(21) Internationales Aktenzeichen: PCT/DE95/01323
(22) Internationales Anmeldedatum: 22. September 1995 (22.09.95)
(30) Prioritätsdaten:
 P 44 33 890.2 22. September 1994 (22.09.94) DE
(71) Anmelder (für alle Bestimmungsstaaten ausser US):
 DEUTSCHES KREBSFORSCHUNGZENTRUM
 STIFTUNG DES ÖFFENTLICHEN RECHTS [DE/DE];
 Im Neuenheimer Feld 280, D-69120 Heidelberg (DE).
(72) Erfinder; und
(75) Erfinder/Anmelder (nur für US): SINN, Hansjörg [DE/DE];
 Ahornweg 10, D-69168 Wiesloch (DE), SCHRENF, Hans-
 Hermann [DE/DE]; Mittelgasse, D-67278 Zeiskam (DE),
 MAIER-BORST, Wolfgang [DE/DE]; Schlüsselweg 9,
 D-69221 Dossenheim (DE), STEHLE, Gerd [DE/DE];
 Kasseler Strasse 8, D-68305 Mannheim (DE), WUNDER, Andreas
 [DE/DE]; Beethovenstrasse 8, D-69214 Eppelheim (DE),
 HOFF-BIEDERBECK, Dirk [DE/DE]; Riedsaumstrasse 23,
 D-67063 Ludwigshafen (DE), HEENE, Dieter, Ludwig
 [DE/DE]; Gräfener-Grimm-Strasse 5, D-68259 Mannheim
 (DE).

(54) Title: CONJUGATE CONSISTING OF AN ACTIVE SUBSTANCE AND A NON-EXOGENOUS NATIVE PROTEIN

(54) Bezeichnung: KONJUGAT AUS EINEM WIRKSTOFF UND EINEM NICHT ALS KÖRPERFREMDE ANGESSEHENEN, NATIVEN PROTEIN

(57) Abstract

The invention concerns a conjugate consisting of an active substance and a native protein which is not considered exogenous. The conjugate is distinguished in that, between the active substance and the protein, there is a linker which can be cleaved in a cell. The invention further concerns a process for preparing such a conjugate and the use thereof.

(57) Zusammenfassung

Die Erfindung betrifft ein Konjugat aus einem Wirkstoff und einem nicht als körperfremd angesehenen, nativen Protein, das sich dadurch auszeichnet, daß zwischen dem Wirkstoff und dem Protein ein in einer Zelle spaltbarer Linker vorliegt. Ferner betrifft die Erfindung ein Verfahren zur Herstellung eines solchen Konjugats und die Verwendung desselben.
LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäß dem PCT veröffentlichen.

<table>
<thead>
<tr>
<th>Code</th>
<th>Land (Sprache)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Österreich</td>
</tr>
<tr>
<td>AU</td>
<td>Australien</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
</tr>
<tr>
<td>BE</td>
<td>Belgien</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarien</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
</tr>
<tr>
<td>BR</td>
<td>Brasilien</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
</tr>
<tr>
<td>CA</td>
<td>Kanada</td>
</tr>
<tr>
<td>CF</td>
<td>Zentrale Afrikanische Republik</td>
</tr>
<tr>
<td>CH</td>
<td>Schweiz</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
</tr>
<tr>
<td>CM</td>
<td>Kamerun</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
</tr>
<tr>
<td>CS</td>
<td>Tschechoslowakei</td>
</tr>
<tr>
<td>CZ</td>
<td>Tschechische Republik</td>
</tr>
<tr>
<td>DE</td>
<td>Deutschland</td>
</tr>
<tr>
<td>DK</td>
<td>Dänemark</td>
</tr>
<tr>
<td>ES</td>
<td>Spanien</td>
</tr>
<tr>
<td>FI</td>
<td>Finnland</td>
</tr>
<tr>
<td>FR</td>
<td>Frankreich</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>GB</td>
<td>Vereinigtes Königreich</td>
</tr>
<tr>
<td>GE</td>
<td>Georgien</td>
</tr>
<tr>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>GR</td>
<td>Griechenland</td>
</tr>
<tr>
<td>HU</td>
<td>Ungarn</td>
</tr>
<tr>
<td>IE</td>
<td>Irland</td>
</tr>
<tr>
<td>IT</td>
<td>Italien</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>KE</td>
<td>Kenya</td>
</tr>
<tr>
<td>KG</td>
<td>Kirgisistan</td>
</tr>
<tr>
<td>KP</td>
<td>Demokratische Volksrepublik Korea</td>
</tr>
<tr>
<td>KR</td>
<td>Republik Korea</td>
</tr>
<tr>
<td>KZ</td>
<td>Kasachstan</td>
</tr>
<tr>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>LU</td>
<td>Luxemburg</td>
</tr>
<tr>
<td>LV</td>
<td>Lettland</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>MD</td>
<td>Moldawien</td>
</tr>
<tr>
<td>MG</td>
<td>Madagaskar</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>MN</td>
<td>Mongolei</td>
</tr>
<tr>
<td>MR</td>
<td>Mauretanien</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>NL</td>
<td>Niederlande</td>
</tr>
<tr>
<td>NO</td>
<td>Norwegen</td>
</tr>
<tr>
<td>NZ</td>
<td>Neuseeland</td>
</tr>
<tr>
<td>PL</td>
<td>Polen</td>
</tr>
<tr>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>RO</td>
<td>Rumänien</td>
</tr>
<tr>
<td>RU</td>
<td>Russische Föderation</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>SE</td>
<td>Schweden</td>
</tr>
<tr>
<td>SI</td>
<td>Slowenien</td>
</tr>
<tr>
<td>SK</td>
<td>Slowakei</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>TD</td>
<td>Tschad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>TJ</td>
<td>Tadschikistan</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad und Tobago</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>US</td>
<td>Vereinigte Staaten von Amerika</td>
</tr>
<tr>
<td>UZ</td>
<td>Usbekistan</td>
</tr>
<tr>
<td>VN</td>
<td>Vietnam</td>
</tr>
</tbody>
</table>
Konjugat aus einem Wirkstoff und einem nicht als körperfremd angesehenen, nativen Protein

Die Erfindung betrifft ein Konjugat aus einem Wirkstoff und einem nicht als körperfremd angesehenen, nativen Protein, Verfahren zur Herstellung eines solchen Konjugates sowie dessen Verwendung.

Überraschenderweise hat sich nun gezeigt, daß ein vorstehendes Konjugat auch eine sehr hohe Aktivität aufweist, wenn zwischen dem Wirkstoff und dem nicht als körperfremd angesehenen, nativen Protein ein in einer Zelle spaltbarer Linker vorliegt.

Ein derartiges Konjugat ist Gegenstand der vorliegenden Erfindung.

Weitere Beispiele von Verbindungen als Wirkstoff sind photoaktive Substanzen, wie Porphyrine, Chlorine und Bakteriochlorine, die zur photodynamischen Therapie
verwendet werden können.

Vorstehende Verbindungen liegen einzeln oder zu mehreren in einem erfindungsgemäßen Konjugat vor. Sie sind als Edukte dargestellt, was bedeutet, daß sie in einem erfindungsgemäßen Konjugat in derivatisierter Form vorliegen (vgl. nachstehend, Beispiele 1-7 und Figuren 1-3).

Ein vorstehender Wirkstoff ist über einen Linker an ein Protein gebunden. Dieses Protein wird vom Körper nicht als fremd angesehen. Auch liegt es in nativer, d.h. nicht-modifizierter, Form vor. Desweiteren hat das Protein ein Molekulargewicht (MG) von bis zu 90000, vorzugweise ist es Albumin, insbesondere humanes Serumalbumin, oder Transferrin.

\[-Y-R-N=N-\]

worin

R eine organische Gruppe, vorzugsweise eine aromatische, und besonders bevorzugt Phenylen oder ein Derivat davon ist, und

Y eine aus C(O), S(O)₂, P(O)OH und As(O)OH ausgewählte Gruppe ist.
Vorstehende Struktur eines bevorzugten Linkers entspricht jener, die der Linker in einem erfindungsgemäßen Konjugat aufweist. Ferner umfaßt die Struktur, zumindest wenn R Phenyle oder ein Derivat davon ist, eine aktive Verbindung, die sich besonders für die Therapie von Tumor-, Infektions- und Autoimmunerkrankungen eignet. Nach Spaltung des Linkers und gegebenenfalls Abbau des noch am Linker gebundenen Proteins kann die Verbindung ihre volle Aktivität entfalten (vgl. nachstehend, Beispiele 3 bis 7 und Figuren 2 und 3).

Bevorzugte Konjugate der vorliegenden Erfindung sind in den Figuren 1-3 angegeben.

Erfindungsgemäß eignen sich somit bestens für therapeutische Zwecke, insbesondere zur Therapie von Tumor-, Infektions- und Autoimmunerkrankungen.

Desweiteren können in erfindungsgemäßen Konjugaten Markierungen (z.B. radioaktive Markierungen) vorliegen, wodurch die Konjugate auch für diagnostische
Zwecke und Therapieüberwanderung, gegebenenfalls gleichzeitig zur Therapie, eingesetzt werden können.

Kurze Beschreibung der Zeichnung.

5 Fig. 1 zeigt die Anbindung von 4-Aminophenylsulfonsäure oder 4-Aminophenylphosphonsäure an Albumin, wobei eine Azogruppe als Linker vorliegt,

10 Fig. 2 zeigt die Anbindung von Cytidin an Albumin, wobei ein eine Azogruppe enthaltender Linker vorliegt, sowie die Freisetzung von Aminocytidin,

15 Fig. 3 zeigt die Anbindung von Tetracyclin an Albumin, wobei ein eine Azogruppe enthaltender Linker vorliegt, und

Fig. 4 zeigt die Wachstumsinhibition von Tumorzenellen durch Verabreichung erfindungsgemäßer Konjugate.

20 Die folgenden Beispiele erläutern die Erfindung.

Beispiel 1: Herstellung eines erfindungsgemäßen Konjugats aus humanem Serumalbumin und 4-Aminophenylsulfonsäure, wobei eine Azogruppe als Linker vorliegt

25 Die Herstellung des Konjugats und seine Struktur sind in Fig. 1 gezeigt.

1. Diazotierung von 4-Aminophenylsulfonsäure:

30 4-Aminophenylsulfonsäure (173 mg, 1 mMol) wurden in 5 ml 2 N HCl gelöst. Die Lösung wurde im Eisbad abgekühlt und unter ständigem Rühren wurden 600 µl einer eisgekühlten 2,5 M NaNO₂-Lösung (1,5 mMol) in
Portionen à 0,1 ml zugegeben. Nach etwa 10 min wurde der Überschuß an Nitrit durch Zugabe von Harnstoff beseitigt. Es wurde 4-Diazoniumphenylsulfonsäure (4-DAPS) erhalten.

2. Kopplung von 4-DAPS an humanes Serumalbumin (HSA):

Die Reinheit des erfindungsgemäßen Konjugats wurde mittels HPLC (Vorsäule: Zorbax Diol 20 μ(50x4mm), Säule 1: Zorbax GF 450, Säule 2: Zorbax GF 250, Laufmittel: 0,2 M Na-citrat, pH 7,5, Fluß: 1 ml/min) überprüft.

Beispiel 2: Herstellung eines erfindungsgemäßen Konjugats aus humanem Serumalbumin und 4-Aminophenylphosphonsäure, wobei eine Azogruppe als Linker vorliegt

Die Herstellung des Konjugats und seine Struktur sind in Fig. 1 gezeigt.

Die Herstellung erfolgte, wie in Beispiel 1 beschrieben, wobei anstatt 4-Aminophenylsulfonsäure die 4-Aminophenylphosphonsäure verwendet wurde.
Beispiel 3: Herstellung eines erfindungsgemäßen Konjugats aus Cytidin, einen eine Azogruppe enthaltenden Linker und humanem Serumalbumin (Cytidin-4-DAPS-HSA)

Die Herstellung des Konjugats und seine Struktur sind in Fig. 2 gezeigt.

Das 4-DAPS wurde wie in Beispiel 1 beschrieben hergestellt.

1. Kopplung von 4-DAPS an Cytidin:

Die Reinheit des Produkts wurde mittels Dünnschichtchromatographie (Platten mit Fluoreszenz-Indikator, Laufmittel: Etac/MeOH 1/1) überprüft.

2. Aktivierung von 5(4-DAPS)-Cytidin zum entsprechenden HSI-Ester:

Ein Aliquot der Lösung des 5(4-DAPS)-Cytidin wurde im selben Lösungsmittel (4 Teile Methanol und 1 Teil DMF) mit der doppelten molaren Menge Dicyclohexylcarbodiimid (DCC) und der 7 bis 10-fachen molaren Menge an N-Hydroxysuccinimid (HSI) versetzt. Nach einer Reaktionszeit von etwa 1 h ist die Aktivierung des 5(4-DAPS)-Cytidin zum entsprechenden HSI-Ester
beendet. Er kann direkt zur Kopplung an HSA eingesetzt werden.

3. Kopplung des HSI-Esters von 5(4-DAPS)-Cytidin an HSA:

Die Reinheit des erfindungsgemäßen Konjugats wurde mittels HPLC (vgl. Beispiel 1) überprüft.

Beispiel 4: Herstellung eines erfindungsgemäßen Konjugats aus UDR, einem eine Azogruppe enthaltenden Linker und humanem Serumalbumin (UDR-4-DAPS-HSA)

Die Herstellung des erfindungsgemäßen Konjugats erfolgte, wie in Beispiel 3 beschrieben, wobei anstelle von Cytidin UDR verwendet wurde. Es wurde UDR-4-DAPS-HSA erhalten.

Beispiel 5: Herstellung eines erfindungsgemäßen Konjugats aus AraC, einem eine Azogruppe enthaltenden Linker und humanem Serumalbumin (AraC-4-DAPS-HSA)

Die Herstellung des erfindungsgemäßen Konjugats erfolgte, wie in Beispiel 3 beschrieben, wobei anstelle von Cytidin AraC verwendet wurde. Es wurde AraC-4-DAPS-HSA erhalten.
Beispiel 6: Herstellung eines erfindungsgemäßen Konjugats aus CDR, einem eine Azogruppe enthaltenden Linker und humanem Serumalbumin (CDR-4-DAPS-HSA)

Die Herstellung des erfindungsgemäßen Konjugats erfolgte, wie in Beispiel 3 beschrieben, wobei anstelle von Cytidin CDR verwendet wurde. Es wurde CDR-4-DAPS-HSA erhalten.

Beispiel 7: Herstellung eines erfindungsgemäßen Konjugats aus 7-Chlortetracyclin, einem eine Azogruppe enthaltenden Linker und humanem Serumalbumin

Die Herstellung des Konjugats und seine Struktur sind in Fig. 3 gezeigt.

4-DAPS wurde wie in Beispiel 1 beschrieben hergestellt.

1. Kopplung von 4-DAPS an 7-Chlortetracyclin:

718,5 mg (1,5 mM) von 7-Chlortetracyclin (MG 478,9) wurden in 20 ml 1 N NaOH gelöst und unter ständigem Rühren die 4-DAPS-Lösung portionsweise (je 1 ml) zugegeben. Die zuerst gelb gefärbt 7-Chlortetracyclin-Lösung nahm während der Zugabe von 4-DAPS eine zunehmend intensiv rote Färbung an. Nach einer Reaktionszeit von etwa 24 h wurde die tiefrote Lösung mit 1 N HCl auf einen pH-Wert von etwa 2 eingestellt und lyophilisiert. Der trockne Rückstand wurde anschließend in einem Gemisch von 8 ml MeOH und 2 ml DMF gelöst und durch Filtration vom unlöslichen Bodenkörper abgetrennt. Es wurde 7-Chlor-9(4-diazophenylsulfonsäure)-tetracyclin (4-DAPS-Chlortetracyclin) erhalten.

2. Aktivierung des 4-DAPS-Chlortetracyclins zur Proteinkopplung:
Ein Aliquot der Lösung des 4-DAPS-Tetracyclins wurde im selben Lösungsmittel (4 Teile MeOH und 1 Teil DMF), ohne vorherige Abtrennung des überschüssigen 7-Chlortetracyclins mit der doppelten molaren Menge an DCC (bezogen auf die eingesetzte Menge an Phenylsulfonsäure) und der 7-10-fachen molaren Menge an HSI versetzt. Nach einer Reaktionszeit von etwa 2 h ist die Aktivierung des 4-DAPS-Chlortetracyclins zum entsprechenden HSI-Ester beendet. Der so erhaltene Ester kann direkt zur Proteinkoppelung eingesetzt werden.

3. Kopplung des HSI-Esters von 4-DAPS-Chlortetracyclin an HSA:

Die Reinheit des so erhaltenen Konjugats wurde mittels HPLC (vgl. Beispiel 1) bestimmt.

Beispiel 8: Herstellung eines Konjugats aus Tetracyclin, einem eine Azo-gruppe enthaltenden Linker und humanem Serumalbumin

Die Herstellung des Konjugats erfolgte wie in Beispiel 7 beschrieben, wobei anstatt 7-Chlortetracyclin Tetracyclin verwendet wurde. Die Struktur des Konjugats ist in Fig. 3 gezeigt.
Beispiel 9: Wachstumsinhibition von Tumorzellen durch Verabreichung erfindungsgemäßer Konjugate

Wie aus Fig. 4 zu ersehen ist, vermindert jedes der erfindungsgemäßen Konjugate im Vergleich zur Kontrolle die Proliferation von Tumorzellen.
Patentansprüche

2. Konjugat nach Anspruch 1, dadurch gekennzeichnet, daß der Wirkstoff eine zur Therapie von Tumor-, Infektions- und/oder Autoimmunerkrankungen verwendbare Verbindung ist.

5. Konjugat nach Anspruch 3, dadurch gekennzeichnet, daß das Chemotherapeutikum ein Antimetabolit ist.

8. Konjugat nach Anspruch 7, dadurch gekennzeichnet, daß der Linker folgende Struktur aufweist:

\[-Y-R-N = N-\]
worin
R eine aromatische Verbindung ist, und
Y eine aus C(O), S(O)₂, P(O)OH und As(O)OH ausgewählte Gruppe ist.

9. Konjugat nach einem der Ansprüche 1-8, dadurch gekennzeichnet, daß das Protein Albumin ist.

10. Konjugat nach Anspruch 1, nämlich das Konjugat von Fig. 1.

11. Konjugat nach Anspruch 1, nämlich das Konjugat von Fig. 2.

12. Konjugat nach Anspruch 1, nämlich das Konjugat von Fig. 3.

GEANDERTE ANSPRUCHE
[beim Internationalen Buro am 7. März 1996 (07.03.96) eingegangen;
ursprünglicher Anspruch 1 geändert; ursprünglicher Anspruch 7 gestrichen;
ursprüngliche Ansprüche 8-14 umnummeriert als Ansprüche 7-13;
weitere Ansprüche unverändert (2 Seiten)]

1. Konjugat aus einem Wirkstoff und einem nicht als körperfremd angese-
henen, nativen Protein, wobei zwischen dem Wirkstoff und dem Pro-
tein ein in einer Zelle spaltbarer Linker vorliegt, dadurch gekennzeich-
net, daß der Linker eine Azo-Gruppe umfaßt.

2. Konjugat nach Anspruch 1, dadurch gekennzeichnet, daß der Wirkstoff
eine zur Therapie von Tumor-, Infektions- und/oder Autoimmunerkran-
kungen verwendbare Verbindung ist.

3. Konjugat nach Anspruch 2, dadurch gekennzeichnet, daß der Wirkstoff
ein Chemotherapeutikum und/oder eine photoaktive Verbindung ist.

4. Konjugat nach Anspruch 3, dadurch gekennzeichnet, daß das Chem-
otherapeutikum ein Antibiotikum ist.

5. Konjugat nach Anspruch 3, dadurch gekennzeichnet, daß das Chem-
otherapeutikum ein Antimetabolit ist.

6. Konjugat nach einem der Ansprüche 1-5, dadurch gekennzeichnet, daß
mehrere Wirkstoffe vorliegen.

7. Konjugat nach einem der Ansprüche 1-6, dadurch gekennzeichnet, daß
der Linker folgende Struktur aufweist:

\[-Y-R-N=N-\]
worin
R eine aromatische Verbindung ist, und
Y eine aus C(O), S(O)₂, P(O)OH und As(O)OH ausgewählte Gruppe ist.

8. Konjugat nach einem der Ansprüche 1-7, dadurch gekennzeichnet, daß das Protein Albumin ist.

9. Konjugat nach Anspruch 1, nämlich das Konjugat von Fig. 1.

10. Konjugat nach Anspruch 1, nämlich das Konjugat von Fig. 2.

11. Konjugat nach Anspruch 1, nämlich das Konjugat von Fig. 3.

13. Verwendung des Konjugates nach einem der Ansprüche 1 bis 11 zur Therapie von Tumor-, Infektions- und/oder Autoimmunerkrankungen.
Fig. 1: Anbindung von 4-Aminophenylsulfonsäure oder 4-Aminophenylphosphonsäure an Albumin, wobei eine Azogruppe als Linker vorliegt.
Sulfanilsäure

Diazotierung

Cytidin

\[
\begin{align*}
\text{NH}_2 & \quad \text{OH} \\
\text{HOCH}_2 & \quad \text{OH} \\
\text{OH} & \quad \text{OH}
\end{align*}
\]

\[
\begin{align*}
\text{NH}_2 & \quad \text{N=NN} \\
\text{N} & \quad \text{N} \\
\text{NH}_2 & \quad \text{O}
\end{align*}
\]
Figur 2: Anbindung von Cytidin über einen eine Azogruppe enthaltenden Linker an Albumin
FIGUR 3

\[\text{HO}_2\text{S} - \text{NH}_2 \xrightarrow{\text{DIAZOTIERUNG}} \text{HO}_2\text{S} - \text{N}^+ \]

\[\text{R}'' = \text{H oder Cl} \]

\[\text{HO}_2\text{S} - \text{N=N} \]

\[(P) \]

\[\xrightarrow{+ \text{DCC; HSI}} \]

\[\text{HO}_2\text{S} - \text{N=N} \]

\[\xrightarrow{+ \text{ALBUMIN}} \]

\[\text{ENZYMATISCHE SPALTUNG} \]

Figuur 3: Anbindung von Tetracyclin über einen Linker an Albumin
Figur 4: Wachstumsinhibition von Tumorzellen durch Verabreichung erfindungsgemäßer Konjugate
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 A61K47/48 A61K41/00

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE,A,41 22 210 (DEUTSCHES KREBSFORSch) 14 January 1993 cited in the application see claims 1,2,10,12</td>
<td>1-14</td>
</tr>
<tr>
<td></td>
<td>WO,A,91 18012 (BIOSPAN CORP) 28 November 1991 see page 1, paragraph 2 see page 8, line 2 - page 9, line 3; claims</td>
<td>1-6,9,14</td>
</tr>
<tr>
<td>X</td>
<td>BE,A,882 541 (PATHOLOGIE CELLULAIRE & MOLECUL) 16 July 1980 see page 3, paragraph 4 see page 4, paragraph 2; claims</td>
<td>1-6,9,14</td>
</tr>
<tr>
<td>X</td>
<td>Further documents are listed in the continuation of box C.</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Patent family members are listed in annex.</td>
<td></td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
- 'A' document defining the general state of the art which is not considered to be of particular relevance
- 'E' earlier document but published on or after the international filing date
- 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- 'O' document referring to an oral disclosure, use, exhibition or other means
- 'P' document published prior to the international filing date but later than the priority date claimed

'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

'&' document member of the same patent family

Date of the actual completion of the international search

21 December 1995

Date of mailing of the international search report

10.01.96

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV RIJWINK Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, FAX (+31-70) 340-3016

Authorized officer

Berte, M
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>J. PHOTOCH. PHOTOBIOI. B: BIOLOGY, vol. 26, October 1994 pages 45-56, HAMBLIN M.R. ET AL. 'PHOTOSENSITIZER TARGETING IN PHOTODYNAMIC THERAPY. I CONJUGATES OF HAEMATOPORPHYRIN WIT ALBUMIN AND TRANSFERRIN.' see page 45; table 1</td>
<td>1-14</td>
</tr>
<tr>
<td>P,A</td>
<td>WO,A,94 27641 (BIOTECH AUSTRALIA PTY LTD ;RUSSELL JONES GREGORY JOHN (AU); WESTWO) 8 December 1994 see page 3, line 6 - line 12; claims 1,3 see page 8, line 1 - line 5</td>
<td>1-8,13, 14</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>DE-A-4122210</td>
<td>14-01-93</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 2059649</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T- 5502886</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 5334391</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-C- 1724800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-B- 4009771</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 57018624</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4376765</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 6790394</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSEIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 6 A61K47/48 A61K41/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 6 A61K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter den recherchierten Gebieten fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGEGEHENE UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE,A,41 22 210 (DEUTSCHES KREBSFORSch) 14.Januar 1993 in der Anmeldung erwähnt siehe Ansprüche 1,2,10,12</td>
<td>1-14</td>
</tr>
<tr>
<td>X</td>
<td>WO,A,91 18012 (BIOSPAN CORP) 28.November 1991 siehe Seite 1, Absatz 2 siehe Seite 8, Zeile 2 - Seite 9, Zeile 3; Ansprüche</td>
<td>1-6,9,14</td>
</tr>
<tr>
<td>X</td>
<td>BE,A,882 541 (PATHOLOGIE CELLULAIRe & MOLECU) 16.Juli 1980 siehe Seite 3, Absatz 4 siehe Seite 4, Absatz 2; Ansprüche</td>
<td>1-6,9,14</td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

Datum des Abschlusses der internationalen Recherche

21.Dezember 1995

Name und Postanschrift der Internationale Recherchebehörde

Europäisches Patentamt. P.B. 5818 Patentstätte 2
NL - 2280 HV Rijswik
Tel. (+31-30) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Bevollmächtigter Beisitzender

Berte, M
<table>
<thead>
<tr>
<th>C (Fortsetzung)</th>
<th>ALS WESentlich ANGeseHEnE UNTERLAGEn</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>J. PHOTOCHEM. PHOTOBIOI. B: BIOLOGY, Bd. 26, Oktober 1994 Seiten 45-56, HAMBLIN M.R. ET AL. 'PHOTOSENSITIZER TARGETING IN PHOTODYNAMIC THERAPY. I CONJUGATES OF HAEMATOPORPHYRIN WIT ALBUMIN AND TRANSFERRIN.' siehe Seite 45; Tabelle 1</td>
<td>1-14</td>
</tr>
<tr>
<td>P,A</td>
<td>WO,A,94 27641 (BIOTECH AUSTRALIA PTY LTD; RUSSELL JONES GREGORY JOHN (AU); WESTWO) 8 Dezember 1994 siehe Seite 3, Zeile 6 - Zeile 12; Ansprüche 1,3 siehe Seite 8, Zeile 1 - Zeile 5</td>
<td>1-8,13, 14</td>
</tr>
<tr>
<td>Patentnummer</td>
<td>Datum der Veröffentlichung</td>
<td>Mitglieder der Patentfamilie</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>DE-A-4122210</td>
<td>14-01-93</td>
<td>KEINE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 2059649</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T- 5502886</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 5334391</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-C- 1724800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-B- 4009771</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 57018624</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4376765</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 6790394</td>
</tr>
</tbody>
</table>