuit diagram illustrating the detailed structure of the voltage generating circuit 51 of the second DAC $32b$. As shown in FIG. 8, the voltage generating circuit 51 has a plurality of resistors R that are connected to each other in series between a terminal 512 and a terminal 513, and the voltages V_0 to V_{255} are respectively obtained from midpoints between adjacent resistors R. Meanwhile, the resolution adjustment signal S_{c} includes two types of signals (S_{c1} and S_{c2}) having different voltage levels. The signal S_{c1} is applied to the terminal 512, and the signal S_{c2} is applied to the terminal 513. Therefore, the reference of the voltages V_0 to V_{255} is the level of the resolution adjustment signal S_{c}. That is, the difference in potential between the voltages V_0 to V_{255} is varied by adjusting the level of the resolution adjustment signal S_{c}, which causes the resolution of the second DAC $32b$ to be changed.

[0064] FIG. 9 is a block diagram illustrating the structure of the signal processing circuit 30 using the first and second DACs $31b$ and $32b$ of a voltage output type, paying attention to the synthesizing circuit 36. As shown in FIG. 9, a synthesizing circuit $36b$ is a circuit for adding the gray-scale signal S_g and the correction signal S_h, both being voltage signals, and includes an operational amplifier 71 of which a positive input terminal is connected to the ground, two resistors R_1 and R_2 provided between a negative input terminal of the operational amplifier 71 and the first and second DACs $31b$ and $32b$, and a resistor R_3 provided between the negative input terminal and an output terminal of the operational amplifier 71. In this structure, the data signal X_j output from the synthesizing circuit $36b$ (more specifically, from the operational amplifier 71) is a voltage signal obtained by adding the gray-scale signal S_g output from the first DAC $31b$ and the correction signal S_h output from the second DAC $32b$.

Pulse-Output-Type DAC

[0065] FIG. 10 is a block diagram illustrating the structure of a first pulse-output-type DAC. As shown in FIG. 10, a first DAC $31c$ includes a pulse signal generating circuit 61 to which a clock signal CLK whose level repeatedly varies in a predetermined period is input, eight switches 63 respectively corresponding to bits of the gray-scale data D_g, and an OR circuit 65 outputting the gray-scale signal S_g. The pulse signal generating circuit 61 properly divides the clock signal CLK input from an external device to generate eight types of pulse signals Spw (Spw_0 to Spw_7). As shown in FIG. 12, the respective pulse signals Spw are signals having pulse widths to which different weight values are weighted. For example, the pulse signal Spw_0 has a pulse width equal to the period of the clock signal CLK, and the pulse signal Spw_1 has a pulse width which is twice the period of the clock signal CLK. The pulse signal Spw_2 has a pulse width which is four times the period of the clock signal CLK. More specifically, the ratio of the pulse widths of the pulse signals Spw_0 to Spw_7 is Spw_0: Spw_1: Spw_2: Spw_3: Spw_4: Spw_5: Spw_6: Spw_7 = 1:2:4:8:16:32:64:128. In addition, the periods in which the respective pulse signals Spw turn active levels (H levels) are not superposed with each other.

[0066] The pulse signals Spw are supplied to one end of each of the corresponding switches 63. The other ends of the switches 63 are connected to an input terminal of the OR circuit 65. Each switch 63 is selectively turned on or off in response to the bit of the gray-scale data D_g corresponding to the switch 63. For example, the first switch 63 corresponding to the pulse signal Spw_0 is turned on if the least significant bit of the gray-scale data D_g is ‘1’, but is turned off if the least significant bit is ‘0’. In this structure, if one or more switches 63 among the eight switches 63 are turned on in response to the gray-scale data D_g, the pulse signals Spw corresponding to the switches 63 are supplied to the OR circuit 65. Then, the OR circuit 65 adds these pulse signals Spw to obtain a voltage signal and then supplies the voltage signal to the output terminal To as the gray-scale signal S_g. Therefore, the gray-scale signal S_g has the pulse width corresponding to the gray-scale data D_g. The gray-scale signal S_g obtained by adding the
pulse signals Spw0, Spw3, and Spw4 (that is, when the gray-scale data Dg is ‘00011001’) is shown on the lowermost side of FIG. 12.

[0067] Meanwhile, FIG. 11 is a block diagram illustrating the structure of a second pulse-output-type DAC. In FIG. 11, components having the same functions as those in FIG. 10 have the same reference numerals. As shown in FIG. 11, a second DAC 32c has the same structure as the first DAC 31c except that the switching of the respective switches 63 is controlled according to each bit of the correction data Dh and the resolution adjustment signals Sc are supplied to the pulse generating circuit 61. As shown in FIG. 12, the resolution adjustment signals Sc are clock signals whose levels repeat-edly vary. In this structure, if one or more switches 63 among the eight switches 63 are turned on in response to the correction data Dh, the pulse signals Spw corresponding to the switches 63 are supplied to the OR circuit 65. Then, the OR circuit 65 adds these pulse signals Spw to supply the added signal to the output terminal To as the correction signal Sn. Therefore, similar to the gray-scale signal Sg, the correction signal Sh is a voltage signal obtained by adding the pulse signals Spw0, Spw3, and Spw4 selected by the correction data Dh, as shown on the lowermost side of FIG. 12.

[0068] FIG. 13 is a block diagram illustrating the structure of the signal processing circuit 30 using the first and second DACs 31c and 32c of a pulse output type, paying attention to the synthesizing circuit 36. As shown in FIG. 13, a synthesizing circuit 36c includes a timing control circuit 73 to which the gray-scale signal Sg is input from the first DAC 31c, a timing control circuit 74 to which the correction signal Sh is input from the second DAC 32c, and an OR circuit 76 that outputs the logical sum of signals respectively output from the timing control circuits 73 and 74 as the data signal Xj. The timing control circuits 73 and 74 each properly delay signals input thereto and then output them. More specifically, as shown in FIG. 14, the timing control circuit 73 outputs the gray-scale signal Sg supplied from the first DAC 31c to the OR circuit 76 in a first half period T1 of one horizontal scanning period. On the other hand, the timing control circuit 74 outputs the correction signal Sh supplied from the second DAC 32c to the OR circuit 76 in a latter half period T2 of one horizontal scanning period. Then, the OR circuit 76 adds the signals respectively output from the timing control circuits 73 and 74. Therefore, as shown in FIG. 14, a voltage signal which turns to the active level in a portion of the one horizontal scanning period corresponding to the gray-scale data Dg and the correction data Dh is output from the synthesizing circuit 36 as the data signal Xj. FIG. 14 shows an illustrative example in which the period T1 and the period T2 have the same time length. However, the time lengths in the respective periods may be properly adjusted. For example, the period T2 has a time length shorter than that of the period T1.

Structure of Pixel Circuit G

[0069] As described above, the first and second DACs 31 and 32 shown in FIG. 2 are of any one of a current output type (31a and 32a), a voltage output type (31b and 32b), and a pulse output type (31c and 32c). The data signal Xj output to the respective data lines 13 becomes a current signal or voltage signal according to the types of the first and second DACs 31 and 32. Hereinafter, description will be made of the structure of the pixel circuit G when the data signal Xj is a current signal (that is, both the first DAC 31 and the second DAC 32 are of current output types) and the structure of the pixel circuit G when the data signal Xj is a voltage signal (that is, both the first DAC 31 and the second DAC 32 are of voltage output types or pulse output type). In addition, the structure of a pixel circuit G located in an i-th row (where i is an integer satisfying 1 ≤ i ≤ m) and a j-th column will be described below, but all pixel circuits G have the same structure. In addition, the invention is not limited to the following structure of the pixel circuit G.

Current Driving Pixel Circuit G

[0070] FIG. 15 is a circuit diagram illustrating the structure of the pixel circuit G used when the data signal Xj is a current signal. As shown in FIG. 15, a pixel circuit G includes four transistors Ta1 to Ta4, a capacitive element Ca, and an OLED element 100. A source electrode of the p-channel transistor Ta1 is connected to a power line to which a high potential Vdd is applied from a power source. A drain electrode of the transistor Ta4 is connected to a source electrode of the p-channel transistor Ta3, a source electrode of the transistor Ta2, and a drain electrode of the n-channel transistor Ta3. A gate electrode of the transistor Ta4 is connected to the scanning line, and a drain electrode thereof is connected to an anode of the OLED element 100. A cathode of the OLED element 100 is connected to the ground (GND). An end of the capacitive element Ca is connected to a source electrode of the transistor Ta1, and the other end thereof is connected to a gate electrode of the transistor Ta1 and a drain electrode of the transistor Ta2. A gate electrode of the transistor Ta2 and a gate electrode of the transistor Ta3 are connected to the scanning line 12. In addition, a source electrode of the transistor Ta3 is connected to the data line 13.

[0071] In this structure, when a scanning signal Xi turns to an H level in an i-th horizontal scanning period of each vertical scanning period, the transistor Ta2 is turned on. Then, the gate electrode and the drain electrode of the transistor Ta3 are connected to each other, so that the transistor Ta1 functions as a diode. At that time, since the transistor Ta3 is also turned on, the current of the data signal Xj supplied to the data line 13 flows from the power line to the data line 13 via the transistors Ta1 and Ta3. Then, charges corresponding to the gate electrode of the transistor Ta1 are stored in the capacitive element Ca. Since the transistor Ta4 is turned on in this state, no current passes through the OLED element 100. When the scanning signal Yi turns to an L level as the horizontal scanning period elapsed, the transistors Ta2 and Ta3 are turned off, and the transistor Ta4 is turned on. In this case, since the voltage held in the capacitive element Ca is applied to the gate electrode of the transistor Ta1, the current corresponding to the data signal Xj having passed through the data line 13 in the previous horizontal scanning period flows through the OLED element 100 via the transistors Ta1 and Ta4 to emit light. As such, the OLED element 100 emits light with brightness corresponding to the data signal Xj, which is a current signal.

Voltage Driving Pixel Circuit G

[0072] FIG. 16 is a circuit diagram illustrating the structure of a pixel circuit Gb used when the data signal Xj is a voltage signal (in the embodiment, it is assumed that both the first DAC 31 and the second DAC 32 are of voltage output types). As shown in FIG. 16, the pixel circuit Gb includes two transis-tors Tb1 and Tb2, a capacitive element Cb, and an OLED element 100. A source electrode of the p-channel transistor Tb1 is connected to the power line to which the high potential
Vdd is applied from a power source, and a drain electrode thereof is connected to an anode of the OLED element 100. A cathode of the OLED 100 is connected to the ground. In addition, a gate electrode of the transistor Tb1 is connected to a drain electrode of the n-channel transistor Tb2. A gate electrode of the transistor Tb2 is connected to the scanning line 12, and a source electrode thereof is connected to the data line 13. An end of the capacitive element Cb is connected to a source electrode of the transistor Th1, and the other end thereof is connected to a gate electrode of the transistor Tb1 and a drain electrode of the transistor Tb2.

[0073] In this structure, when the scanning signal Yt turns to an H level in an i-th horizontal scanning period of each vertical scanning period, the transistor Tb2 is turned on. Then, charges corresponding to the voltage of the data signal Xj applied to the data line 13 are stored in the capacitive element Cb, and the current corresponding to the data signal Xj passes through the OLED element 100 to emit light. When the scanning signal Yt turns to an L level, the transistor Tb1 is turned off, and the voltage held in the capacitive element Cb is applied to the gate electrode of the transistor Tb1. Then, the current corresponding to the data signal Xj having passed through the data line 13 in the previous horizontal scanning period flows from the transistor Tb1 to the OLED element 100 to emit light. As such, the OLED element 100 emits light with brightness corresponding to the data signal Xj, which is a voltage signal. In addition, in the voltage driving pixel circuit Gb shown in FIG. 16, similar to the pixel circuit Ga shown in FIG. 15, the transistor T4a for defining the period when the OLED element 100 emits light may be provided between the anode of the OLED element 100 and the drain electrode of the transistor Ta1, and the gate electrode thereof may be connected to the scanning line 12.

[0074] In this embodiment, it is assumed that both the first DAC 31a and the second DAC 32a are of voltage output types. However, when they are of pulse output types, the same pixel circuit Gb is also used. In this case, in the i-th horizontal scanning period, the voltage corresponding to the pulse width of the data signal Xj is held in the capacitive element Cb, and is applied to the gate electrode of the transistor Tb1. Therefore, after the horizontal scanning period elapsed, the voltage held in the capacitive element Cb is applied to the gate electrode of the transistor Tb1. Thus, the OLED element 100 emits light with the brightness corresponding to the pulse width of the data signal Xj.

Modifications

[0075] Various modifications of the above-mentioned embodiments can be made. The detailed modifications are as follows. In addition, combinations of the following modifications can be executable.

[0076] (1) In the above-mentioned embodiments, the first DAC 31a and the second DAC 32a are of the same type. However, the first DAC 31a and the second DAC 32a may be of different types. For example, as shown in FIG. 17, the signal processing circuit 30 may include the first current-output-type DAC 31a (or the first voltage-output-type DAC 31b) and the second pulse-output-type DAC 32c. In this structure, the synthesizing circuit 36d includes a switch 78, as shown in FIG. 17. An end of the switch 78 is connected to the output terminal To of the first DAC 31a, and the other end thereof is connected to the data line 13. Therefore, the switching of the switch 78 is controlled according to the correction signal Sh output from the second pulse-output-type DAC 32c. That is, the switch 78 is turned on when the correction signal Sh is at an H level, and is turned off when the correction signal Sh is at an L level. In this structure, the gray-scale signal Sg output from the first DAC 31a is output to the data line 13 only in the period in which the correction signal Sh output from the second DAC 32c is at the H level (that is, at the time corresponding to the pulse width that is determined according to the correction data Dh). That is, the synthesizing circuit 36d functions as a unit for multiplying the gray-scale signal Sg by the correction signal Sh (that is, for multiplying the level of the gray-scale signal Sg by the pulse width of the correction signal Sh). Therefore, the data signal Xj output from the synthesizing circuit 36d is corrected by the gray-scale signal Sg and the correction signal Sh.

[0077] Further, in the above-mentioned embodiment, a combination of the first current-output-type DAC 31a or the first voltage-output-type DAC 31b and the second pulse-output-type DAC 32c is used. However, the combination can vary. For example, the first pulse-output-type DAC 31c may be combined with the second current-output-type DAC 32a (or the second voltage-output-type DAC 32b) to constitute the signal processing circuit 30. In this structure, similar to the example shown in FIG. 17, the synthesizing circuit 36 functions as a unit for multiplying the gray-scale signal Sg, which is a pulse signal, by the correction signal Sh, which is a current signal (or a voltage signal). In addition, the types of the first and second DACs 31 and 32 are not limited to the current output type, the voltage output type, and the pulse output type. If necessary, any circuits capable of generating analog signals from digital data, such as the gray-scale data Dg or the correction data Dh, can be used as the first and second DACs 31 and 32, regardless of the detailed structure thereof.

[0078] (2) In the above-mentioned embodiments, the correction data Dh is independently supplied to the respective signal processing circuits 30 corresponding to the pixels. However, as shown in FIG. 18, the common correction data Dh may be supplied to the signal process circuits 30 corresponding to the respective display colors. In FIG. 18, correction data Dh-r is commonly stored in the memories 34 of the signal processing circuits 30 respectively corresponding to the red pixel circuits G, and correction data Dh-g is commonly stored in the memories 34 of the signal processing circuits 30 respectively corresponding to the green pixel circuits G. In addition, correction data Dh-b is commonly stored in the memories 34 of the signal processing circuits 30 respectively corresponding to the blue pixel circuits G. This structure makes it possible to effectively correct the gray-scale characteristic of each display color and thus to maintain a good white balance. In addition, in FIG. 18, the memories 34 are provided in the signal processing circuits 30, respectively. However, the memories arranged for every display color may be commonly used by the signal processing circuits 30 corresponding to the respective display colors. That is, the memories 34 are not respectively provided in the signal processing circuits 30, but three memories for storing the correction data Dh (Dh-r, Dh-g, and Dh-b) of different display colors may be provided, and then the correction data Dh respectively output from the memories may be input to the second DACs 32 of the signal processing circuits 30 of the display colors, respectively.

[0079] (3) In the above-mentioned embodiments, the electro-optical device D having the OLED elements 100 as electro-optical elements is given as an example. However, the
invention can be applied to different types of electro-optical devices other than the above-mentioned electro-optical device. For example, the invention can be applied to various electro-optical devices, such as a liquid crystal display device, a field emission display (FED), a surface-conduction electron-emission display (SED), a ballistic electron surface emitting device (BSED), and a display device using light emitting diodes, an optical writing printer, and a writing head for an electronic duplicating machine, similar to the above-mentioned embodiments. As such, the electro-optical element of the invention is an element having a property to convert electrical energy into optical energy, or optical energy into electrical energy, and the invention can be applied to all devices equipped with this type of electro-optical element.

Applications

[0080] Next, electronic apparatuses to which the electro-optical device according to the invention is applied will be explained. FIG. 19 is a perspective view illustrating the structure of a mobile personal computer including the electro-optical device D according to the above-mentioned embodiments as a display device. A personal computer 2000 has the electro-optical device D, serving as a display device, and a main body 2010. The main body 2010 is provided with a power supply switch 2001 and a keyboard 2002. Since the electro-optical device D uses the OLED elements 100, an image can be displayed on a screen at the wide viewing angle. [0081] FIG. 20 shows the structure of a cellular phone including the electro-optical device D according to the above-mentioned embodiments. A cellular phone 3000 includes a plurality of operation buttons 3001, a scroll button 3002, and the electro-optical device D, serving as a display device. By operating the scroll button 3002, a screen displayed on the electro-optical device D is scrolled. [0082] FIG. 21 shows the structure of a personal digital assistant (PDA) including the electro-optical device D according to the above-mentioned embodiments. A personal digital assistant 4000 includes a plurality of operation buttons 4001, a power supply switch 4002, and the electro-optical device D, serving as a display device. By operating the power supply switch 4002, various kinds of information items, such as an address book and a schedule book, are displayed on the electro-optical device D. [0083] Further, the electro-optical device D according to the invention can be applied to various electronic apparatuses, such as a digital still camera, a television, a video camera, a car navigation apparatus, a pager, an electronic organizer, an electronic paper, an electronic calculator, a word processor, a workstation, a television phone, a POS terminal, a printer, a scanner, a duplicating machine, a video player, and apparatuses having a touch panel, in addition to the electronic apparatuses shown in FIGS. 19 to 21.

What is claimed is:

1. A data line driving circuit of an electro-optical device in which a plurality of electro-optical elements are respectively provided corresponding to intersections of a plurality of scanning lines and a plurality of data lines, comprising:
 - a plurality of signal processing circuits each of which supplies data signals to the data lines, wherein each signal processing circuit includes:
 - a first D/A conversion unit that generates current signals, as gray-scale signals, in accordance with gray-scale data for designating gray-scale levels of the electro-optical elements;
 - a second D/A conversion unit that has resolution different from that of the first D/A conversion unit, and that generates current signals, as correction signals, in accordance with the correction data stored in the storage unit; and
 - a synthesizing unit that synthesizes the gray-scale signals generated by the first D/A conversion unit with the correction signals generated by the second D/A conversion unit to generate the data signals.

2. A data line driving circuit of an electro-optical device in which a plurality of electro-optical elements are respectively provided corresponding to intersections of a plurality of scanning lines and a plurality of data lines, comprising:
 - a plurality of signal processing circuits each of which supplies data signals to the data lines, wherein each signal processing circuit includes:
 - a first D/A conversion unit that generates voltage signals, as gray-scale signals, in accordance with gray-scale data for designating gray-scale levels of the electro-optical elements;
 - a second D/A conversion unit that has resolution different from that of the first D/A conversion unit, and that generates voltage signals, as correction signals, in accordance with the correction data stored in the storage unit; and
 - a synthesizing unit that synthesizes the gray-scale signals generated by the first D/A conversion unit with the correction signals generated by the second D/A conversion unit to generate the data signals.

3. A data line driving circuit of an electro-optical device in which a plurality of electro-optical elements are respectively provided corresponding to intersections of a plurality of scanning lines and a plurality of data lines, comprising:
 - a plurality of signal processing circuits each of which supplies data signals to the data lines, wherein each signal processing circuit generates data signals for controlling gray-scale levels of the electro-optical elements, and each signal processing circuit includes:
 - a first D/A conversion unit that generates voltage signals, as gray-scale signals, in accordance with gray-scale data for designating gray-scale levels of the electro-optical elements;
 - a second D/A conversion unit that has resolution different from that of the first D/A conversion unit, and that generates correction signals that have pulse width in accordance with the correction data stored in the storage unit; and
 - a synthesizing unit that outputs the gray-scale signals generated by the first D/A conversion unit as data signals during a period in accordance with the pulse width of the correction signals.
4. An electro-optical device comprising:
 a plurality of scanning lines;
 a plurality of data lines;
 a plurality of electro-optical elements that are respectively provided corresponding to intersections of the scanning lines and the data lines;
 a scanning line driving circuit that sequentially selects the plurality of scanning lines; and
 a data line driving circuit according to claim 1.

5. An electronic apparatus comprising the electro-optical device according to claim 4.

* * * * *