19 DANMARK (10 DK/EP 1579288 T3
12
(12) Overseettelse af
europeeisk patentskrift
Patent-og
Varemaerkestyrelsen

(51) Int.Cl.: G 05 B 17/02 (2006.01) G 05 B 13/02 (2006.01) G 05 B 23/02 (2006.01)
(45) Oversaettelsen bekendtgjort den: 2017-06-26
(80) Dato for Den Europeeiske Patentmyndigheds

bekendtgarelse om meddelelse af patentet: 2017-03-15
(86) Europaeisk ansggning nr.: 03781728.5
(86) Europaeisk indleveringsdag: 2003-11-03
(87) Den europaeiske ansggnings publicetingsdag: 2005-09-28
(86) International ansggning nr.: US2003035001
(87) Internationalt publikationsnr.: W02004042531
(30) Prioritet: 2002-11-04 US 423476 P
(84) Designerede stater: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO

SE SI SK TR
(73) Patenthaver: GE Intelligent Platforms, Inc., 2500 Austin Drive, Charlottesville, VA 22911-8300, USA
(72) Opfinder: WEGERICH, Stephan, W., 133 Golfview Drive, Glendale Heights, IL 60139, USA

XU, Xaio, 2216 Feldott Lane, Naperville, IL 60540, USA
(74) Fuldmeegtig i Danmark: Plougmann Vingtoft A/S, Rued Langgaards Vej 8, 2300 Kobenhavn S, Danmark
(54) Benaevnelse: SYSTEMTILSTANDSOVERVAGNING UNDER ANVENDELSE AF REKURRERENDE LOKAL

INDLARINGSMASKINE
(56) Fremdragne publikationer:

WO-A1-02/086726
WO-A2-02/35299
WO-A2-02/057856
US-A1-2002 128 731
US-A1- 2003 060 808
US-A1- 2004 019 406
US-A1- 2005 021 187
US-A1- 2005 027 400



DK/EP 1579288 T3



DK/EP 1579288 T3

DESCRIPTION

FIELD OF THE INVENTION

[0001] The present invention relates to a method and system for modeling a process, piece of
equipment or complex interrelated system. More particularly, it relates to equipment condition
and health monitoring and process performance monitoring for early fault and deviation
warning, based on recurrent non-parametric modeling and state estimation using exemplary
data.

[0002] US 2002/0128731 A1 discloses an improved empirical model-based surveillance or
control system for monitoring or controlling a process or machine, which provides identification
of transitions between operational states. Empirical model-based estimates generated in
response to receiving actual operational parameters are compared using a global similarity
operator to the actual parameters to indicate whether the process or machine is operating in a
stable state, or is in transition from one state to another.

[0003] WO-A-02/35299 discloses a method for estimating and reducing uncertainties in
process measurements. A reference matrix contains valid measurements characterizing
operation of a multivariate process. Modeling parameters of the reference matrix are derived.
The final model parameters, balanced with respect to measuring and modeling uncertainties,
are applied to model a new set of measurements. If the new set has no faults then all modeled
values and modeling uncertainties can be used to control the process. If the new set has only
one fault then the modeled value and modeling uncertainty of the faulted measurement plus
the measured values and measuring uncertainties of the unfaulted measurements can be used
to control the process while repair procedures are implemented for the identified fault. If the
new set has more

than one fault then the process should be shut down, and repair procedures should be
implemented for all identified faults.

SUMMARY OF THE INVENTION

[0004] According to the present invention, there is provided a method of system state
monitoring as set out in claim 1.

[0005] The present invention also provides an apparatus for system state monitoring as set
out in claim 20.

[0006] Optional features are set out in the dependent claims.

BRIEF DESCRIPTION OF THE DRAWINGS
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[0007]

FIG. lis process flowchart for equipment health monitoring using the model of an embodiment
of the invention;

FIG. 2 shows a diagram for windowed adaptation in a model according to an embodiment of
the invention; and

FIG. 3 shows a block diagram of a system according to an embodiment of the invention for
monitoring equipment health.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0008] In the following, there is described an empirical, non-parametric multivariate modeling
method and apparatus for state modeling of a complex system such as equipment, processes
or the like, and provides equipment health monitoring, process performance optimization, and
state categorization. In a machine, process or other complex system that can be characterized
by data from sensors or other measurements, the modeling method comprises first acquiring
reference data observations from the sensors or measurements representative of the
machine, process or system, and then computing the model from a combination of the
representative data with a current observation from the same sensors or measurements. The
model is recomputed with each new observation of the modeled system. The output of the
model is an estimate of at least one sensor, measurement or other classification or
qualification parameter that characterizes the state of the modeled system.

[0009] Accordingly, for equipment health monitoring, the model provides estimates for one or
more sensors on the equipment, which can be compared to the actually measured values of
those sensors to detect a deviation indicative of an incipient failure mode. Alternatively, the
model can estimate a performance parameter that can be used to optimize a process, by
indicating how that performance parameter changes with controllable changes in inputs to the
process. The estimate provided by the model can even by a logical or qualitative output
designating the state of the modeled system, as in a quality control application or a disease
classification medical application.

[0010] Advantageously, the modeling method employs similarity-based modeling, wherein the
model estimate is comprised of a weighted composite of the most similar observations in the
reference data to the current observation. The model employs matrix regularization to control
against ill-conditioned outputs, e. g., estimates that blow up to enormous or unrealistic values,
which are useless in the applications of the model. For applications in which the size of the
reference data is large, or the sampling time of observations (and thus the need for estimates
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from the model) is fast, the current observation can be indexed into a subset domain or fuzzy
subset of the reference data using a comparison of the current observation with a reference
vector, for quicker computation of the estimate.

[0011] The described apparatus comprises a memory for storing the reference data; an input
means such as a networked data bus or analog-to-digital converter connected directly to
sensors, for receiving current observations; a processing unit for computing the model
estimate responsive to the receipt of the current observation; and output means such as a
graphic user interface for reporting the results of the modeling. The described apparatus
further comprises a software module for outputting the model estimates to other software
modules for taking action based on the estimates.

[0012] The modeling method of an embodiment the present invention can be used in
equipment condition monitoring where the model estimates sensor readings in response to
current readings, and the estimates and actual readings are compared to detect and diagnose
any equipment health issues. The modeling method can also be extended for use in
classification of a system characterized by observed variables or features, where the output of
the model can be an estimate of a parameter used for classifying. Generally, an embodiment
of the invention will be described with respect to equipment health monitoring.

[0013] A reference data set of observations from sensors or other variables of the modeled
system comprises sufficient numbers of observations to characterize the modeled system
through all of the dynamics of that system that are anticipated for purposes of the modeling.
For example, in the case of monitoring a gas combustion turbine for equipment health and
detection of incipient failures, it may be sufficient to obtain 500 to 10,000 observations from a
set of 20-80 temperature, flow and pressure sensors on the turbine, throughout the operational
range of the turbine, and throughout environmental changes (seasons) if the turbine is located
outside. As another example of equipment health monitoring, 10-20 sensors on a jet engine
can be used to obtain 50-100 observations of take-off or cruise-mode operation to provide
adequate modeling. In the event that all such data is not available up front (for example,
seasonally affected operation), the reference set can be augmented with current observations.

[0014] Observations may comprise both real-world sensor data and other types of
measurements. Such measurements can include statistical data, such as network traffic
statistics; demographic information; or biological cell counts, to name a few. Qualitative
measurements can also be used, such as sampled opinions, subjective ratings, etc. All that is
required of the input types used is that they are related in some fashion through the physics,
mechanics, or dynamics of the system being modeled (or are suspected to be so), and in
aggregate represent "states" the modeled system may take on.

[0015] With reference to FIG. 1, in an embodiment of the invention, the reference set of
observations is formed into a matrix, designated H for purposes hereof, in a step 102 typically
with each column of the matrix representing an observation, and each row representing values
from a single sensor or measurement. The ordering of the columns (i. e. , observations) in the
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matrix is not important, and there is no element of causality or time progression inherent in the
modeling method. The ordering of the rows is also not important, only that the rows are
maintained in their correspondence to sensors throughout the modeling process, and readings
from only one sensor appear on a given row. This step 102 occurs as part of the setup of the
modeling system, and is not necessarily repeated during online operation.

[0016] After assembling a sufficiently characterizing set H of reference data observations for
the modeled system, modeling can be carried out. Modeling results in the generation of
estimates in response to acquiring or inputting a real- time or current or test observation, as
shown in step 107, which estimates can be estimates of sensors or non-sensor parameters of
the modeled system, or estimates of classifications or qualifications distinctive of the state of
the system. These estimates can be used for a variety of useful modeling purposes as
described below.

[0017] The generation of estimates according to the modeling method of an embodiment
comprises two major steps after acquiring the input in 107. In the first step 118, the current
observation is compared to the reference data H to determine a subset of reference
observations from H having a particular relationship or affinity with the current observation, with
which to constitute a smaller matrix, designated D for purposes hereof. In the second step 121,
the D matrix is used to compute an estimate of at least one output parameter characteristic of
the modeled system based on the current observation. Accordingly, it may be understood that
the model estimate Yegt is a function of the current input observation Yin and the current matrix

D, derived from H:

7, =D a)
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where the vector Yggi of estimated values for the sensors is equal to the contributions from

each of the snapshots of contemporaneous sensor values arranged to comprise matrix D.
These contributions are determined by weight vector W. The multiplication operation is the
standard matrix/vector multiplication operator, or inner product The similarity operator is
symbolized in Equation 3, above, as the circle with the "X" disposed therein. Both the similarity
operation of Equation 3 and the determination F of membership comprising D from H and the
input observation Yin are discussed below.

[0018] As stated above, the symbol @ represents the "similarity" operator, and could
potentially be chosen from a variety of operators. In the context of the embodiment, this
symbol should not to be confused with the normal meaning of designation of &, which is
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something else. In other words, for purposes of the present embodiment the meaning of & is
that of a "similarity” operation.

[0019] The similarity operator, @, works much as regular matrix multiplication operations, on
a row-to-column basis, and results in a matrix having as many rows as the first operand and as
many columns as the second operand. The similarity operation yields a scalar value for each
combination of a row from the first operand and column from the second operand. One
similarity operation that has been described above involves taking the ratio of corresponding
elements of a row vector from the first operand and a column vector of the second operand,
and inverting ratios greater than one, and averaging all the ratios, which for normalized and
positive elements always yields a row/column similarity value between zero (very different) and
one (identical). Hence, if the values are identical, the similarity is equal to one, and if the values
are grossly unequal, the similarity approaches zero.

[0020] Another example of a similarity operator that can be used determines an elemental
similarity between two corresponding elements of two observation vectors or snapshots, by
subtracting from one a quantity with the absolute difference of the two elements in the
numerator, and the expected range for the elements in the denominator. The expected range
can be determined, for example, by the difference of the maximum and minimum values for
that element to be found across all the data of the reference library H. The vector similarity is
then determined by averaging the elemental similarities.

[0021] In yet another similarity operator that can be used in an embodiment of the present
invention, the vector similarity of two observation vectors is equal to the inverse of the quantity
of one plus the magnitude Euclidean distance between the two vectors in n-dimensional space,
where n is the number of elements in each observation, that is, the number of sensors being
observed. Thus, the similarity reaches a highest value of one when the vectors are identical
and are separated by zero distance, and diminishes as the vectors become increasingly distant
(different).

[0022] Other similarity operators are known or may become known to those skilled in the art,
and can be employed in the embodiments of the present invention as described herein. The
recitation of the above operators is exemplary and not meant to limit the scope of the
invention. In general, the following guidelines help to define a similarity operator for use in an
embodiment of the invention as in equation 3 above and elsewhere described herein, but are
not meant to limit the scope of the invention:

1. 1. Similarity is a scalar range, bounded at each end.

2. 2. The similarity of two identical inputs is the value of one of the bounded ends.

3. 3. The absolute value of the similarity increases as the two inputs approach being
identical.

[0023] Accordingly, for example, an effective similarity operator for use in an embodiment the
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present invention can generate a similarity of ten (10) when the inputs are identical, and a
similarity that diminishes toward zero as the inputs become more different Alternatively, a bias
or translation can be used, so that the similarity is 12 for identical inputs, and diminishes
toward 2 as the inputs become more different. Further, a scaling can be used, so that the
similarity is 100 for identical inputs, and diminishes toward zero with increasing difference.
Moreover, the scaling factor can also be a negative number, so that the similarity for identical
inputs is -100 and approaches zero from the negative side with increasing difference of the
inputs. The similarity can be rendered for the elements of two vectors being compared, and
summed or otherwise statistically combined to yield an overall vector-to-vector similarity, or the
similarity operator can operate on the vectors themselves (as in Euclidean distance).

[0024] Significantly, an embodiment of the present invention can be used for monitoring
variables in an autoassociative mode or an inferential mode. In the autoassociative mode,
model estimates are made of variables that also comprise inputs to the model. In the inferential
mode, model estimates are made of variables that are not present in the input to the model. In
the inferential mode, Equation 1 above becomes:

Y. =D, oW (5)

-5, ®D,] +(5, @7,) ©

where the D matrix has been separated into two matrices Din, and Dg, according to which
rows are inputs and which rows are outputs, but column (observation) correspondence is
maintained.

[0025] A key aspect of one embodiment is that D is determined recurrently with each new
input observation, from the superset of available learned observations H characterizing the
dynamic behavior of the modeled system. In doing so, sufficiently relevant exemplars or
learned observations are used to characterize the modeled behavior in the neighborhood of
the current observation, but the model avoids both undue overfitting as well as impractical
computational time. The determination of membership in D according to an embodiment is
accomplished by relating the current input observation to observations in H, and when there is
a sufficient relationship, that learned observation from H is included in D, otherwise it is not
included in D for purposes of processing the current input observation.

[0026] According to one embodiment of the invention, the input observation is compared to
exemplars in H using the similarity operation to render a similarity score for each such
comparison, called "global similarity” for purposes hereof. If the resulting global similarity is
above a certain threshold, or is one of the x highest such global similarities across all
exemplars in H, the exemplar or learned observation is included in D. For a similarity operator
rendering similarity scores between zero (different) and one (identical), a typical threshold may
be 0.90 or above, by way of example. However, the choice of threshold will depend on the
nature of the application, and especially on the number of exemplars in the set H. In the event
that the highest x similarities are used to determine membership in D, it is not uncommon to
use somewhere in the range of 5 to 50 exemplars in D, even when selecting from a set H that
may have an enormous number of exemplars, such as 100,000. A hybrid of threshold and
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count can be used to determine membership of D, for example by using a threshold for
inclusion, but requiring that D contain no less than 5 exemplars and no more than 25.

[0027] Importantly, not all elements of the observations need be used for determining global
similarity. Certain variables or sensors may be deemed more dominant in the physics of the
monitored system, and may be the basis for determining membership of D, by performing the
global similarity calculation only on a subvector comprised the those elements from each of the
current observation and each learned observation. By way of example, in an inferential model,
in which the input observation has ten (10) sensor values, and the output of the model is an
estimate for five (5) additional sensor values not among the inputs, the global similarity may be
computed using a subvector of the input vector and the learned observations comprising only

the 15 2" 5t and 71 sensor values, even though the estimate of the 5 outputs will be
performed using all 10 inputs. Selection of which input sensors to rely on in determining global
similarity for constituting membership in the D matrix can be made using domain knowledge, or
can be determined from the least root mean square error between actual values and estimates
produced by the model when tested against a set of test data (not part of the set H)
characterizing normal system behavior, among other methods.

[0028] In an alternative to the use of the global similarity, membership in D can be determined
by examining one or more variables at an elemental level, and including exemplars from H that
have elemental values fitting a range or fitting some other criterion for one or more elements.
For example, in the fanciful 10-input, 5-output model mentioned above, D might be comprised

by exemplars from H with the 5 closest values for the 15t sensor to the same sensor value for
the current observation, the 5 closest value for the ond sensor, the 5 closest for the 5th sensor,

and the 5 closest for the 7! sensor, such that D has at most 20 vectors from H (though
possibly less if some repeat). Note that this is different from the global similarity in that a
learned observation may be included in D solely because it has a closely matching value on an
mth sensor, irrespective of the rest of its sensor values.

[0029] In a preferred embodiment, the examination at an elemental level for membership in D
can be performed on variables that do not in fact comprise inputs to the model, but are
nonetheless sensor values or measurements available from the system with each observation
of the other sensors in the model. A particularly important circumstance when this can be
useful is with ambient condition variables, such as ambient air temperature, or ambient
barometric pressure. Such ambient variables - while not necessarily serving as inputs to any
given model - may be proxies for overall conditions that impact the interrelationships of the
other sensor values that are in the model. Consequently, the use of ambient variables for
determining membership in D of exemplars selected from H can be a good way of providing a
D matrix with relevant exemplars to seasonal variation. For example, in an application for
monitoring the health of the engine of a locomotive, a variety of engine parameters (e.g., fuel
flow, exhaust gas temperature, turbo pressure, etc.) may be used to model the behavior of the
engine, and ambient temperature may be used as an ambient variable for selecting
observations from H for D. The ambient temperature is a proxy for the weather conditions that
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affect how all the other parameters may interrelate at any given temperature. H ideally
contains historic data of normal performance of the engine, for all temperature ranges, from
below freezing in winter, to sweltering temperatures of a desert summer. Exemplars from H
(coming from all across this temperature range) may be selected for a particular D matrix if the
ambient temperature of the exemplar is one of the x closest values to the ambient temperature
of the current input reading. Note that in computing the model estimates per equations 1-4
above, ambient temperature would not necessarily be an input or an output.

[0030] In a preferred embodiment, a hybrid of the ambient variable data selection and one of
either global similarity or elemental test for inclusion, is used in combination. Thus, for
example, ambient temperature may be used to select from a superset of H having 100,000
learned observations covering temperatures from well below freezing to over 100 degrees
Fahrenheit, a subset of 4000 observations to comprise an intermediate set H', which 4000
observations are those within +/- 5 degrees from the current ambient temperature. This
intermediate subset H' can then be used without alteration for several hours worth of input data
(during which ambient temperature has not shifted significantly), to repeatedly generate a D
matrix of, say, 30 vectors selected from the 4000 by means of global similarity for each input
observation. In this way, the current observation can be closely modeled based on the
performance characteristics of the system at that moment, within the framework of a set of
data selected to match the ambient conditions. This cuts down on computational time (avoiding
processing all 100,000 observations in H), avoids overfitting, and provides high fidelity
modeling tuned to the conditions in which the monitored equipment is encountered.

[0031] Yet another way of determining membership in D involves a modified use of global
similarity, for improving the computational speed of this step. Accordingly, a reference vector,
which may be one of the exemplars in H, is first compared to all the learned observations to
generate a global similarity for each comparison. This can be done before on-line monitoring is
commenced, and need be done only once, up front. Then, during monitoring the current
observation is compared to that reference vector using global similarity, instead of comparing
the current observation to all learned observations in H. The resulting global similarity score is
then compared to the pre-calculated global similarities of the reference vector vis-a-vis the
learned observations in H, and the closest n scores indicate the learned observations to
include in D; or alternatively, those global similarities within certain limits around the global
similarity of the current observation, indicate the learned observations to include in D.

[0032] According to yet another way to determine membership in D, the reference set of
learned observations in H are grouped using a clustering method into a finite number of
clusters. In real-time, the current observation is then analyzed to determine which cluster it
belongs to, and the learned observations in that cluster are then drawn from to constitute the D
matrix. All of the learned observations in the cluster can be included, or a sampled subset of
them can be included in order to keep the size of D manageable if the cluster contains too
many vectors. The subset can be sampled randomly, or can be sampled from using a
"characterized" sampling method as disclosed later herein.
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[0033] To select the clusters for the clustering algorithm, seed vectors can be selected from H.
A vector becomes a seed for a cluster based on containing a maximum or minimum value for a
sensor across all the values of that sensor in H. One clustering technique that can be used is
fuzzy C means clustering, which was derived from Hard C-Means (HCM). Accordingly, vectors
in H can have partial membership in more than one cluster. Fuzzy C-Means (FCM) clustering
minimizes the objective function:

H [4

- m 32
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where X = (x4, Xo, X,) is n data sample vectors (the learned observations in H), U is a partition

of Xin ¢ part, V= (vy4, vo, ..., V;) are cluster centers in RV (seeded as mentioned above from

actual observations in H), uj is referred to as the grade of membership of x, to the cluster /, in
this case the member of uj is 0 or 1, and d?(x, v;) is an inner product induced norm on RV:
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The problem is to determine the appropriate membership uj, which is done through iterative

determination to convergence of:
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where ¢ is the number of clusters. The uj; are randomly selected initially subject to the

constraints:

0<u, <, forl<i<c 1<k<n (11)
0<kz;uik<n, forl<i<ec (12)
Z;u,.k =1, forl<k<nm (13)

During monitoring, the input observation is compared using global similarity, Euclidean
distance, or the like, to the cluster centers v;, to determine which cluster the input observation

is most related to. The D matrix is then constituted from the identified cluster. A cluster is
determined to be those vectors in H that have a fuzzy membership uj, that is above a certain
threshold, typically 0.70 (but dependent on the application and availability of data in H). Thus, a
particular observation in H could belong to more than one cluster. The cluster in H matching
the input observation can be used in its entirety for D, or can be selected from to comprise D,
using any of the other methods described herein. Fuzzy c-means clustering can thus be used
to reduce the number of vectors in H that need to be analyzed with some other method for
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inclusion in D, such as global similarity, as a computational savings.

[0034] An additional important aspect of one embodiment is adaptation of the model.
Especially for equipment health monitoring (but also for other applications) the issue of keeping
the model tuned with slow and acceptable changes to the underlying modeled system is critical
for practical use. When monitoring equipment, graceful aging is assumed, and should not
become a source of health alerts. Therefore the model must adapt through time to gradual
aging and settling of the monitored equipment, and not generate results that suggest an
actionable fault is being detected.

[0035] Adaptation can be accomplished in an embodiment in a number of ways. According to
a first way, called for purposes herein "out-of-range" adaptation, certain of the monitored
variables of the system are considered drivers or independent variables, and when they take
on values outside of the ranges heretofore seen in the set H of exemplars, then the current
observation is not alerted on, but rather is added to the set H, either by addition or by
substitution. In this way, when a driver variable goes to a new high or a new low, the model
incorporates the observation as part of normal modeled behavior, rather than generating an
estimate that in all likelihood is different from the current observation. The drawback of this out-
of-range adaptation is two-fold: (1) not all variables can be considered drivers and thus cause
out-of- range adaptation and thus there is an application-specific art to determining which
variables to use; and (2) there exists the possibility that an out-of-range event is in fact initial
evidence of an incipient fault, and the model may now not as easily
identify the fault With regard to the first concern, ambient variables can usually make good
candidates for out-of-range adaptation as a rule. For the second concern, a preferred
embodiment of the invention does not permit n successive out-of-range adaptations, where n
is typically in the range of 2 and up, depending on the sampling rate of the data acquisition.

[0036] Usually, out-of-range adaptation is additive to the H matrix, rather than replacing
exemplars in H. According to another kind of adaptation that can be employed in parallel with
out-of-range adaptation, vectors are added to H that occur in a window of observations
delayed by some offset from the current observation, and these additions replace the oldest
exemplars in H. Thus H is a first-in, first-out stack, and is eventually turned over entirely with
updated observations, thus tracking the graceful aging of the monitored equipment. The offset
is required so that observations aren't learned that include developing faults, and the choice of
delay size is largely a function of the application, the data sampling rate, and the nature of
expected failures and how they manifest themselves.

[0037] Turning to FIG. 2, this method of moving window adaptation can be better understood
in view of a timeline 206 of sequential current observations being monitored. Monitoring begins
at time step 210. A reference library H of learned observations 213 has been assembled from
prior normal operation of the monitored equipment. The current real-time observation 220 is
being monitored presently. A window of past observations 225 is drawn from to provide
updated exemplars to reference library H 213, which may or may not employ a replacement
scheme by which older exemplars are deleted from the library 213. The window 225 moves
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forward with the timeline 206, at some delay separation 230 from the current observation 220.
If faults are detected in observations that enter the leading edge of window 225, there are two
alternatives for avoiding adapting into the developing fault. First, the faulted observations
themselves can be flagged to not be adapted on. Second, windowed adaptation can be turned
off until the fault is resolved. Upon resolution of the fault, the window would be reinitiated
starting with "normal" data beyond (in time) the fault resolution event.

[0038] The observations in window 225 can be sampled for addition to library 213, or can all
be added. Methods for sampling a subset of observations to add to library 213 include random
sampling; periodic sampling; and sampling, in which the set of observations in window 225 is
mined for those observations that characterize the dynamics of operation throughout the
window. For example, one way is to pick those observations which contain a highest value or a
lowest value for any one of the sensors in the observations throughout the window, optionally
augmented with observations having sensor values that cover the sensor range (as seen
throughout the window) at equally spaced values (e. g., for a temperature range of 50-100
degrees, picking vectors at 60,70, 80 and 90, as well as the extremes of 50 and 100).

[0039] Turning to FIG. 3, the use of the modeling of an embodiment of the present invention
is described in the context of a complete apparatus for performing equipment health
monitoring. An H reference library 304 is stored in memory, typically permanent disk drive
read/write  memory, and comprises learned observations characterizing the anticipated
operational dynamics of the monitored equipment in normal, non-faulted operation. Data
acquired or supplied from sensors or other measurement systems on the equipment are
provided for active monitoring to a set of preconditioning modules 307, including data cleaning,
feature extraction and complex signal decomposition. Data cleaning includes filtering for
spikes, smoothing with filters or splines, and other techniques known in the art. Feature
extraction can include spectral feature extraction, and translation of analog data values into
classes or other numeric symbols, as is known in the art For sensors such as acoustics and
vibration, complex signal decomposition is a form of feature extraction in which pseudo-
sensors are provided from the spectral features of these complex signals, and can be FFT
components as signals, or subbands.

[0040] The preconditioned data is then supplied to the D selector module 311 and the
estimate generator 315. The D selector module 311 employs the techniques mentioned above
to compare the (preconditioned) current observation to the exemplars in the library 304, to
select a subset to comprise the D matrix. The estimate generator uses the D matrix and the
current observation to generate an estimate for sensors describing equipment health
according to Equations 1 through 4 above. Estimates are provided along with the current
observation to a statistical testing module 320 which is described below. The purpose of the
statistical testing module is to test the estimate in contrast to the actual current readings to
detect incipience of faults in the equipment. The estimated sensor values or parameters are
compared using a decision technique to the actual sensor values or parameters that were
received from the monitored process or machine. Such a comparison has the purpose of
providing an indication of a discrepancy between the actual values and the expected values
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that characterize the operational state of the process or machine. Such discrepancies are
indicators of sensor failure, incipient process upset, drift from optimal process targets, incipient
mechanical failure, and so on.

[0041] The estimates and current readings are also available to a diagnostics module 324, as
are the results of the statistical testing module. The diagnostics module 324 can comprise a
rules-based processor for detecting patterns of behavior characteristic of particular known
failure modes, by mapping combinations of residuals, statistical test alerts, raw values and
features of raw values to these known failure modes. This is described in greater detail below.

[0042] The results of both the statistical testing module 320 and the diagnostics module 324
are made available to a user interface module 330, which in a preferred embodiment is a web-
based graphical interface which can be remotely located, and which displays both failure
messages and confidence levels generated by the diagnostics module 324, and charts of
residuals, statistical testing alerts, and raw values. Diagnostic results and statistical test results
can also be made available through a software interface 335 to downstream software that may
use the information, e.g., for scheduling maintenance actions and the like. The software
interface 335 in a preferred embodiment comprises a messaging service that can either be
polled or pushes information to subscribing systems, such as .NET services.

[0043] An adaptation module 340 employs the out-of-range adaptation and the windowed
adaptation described above to update the library 304 as frequently as with every new current
observation.

[0044] The statistical testing module can employ a number of tests for determining an alert
condition on the current observation or sequence of recent observations. One test that can be
used is a simple threshold on the residual, which is the difference between the estimate of a
sensor value and the actual sensor value (or actual preconditioned sensor value) from the
current observation. Alerts can be set for exceeding both a positive and/or a negative threshold
on such a residual. The thresholds can be fixed (e.g., +/- 10 degrees) or can be set as a
multiple of the standard deviation on a moving window of the past n residuals, or the like.

[0045] Another test or decision technique that can be employed is called a sequential
probability ratio test (SPRT), and is described in the aforementioned U.S. Patent No. 5,764,509
to Gross et al. Broadly, for a sequence of estimates for a particular sensor, the test is capable
of determining with preselected missed and false alarm rates whether the estimates and
actuals are statistically the same or different, that is, belong to the same or to two different
Gaussian distributions.

[0046] The SPRT type of test is based on the maximum likelihood ratio. The test sequentially
samples a process at discrete times until it is capable of deciding between two alternatives:
HO:p=0; and H1:p=M. In other words, is the sequence of sampled values indicative of a
distribution around zero, or indicative of a distribution around some non-zero value? It has
been demonstrated that the following approach provides an optimal decision method (the



DK/EP 1579288 T3

average sample size is less than a comparable fixed sample test). A test statistic, Wt, is
computed from the following formula:

fm )

where In() is the natural logarithm, fs() is the probability density function of the observed value

of the random variable Yi under the hypothesis Hg and j is the time point of the last decision.

[0047] In deciding between two alternative hypotheses, without knowing the true state of the
signal under surveillance, it is possible to make an error (incorrect hypothesis decision). Two
types of errors are possible. Rejecting Ho when it is true (type | error) or accepting Ho when it
is false (type Il error). Preferably these errors are controlled at some arbitrary minimum value,
if possible. So, the probability of a false alarm or making a type | error is termed @, and the
probability of missing an alarm or making a type Il error is termed . The well-known Wald's
Approximation defines a lower bound, L, below which one accepts Ho and an upper bound, U
above which one rejects Ho.

11—
vuf=2]

o

L= ]n[l__ﬂ“(ﬂ (16)

[0048] Decision Rule: if WL, then ACCEPT Hy; else if W2U, then REJECT Hy; otherwise,

continue sampling.

[0049] To implement this procedure, this distribution of the process must be known. This is not
a problem in general, because some a priori information about the system exists. For most
purposes, the multivariate Gaussian distribution is satisfactory, and the SPRT test can be
simplified by assuming a Gaussian probability distribution p:

(=)
1 [_ 2:2) }
= e

oN2r 17)

Then, the test statistic a typical sequential test deciding between zero-mean hypothesis Ho and
a positive mean hypothesis Hy is:

M M
LI” \P + —— (yt - —2—] (18)

where M is the hypotheszed mean (typically set at a standard deviation away from zero, as
given by the variance), o is the variance of the training residual data and y; is the input value

being tested. Then the decision can be made at any observation t+1 in the sequence
according to:

1. 1. If Wy £ In(B/(1-a)), then accept hypothesis Ho as true;
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2. 2. If W 2 In((1-B)/a), then accept hypothesis H1 as true; and
3. 3. If In(B/(1-0)) < W1 <In((1-B)/ar), then make no decision and continue sampling.

The SPRT test can run against the residual for each monitored parameter, and can be tested
against a positive biased mean, a negative biased mean, and against other statistical
moments, such as the variance in the residual.

[0050] Other statistical decision techniques can be used in place of SPRT to determine
whether the remotely monitored process or machine is operating in an abnormal way that
indicates an incipient fault. According to another technique, the estimated sensor data and the
actual sensor data can be compared using the similarity operator to obtain a vector similarity. If
the vector similarity falls below a selected threshold, an alert can be indicated and action taken
to notify an interested party as mentioned above that an abnormal condition has been
monitored.

[0051] It should be appreciated that a wide range of changes and modifications may be made
to the embodiments of the invention as described herein. Thus, it is intended that the foregoing
detailed description be regarded as illustrative rather than limiting.
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Patentkrav

1. Fremgangsmade til systemtilstandsovervagning omfattende:

10

15

20

25

at tilvejebringe et datareferenceseset (H) omfattende en flerhed af indleerte
observationer fra sensorer af et modelleret system, der kendetegner den
dynamiske adfaerd af det modellerede system, hvor datareferenceszettet
(H) er i formen af en matrix, hvor hver kolonne af matrixen repraasenterer

en observation og hver raekke repraesenterer veerdier fra en enkelt sensor;
at tilvejebringe en aktuel observation vedrgrende det modellerede system;

at sammenligne den aktuelle observation med datareferencesasttet (H)
under anvendelse af en lighedsoperator til at gengive en lighedsscore for

hver indlaerte observation i datareferencesaettet (H); og

hvis lighedsscoren for en indlzert observation er over en taerskel eller er et
af et forudbestemt antal af de hgjeste lighedsscorer over alle indlzerte
observationer, heriblandt indlzerte observationer i et dataunderseet (D) af
datareferencesasttet (H);

at beregne en model af systemet baseret pd den aktuelle observation og
det aktuelle dataunderseet (D) afledt fra datareferencesaettet (H), hvor at
beregne modellen omfatter at generere et modelestimat omfattende en
vaegtet sammensaetning af dataundersaettet (D).

at tilvejebringe en serie af efterfglgende aktuelle observationer vedrgrende
det modellerede system;

at genberegne modellen ved at genbestemme dataunderseettet (D) for hver
nye aktuelle observation; og

at detektere begyndelse af fejl i systemet ved at teste modelestimatet i
kontrast til den aktuelle observation.
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2. Fremgangsmaden ifglge krav 1, hvor at tilvejebringe et datareferencesaet (H)
yderligere omfatter at modtage observationerne for en flerhed af forskellige

gange.

3. Fremgangsm%den ifglge krav 1, hvor at tilvejebringe en aktuel observation
vedrgrende det modellerede system yderligere omfatter at overvage systemet

under anvendelse af en flerhed af sensorer.

4. Fremgangsmaden ifglge krav 1, hvor:

at tilvejebringe et datareferencesaet yderligere omfatter at modtage

information som svarer til en fgrste flerhed af informationskilder; og

at tilvejebringe en aktuel observation yderligere omfatter at modtage
information som svarer til en anden flerhed af informationskilder.

5. Fremgangsmaden ifglge krav 4, hvor den anden flerhed af informationskilder er
mindst delvist den samme som den fgrste flerhed af informationskilder.

6. Fremgangsmaden ifglge krav 5, hvor den anden flerhed af informationskilder er
mindst delvist den samme som den farste flerhed af informationskilder, men ikke
fuldkommen inkluderer hele af den fgrste flerhed af informationskilder.

7. Fremgangsméden ifglge krav 1, hvor at sammenligne den aktuelle observation
med datareferencesacttet (H) for at bestemme et dataunderszet (D), yderligere
omfatter at bestemme lighed som en funktion, mindst delvist, ved:

at definere lighed som et skalaromrade, begraenset ved hver ende deraf;

at definere et lighedsniveau for to identiske input som omfattende en

veerdi, der svarer til en af enderne af skalaromradet; eller
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at tilvejebringe en stigning for en absolut vaerdi af en lighedsvaerdi, nar to

input naermer sig at veere identiske.

8. Fremgangsmaden ifglge krav 1, hvor at sammenligne den aktuelle observation
med datareferencesaettet (H) for at bestemme et dataundersezet (D ) omfatter at
beregne ligheden mellem referenceobservationer af datareferenceseettet og den
aktuelle observation, hvor ikke alle elementerne i observationerne, som

sammenlignes, anvendes til at bestemme ligheden.

9. Fremgangsmaden ifglge krav 1, hvor at tilvejebringe et datareferencesaet (H)

yderligere omfatter mindst en af:

at modtage observationer vedrgrende ikke-sensormalinger relateret til det
modellerede system, ikke-sensormalingerne omfattende mindst et af
statistisk data, demografiske datanetvaerkstrafikstatistik, biologiske

celletzellinger eller kvalitative malinger; og

at modtage information vedrgrende mindst en omgivende tilstand, som

svarer til det givne system.

10. Fremgangsmaden ifglge krav 1, yderligere omfattende at sammenligne den
aktuelle observation med datareferencesaettet (H) for at bestemme et
dataunderszet (D) omfatter at veelge indlaerte observationer fra
datareferencesaettet (H) som en funktion, mindst delvist, pd baggrund af mindst
en variabel, der ikke er et input eller et output af modellen.

11. Fremgangsmaden ifglge krav 10, hvor den mindst ene variabel omfatter en

omgivende tilstandsvariabel.

12. Fremgangsmaden ifslge krav 10, at sammenligne den aktuelle observation
med datareferencesaettet (H) for at bestemme et dataundersaet (D) omfatter at
anvende den mindst ene variabel til at eliminere en del af referencedataet fra

inklusion i undersaettet og at anvende et forudbestemt niveau af lighed til at
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vaelge referencedata for inklusion i underseettet fra hvad der er tilbage efter

eliminering af den mindst ene variabel.

13. Fremgangsmaden ifglge krav 1, yderligere omfattende at modificere
datareferencesaettet (H).

14. Fremgangsmaden ifglge krav 13, hvor at modificere datareferencesaettet

yderligere omfatter:

at identificere mindst en overvaget systemvariabel som en identificeret

variabel, heriblandt at identificere mindst en omgivende variabel;

at bestemme ndr den identificerede variabel overstiger et omrade af
vaerdier for den identificerede variabel som er pd nuvarende tidspunkt
inkluderet i datareferencesaettet; og

at modificere datareferencesacttet som en funktion, mindst delvist, af den

identificerede variabel, der overstiger omradet af veerdier.

15. Fremgangsmaéden ifglge krav 14, hvor at modificere datareferencesaettet som
en funktion, mindst delvist, af den identificerede variabel, der overstiger omradet

af vaerdier yderligere omfatter at tilfgje yderligere data til datareferencesaettet.

16. Fremgangsmaden ifglge krav 14, hvor at modificere datareferencesaettet som
en funktion, mindst delvist, af den identificerede variabel, der overstiger omradet
af vaerdier yderligere omfatter at erstatte nye data med eksisterende data i
datareferencesaettet.

17. Fremgangsmaden ifglge krav 14, og yderligere omfattende:

nar den identificerede variabel overstiger et omrade af vaerdier for den
identificerede variabel, som er pa nuvaerende tidspunkt inkluderet i
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datareferencesaettet, at bestemme hvorvidt datareferencesaettet alligevel
ikke skal modificeres.

18. Fremgangsmaden ifglge krav 17, hvor at bestemme hvorvidt
datareferencesaettet alligevel ikke skal modificeres yderligere omfatter at
bestemme hvorvidt datareferencesaettet allerede er blevet modificeret et

forudbestemt antal gange.

19. Fremgangsmaden ifglge krav 17, hvor at bestemme hvorvidt
datareferenceseettet alligevel ikke skal modificeres yderligere omfatter at
bestemme hvorvidt det givne system hgjst sandsynligt udviser en fejl.

20. Apparat til systemtilstandsovervagning omfattende:

fgrste organ til at tilvejebringe et datareferenceszet (H) omfattende en
flerhed af indlaerte observationer fra sensorer af et modelleret system der
kendetegner den dynamiske adfzerd af det modellerede system, hvor
datareferenceseettet (H) er i formen af en matrix, hvor hver kolonne af
matrixen reprassenterer en observation og hver raekke repraesenterer

veerdier fra en enkelt sensor;

andet organ til at tilvejebringe en aktuel observation vedrgrende det
modellerede system;

tredje organ til at sammenligne den aktuelle observation med
datareferenceseettet (H) under anvendelse af en lighedsoperator til at
gengive en lighedsscore for hver indleerte observation i
datareferenceseettet (H), og, hvis lighedsscoren for en indlzert observation
er over en teerskel eller er et af et forudbestemt antal af de hgjeste
lighedsscorer over alle indlaerte observationer, heriblandt den indlaerte
observation i et dataunderseet (D) af datareferenceseettet (H);

fierde organ til at beregne en model af systemet baseret pa den aktuelle

observation og det aktuelle dataundersaet (D) afledt fra
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datareferenceseettet (H), hvor at beregne modellen omfatter at generere et
modelestimat omfattende en vaegtet bestanddel af dataunderseettet (D);

femte organ til at tilvejebringe en serie af efterfglgende aktuelle

observationer vedrgrende det modellerede system;

5 sjette organ til at genberegne modellen ved at genbestemme

dataunderseettet (D) for hver nye aktuelle observation; og

syvende organ til at detektere begyndelse af fejl i systemet ved at teste
modelestimatet i kontrast til den aktuelle observation

10 21. Apparatet ifglge krav 20, hvor det fgrste organ til at tilvejebringe et
datareferencesaet (H) omfatter organ til at modtage observationerne for en
flerhed af forskellige gange.

22. Apparatet ifglge krav 20, hvor det andet organ til at tilvejebringe en aktuel
15 observation i relation til det modellerede system omfatter organ til at overvage
systemet under anvendelse af en flerhed af sensorer.

23. Apparatet ifglge krav 20, hvor:

det fgrste organ til at tilvejebringe et datareferencesaet yderligere omfatter
20 organ til at modtage information som svarer til en fgrste flerhed af
informationskilder; og

det andet organ til at tilvejebringe en aktuel observation omfatter organ til
at modtage information som svarer til en anden flerhed af
informationskilder.

25

24, Apparatet ifglge krav 23, hvor den anden flerhed af informationskilder er
mindst delvist den samme som den farste flerhed af informationskilder.
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25. Apparatet ifglge krav 24, hvor den anden flerhed af informationskilder er
mindst delvist den samme som den fgrste flerhed af informationskilder, men ikke

fuldkommen inkluderer alle af den farste flerhed af informationskilder.

26. Apparatet ifglge krav 20, hvor det tredje organ til at sammenligne den
aktuelle observation med datareferencesaettet (H) for at bestemme et
dataunderseet (D) omfatter organ til at bestemme lighed som en funktion, mindst

delvist, ved:
at definere lighed som et skalaromrade, begraenset ved hver ende deraf;

at definere et lighedsniveau for to identiske input som omfattende en

vaerdi, der svarer til en af enderne af skalaromradet; eller

at tilvejebringe en stigning for en absolut vaerdi af en lighedsvaerdi, nar to
input naermer sig at veere identiske.

27. Apparatet ifglge krav 20, hvor det tredje organ til at sammenligne den
aktuelle observation med datareferencesaettet (H) for at bestemme et
dataundersaet (D) omfatter organ til at beregne ligheden mellem
referenceobservationer af datareferenceszettet og den aktuelle observation, hvor
ikke alle elementerne i observationerne som sammenlignes, bliver anvendt til at

bestemme ligheden.

28. Apparatet ifglge krav 20, hvor det fgrste organ til at tilvejebringe et
datareferencesat (H) yderligere omfatter mindst et af:

organ til at modtage observationer vedrgrende ikke-sensormaélinger
relateret til det modellerede system, ikke-sensormélingerne omfattende
mindst et af statistisk data, demografiske datanetvaerkstrafikstatistik,
biologiske celletaellinger eller kvalitative malinger;

og
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organ til at modtage information vedrgrende mindst en omgivende tilstand

som svarer til det givne system.

29. Apparatet ifglge krav 20, hvor det tredje organ til at sammenligne den
aktuelle observation med datareferencesaettet (H) for at bestemme et
dataundersaat (D) omfatter organ til at vaelge indlaerte observationer fra
datareferencesaettet (H) som en funktion, mindst delvist, pd baggrund af mindst

en variabel, der ikke er et input eller et output af modellen.

30. Apparatet ifglge krav 29, hvor den mindst ene variabel omfatter en

omgivende tilstandsvariabel.

31. Apparatet ifglge krav 29, hvor organet til at vaelge indlaerte observationer fra
datareferencesaettet (H) som en funktion, mindst delvist, pd baggrund af mindst
en variabel, der ikke omfatter en observation af datareferencesaettet (H) og den
aktuelle observation omfatter organ til at anvende den mindst ene variabel til at
eliminere en del af referencedataet fra inklusion i undersaettet og at anvende et
forudbestemt niveau af lighed til at vaelge referencedata for inklusion i
undersaettet fra hvad der er tilbage efter eliminering af den mindst ene variabel.

32. Apparatet ifglge krav 20, yderligere omfattende organ til at modificere
datareferencesaettet (H).

33. Apparatet ifglge krav 32, hvor organet til at modificere datareferencesaettet

yderligere omfatter:

organ til at identificere mindst en overvaget systemvariabel som en
identificeret variabel, heriblandt at identificere mindst en omgivende

variabel;

organ til at bestemme ndr den identificerede variabel overstiger et omrade
af veerdier for den identificerede variabel som er pa nuvarende tidspunkt

inkluderet i datareferencesaettet; og
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organ til at modificere datareferencesaettet som en funktion, mindst delvist,
af den identificerede variabel, der overstiger omradet af vaerdier.

34. Apparatet ifglge krav 33, hvor organet til at modificere datareferencesaettet
som en funktion, mindst delvist, af den identificerede variabel, der overstiger
omradet af veerdier yderligere omfatter organ til at tilfgje yderligere data til

datareferencesacttet.

35. Apparatet ifglge krav 33, hvor organet til at modificere datareferencesaettet
som en funktion, mindst delvist, af den identificerede variabel, der overstiger
omradet af veerdier yderligere omfatter organ til at erstatte nye data med

eksisterende data i datareferenceseettet.

36. Apparatet ifglge krav 33, yderligere omfattende:

organ til at bestemme hvorvidt datareferencesaettet alligevel ikke skal
modificeres, nar den identificerede variabel overstiger et omrade af veerdier
for den identificerede variabel som er pa nuvarende tidspunkt inkluderet i
datareferencesaettet.

37. Apparatet ifglge krav 36, hvor omfatter organ til at bestemme hvorvidt
datareferencesaettet allerede er blevet modificeret et forudbestemt antal gange.

38. Apparatet ifglge krav 36, hvor organet til at bestemme hvorvidt
datareferencesaettet alligevel ikke skal modificeres yderligere omfatter organ til at
bestemme hvorvidt det givhe system hgjst sandsynligt udviser en fejl.
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