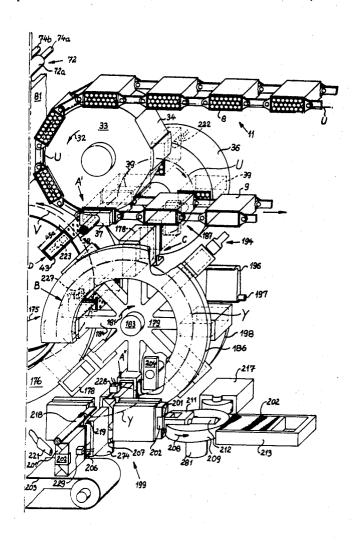
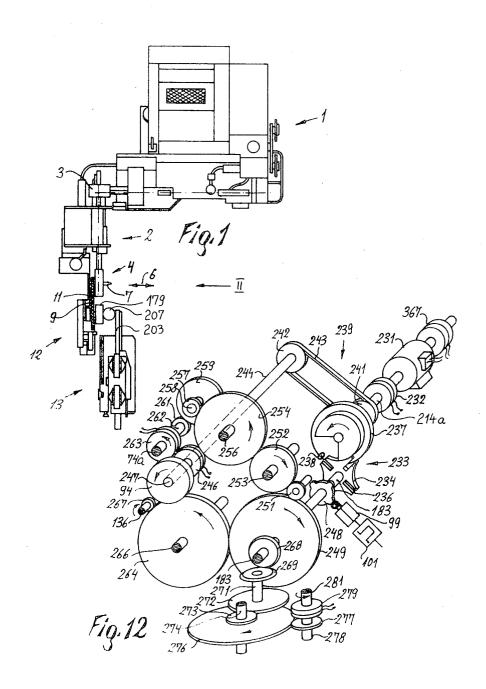
[45] Aug. 7, 1973

[54]	METHOD AND MACHINE FOR THE PRODUCTION OF CIGARETTE PACKS OR THE LIKE				
[75]	Invent	W Ha	iedel Kruse, Hamburg; Gunter ahle, Reinbeck; Otto Erdmann, amburg; Willy Rudszinat, assendorf, all of Germany		
[73]	Assign		nuni-Werke Korber & Co. KG, amburg, Germany		
[22]	Filed:	Oc	et. 28, 1970		
[21]	Appl.	No.: 84	,857		
[30]	Foreign Application Priority Data				
	Oct. 29	9, 1969	Great Britain 53,015/69		
[52]	U.S. C	Z L			
[51]	Int. C	l A:	24c 1/30, A24c 5/35, B65b 47/00		
			h 53/29, 183, 149,		
			53/148, 74, 236		
[56] References Cited					
	ι	J NITE I	STATES PATENTS		
2,810,	998 1	0/1957	Niepmann 53/183		


3,553,925	1/1971	Gianese 53/29 X
3,481,098	12/1969	Sherrill et al 53/29 X

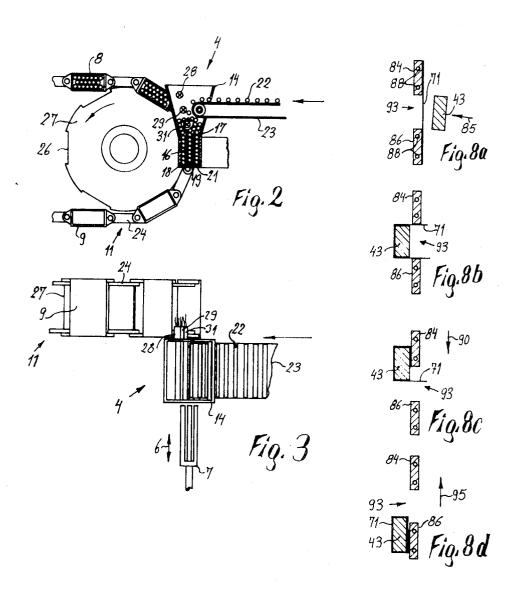
Primary Examiner—Granville Y. Custer, Jr. Assistant Examiner—E. F. Desmond Attorney—Michael S. Striker


[57] ABSTRACT

A cigarette packing machine wherein empty packs or their component parts are withdrawn from the respective magazines only when a detector determines the presence of a block of cigarettes which are being transported to a pack filling station. The detector then causes the transfer of a prefabricated empty pack from its magazine to the filling station or the conversion of one or more blanks into an empty pack and the transfer of such pack to the filling station. Each block of cigarettes is introduced into and enclosed in that pack whose transfer from the magazine to the filling station or whose making from one or more blanks was initiated in response to detection of the particular block.

30 Claims, 47 Drawing Figures

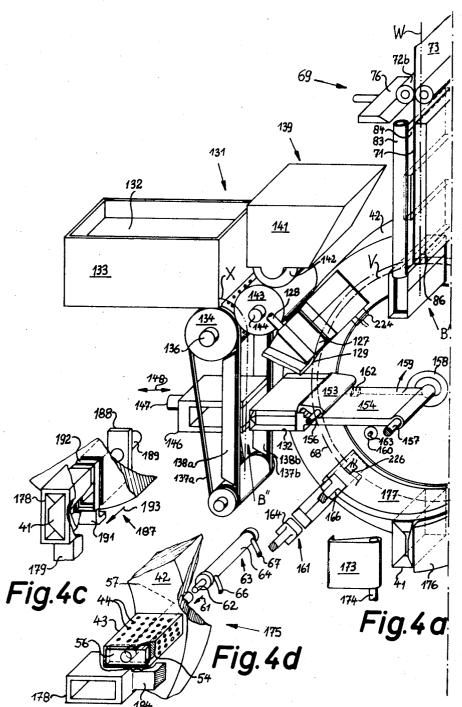
SHEET 01 OF 14



INVENTORS:

FRIEDEL KRUSE GUNTEN HAHLE OTTO END HANN UIWY RUOSZIEAT

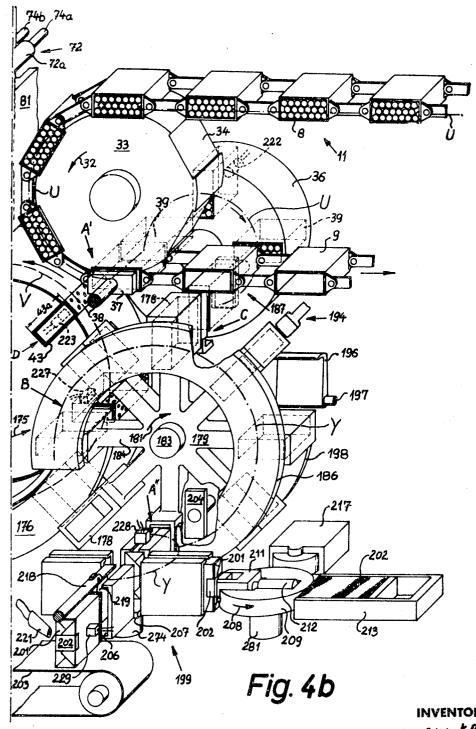
BY Moderal 1. Italia


SHEET 02 OF 14

INVENTORS:

THE PARTER LANGE
THE PA

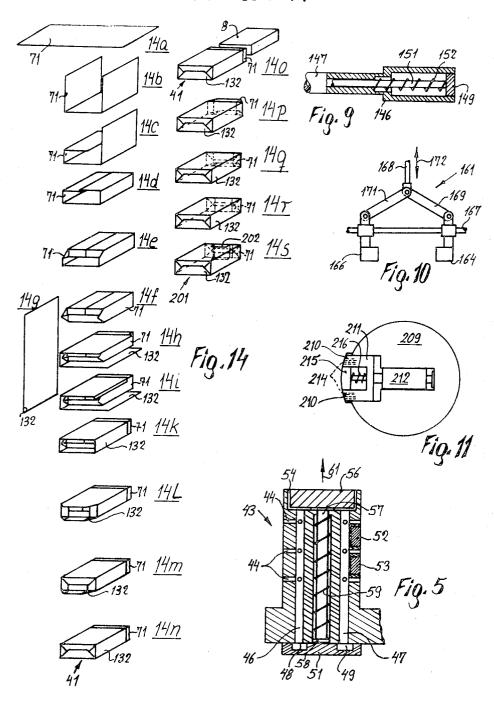
SHEET 03 OF 14



INVENTORS:

FRIEDEL LLUSE GUNTER WANCE OTTOER DHANN VILLY RUGSZINAT

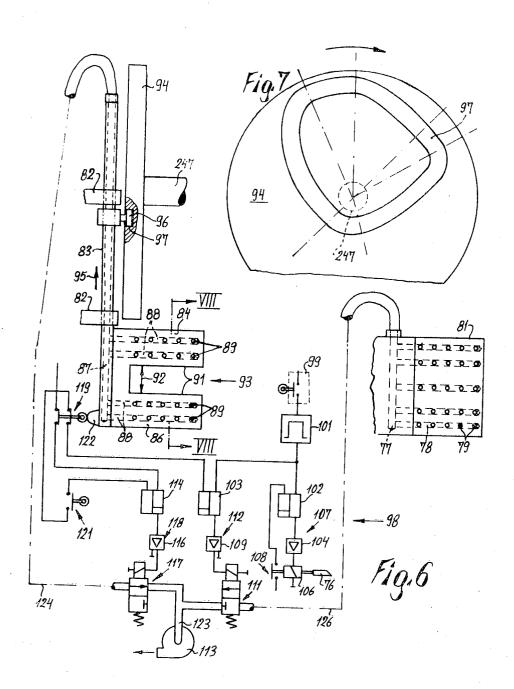
BY Se. ARN 1. 1/2. bes


SHEET 04 OF 14

INVENTORS:
FRIEGEL LRUSE
GÜNTER VAHLE
OTTO ERGITA NIV
VILLY RUDSZINAT

BY Midel 1. Ste. EL.
ATTORNEY

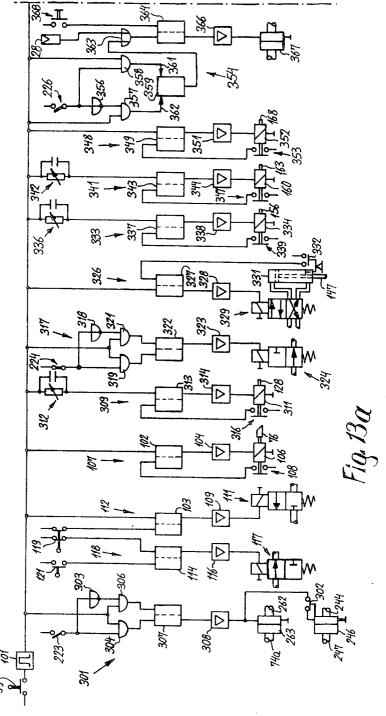
SHEET 05 OF 14



INVENTORS:

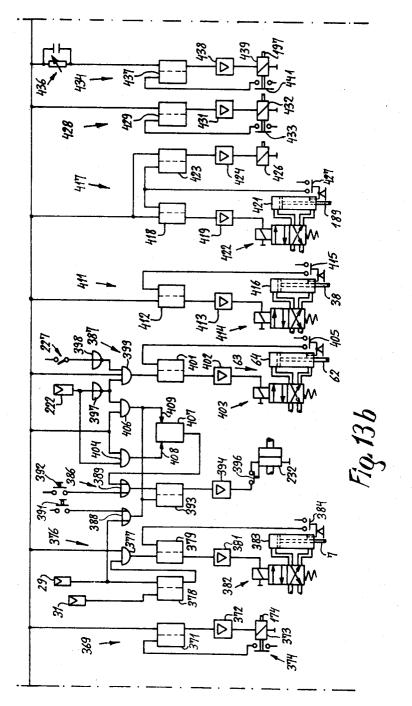
FRIENEL KRUSE GUNTER VAHUE OTTO ERMHANN UILLY RUMSZINAT

BY Manday S. Stebe

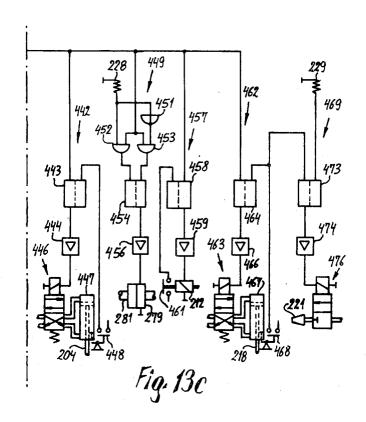

SHEET OS OF 14

INVENTORS:

FRIENEL KRUSE
GÜNTER WAHLE
OTTO ENGMANIV
WICKY RUGSZINAT
BY ALLAND S. H.L.

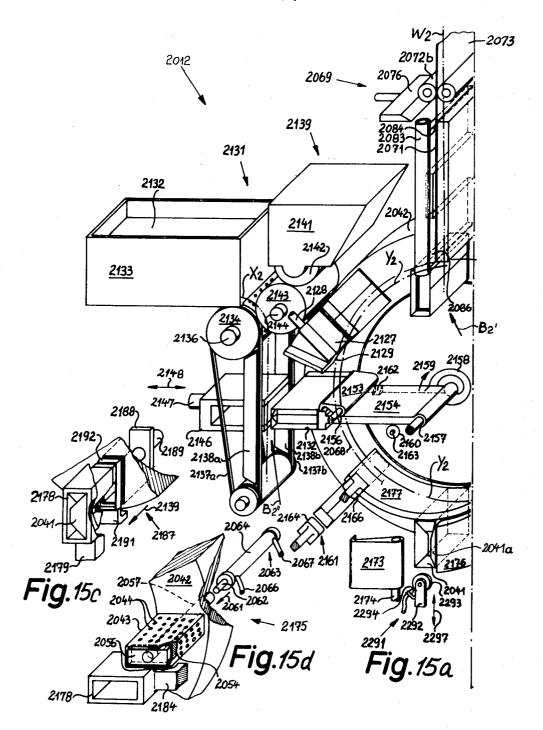

SHEET 07 OF 14

INVENTORS:
FRIEDEL LAUSE
GÜNTEN WAHUE
OTTO ERDMANIL
UIUGY RUDSZINAT


SY M. LON J. W. Lei
ATTORNEY

SHEET 08 OF 14

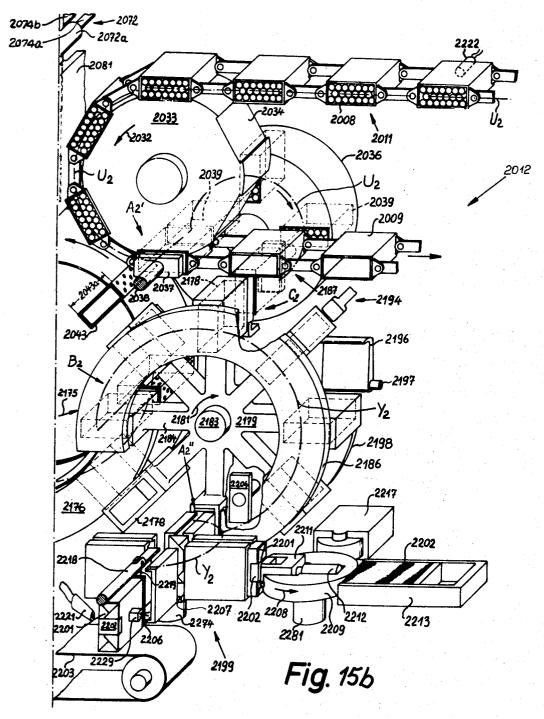
INVENTORS:
FRIEDEL KRUSE
GUNTER WAHLE
OTTO ENDHANN
WILLY RUDSZINAN
BY MILLY KUKA


SHEET 09 OF 14

INVENTORS:

FRIENELKRUSE
CLINTEN WAHLE
OTTO EROMANN
WILLY RUBSLINAT
BY/LHOM /. HL.Lrr
ATTORNEY

SHEET 10 OF 14



INVENTORS:

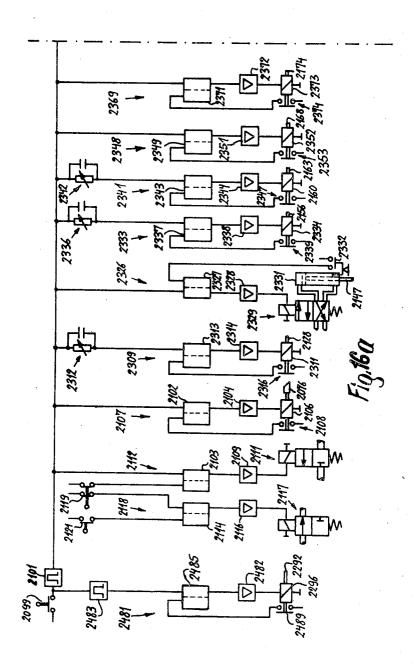
FRIEGEU LRUSE
GÜNTER WAHLE
OTTO ERIMUN
NIGGY RUGSZINAT

**
ALWOOL /- //wfmATTORNEY

SHEET 11 OF 14

INVENTORS:

FRIEGEL KRUSE

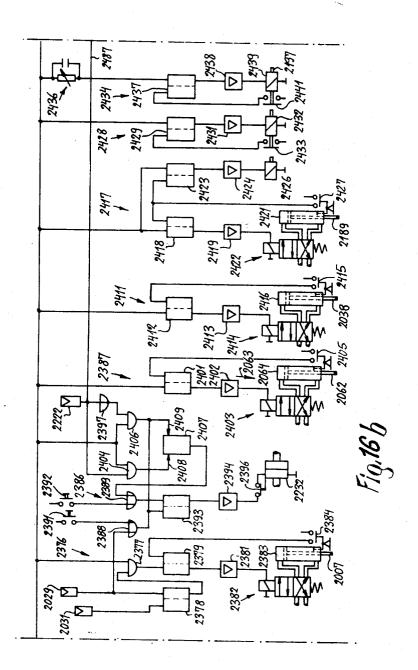

GÜNTER WAHLE

OTTO ENGHANN

DILLY RUGSZINAF

BY/LAGA S.Stribe

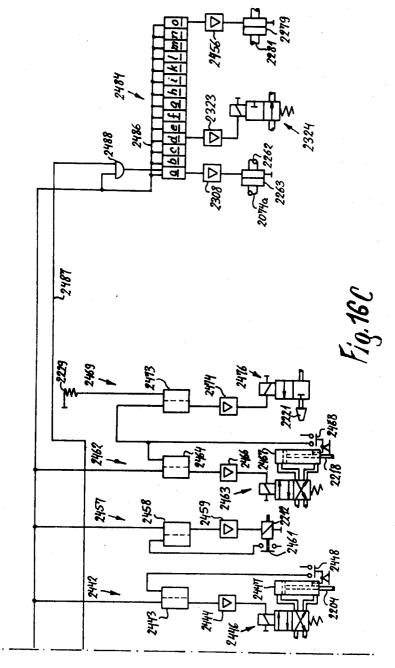
ATTORNEY



FRIEDEU KRUSE GUNTEN VAHUE OTTO ERD MANIU NIULY RUDSZINAT

INVENTORS:

Bykilan 1. Huler


SHEET 13 OF 14

INVENTORS:

FRIEGEL KAUSE
GUNTEN WAHUE
OTTO EN MANNIN
VILLY RUGSZINAT
BY L. M. GU / Market
ATTORNEY

SHEET 14 OF 14

INVENTORS:
FRIENEL LRUSE
GUNTER WAHGE
OTTO ERMANN
WILLY RUDSZINAT
BY MENON I. HELA

METHOD AND MACHINE FOR THE PRODUCTION OF CIGARETTE PACKS OR THE LIKE

BACKGROUND OF THE INVENTION

The present invention relates to a method and to a 5 machine for the making of packs or analogous containers for groups of cigarettes or other commodities. More particularly the invention relates to improvements in a method and machine for the making, filling and closing for reception of groups of cigarettes, cigars, cigarillos cheroots and/or other commodities.

Packing machines constitute important components of production lines for plain or filter cigarettes, cigars, cigarillos and/or other tobacco-containing products. 15 Reliability is one of the most important requirements which must be met by a modern packing machine, especially if the packing machine is to receive the output of one or more high-speed machines for the production of plain or filter cigarettes, as well as when the packing 20 machine is directly coupled to one or more high-speed producing machines. Even short-lasting interruptions in the operation of a packing machine can cause substantial losses in output and costly interruptions in the operation of associated producing machines. Since a 25 producing machine (for example, a machine for the mass-production of plain or filter cigarettes) is much more likely to require attention than a packing machine, the number of attendants in a production line for cigarette packs is normally selected in such a way that 30 each attendant is practically continuously occupied with the producing machine or machines and can give little attention to packing machine or machines which receive the output of the corresponding producing machines. For example, a modern cigarette making ma- 35 chine consumes a bobbin of cigarette paper within a few minutes so that the expiring web must be spliced to the leading end of a fresh web at frequent intervals. If the splicing devices which are used in the cigarette making machines must be manipulated by hand, an attendant must be present almost continuously to make sure that a fresh reel of cigarette paper is at hand and that the leading end of the web on the fresh reel is spliced to the expiring web without excessive delay. Since a cigarette making machine can produce up to 45 4,000 cigarettes per minute, even short-lasting interruptions in its operation must be avoided whenever possible. The attendant who is in charge of a cigarette making machine must further supervise the supply of adhesive in the paster which delivers adhesive to the running web of cigarette paper, check the delivery of shredded tobacco to the distributor of the machine, and perform certain other operations so that his or her attention is mostly focussed on the producing machines. Therefore, the packing machines which receive the output of mass-producing cigarette making machines are preferably constructed and controlled in such a way that they are arrested in automatic response to stoppage of the corresponding producing machine or machines and that they are started in automatic response to starting of such producing machines, regardless of whether the producing machines are arrested due to a defect or on purpose.

A drawback of presently known direct connections 65 between the controls of producing and packing machines is that a packing machine is likely to be arrested while its parts perform an operation which must be

completed in order to avoid the making of a defective pack. For example, if a strip of conventional (wet) adhesive is left exposed for a certain period of time, it is likely to set or dry so that it cannot properly connect two overlapping portions of a pack when the packing machine resumes its operation. Analogously, it is undesirable to interrupt certain folding, tucking or like operations which are carried out in the packing machine to convert one or more blanks into a pack, for example, of soft packs, hinged-lid packs, or analogous containers 10 into a pack containing an inner envelope consisting of tinfoil and an outer envelope consisting of plastic, paper or cardboard.

SUMMARY OF THE INVENTION

An object of the invention is to provide a novel and improved method of making, filling and sealing packs for cigarettes, cigars, cigarillos or other types of commodities, particularly for the making of packs which are to receive commodities as soon as they issue from one or more producing machines, such as machines for the production of plain or filter cigarettes.

Another object of the invention is to provide a method of making, filling and sealing cigarette packs or like containers for tobacco-containing products or other commodities according to which the quality of packs is not dependent on the frequency and length of interruptions in the operation of machines which produce commodities for introduction into such contain-

A further object of the invention is to provide a method according to which packs or analogous containers for tobacco-containing products or other commodities can be produced with a high degree of uniformity and with a minimum of waste in the material of packs as well as in commodities which are to be received in the packs.

An additional object of the invention is to provide a novel and improved packing machine, particularly a machine for packing groups or blocks of rod-shaped tobacco-containing articles, which can be directly coupled to one or more producing machines and requires a minimum of supervision so that the attendant or attendants can concentrate on the supervision and servicing of the producing machines.

Still another object of the invention is to provide a packing machine which can store a desired number of empty packs for immediate reception of commodities as soon as the associated packing machine or machines are started and which can continue to produce packs during the periods of idleness of producing machines.

An additional object of the invention is to provide a packing machine which can be combined with existing producing machines, whose operation is fully automatic, which can be started and/or arrested without any attention on the part of workmen, and which can process the output of one or more high-speed producing machines, particularly machines for the production of plain cigarettes, filter cigarettes and/or other tobacco-containing products.

An ancillary object of the invention is to provide the improved packing machine with novel means for the formation and feeding of blanks which are used for the making of empty containers, for the transport of parts on which the blanks are deformed to form empty packs, for temporary storage of empty containers, for scanning of containers for the presence or absence of defects, and for performing several other operations

which contribute to the reliability, higher output and versatility of the packing machine.

Still another object of the invention is to provide the packing machine with a novel control system which insures that the packing machine is stopped without any 5 supervision and in an optimum position of each of its component parts when such stoppage is dictated by the condition of the associated producing machine or machines, and that the packing machine is started without able in view of the condition of the associated producing machines.

A further object of the invention is to provide a packing machine which can produce acceptable containers when it operates continuously or when its operation is 15 interrupted at frequent or infrequent intervals.

A concomitant object of the invention is to provide a packing machine which is particularly suited for the packing of cigarettes or other rod-shaped tobaccocontaining products as soon as they issue from one or 20 more producing machines.

The method of the present invention can be employed for the making, filling and treatment of containers, particularly packs for reception of groups of rodshaped tobacco containing articles or analogous com- 25 modities, and comprises the steps of conveying commodities along a first path (for example, in the cells of an endless chain or analogous transporting means), scanning the first path (for example, by a photosensitive detector) to detect the presence or absence of 30 commodities in a selected portion of the path, establishing at least one source of deformable bodies each of which constitutes at least a portion of a container (such source may include two or more discrete sources of blanks which can be converted into containers or a sup- 35 ply of prefabricated empty containers), withdrawing from the source a body in response to detection of a commodity in the first path and conveying the thus withdrawn body along at least one second path into a third path, conveying the thus transferred body and the 40 corresponding commodity (namely, that commodity whose detection triggered the withdrawal of the respective body from the source) to a filling station, assembling the commodity with the body at the filling station (if the body is a finished empty container, the assembling step comprises introducing the commodity into the container), and thereupon subjecting tee resulting assembly (e.g., a filled container) to at least one treatment which may include closing and sealing the open end of the filled container and/or the application of a tax stamp if the commodities are arrays of rod-shaped tobacco-containing articles such as plain or filter ciga-

A feature of the just described method resides in that the commodity whose detection triggered the introduction of a body into the third path is thereupon assembled with the thus introduced body, i.e., that the withdrawal of a body from the source takes place only when a commodity (namely, the scanned commodity) is certain to arrive at the filling station.

If the container comprises several components, for example, an envelope consisting of tinfoil and an envelope consisting of paper, plastic or cardboard, each such component is withdrawable from a discrete source 65 along a separate second path. The withdrawing step then comprises withdrawing components from the respective discrete sources and conveying the thus with-

drawn components along the respective second paths and into the third path. The method then also comprises the step of deforming the components to convert them into an empty container at least during transport along the third path so that the body which reaches the filling station is an empty container which is ready to receive the corresponding commodity.

Furthermore, if the containers are assembled of several components, the withdrawal of at least one of the any supervision as soon as the starting becomes desir- 10 components from the respective discrete source takes place prior to withdrawal of another component. This renders it possible to at least partially deform the one component prior to its assembly with the other component. For example, if the one component is a tinfoil blank, it can be converted into a tube or into an openended envelope prior to draping therearound of a paper blank which is thereupon converted into an outer envelope at least partially surrounding the tinfoil envelope. The two envelopes together constitute an openended empty container which can receive the corresponding commodity when it reaches the filling station.

The method preferably further comprises the step of regulating the speed of transport of the body and of the corresponding commodity in such a way that the body reaches the filling station simultaneously with the corresponding commodity.

If the aforementioned bodies constitute prefabricated empty containers, the method preferably further comprises the steps of establishing at least one source of deformable sheet-like blanks, withdrawing such blanks from the respective source and converting the thus withdrawn blanks into empty containers which are accumulated in the first mentioned source. The withdrawal of blanks from the respective source can take place in response to detection of commodities or independently of such detection, i.e., the containers can be fabricated only in response to detection of commodities or independnetly of the transport of commodities along the first path. If the containers are produced independently of the transport of commodities, the first mentioned source may constitute of magazine or reservoir wherein the empty containers are stored and are ready to be withdrawn in immediate response to detection of commodities along the first path. In each instance, the detected commodity is introduced into that container whose arrival at the filling station was caused by such detected commodity.

In accordance with a presently preferred embodiment of the method, the commodities and the bodies are transported in stepwise fashion, preferably in such a way that each transport takes up a first predetermined interval of time, and that each stepwise advance is followed by a second predetermined interval of dwell. If the empty containers are formed by blanks which undergo deformation, coating with adhesive, heating, cooling and/or other treatments during travel along the second and/or third paths, each such treatment is preferably started and terminated during a period of time which does not exceed the combined length of a first and a second interval. This is desirable in order to insure that freshly applied adhesive cannot be exposed for extended periods of time. In accordance with still another feature of the invention, the stepwise advances of commodities and bodies and the aforementioned treatment or treatments of blanks in the third and/or second paths cannot be interrupted so that each stepwise advance is completed and each treatment is

also completed before the operation of the machine which is constructed for the practice of our method can be interrupted or terminated. This reduces the number of rejects and the likelihood of damage to or contamination of the machine.

The adhesive which is applied to one or more selected portions of the bodies, for example, to selected portions of paper blanks which are thereupon converted into outer envelopes of cigarette packs, can be a wet adhesive which sets in response to heating or a 10 4b; heat-activatable adhesive which produces a reliable bond in response to heating and, if necessary, in response to subsequent cooling.

In accordance with still another feature of our method, the commodities are introduced into the first 15 14m-14s) illustrates the conversion of two blanks into path as soon as or immediately after they are produced. This can be achieved by delivering the output of one or more cigarette machines or other producing machines directly to the conveyor which transports the commodities past the detecting or scanning station. The method 20 can be practiced with particular advantage for the making of packs containing arrays of plain cigarettes, filter cigarettes, plain or filter cigars or cigarillos and/or other rod-shaped tobacco-containing articles.

The novel features which are considered as charac- 25 teristic of the invention are set forth in particular in the appended claims. The improved packing machine itself, however, both as to its construction and its mode of operation, together with additional features and advantages thereof, will be best understood upon perusal 30 of the following detailed description of certain specific embodiments with reference to the accompanying

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a schematic plan view of a production line for cigarettes and cigarette packs including two producing machines and two packing machines, one of the packing machines being constructed in accordance with a first embodiment of the present invention and 40 being designed to produce soft cigarette packs;

FIG. 2 is an enlarged fragmentary partly side elevational and partly sectional view of a portion of the novel packing machine and illustrates a magazine of the novel packing machine as seen in the direction of 45 arrow II shown in FIG. 1;

FIG. 3 is a plan view of the structure shown in FIG.

FIG. 4 (composed of FIGS. 4a and 4b) is an enlarged perspective view of essential component parts of the novel packing machine;

FIG. 4c is a perspective view of a pack filling unit in the packing machine of FIGS. 4a and 4b;

FIG. 4d is a perspective view of a transfer unit in the packing machine of FIGS. 4a and 4b;

FIG. 5 is an enlarged longitudinal sectional view of a mandrel in the packing machine of FIGS. 4a and 4b;

FIG. 6 is a diagrammatic partly sectional view of certain parts of a blank forming apparatus in the packing 60 machine of FIGS. 4a and 4b;

FIG.7 is a fragmentary front elevational view of a cam in the structure of FIG. 6;

FIG. 8 (composed of FIGS. 8a, 8b, 8c and 8d) is a sectional view as seen in the direction of arrows from the line VIII-VIII of FIG. 6 and illustrates various stages in the conversion of a tinfoil blank into a tube in the apparatus of FIG. 6;

Fig. 9 is a sectional view of a portion of a draping member for deformation of paper blanks in the packing machine of FIGS. 4a and 4b;

FIG. 10 is an elevational view of a tucking device in 5 the packing machine of FIGS. 4a and 4b;

FIG. 11 is a plan view of a portion of a tax stamp applicator in the packing machine of FIGS. 4a and 4b;

FIG. 12 is a perspective view of the drive for the moving parts of the packing machine shown in FIGS. 4a and

FIG.13 (composed of FIGS. 13a, 13b and 13c) illustrates the control system of the packing machine shown in FIGS. 4a and 4b;

FIG. 14 (including the portions 14a - 14k and an empty pack, the filling of the pack, the closing of the filled pack, and the application of a tax stamp to the closed pack in the packing machine of FIGS. 4a and 4b;

FIG. 15 (composed of FIGS. 15a and 15b) is a perspective view of essential component essential component parts of a second packing machine which constitutes a modification of the machine shown in FIGS. 4a and 4b;

FIG. 15c is a perspective view of a pack filling unit in the packing machine of FIGS. 15a and 15b;

FIG. 15d is a perspective view of a transfer unit in the packing machine of FIGS. 15a and 15b; and

FIG. 16 (componsed of FIGS. 16a, 16b and 16c) illustrates the control system of the packing machine shown in FIGS. 15a and 15b.

DESCRIPTION OF THE PREFERRED **EMBODIMENTS**

Referring to FIG. 1, there is shown a production line 35 for the manufacture of packs containing arrays of filter cigarettes. The production line includes two seriesconnected producing machines and two seriesconnected consuming machines. The producing machines include a cigarette rod making machine 1, for example, a machine of the type known as GARANT (produced by the firm HAUNI-WERKE, KÖRBER & CO. KG, 205 Hamburg 80, Western Germany) and a filter tipping machine 2, for example, a machine of the type known as MAX (manufactured by HAUNI-WERKE, KÖRBER & CO. KG). The connection between the two producing machines is established by a rotary transfer drum 3 which receives plain cigarettes from the machine 1 and transfers such cigarettes into the filter tipping machine 2. It is clear that the two producing machines can be replaced with other types of producing machines without departing from the spirit of the present invention.

The filter tipping machine 2 discharges filter cigarettes into a magazine 4 which is provided with a transfer member or pusher 7 reciprocable in directions indicated by a double-headed arrow 6 and serving to transfer groups or blocks of filter cigarettes into successive cells 9 of an endless transporting chain 11. Each group of cigarettes may consist of twenty filter cigarettes in the customary array, namely, two outer layers of seven filter cigarettes each and a median layer containing six filter cigarettes. The filter cigarettes of the median layer are preferably staggered with reference to the filter cigarettes of the two outer layers. In FIG. 2, the groups or blocks of filter cigarettes 22 are shown at 8.

The chain 11 constitutes a conveyor which transports groups 8 of filter cigarettes 22 in a first consuming machine 12 here shown as a packing machine which serves to produce open empty packs 41 (see FIGS. 4a and 4b) and thereupon introduces groups 8 into such empty packs to convert them into filled packs and closes the open end of each filled pack to form a closed 5 or sealed pack 201 (FIG. 4b). The packing machine 12 is further provided with a device (hereupon called applicator and numbered 199 in FIG. 4b) which serves to apply to one end of each closed pack 201 a tax stamp 202. The thus stamped packs 201 are thereupon introduced into a second consuming machine 13 which also constitutes a packing machine and serves to provide each pack 201 with a transparent envelope consisting of synthetic plastic material and preferably provided with a customary tear strip.

The packs 41 which are produced in the first packing machine 12 are so-called soft packs. In the embodiment which is illustrated in FIGS. 1 to 13, the packing machine 12 is designed to form soft empty packs 41 each of which comprises two envelopes or layers, 20 namely, an inner layer consisting of tinfoil, and an outer layer consisting of paper which is preferably provided with suitable printed matter including the trade mark, the name of the manufacturer, the customary warning of the dangerous nature of tobacco, and other 25 printed matter and/or symbols.

The second packing machine 13 may be of the type known as TRABANT (produced by HAUNI-WERKE). The details of the second packing machine 13 and the details of the producing machines 1 and 2 form no part of the present invention. An important feature of the production line shown in FIG. 1 is that the second producing machine 2 delivers groups 8 of arrayed rod-shaped articles 22 directly to the receiving end of a path U (see FIG. 4b) defined by the chain 11 and a further conveyor 36 and serving for transport of groups 8 to the pack filling station C of the packing machine 12. The details of the packing machine 12 are illustrated in FIGS. 2 to 13.

The magazine 4 of FIGS. 2 and 3 forms part of the packing machine 12 and comprises a receptacle of hopper 14 the upper portion of which receives filter cigarettes 22 from a conveyor belt 23 which preferably receives filter cigarettes directly from the filter tipping machine 2. The lower portion of the hopper 14 is provided with two vertical internal partitions or walls 16 and 17 which define with the outer walls of the lower portion of the hopper three parallel vertical ducts 18, 19, 21 each of which can accommodate a stack or row of parallel horizontal filter cigarettes 22. For the sake of simplicity, the commodities which are packed by the machine 12 will hereinafter be referred to as cigarettes.

FIGS. 2 and 3 further show the details of the chain 11. This chain comprises a set of cells 9 which are coupled to each other by means of links 24 and are arranged to travel about two sprocket wheels of which only the sprocket wheel 27 is shown in FIGS. 2 and 3. FIG. 2 further shows that the periphery of the sprocket wheel 27 is provided with sockets 26 each of which can receive a portion of a cell 9 so that the chain 11 cannot slip with reference to the sprocket wheel. The sprocket wheel 27 is located behind the lower portion of the hopper 14, as viewed in FIG. 2, and the pusher 7 (see particularly FIG. 3) has three parallel plate-like prongs each of which can enter into and be retracted from one of the ducts 18, 19, 21. When the pusher 7 performs a working stroke (upwardly, as viewed in FIG. 3), its

The magazine 4 is further provided with three photoelectric detectors or level indicators 28, 29, 31 which respectively serve to scan an uppermost, a medium and a lowermost level of cigarettes 22 in the hopper 14. The

purpose of the detectors 28, 29 and 31 will be described in detail with reference to FIGS. 13a, 13b and 13c. It suffices to say here that each of the detectors 28, 29, 31 comprises a light source which is mounted in one wall of the hopper 14 (see FIG. 3) and a photosensitive receiver which is in registry with the respective light source and is mounted in the opposite wall of the

hopper 14.

Referring now to FIGS. 4a and 4b, there are shown 15 all important components of the packing machine 12. The path along which the transporting means, namely, the endless chain 11 and the conveyor 36, transports the groups 8 of arrayed cigarettes 22 is denoted by the reference character U. The second sprocket wheel for the chain 11 is shown at 33. This sprocket wheel is driven at regular intervals in the direction indicated by arrow 32 and is provided with sockets 34 for portions of the cells 9 so that the chain 11 cannot slip with reference to the sprocket wheel 33. The drive which indexes the sprocket wheel 33 at regular intervals will be described with reference to FIG. 12. FIG. 4b illustrates a transfer station A' where the contents (groups 8) of filled cells 9 are evacuated by a transfer member or pusher 37 to be introduced into successive chambers 39 of the conveyor 36. This conveyor is a turret which serves to subject the groups 8 to a condensing or compacting action. The pusher 37 receives motion from a piston rod 38 forming part of a pneumatic cylinder 416 shown in FIG. 13b. The construction of the turret 36 is similar to that of the condensing or compacting conveyor described in U.S. Pat. No. 1,608,163. In addition to serving as a part of transporting means for delivery of groups 8 of cigarettes 22 to the transfer station A', the chain 11 also serves as a magazine for storage of a predetermined number of groups 8. The number of such groups may vary but the maximum number is determined by the number of cells 9 which can be accommodated between the station where the cells receive groups 8 from the pusher 7 and the station A' where the pusher 37 delivers such groups into the chambers 39 of the condensing or compacting turret 36.

The packing machine 12 further comprises three additional basic assemblies, namely, one or more sources of deformable blanks consisting of sheet material (such sources together constitute a blank supplying means), and a converting assembly which receives blanks from the blank supplying means and deforms such blanks while the blanks travel along a predetermined path V to convert each blank into an open-ended empty pack 41, and a transporting assembly which transports empty packs 41 along at least one endless path Y wherein the empty packs circulate and are ready to be united or assembled with groups 8 which are expelled or removed from successive chambers 39 of the compacting turret 36. As stated before, each empty pack 41 comprises two envelopes one of which is telescoped into the other and consists of tinfoil. The outer envelope of each empty pack 41 consists of paper. Such packs are known as soft packs.

The converting assembly comprises a conveyor here shown as a turret 42 which is indexible at predetermined intervals and receives blanks from the blank sup-

plying means. The aforementioned path V is defined by the turret 42 which is provided with and/or travels along suitable deforming devices which subject the blanks to a series of deforming actions in order to convert such blanks into the respective envelopes of empty 5 packs 41. The deforming devices include draping, tucking and folding members which will be described later. Furthermore, the converting assembly comprises at least one paster which can apply adhesive to selected portions of paper blanks so as to insure that, upon de- 10 around the respective mandrel 43 to form a tube open formation of selected portions of paper blanks, the portions which overlap are caused to adhere to each other and are held by the adhesive with a force which is sufficient to insure that the pack 41 does not open during subsequent processing in the packing machine 12.

The turret 42 of the converting assembly is provided with a set of radially extending axially parallel mandrels 43 which are indexible to travel stepwise along the path V and to which the blanks are applied to be converted thereon into inner and outer envelopes so that they to- 20 gether form empty packs 41. The details of a mandrel 43 are illustrated in FIGS. 4d and 5. As shown, the walls of each mandrel 43 are formed with suction ports 44. The inner ends of the suction ports 44 communicate with longitudinally extending suction channels 46, 25 47 provided in the respective mandrel 43, and the discharge ends of the channels 46, 47 can communicate with suction grooves 48, 49 provided in a stationary valve plate 51 which is adjacent to the path V. The grooves 48, 49 are connected with a suitable suction 30 generating device, for example, with a suction fan. As the turret 42 travels about its axis, selected suction channels 46, 47 are moved into or from communication with the grooves 48, 49 to thereby connect or disconnect the suction ports 44 of the respective mandrel 35 43 from the suction fan.

One narrow side of each mandrel 43 is provided with two permanent magnets 52, 53 which are recessed into the respective wall of the mandrel. The purpose of the magnets 52, 53 is to temporarily attract a folding mem- 40 ber which will be described later. The outer end face of each mandrel 43 is provided with a recess 54 for a reciprocable pack stripping member or plunger 56. The plunger 56 is provided with a rod or stem 57 which is movable in a centrally located longitudinally extending bore of the mandrel 43 and is surrounded by a helical spring 59 which tends to retract the plunger 56 to the position shown in FIG. 5. The spring 59 reacts against an internal surface of the body of the mandrel 43 and bears against a ring-shaped flange 48 provided at that end of the rod 57 which is remote from the plunger 56. The means for moving the plunger 56 in the direction indicated by an arrow 61 shown in FIG. 5 comprises a pneumatic cylinder 63 shown in FIG. 4d. The cylinder 63 comprises a piston rod 62 which can engage the free end of the rod 57 to expel the plunger 56 from the recess 54 against the opposition of the helical spring 59. the cylinder 63 is stationary; it is mounted adjacent to the path of mandrels 43 and at a point where the flanged ends of the rods 57 do not travel along the stationary valve plate 51. The cylinder 63 is of the doubleacting type and its tubular body 64 comprises two ports 66, 67 one of which admits fluid when the other port permits fluid to escape from the respective chamber and vice versa. The stationary valve plate 51 extends along that portion of the path V which is indicated in FIG. 4a by the broken line 68.

The aforementioned blank supplying means of the converting assembly comprises a blank forming apparatus 69 which is shown in FIGS. 4a, 4b and 6. The purpose of the blank forming apparatus 69 is to deliver to the mandrels 43 of the turret 42 a succession of tinfoil blanks 71 which are supplied along a path W. Such blanks 71 are delivered to successive mandrels 43 at the transfer station B' shown in FIG. 4a. In the first stage of deformation of a blank 71, the blank is draped at both ends.

The blank forming apparatus 69 comprises a feeding device 72 including two driven rollers 72a, 72b which advance a web 73 of tinfoil lengthwise along the path W. The web 73 is drawn from a bobbin or reel, not shown, and passes through a suitable magazine with dancer rolls, not shown, which prevent excessive tensioning of web. The drive for the rollers 72a, 72b of the feeding device 72 comprises shafts 74a, 74b (shown at the top of FIG. 4b). The severing device which cuts the web 73 at regular intervals to form a succession of tinfoil blanks 71 comprises a knife 76. A suction plate 81, provided with suction ports 79 and suction channels 77, 78 shown in FIG. 6, is positioned adjacent to the path W to temporarily retain the web 73 and the tinfoil blank 71 during transport toward the path V.

The apparatus 69 further comprises a carrier 83 which is movable up and down in ways 82 and is provided with two rigidly mounted draping elements or wings 84, 86. It is to be noted that the parts 81, 83, 84 and 86 are shown in proper positions with reference to each other in FIG. 4a but not in FIG. 6. The carrier 83 is provided with a suction channel 87 shown in FIG. 6. The suction channel 87 communicates with suction channels 88 provided in the draping elements 84, 86, and the suction channels 88 communicate with suction ports 89 of the draping elements 84, 86. FIG. 6 further shows the edge faces 91 of the draping elements 84, 86. The distance between the edge faces 91 is denoted by the reference numeral 92 and corresponds to the width 43a (see FIG. 4b) of a mandrel 43. The draping elements 84 and 86 together form a substantially Ushaped draping member 93 (see FIG. 6) whose function is to convert an originally flat tinfoil blank 71 into a U-shaped body which is partially draped around the respective mandrel 43. The arrangement is such that the tinfoil blank 71 which is severed from the web 73 by the knife 76 overlies the suction ports ports 89 of the draping elements 84, 86 and the space between their edge faces 91. The mandrel 43 is thereupon advanced through the space between the edge faces 91 whereby the tinfoil blank 71 is automatically draped around three surfaces of the mandrel.

The carrier 83 is movable up and down by a diskshaped cam 94 (see the top of FIG. 6 and FIG. 7). The cam 94 has a specially configurated endless cam groove 97 (see FIG. 7) which receives a roller follower 96 provided on the carrier 83.

The means for regulating and timing the movements of the knife 76 and carrier 83 in the apparatus 69 comprises a control arrangement 98 which is shown in FIG. 6. The control arrangement 98 comprises a switch 99 which is connected in the circuit of the packing machine 12. The switch 99 can transmit signals to a pulse shaper 101 which is connected with one input of a logical circuit 102 of a type known as flip-flop. The pulse shaper 101 is designed to furnish to the flip-flop 102 substantially rectangular signals. The output of the pulse shaper 101 is further connected with one input of a second flip-flop 103. Each of the flip-flops 102, 103, is a bistable switching circuit having two inputs and a single output. Each flip-flop produces a continuous 5 output signal until one of its inputs receives a signal which causes an interruption of the respective output signal. The output signal is interrupted until the other input of the respective flip-flop receives a resetting signal. It can be said that each flip-flop constitutes a signal 10 magazine 133 for a stack of prefabricated paper blanks storing device.

The flip-flop 102 is connected with the input of an amplifier 104 which is connected with an electromagnet 106 whose armature is rigid with the knife 76. The parts 102, 104, 106 together constitute a control unit 15 107. The purpose of the control unit 107 is to regulate the movements of the knife 76. A resetting switch 108 can be closed by the armature of the electromagnet 106 to transmit a signal to the other input of the flipflop 102 so as to restore the output signal to the amplifier 104.

The second flip-flop 103 constitutes with an amplifier 109 and an electropneumatic solenoid-operated valve 111 a second control unit 112 which regulates the flow of air in a conduit 126 connected to a suction generating device here shown as a fan 113. The conduit 126 is connected to the channel 77 of the suction plate 81 and with a conduit 123 which leads to the intake of the suction fan 113. The conduit 123 is further connected 30 with a conduit 124 which is connected to the suction channel 87 of the carrier 83. The conduit 124 contains a second electropneumatic valve 117 which receives signals from the output of a third flip-flop 114 by way of an amplifier 116. The parts 114, 116, 117 together 35 constitute a third control unit 118 which regulates the evacuation of air by way of ports 89 in the elements 84, 86 of the draping member 93.

The circuit of the flip-flop 114 comprises two limit switches 119, 121 which are located in the path of 40 movement of an actuating member or trip 122 provided on the carrier 83. The limit switches 119, 121 constitute resetting switches for the flip-flops 103, 114.

The elements 84, 86 of the draping member 93 first convert successive tinfoil blanks 71 into U-shaped bod- 45 ies. The transformation of blanks 71 into tubes is thereupon completed by the draping elements 84, 86 in a manner as shown in FIGS. 8c and 8d. Reference may also be had to FIG. 14 wherein the portion 14a illustrates a flat tinfoil blank 71. The portion 14b of 50 FIG. 14 illustrates the partially deformed blank 71 as it appears after it is taken over by a mandrel 43, i.e., after the mandrel has stripped the blank 71 off the elements 84, 86 of the draping member 93. The portion 14c of FIG. 14 illustrates the next step in the conversion of the blank 71 into a tubular body. This step is carried out by the draping element 84 (FIG. 8c). The conversion of a blank 71 into a tube (see the portion 14d of FIG. 14) is completed by the draping element 86 in a manner as shown in FIG. 8d.

Referring again to FIG. 4a, the folding of the upper wide flaps at the front end of tinfoil tubes which have left the station B' is carried out by a pivotable folding member 127 which is mounted on a shaft 128 and is adjacent to the path V between the stations B' and B". The operation which the member 127 performs is shown in the portion 14e of FIG. 14. The shaft 128 is

pivoted at regular intervals in synchronism with the operation of means for indexing the turret 42.

A stationary folding member 129 is adjacent to the path V betweeen the pivotable folding member 127 and transfer station B" and serves to perform the folding operation shown in the portion 14f of FIG. 14.

The blank supplying means of the packing machine 12 further comprises a blank feeding apparatus 131 which is shown in FIG. 4a. This apparatus comprises a 132. Each paper blank can be provided with suitable inscriptions and other indicia, for example, the manufacturer's name, the trade mark, the customary warning which must be applied to cigarette packs, and/or others. The path along which the paper blanks 132 are fed from the magazine 133 to successive mandrels 43 which advance along the path V is shown at X. The transfer station where the path X merges into the path V is shown at B". The means for withdrawing the low-133 comprises a withdrawing roller 134 here shown as a suction drum which is rotatable by a horizontal shaft 136. The shaft 136 receives motion from the drive of the packing machine. The feeding mechanism of the apparatus 131 further comprises two air-permeable bands 137a, 137b, whose right-hand stretches (as viewed in FIG. 4a) travel along two vertical suction chambers 138a, 138b so that the stretches which travel along the respective suction chambers can attract the marginal portions of the paper blank 132 which was drawn from the magazine 133 by the suction drum 134. The purpose of the bands 137a, 137b is to temporarily hold a withdrawn paper blank 132 during the initial stage of draping around the tube obtained in response to partial conversion of the previously applied tinfoil blank 71 into an open-ended envelope.

The blank feeding apparatus 132 further comprises a customary paster 139 which costs selected portions of successive paper blanks 132 with strips of adhesive. The paster 139 comprises a tank 141 for a supply of adhesive. The bottom portion of the tank 141 supports a rotary roller 142 which draws a film of adhesive and transfers it onto a coating roller 143 which is driven by a shaft 144. The configuration of the peripheral surface on the coating roller 143 is such that the roller 142 can apply adhesive only to selected portions of the roller 143, namely, to those portions which are to transfer strips of adhesive to the adjacent paper blank 132. The shaft 144 is rotated by the drive of the packing machine

The converting assembly of the packing machine 12 further comprises a reciprocable draping member 146 which is disposed in the space between the bands 137a, 137b and is movable in directions indicated by the double-headed arrow 148. The means for reciprocating the draping member 146 comprises a piston rod 147. When the draping member 146 performs a working stroke. namely, when it moves in a direction toward the right, as viewed in FIG. 4a, a paper blank 132 is held by the right-hand stretches of the bands 137a, 137b. The two plate-like prongs of the draping member 146 then convert the paper blank into a U-shaped body which partially surrounds the tinfoil tube on the adjacent mandrel 143. The piston rod 147 is reciprocable by a pneumatic cylinder which will be described later.

The draping member 146 contains a plunger 149 which is shown in FIG. 9. The plunger 149 is biased outwardly by a helical spring 152 which surrounds its rod 151. The manner in which the rod 151 can be shifted against the opposition of the spring 152 will be described later. The purpose of the plunger 149 is to insure that the partially deformed paper blank 132 as- 5 sumes a predetermined position with reference to the adjacent mandrel 43 when the draping member 146 is being withdrawn.

Referring again to FIG. 4a, there are shown two pivotable folding members 153, 154 which complete 10 the conversion of successive paper blanks 132 into tubes. The folding member 153 is pivotable by a shaft 156. The folding member 154 consists at least in part of ferromagnetic material and is pivotable on a shaft 157. A torsion spring 158 tends to turn the folding 15 ing member 177 is of arcuate shape so that it conforms member 154 in the direction indicated by an arrow 159. The folding member 154 performs the additional function of insuring that the seam formed by the overlapping portion of the paper blank 132 (after such blank is converted into a tube as shown in the portion 20 14k of FIG. 14) cannot open before the adhesive which was applied by the coating roller 143 sets. The folding member 154 performs such function while the respective mandrel 143 moves from the station B" toward a tucking device 161 which is located downstream of the 25 blank feeding apparatus 131. The folding member 154 has an inclined notch 162 whose function is to displace a spring-biased pin-shaped armature 163 forming part of an electromagnet 160.

The details of the tucking device 162 are shown in 30 FIGS. 4a and 10. The purpose of the tucking device 161 is to fold the two small tucks or flaps against the adjacent end face of the respective mandrel 43 in a manner as shown in the portion 14L of FIG. 14. This tucking device has two tucking fingers 164, 166 each 35 of which can simultaneously tuck a portion of the inner tube (consisting of tinfoil) and a portion of the outer tube (consisting of paper). The tucking fingers 164, 166 are reciprocable along a guide rail 167 and are connected to the armature 168 of an electromagnet 40 352 (shown in FIG. 13a) by two links 169, 171. The armature 168 is reciprocable in directions indicated by a double-headed arrow 172 shown in FIG. 10.

The converting assembly further comprises a pivotable folding member 173 (shown in the lower part of 45 FIG. 4a) which is mounted on a shaft 174 and serves to perform a further operation in conversion of a tinfoil blank 71 and the corresponding paper blank 132 into an empty pack 41. The purpose of the folding member 173 is to fold down one of the two wide flaps at the 50 front end of the adjacent mandrel 43. The function of the folding member 173 will be readily understood by looking at the portion 14m of FIG. 14. The construction and mounting of the folding member 173 are similar to that of the folding member 127. The folding member 173 merely folds the adjacent flap of the paper blank 132 because the corresponding flap of the tinfoil blank 71 has been folded by the folding member 127. A heated stationary folding member 176 is mounted adjacent to the path V downstream of the pivotable folding member 173 and serves to complete the conversion of a pair of blanks 71, 132 into an empty pack 41. This is clearly shown in the lowerpart of FIG. 4a where the front portion of the heated folding member 65 176 is about to fold the second flap at the forward end of the mandrel 43. The folding member 176 thereupon remains in engagement with the freshly folded flap to

heat the adhesive between the two abutting flaps and to thus insure the formation of an empty pack 41 which can stand the introduction of a group 8 at the station C and the additional treatments which are necessary to convert the pack 41 and its contents into a finished pack 201. A stationary heating member 177 is adjacent to the path V and serves to heat the seam between the longitudinally extending overlapping portions of the paper tube while such tube advances with the respective mandrel 43 toward a transfer station B. The manner in which the folding member 176 and the heating member 177 can be heated forms no part of the present invention. For example, such parts can be provided with resistance wires or with infrared heaters. The heatto the outline of the adjacent portion of the path V.

The heretofore described components of the converting assembly in the packing machine 12 cooperate to convert blanks 71, 132 into empty packs 41 each of which has an open end to permit the introduction of a condensed or compacted group 8 consisting of twenty cigarettes 22. It will be seen that the turret 42 forms part of the just described converting assembly. Furthermore, this turret constitutes a magazine for temporary storage of empty packs 41. Thus, the path V not only serves for transport of blanks 71, 132 during conversion of such blanks into empty packs 41 but also for temporary storage of empty packs.

Certain empty packs 41 which travel along the path V and reach the transfer station B are transferred into the pockets 178 of an assembly conveyor 179 here shown as a turret which is indexible about the axis of a shaft 183 in the direction indicated by arrow 181. The path along which the pockets 178 of the turret 179 travel is indicated at Y. A transfer unit 175 which serves to transfer empty packs 41 from the path V into the path Y is shown in detail in FIG. 4d. The pockets 178 of the turret 179 advance the packs 41 along several treating instrumentalities which complete the closing and sealing of packs before the thus closed and sealed packs 201 are removed from the path Y at a transfer station A". The turret 179 comprises several spokes 184 which extend radially outwardly from the axis of the shaft 183 and each of which carries one of the pockets 178 at its outer end. The pockets 178 may be integral with or separably secured to the respective spokes 184. The pockets 178 which travel along the path Y advance along one side of a stationary retaining member or flange 186. This flange extends along an arc of approximately 270 degrees.

Each empty pack 41 which is removed by the transfer unit 175 from the path V advances with the respective pocket 178 from the transfer station B to the pack filling or assembling station C where the empty pack receives a preselected group 8 consisting of 20 cigarettes 22. Such groups are removed from the chambers 39 of the compacting or condensing turret 36 and each thereof forms a prismatic body which can be readily introduced through the open end of the adjacent empty pack 41. The pack filling station C accommodates a pack filling device 187 which serves to transfer condensed groups 8 from the chambers 39 of the turret 36 into empty packs 41 arriving along the path Y. It will be seen that the path U along which the groups 8 advance with the cells 9 of the chain 11 is continued as a circular path defined by the chambers 39 of the turret 36 and that this path U approaches the path Y at the

16

pack filling station C. The transfer unit 175 and the pack filling unit 187 together form an arrangement which can convert empty packs 41 into open-ended filled packs which are thereupon subjected to several treatments during travel along the path Y toward the 5 transfer station A''.

The details of the pack filling unit 187 are illustrated in FIG. 4c. This unit comprises a transfer member or pusher 188 mounted on a rod 189 and reciprocable in and counter to the direction indicated by an arrow 193. 10 The pusher 188 is installed behind the turret 36, as viewed in FIG. 4b, and is movable forwardly toward the registering pocket 178 of the turret 179. The pusher 188 thus expels a condensed group 8 from a registering chamber 39 and causes the thus expelled group 8 to 15 pass through a mouthpiece 192 (see FIG. 4c) which is mounted on a movable link 191.

The aforementioned treating instrumentalities which are adjacent to the path Y include a tucking device 194 which is located downstream of the pack filling station 20 C and serves to tuck in the two small flaps at the open end of a filled pack advancing in the adjacent pocket 178. The construction of the tucking device 194 is preferably identical with or similar to that of the aforedescribed tucking device 161.

The tucking device 194 is followed by a folding member 196 which is pivotable with a shaft 197. The purpose of the folding member 196 is to fold one of the wide flaps at the open end of the filled pack which advances along the path Y. The remaining or last flap of the pack advancing along the path Y is folded by a stationary folding member 198 which is adjacent to the path of the pockets 178 and is located opposite the flange 186. The folding member 198 is preferably heated so as to insure that the adhesive which is applied to one of the flaps at the open end of the pack 41 adheres to the other flap. This completes the conversion of an empty pack into a filled pack 201.

when a pocket 178, with a filled pack 201 therein, reaches the transfer station A", it is caused to enter the tax stamp applicator 199 shown in the lower portion of FIG. 4b. The applicator 199 comprises a magazine 213 for a stack of tax stamps 202. Once a pack 201 receives a tax stamp 202, it is transferred onto the upper stretch of an endless take-off conveyor belt 203 which can transport the packs to storage, to a carton filling machine, to the aforementioned second packing machine 13, or to another destination. A transfer member or pusher 204 is mounted at the transfer station A" to expel filled packs 201 from successive pockets 178 and 50 to introduce such packs into the pockets of a fourarmed tax stamp turret 207. Each arm of the turret 207 has a pocket 206 dimensioned to receive a filled pack 201 so that one closed end of the pack extends outwardly and is ready to receive a tax stamp 202.

The applicator 199 further comprises a carrier 209 which is rotatable in the direction indicated by an arrow 208 and is mounted on a shaft 281. The carrier 209 serves to transfer tax stamps 202 from the magazine 213 onto the filled packs 201 in the pockets 206 of the turret 207. During travel from the magazine 213 to the adjacent pocket 206, the tax stamps 202 are caused to move along a paster 217 which coats the exposed sides of tax stamps with a layer of adhesive.

The details of construction of the carrier 209 are shown in FIG. 11. This carrier supports a ram 211 which is movable radially of the shaft 281 by an elec-

tromagnet 212. The ram 211 has two parallel extensions or tines 210 each of which is provided on its front face with suction ports 214. The suction ports 214 are connected with a suction generating device when the extensions 210 travel along the open side of the magazine 213 so that the foremost tax stamp 202 of the stack in this magazine is caused to adhere to the exposed surfaces of the extensions and shares their movements along the paster 217 and toward the adjacent pocket 206 in the turret 207. The ram 211 further comprises a median portion 215 which is disposed between the extensions 210 and is biased to the position shown in FIG. 11 by a helical spring 216. The median portion 215 can yield against the opposition of the spring 216 when the ram 211 reaches the position shown in FIG. 4b whereby the extensions 210 cause the tax stamp 202 to be draped about the adjacent end of the finished pack 201. Thus, the marginal portions of each tax stamp 202 are caused to adhere to the respective major panels of the paper envelope forming part of the pack 201 and the median portion of such tax stamp adheres to the overlapping flaps at the outer end of the pack.

The means for withdrawing or expelling packs 201, with tax stamps 202 already applied thereto, from the pockets 206 of the turret 207 in the tax stamp applicator 199 comprises a reciprocable piston rod 218 which carries a pivotable motion transmitting or entraining member 219. The station where the entraining member 219 transfers packs 201 from the pockets 206 of the turret 207 onto the upper stretch of the take-off conveyor belt 203 accommodates an ejector nozzle 221. The purpose of the nozzle 221 is to remove from the belt 203 groups 8 of cigarettes 22 which reach the belt 203 in unconcealed condition, namely, which are not received in closed and sealed packs.

In order to insure that the packing machine 12 can operate with a minimum of supervision, this machine comprises a plurality of detectors which scan the components of packs 201 during travel along the paths U, V, W, X and/or Y. The signals produced by such detectors are transmitted to various control units which are illustrated in FIGS. 13a to 13c. FIGS. 4a and 4b merely show the positions of various detectors with reference 45 to the remaining parts of the packing machine 12. The details of such detectors will be described later with reference to FIGS. 13a, 13b and 13c. A first detector 222 is adjacent to the endless last portion of the path U, namely, to that portion of this path which is defined by the compacting turret 36. The detector 222 comprises a photosensitive receiver and a light source. The light source and the receiver are disposed at the opposite sides of the compacting turret 36 and cooperate to produce signals which indicate the presence or absence of groups 8 in successive chambers 39 of the turret 36. The detector 222 is mounted in such position that the turret 36 must be indexed three times before a group 8 which has been scanned by the detector 222 reaches the pack filling station C. The distance between the detector 222 and the pack filling station C, as considered in the direction of travel groups 8 along the path U, is identical with the distance between the transfer station B and the pack filling station C. Thus, an empty pack 41 which reaches the transfer station B requires the same amount of time to reach the pack filling station C as a group 8 which has been detected by the detector

The packing machine 12 further comprises detectors 223, 224, 226 and 227 shown in FIGS. 4a and 4b. These detectors are capable of discriminating between conductive and non-conductive materials, namely, between paper blanks 132 and tinfoil blanks 71. Each of the detectors 223, 224, 226, 227 comprises two electric contacts wwhich are connected with an energy source and are placed adjacent to the path of travel of empty packs 41 or their components. When the two contacts 71, the blank completes the circuit and the respective detector produces an electric signal. When the contacts of one of those detectors are engaged by a portion of a paper blank 132, i.e., by a blank which consists of to produce a signal. It is clear that tinfoil is but one of the materials which can be employed for the manufacture of blanks 71.

The control system of the packing machine 12 further comprises two additional detectors in the form of 20 forming apparatus 69. The gear 249 on the shaft 183 inductances 228, 229. The purpose of the detectors 228, 229 is to respectively detect the presence or absence of finished packs 201 in the pockets 206 of the turret 207 and on the upper stretch of the take-off conveyor belt 203.

The detectors 227 and 223 are adjacent to the path V along which empty packs 41 travel with the mandrels 43 of the turret 42. The detectors 224 and 226 are also adjacent to the path V and they respectively serve to detect the presence or absence of tinfoil blanks 71 and 30 paper blanks 132.

FIG. 12 illustrates the drive of the packing machine 12. This drive comprises a primer mover here shown as an electric motor 231 which drives one element of a first clutch 232 and one element of a second clutch 35237. The other element of the clutch 367 drives the producing machines 1 and 2 of FIG. 1. The clutch 232 drives a Geneva movement 233 and a belt drive 239.

The Geneva movement 233 comprises an indexible wheel 234 which is provided with four radially extending slots or grooves 236 for the pin 238 of a driver wheel 237 mounted on a shaft 241a which is driven by the driven element of the clutch 232. The wheel 234 rotates while the pin 238 extends into one of the slots 236. Thus, the Geneva movement can impart to a shaft 183 a succession of stepwise angular movements each followed by an interval S of predetermined duration. A step or stage T in the operation of the packing machine 12 includes one stepwise advance during an interval R and a dwell during an interval S.

The parts of the drive shown in FIG. 12 are illustrated in positions they assume after the wheel 234 of the Geneva movement 233 has completed one stepwise advance during an interval R. Thus, the pin 238 of the wheel 237 is about to enter the adjacent radial slot 236 of the wheel 234. As stated above, the driven element of the clutch 232 drives the shaft 241a for the wheel 237 of the Geneva movement 233. This shaft 241a carries a pulley 241 for an endless belt 243 of the belt drive 239. The belt 243 is further trained over a second pulley 242 which is mounted at one end of a shaft 244. The belt 243 is preferably provided with teeth which cooperate with teeth on pulleys 241, 242 to prevent slippage. It is clear that the pulleys 241, 242 can be replaced with sprocket wheels and that the belt 243 can be replaced with a link chain. The shaft 244 drives one element of an electromagnetic clutch 246. The other

element of the clutch 246 drives a shaft 247 which carries the cam 94. This cam has been mentioned in connection with FIG. 6. The shaft 183 of the wheel 234 in the Geneva movement 233 carries a cam 248 which is provided with four equidistant lobes. The lobes of the cam 248 can actuate the switch 99 of FIG. 6. The shaft 183 further carries a gear 249 which meshes with a pinion 251. The pinion 251 drives an intermediate gear 252 which is mounted on a shaft 253. The shaft 253 of one of said detectors are engaged by a tinfoil blank 10 drives the compacting turret 36 of FIG. 4b. The gear 252 meshes with a further gear 254 mounted on a shaft 256 which drives the sprocket wheel 33 for the chain

The gear 254 meshes with a pinion 257 on a shaft non-conducting material, the respective detector fails 15 258. The shaft 258 carries a gear 259 which meshes with a pinion 261 on a shaft 262. The shaft 262 drives one element of an electromagnetic clutch 263. The other element of the clutch 263 drives the shaft 74a for the roller 72a in the feeding device 72 of the blank of the wheel 234 in the Geneva movement 233 further meshes with a gear 264 mounted on a shaft 266 which indexes the turret 42. The gear 264 meshes with a pinion 267 on the shaft 136 of the suction drum 134 in the blank feeding apparatus 131.

The shaft 183 further carries a bevel gear 268 which meshes with a bevel gear 269 on a shaft 271. The shaft 271 carries a gear 272 in mesh with a pinion 272 on a shaft 274. The shaft 274 indexes the turret 207 of the tax stamp applicator 199. A gear 276 on the shaft 274 meshes with a pinion 277 on a shaft 278 which drives one element of an electromagnetic clutch 279. The other element of the clutch 279 drives the shaft 281 which rotates the carrier 209 in the applicator 199 of FIG. 4b. After the cam 248 on the shaft 183 of the wheel 234 is indexed to perform a movement during an interval R, it causes the switch 99 to produce a signal for the duration of an interval S.

To summarize: The shaft 183 drives the turret 179, the shaft 266 drives the turret 42, the shaft 253 drives the turret 36, the shaft 256 drives the sprocket wheel 33, the shaft 74a drives the roller 72a, the shaft 136 drives the suction drum 134, the shaft 274 drives the turret 207, and the shaft 281 drives the carrier 209. It will be noted that the parts shown in FIGS. 4a and 4b assume the same positions as the corresponding parts of the drive illustrated in FIG. 12. The positions of parts shown in FIG. 4a and 4b correspond to those which they assume upon completion of a step T including an 50 advance for the interval R and a dwell for the interval

FIGS. 13a to 13b illustrate the control system of the packing machine 12. This control system includes the aforementioned switch 99 and the pulse shaper 101 (both shown in FIG. 13a). The control system comprises a number of control units which receive signals from the pulse shaper 101 and from the aforementioned detectors 222, 223, 224, 226, 227, 228, 229. The control units of the system shown in FIGS. 13a to 13c regulate the operation of the machine in dependency on such signals.

In addition to the control units 107, 112, 118 of FIG. 6, the control system comprises a further control unit 301 (shown in the left-hand part of FIG. 13a) which regulates the feed of tinfoil blanks 71 along the path W and to the turret 42 of the converting assembly. The feed of tinfoil blanks 71 is to be interrupted when a

20

mandrel 43 which reaches the transfer station B' already comprises a tinfoil blank (and more particularly an open-ended envelope wjich is obtained in response to deformation of a tinfoil blank 71). The electromagnetic clutch 263 is shown again in FIG. 13a; this clutch can be energized by the control unit 301 to establish a torque-transmitting connection between the shaft 262 and the shaft 74a for the roller 72a of the feeding device 72 in the blank forming apparatus 69. The control magnetic clutch 246 which can establish a torquetransmitting connection between the shaft 244 and the shaft 247 for the cam 94 which controls movement of the carrier 83 in the apparatus 69. An interrupter switch 302 is associated with the clutch 246 and serves 15 131. to insure that the clutch 246 cannot be disengaged excepting when the cam 94 assumes a predetermined angular position, namely, when the carrier 83 assumes a predetermined position with reference to its guides 82. Thus, the switch 302 prevents disengagement of the 20 clutch 246 in immediate response to a signal from the detector 223, excepting if the detector 223 transmits a signal when the carrier 83 assumes a predetermined position. The detector 223 is adjacent to the path V for empty packs 41. The control unit 301 further com- 25 prises four logical circuits including a NOT-gate 303, two AND-gates 304, 306 and a flip-flop 307. The outputs of the AND-gates 304, 306 are connected with the inputs of the flip-flop 307, and the latter's output is the clutches 246 and 263.

FIG. 13a shows again the elements of the control units 107, 112, 118 which were described in connection with FIG. 6. These control units respectively serve to regulate the movement of the knife 76 of the sever- 35 ing device in the apparatus 69, the electropneumatic valve 111 in the conduit 126 which evacuates air from the ports 79 of the suction plate 81, and the electropneumatic valve 117 in the conduit 124 which serves for evacuation of air from suction ports 89 in the elements 84, 86 of the draping member 93.

A further control unit 309 (FIG. 13a) serves to control movements of the folding member 127 of FIG. 4a. The folding member 127 serves to perform the step shown in the portion 14e of FIG. 14, namely, to deform one flap of the tube formed by a tinfoil blank 71 in response to draping around the respective mandrel 43 on the turret 42. The control unit 309 comprises a rotary electromagnet 311 which is connected with the shaft 128 of the folding member 127, an adjustable time-lag device 312 which includes an R-C link consisting of a capacitor and a variable resistor, a flip-flop 313 one input of which is connected with a time-lag device 312, an amplifier 314 which is connected with the rotary 55 electromagnet 311 and with the output of the flip-flop 313, and a resetting switch 316 which is actuable by the electromagnet 311 and is connected with the other input of the flip-flop 313. The time-lag device 312 insures that the rotary electromagnet 311 is energized with a predetermined delay following reception of a signal from the pulse shaper 101.

A further control unit 317 (shown in the median part of FIG. 13a) serves to interrupt the feed of paper blanks 132 and the transfer of such blanks from the path X into the path V by sealing the suction drum 134 of the blank feeding apparatus 131 from the suction generating device. The detector 224 is adjacent to the

path V between the stations B' and B" of FIG. 4a and serves to detect the presence or absence of tinfoil blanks 71. This detector 224 transmits signals to a NOT-gate 318 and an AND-gate 319 of the control unit 317. The output of the NOT-gate 318 is connected with one input of a second AND-gate 321 in the control unit 317. The other inputs of the AND-gates 319, 321 are connected with the output of the pulse shaper 101. The outputs of the AND-gates 319, 321 are connected unit 301 further regulates energization of the electro- 10 with the inputs of a flip-flop 322 which is connected with an electropneumatic valve 324 by way of an amplifier 323. The valve 324 is installed in the suction pipe between a suction generating device and the ports of the suction drum 134 in the blank feeding apparatus

Another control unit 326 (shown in FIG. 13a) serves to regulate movements of the piston rod 147 for the draping member 146 of FIG. 4a. This draping member is located at the station B" and serves to convert successively furnished paper blanks 132 into U-shaped bodies which partially surround the tubes formed by the tinfoil blanks 71. The control unit 326 comprises a flip-flop 327 which has one of its inputs connected with the pulse shaper 101 and whose output is connected with an amplifier 328 in circuit with the solenoid of an electropneumatic valve 329. The valve 329 controls the positions of a piston which is rigid with the piston rod 147 of the draping member 146 and is reciprocable in a double-acting pneumatic cylinder 331. The piston connected with an amplifier 308 which is in circuit with 30 in the cylinder 331 controls a resetting switch 332 which is connected with the other input of the flip-flop 327.

A control unit 333 (also shown in FIG. 13a) regulates the movements of the shaft 156 for the folding member 153 of FIG. 4a. The member 153 performs one step in the conversion of U-shaped paper bodies formed by the draping member 146 into tubes which surround the respective tinfoil tubes. The shaft 156 is connected with or constitutes the armature of a rotary electromagnet 334 which can actuate a resetting switch 339 for a flipflop 337 of the control unit 333. The latter further includes an amplifier 338 which is connected between the ouput of the flip-flop 337 and the electromagnet 334, and an adjustable time-lag device 336 whose construction is preferably identical with that of the timelag device 312.

A further control unit 341 (also shown in FIG. 13a) comprises a time-lag device 342 which is preferably identical with the device 312, a flip-flop 343, an amplifier 344 and the electromagnet 160 having the aforementioned pin-shaped armature 163. The electromagnet 160 can actuate a resetting switch 347 for the flipflop 343. The electromagnet 160 serves to arrest the folding member 154 of FIG. 4a.

Still another control unit 348 (FIG. 13a) includes a flip-flop 349, an amplifier 351 and the electromagnet 352 whose armature 168 can move the fingers 164, 166 of the tucking device 161 (see FIG. 10). The armature 168 of the electromagnet 352 can actuate a resetting switch 353 for the flip-flop 349.

A control unit 354 (shown in the right-hand part of FIG. 13a) serves to arrest the producing machines 1 and 2 when several mandrels 43 of the turret 42 fail to receive blanks 71 and/or 132, and/or when the hopper 14 of the magazine 4 shown in FIGS. 2 and 3 is filled to capacity. The control unit 354 receives signals from the pulse shaper 101, from the detector 226 which is

adjacent to the path V (FIG. 4a), and from the photoelectric detector 28 in the magazine 4 (see FIGS. 2 and 3). One branch of the control unit 354 includes the detector 226, a NOT-gate 356, an AND-gate 357 and a counter 359 having an erasing signal input 362 con- 5 nected with the output of the AND-gate 357 and an error signal input 361 connected with a second ANDgate 358 which is in circuit with the detector 226 and pulse shaper 101. The counter 359 can be designed in such a way that it produces an output signal only when 10 its input 361 receives a predetermined number of successive error signals. Each signal which is received by way of the input 362 erases a signal received by way of the input 361. Thus, the number of error signals must exceed the number of erasing signals before the 15 counter 359 can transmit a signal which initiates stoppage of the producing machines 1 and 2.

The other branch of the control unit 354 includes the aforementioned photoelectric detector 28 in the magazine 4, a manually operated switch 368 which can be 20 actuated to reset a flip-flop 364, an OR-gate 363 which is connected with the detector 28 and with the output of the counter 359, and an amplifier 366 which connects the flip-flop 364 with the clutch 367 for the drives of the producing machines 1 and 2. The closing of the 25 switch 368 initiates energization of the clutch 367 and thus initiates starting of the producing machines 1 and 2.

A control unit 369 (shown in the left-hand part of FIG. 13b) serves to regulate movements of the folding member 173 shown in FIG. 4a. The member 173 performs the folding operation shown in FIG. 14m. The control unit 369 comprises a flip-flop 371, an amplifier 372, a rotary electromagnet 373 whose armature rotates the shaft 174 of the folding member 173, and a resetting switch 374 for the flip-flop 371. The resetting switch 374 is actuated by the armature of the electromagnet 373 after the member 173 completes a folding operation.

Another control unit 376 (FIG. 13b) serves to regu- 40 late movements of the pusher 7 which expels groups 8 of cigarettes 22 from the hopper 14 of the magazine 4. The control unit 376 includes the aforementioned photoelectric detectors 29 and 31 in the magazine 4 which respectively determine the median and minimum levels of cigarettes in the hopper 14, a flip-flop 378 whose inputs are connected to the detectors 29, 31, an ANDgate 377 connected to the output of the flip-flop 378, a second flip-flop 379 one input of which is connected with the output of the AND-gate 377, an amplifier 381 connected to the output of the flip-flop 379, an electropneumatic valve 382 which controls a double-acting pneumatic cylinder 383, and a resetting switch 384 for the flip-flop 379. The piston in the cylinder 383 is connected with the pusher 7 and this pusher also serves to actuate the resetting switch 384.

A control unit 386 (FIG. 13b) is connected with the control unit 376 and with a further control unit 387. The purpose of the control unit 386 is to control energization of the electromagnetic clutch 232 between the motor 231 and the shaft 241a (FIG. 12). Thus, the control unit 386 can disconnect the packing machine 12 from the motor 231. This control unit comprises two OR-gates 388, 389 which respectively establish the connection between the unit 386 and the control units 376, 387, a manually operated switch 391 which is connected with one input of the OR-gate 388 and can be

closed by hand to energize the clutch 232, a second manually operable switch 392 which is connected with one input of the OR-gate 389 and serves to deenergize the clutch 232, a flip-flop 393 whose inputs are connected with the outputs of the OR-gates 388, 389, and an amplifier 394 which is connected between the output of the flip-flop 393 and the clutch 232. A switch 396 is associated with the clutch 232 and serves to prevent premature deenergization of the clutch, i.e., to insure that the clutch 232 is deenergized only when the shaft 241 assumes a predetermined angular position corresponding to completion of a step T. Such stoppage of the shaft 241 in a predetermined angular position takes place irrespective of the timing of the signal produced by the manually operated switch 392 or by a counter 407 in the circuit of the control unit 386.

The control unit 387 regulates movement of the piston rod 62 in the transfer unit 175 (see FIG. 4d). As explained above, the transfer unit 175 is installed at the transfer station B and serves to transfer empty packs 41 from the mandrels 43 of the turret 42 into the pockets 178 of the turret 179. The control unit 387 further includes the photoelectric detector 222 which scans the chambrs 39 of the compacting turret 36 for the presence or absence of groups 8, and the detector 227 which is adjacent to the path V and scans this path for the presence or absence of empty packs 41 at the station B. Still further, the control unit 387 comprise two NOT-gates 397, 398 whose inputs are respectively connected with the detectors 222, 227, and AND-gate 399 having three inputs two of which are connected with the outputs of the NOT-gates 397, 398 and the third of which is connected with the pulse shaper 101, a flipflop 401 one input of which is connected with the output of the AND-gate 399, an electropneumatic valve 403 which controls the double-acting pneumatic cylinder 63, and an amplifier 402 which is connected between the output of the flip-flop 401 and the valve 403. The piston rod 62 of the tublar body 64 can actuate a resetting switch 405 for the flip-flop 401.

The detector 222 and NOT-gate 397 are further connected with AND-gates 404, 406. The output of the AND-gate 404 is connected with the error signal input 408 of the counter 407 and the output of the AND-gate 406 is connected with a signal erasing input 409 of the counter 407. The counter 407 counts the number of groups 8 which are transferred into the chambers 39 of the turret 36. The construction of this counter 407 is analogous to or identical with that of the aforedescribed counter 359. The input 408 receives a signal in response to detection of the absence of a group 8 in a chamber 39, and the input 409 transmits a signal in response to detection of the presence of a group 8.

A further control unit 411 (FIG. 13b) serves to regulate movements of the piston rod 38 for the pusher 37 which transfers groups 8 from the cells 9 of the chain 11 into the chambers 39 of the compacting turret 36. The control unit 411 comprises a flip-flop 412, an amplifier 413 and an electropneumatic valve 414 which controls the double-acting pneumatic cylinder 416. The piston of this cylinder is connected with the piston rod 38 and the latter can actuate a resetting switch 415 for the flip-flop 412.

A further control unit 417 (FIG. 13b) serves to regulate movements of the piston rod 189 and mouthpiece 192 in the pack filling unit 187 shown in FIG. 4c. The control unit 417 comprises two branches one of which

includes a flip-flop 418, an amplifier 419 and an electropneumatic valve 422 which controls a pneumatic cylinder 421. The piston of the cylinder 421 is connected with the piston rod 189 and this piston rod further serves to actuate a resetting switch 427 for the flipflop 418. The other branch of the control unit 417 comprises a flip-flop 423, an amplifier 424 and an electromagnet 426 for the mouthpiece 192. The switch 427 serves to reset the aforementioned flip-flop 418 and also the flip-flop 423.

A control unit 428 (FIG. 13b) regulates movements of the tucking device 194 shown in FIG. 4b. The device 194 performs the operation shown in the portion 14p of FIG. 14. The construction of the control unit 428 is 348 of FIG. 13a; it comprises a flip-flop 429, an amplifier 431, an electromagnet 432 whose armature corresponds to the part 168 shown in FIG. 10, and a resetting switch 433 for the flip-flop 429.

A further control unit 434 (shown in the right-hand 20 part of FIG. 13b) comprises an adjustable time-lag device 436 (having an R-C link including a capacitor and a variable resistor), a flip-flop 437, an amplifier 438, a rotary electromagnet 439 whose armature 197 constitutes the shaft for the pivotable folding member 196, 25 lows: and a resetting switch 441 for the flip-flop 437. The switch 441 can be actuated by the armature 197 of the electromagnet 439. The folding member 196 performs the operation shown in the portion 14q of FIG. 14.

A control unit 442 (FIG. 13c) regulates movements 30 of the pusher 204 which transfers packs 201 from the pockets 178 of the turret 179 into the pockets 206 of the turret 207 in the tax stamp applicator 199. The control unit 442 comprises a flip-flop 443, an amplifier 444, an electropneumatic valve 446 which controls a 35 double-acting pneumatic cylinder 447, and a resetting switch 448 which can be actuated by the pusher 204. The latter constitutes the piston rod of the cylinder

A control unit 449 (FIG. 13c) serves to interrupt the 40feed of tax stamps 202 from the magazine 213 to the turret 207 of the tax stamp applicator 199 when the pocket 206 facing the carrier 209 does not contain a pack 201. The control unit 449 includes the detector 228 (which is an inductance) which responds to detection of deformed tinfoil blanks 71, a NOT-gate 451, two AND-gates 452, 453, a flip-flop 454, and an amplifier 456 which is connected between the output of the flip-flop 454 and the electromagnetic clutch 279. The clutch 279 drives the shaft 281 of the carrier 209.

A further control unit 457 (FIG. 13c) regulates energization of the electromagnetic 212 for the ram 211 in the tax stamp applicator 199 (See FIG. 11). The control unit 457 further includes a flip-flop 458 one input of which is connected with the pulse shaper 101, an amplifier 459 which is connected between the output of the flip-flop 458 and the electromagnet 212, and a resetting switch 461 for the flip-flop 458 which is actuated by the armature of the electromagnet 212.

A control unit 462 (FIG. 13c) serves to regulate movements of the piston rod 218 for the entraining member 219 which can transfer packs 201 (each provided with a tax stamp 202) from the pockets 206 of the turret 207 onto the upper stretch of the take-off conveyor belt 203. The control unit 462 comprises a flip-flop 464, an amplifier 466, an electropneumatic valve 463 which controls a double-acting pneumatic

cylinder 467, and a resetting switch 468 for the flip-flop 464. The piston of the cylinder 467 is connected with the piston rod 218 and this piston rod actuates the resetting switch 468.

Finally, the control system of the packing machine 12 comprises a control unit 469 (shown in the right-hand part of FIG. 13c) which regulates the admission of compressed gaseous fluid to the ejector nozzle 221 (FIG. 4b). The control unit 469 comprises the detector 10 229 (this detector is an inductance) which scans the pockets 206 of the turret 207 in the tax stamp applicator 199 for the presence of packs 201, a flip-flop 473 which can be set by the switch 468 of the control unit 462, an amplifier 474, and an electropneumatic valve identical to or analogous with that of the control unit 15 476 which is installed in the conduit connecting the ejector nozzle 221 with a compressor (not shown) or another suitable source of compressed gas. The detector 229 serves to reset the flip-flop 473 of the control unit 469.

The time lag determined by the devices 312, 336, 342 and 436 in the control units 309, 333, 341 and 434 can be shortened or lengthened by appropriate adjustment of the respective variable resistors.

The operation of the packing machine 12 is as fol-

The plain cigarettes which are produced in the cigarette rod making machine 1 of FIG. 1 are fed into the flutes of the transfer drum 3 which supplies such cigarettes to the filter tipping machine 2. The filter tipping machine 2 provides each plain cigarette with a filter tip and discharges filter cigarettes 22 into the magazine 4 (see the conveyor belt 23 in FIGS. 2 and 3). It is assumed that the hopper 14 of the magazine 4 is empty. It is further assumed that the electric motor 231 of the drive shown in FIG. 12 is on. The clutch 267 is engaged so that it drives the moving parts of the producing machines 1 and 2. The clutch 232 which drives the moving parts of the packing machine 12 is disengaged and the pusher 7 is also held in its retracted position.

When the level of cigarettes 22 which accumulate in the hopper 14 of the magazine 4 rises so that it reaches the photoelectric detector 29, the detector 29 transmits a signal to the OR-gate 388 of the control unit 386 shown in FIG. 13b. The signal which is emitted by the OR-gate 388 changes the condition of the flip-flop 393 wich energizes the clutch 232 by way of the amplifier 394. Energization of the clutch 232 results in establishment of a torque-transmitting connection between the output shaft of the motor 231 and the shaft 241a of the drive shown in FIG. 12. The motor 231 continues to drive the parts of the packing machine 12 until the flipflop 393 receives a signal from the OR-gate 389.

The signal from the photoelectric detector 29 is further transmitted to the flip-flop 378 of the control unit 376 shown in FIG. 13b. The output signal from the flipflop 378 is transmitted to one input of the AND-gate 377. The Geneva movement 233 of FIG. 12 drives the shaft 183 of the cam 248 in stepwise fashion so that the lobes of the cam 248 intermittently close and open the switch 99 which is in circuit with the pulse shaper 101. Furthermore, the Geneva movement 233 effects intermittent movements of the turret 42, turret 179, turret 207, carrier 209, sprocket wheel 33, turret 36, rollers 72a, 72b of the feeding device 72 for the web 73, and suction drum 134. The belt drive 239 of FIG. 12 receives motion from the shaft 241a and rotates the cam 94 at a constant speed. As shown in FIGS. 13a through

13c, the pulse shaper 101 transmits signals to the control units 301, 118, 112, 107, 309, 317, 326, 333, 341, 348, 354, 369, 376, 386, 387, 411, 417, 428, 434, 442, 449, 457, 462 and 469.

As the AND-gate 377 of the control unit 376 in FIG. 5 13b receives a signal from the pulse shaper 101, it transmits a signal to the corresponding input of the flipflop 379. The output signal from the flip-flop 379 is transmitted to the solenoid of the electropneumatic valve 382 by way of the amplifier 381. The valve 382 10 admits pressurized fluid to the upper chamber of the cylinder 383 so that the piston of this cylinder expels the pusher 7 in a downward direction, as viewed in FIG. 13b, whereby the pusher 7 expels a group 8 of 20 cigarettes 22 from the hopper 14 of the magazine 4. The thus expelled group 8 enters the adjacent cell 9 of the chain 11. The chain 11 transports the cell 9 with the group 8 of 20 cigarettes 22 in stepwise fashion along the path U shown in FIG. 4b and toward the transfer station A'. When the pusher 7 reaches its extended po- 20 sition, it actuates the resetting switch 384 which thereby resets the flip-flop 379 to its original condition. Thus, the valve 382 causes the cylinder 383 to retract the pusher 7 so that the latter is ready to perform the following working stroke. The same sequence of steps is repeated when the pulse shaper 101 transmits a fresh signal to the AND-gate 377 of the control unit 376. The cells 9 of the chain 11 advance in stepwise fashion from the transfer station at the hopper 14 of the magazine 4 shown in FIGS. 2 and 3 toward and about the sprocket 30 wheel 33 of FIG. 4b. When the foremost group 8 reaches the transfer station A', the flip-flop 412 of the control unit 411 shown in FIG. 13b actuates the valve 414. The valve 414 controls the flow of compressed gaseous medium into the chambers of the cylinder 416 and enables the piston rod 38 to displace the pusher 37 so that the group 8 which arrives at the transfer station A' is transferred into the registering chamber 39 of the compacting turret 36. When the piston rod 38 reaches its outer end position, it actuates the resetting switch 415 for the flip-flop 412. This causes the valve 414 to reassume its original condition and to retract the piston rod 38 into the cylinder 416. This piston rod 38 is then ready to perform a fresh working stroke in order to expel the next-following group 8 of cigarettes 22 from a registering cell 9 into the aligned chamber 39 of the compacting turret 36. The group 8 which is transferred into the chamber 39 of the turret 36 is subjected to a compressing action which reduces the overall dimensions of the group to such an extent that it can be readily inserted into an empty pack 41.

A complete cycle resulting in the formation of an empty pack 41 is carried out as follows

It is assumed that the turret 42 of the converting assembly is empty, i.e., that each of the mandrels 43 is exposed because it does not carry an empty pack. Consequently, the detector 223 in the control unit 301 of FIG. 13a does not produce any signals because it fails to detect tinfoil blanks 71 on the adjacent turrets 43. The condition of the flip-flop 307 in the control unit 301 remains unchanged and the clutches 246 and 263 of the control unit 301 remain engaged. Thus, the Geneva movement 233 drives the roller 72a of the feeding device 72 in the blank forming apparatus 69 of FIG. 4a. The rollers 72a, 72b of the device 72 advance the web 73 in stepwise fashion toward the trnasfer station B' whereby the web 73 advances lengthwise along the

path W. Each stepwise advance of the web 73 is selected in such a way that the length of the web which moves beyond the plane of the knife 76 corresponds to the length of a tinfoil blank 71. When the web 73 advances by a step and thereupon dwells prior to the nextfollowing step, the pulse shaper 101 transmits a signal to the control unit 112 of FIG. 13a, namely, to one input of the flip-flop 103. The output signal from the flip-flop 103 is transmitted to the solenoid of the electropneumatic valve 111 by way of the amplifier 109 whereby the valve 111 connects the suction fan 113 of FIG. 6 with the suction channels 77, 78 and suction ports 79 in the suction plate 81 of the apparatus 69. Thus, the plate 81 attracts the leader of the web 73 preparatory to actuation of the knife 76.

The pulse shaper 101 also transmits a signal to the flip-flop 102 of the control unit 107 shown in FIGS. 6 and 13a. The output signal from the flip-flop 102 is transmitted to the electromagnet 106 by way of the amplifier 104 whereby the electromagnet causes the knife 76 to perform a working stroke and to sever the web 73 so as to form a fresh tinfoil blank 71. The freshly formed tinfoil blank 71 is shown in the portion 14a of FIG. 14. When the knife 76 reaches its foremost position, the armature of the electromagnet 106 actuates the switch 108 which resets the flip-flop 102 whereby the flip-flop deenergizes the electromagnet 106 which retracts the knife 76 to its starting or idle position. The electromagnet 106 preferably comprises a suitable spring (not shown) which automatically retracts the knife 76 when the electromagnet is deenergized.

As stated before, the motor 231 drives the cam 94 at a constant speed, as long as the clutch 232 of FIG. 12 remains engaged. Therefore, the cam 94 transmits motion to the carrier 83 of the blank forming apparatus 69 whereby the carrier 83 moves up and down at a rate determined by the speed of the shaft 247 and the cinfiguration of the groove 97 (see FIG. 7) in the cam 94. The draping member 93 shares the up-and-down movements of the carrier 83. In one of its end positions, the trip 122 on the carrier 83 actuates the limit switch 119 which transmits a resetting signal for the flip-flop 103 in the control unit 112 of FIG. 13a. This changes the condition of the electropneumatic valve 111 which controls the evacuation of air from the ports 79 of the suction plate 81. Thus, the plate 81 ceases to attract the freshly formed tinfoil flank 71. The limit switch 119 also transmits a signal to the flip-flop 114 in the control unit 118 which causes a change in the condition of the electropneumatic valve 117. The valve 117 then connects the suction fan 113 with the suction ports 89 in the elements 84, 86 of the draping member 93. Consequently, the draping member 93 attracts the freshly formed tinfoil blank 71 which leaves the adjacent surface of the plate 81 and adheres to the elements 84, 86.

During the next stage of operation of the packing machine 12, the groove 97 of the cam 94 causes the roller follower 96 to shift the carrier 83 and the draping member 93 in a direction counter to that indicated by arrow 95 in FIG. 6. Thus the carrier 83 moves in a direction toward the path V of the turret 42. The carrier 83 then maintains the draping member 93 in the position shown in FIG. 8a. The turret 42 advances one of its mandrels 43 in the direction indicated by arrow 85 shown in FIG. 8a whereby the mandrel 43 passes between the wings or elements 84, 86 of the draping member 93 (see FIG. 8b) and removes the blank 71 from the front surface of

the draping member. At the same time, the thus removed blank 71 is partially draped around the mandrel 43 so as to assume the shape shown in the portion 14b of FIG. 14. Such transfer and simultaneous deformation of the blank 71 take place at the transfer station 5 B' of FIG. 4a. As mentioned before, the distance 92 between the edge faces 91 of the elements 84, 86 of the draping member 93 (see FIG. 6) equal or closely approximates the width 43a of a mandrel 43.

The mandrel 43, with a partially draped blank 71 10 thereon, comes to a halt as soon as it moves beyond the space between the edge faces 91. During the period of dwell following a movement of the turret 43 to the position shown in FIG. 8b, the continuously rotating cam 94 causes its groove 97 to again move the roller fol- 15 lower 96 and the carrier 83 counter to the direction indicated by the arrow 95 whereby the draping member 93 moves in the direction indicated in FIG. 8c by arrow 90 and its element 84 folds one leg of the U-shaped body of tinfoil. The operation which the draping ele- 20 ment 84 performs is shown in FIG. 14c. The trip 122 of the carrier 83 actuates the limit switch 121 which causes the flip-flop 114 of the control unit 118 to change the condition of the valve 117. The valve 117 then seals the suction ports 89 of the draping elements 25 84. 86 from the fan 113.

The cam 94 continues to rotate and its groove 97 causes the roller follower 96 to move the carrier 83 and the draping member 93 in the direction of arrow 95 (FIGS. 6 and 8d) whereby the draping element 86 completes the conversion of the tinfoil blank 71 into a tube (see the portion 14d of FIG. 14). The apparatus 69 is then ready to make a fresh tinfoil blank 71.

During the conversion of a blank 71 into a tube, the ports 44 of the respective mandrel 43 are connected to the suction generating device so that the mandrel attracts the adjacent portions of the tube shown in the portion 14d of FIG. 14.

The mandrel 43, with a tinfoil tube thereon, is thereupon indexed and reaches the pivotable folding member 127 of FIG. 4a. When the mandrel 43 comes to a halt, the time-lag device 312 of the control unit 309 causes the flip-flop 313 and amplifier 314 to energize the rotary electromagnet 311, The latter rotates the shaft 128 whereby the folding member 127 performs the operation shown in the portion 14e of FIG. 14. When the rotation of the shaft 128 is completed, the armature of the electromagnet 311 actuates the switch 316 which resets the flip-flop 313 to deenergize the electromagnet 311 and to effect a return movement of the folding member 127 to its idle position, for example, by means of a suitable return spring (not shown).

During the just described stage of operation of the packing machine 12, the detector 224 determines whether or not the mandrel 43 carries a tinfoil blank 71. If the mandrel 43 is provided with such a blank, the detector 224 resets the flip-flop 322 but the condition of the flip-flop 322 remains unchanged so that the valve 324 remains in the condition shown in FIG. 13a and connects the ports of the suction drum 134 in the apparatus 131 with a suction generating device.

The turret 42 is thereupon indexed and causes the mandrel 43 to move along the stationary folding member 129 which performs the operation shown in the portion 14f of FIG. 14. When the indexing of the turret 42 is completed, the mandrel 43 is located at the transfer station B". During the preceding indexing of the

turret 42, the suction drum 134 withdraws a paper blank 132 from the magazine 133 and moves the thus withdrawn paper blank along the coating roller 143 which applies to the adjacent surface of the paper blank two strips of adhesive. The paper blank 132 (but without adhesive strips thereon) is shown in the portion 14g of FIG. 14. Such strips are applied to one longitudinal and to one transverse marginal portion of the blank 132 (see FIG. 25f). The adhesive-coated paper blank 132 is then taken over and transported by the suction bands 137a, 137b so that it arrives at the transfer station B" and is adjacent to the mandrel 43 which carries a partially deformed tinfoil blank 71. The blank 132 at the transfer station B" is then located in the path of movement of the draping member 146.

When the mandrel 43 comes to a halt at the station B", the pulse shaper 101 transmits a signal to the flip-flop 327 in the control unit 326 of FIG. 13a. This causes the amplifier 328 to energize the solenoid of the valve 329 which admits compressed air to the cylinder 331. The piston rod 147 is caused to move toward the mandrel 43 at the station B" and the plate-like prongs of the draping member 146 drape the paper blank 132 about a portion of the partially completed tinfoil envelope of the mandrel 43. The operation which is performed by the draping member 146 is shown in the portion 14h of FIG. 14.

The plunger 149 (see FIG. 9) of the draping member 146 bears against the paper blank 132 and presses it against the adjacent portion of the mandrel 43 at the station B" while the piston rod 147 for the draping member 146 performs a working stroke. This prevents slippage of the paper blank 132 during its conversion into the U-shaped body shown in FIG. 14h.

The time-lag device 336 of the control unit 333 transmits a delayed signal to the flip-flop 337 which causes the amplifier 338 to energize the rotary electromagnet 334. The latter rotates the folding member 153 to the position shown in FIG. 4a whereby the member 153 performs the operation shown in portion 14i of FIG. 14.

The time-lag device 342 of the control unit 341 transmits a delayed signal to the flip-flop 343 which causes the amplifier 344 to energize the electromagnet 160 so that the electromagnet 160 retracts its pin-shaped armature 163. Up to then, the extended armature 163 was holding the folding member 154 in a position in which the torsion spring 158 was caused to store energy. The member 154 was moved to such position during the preceding stage of operation. As soon as the armature 163 is retracted, the spring 158 controls the folding member 154 in a clockwise direction as indicated by arrow 159 (back to the position shown in FIG. 4a) whereby the member 154 performs the operation shown in the portion 14k of FIG. 14, i.e., the paper blank 132 is converted into a tube.

The electromagnet 334 thereupon actuates the switch 339 which resets the flip-flop 337 so that the electromagnet 334 is deenergized and the folding member 153 is moved from the position shown in FIG. 4a is back to a starting position, preferably under the action of a suitable spring (not shown). The movements of the folding member 153 are synchronized with movements of the folding member 154 in such a way that the folding member 153 begins to move back to its starting position when the folding member 154 begins

to fold the paper blank 132 to complete the formation of the tube shown in the portion 14k of FIG. 14.

When the piston rod 147 reaches its end position, it actuates the switch 332 which resets the flip-flop 337 whereby the valve 329 reassumes the condition shown 5 in FIG. 13a. The cylinder 331 is caused to retract the piston rod 147 so that the draping member 146 returns to the position shown in FIG. 4a.

The turret 42 is thereupon indexed to move the mandrel 43 into registry with the tucking device 171. This 10 tucking device serves to perform the operation shown in the portion 14L of FIG. 14. During such indexing of the mandrel 43 away from the station B", the permanent magnets 52, 53 (FIG. 5) attract the ferromagnetic folding member 154 and cause it to pivot in a counter- 15 clockwise direction, as viewed in FIG. 4a, and to stress the torsion spring 158. This enables the folding member 154 to bear against the overlapping portions of the paper tube on the moving turret 43 and to thus enhance the setting of adhesive which bonds such overlapping 20 portions to each other. As the folding member 154 pivots in response to indexing of the mandrel 43 away from the station B", the pin-shaped armature 163 of the electromagnet 160 slides along the inclined surface in the notch 162 of the member 154 and is depressed 25 to thereupon move outwardly and to prevent return movement of the folding member 154 under the action of the torsion spring 158 prior to energization of the electromagnet 160. The anticlockwise pivotal movement of the folding member 154 is terminated when it 30 abuts against the stationary heating member 177. Thus, when the mandrel 43 is indexed to move away from registry with the tucking device 161, the permanent magnets 52, 53 become separated from the folding member 154 because the latter is held by the heating member 177. However, since the electromagnet 160 is deenergized, the pin 163 is in an extended position and holds the folding member 154 against premature return movement (arrow 159) under the action of the torson spring 158.

When the turret 43 reaches the tuking device 161 and comes to a halt, the flip-flop 349 of the control unit 348 receives a signal from the pulse shaper 101 whereby the output signal from the flip-flop 349 causes the amplifier 351 to energize the electromagnet 352. The electromagnet 352 attracts the armature 168 (which moves upwardly, as viewed in FIG. 10), whereby the tucking fingers 164, 166 of the device 161 slide along the guide rail 167 toward each other and provide the blanks on the mandrel 43 with the tucks shown in the portion 14L of FIG. 14.

The electromagnet 352 thereupon actuates the switch 353 which resets the flip-flop 349 with the result that the electromagnet 352 is deenergized and the tucking fingers 164, 166 move away from the mandrel 43 under the action of a spring, not shown.

The detector 226 determines whether or not the adjacent mandrel 43 carries a paper blank 132. If the mandrel is provided with a paper blank, the detector 226 does not transmit signals to the gates 356, 358 of the control unit 354 of FIG. 13a. However, the gates 356, 358 receive signals if the detector 226 determines that the adjacent mandrel 43 does not carry a paper blank 132. As mentioned above, the detector 226 may comprise two contacts which are electrically connected with each other if they engage a tinfoil blank, i.e., if the adjacent mandrel 43 does not carry a paper blank 132

overlying that portion of the tinfoil blank which can be scanned by the detector 226. The purpose of the signal from the detector 226 will be described later.

In response to renewed indexing of the turret 42, the mandrel with a paper blank 132 and a tinfoil blank 71 thereon reaches the station which accommodates the folding member 173. When the mandrel 43 comes to a standstill, the flip-flop 371 in the control unit 369 of FIG. 13b receives a signal from the pulse shape 101 and energizes the rotary electromagnet 373 which rotates the shaft 174 of the folding member 173. The folding member 173 then perfoms the operation which is shown in the portion 14m of FIG. 14. The armature of the electromagnet 373 then actuates the switch 374 which resets the flip-flop 371 so that the electromagnet 373 is deenergized and permits a spring (not shown) to return the folding member 173 to its starting position.

In response to the next-following indexing of the turret 42, the mandrel 43 advances along the heated stationary folding member 176 which performs the operation shown in the portion 14n of FIG. 14. This completes the closing of one end of the paper blank 132. The folding member 176 heats the adhesive which was applied by the coating roller 143 of the paster 139 to the adjacent flap of the blank 132 so that the adhesive sets before the mandrel reaches the transfer station B.

The photoelectric detector 222 downstream of the transfer station A' is constructed in such a way that it produces signals only when it fails to detect groups 8 of cigarettes 22 in the chambers 39 of the compacting turret 36. When the detector 222 fails to produce signals, the NOR-gate 397 in the control unit 387 transmits a signal to the corresponding input of the AND-gate 399. If the detector 227 at the transfer station A fails to detect a tinfoil blank 71 (i.e., if such tinfoil blank is concealed by the outer envelope consisting of the material of a paper blank 132), this indicates that a mandrel 43 at the transfer station B carries a properly shaped empty pack 41 or that it is without an empty pack. The detector 227 then fails to produce a signal so that the output of the AND-gate 398 transmits a signal which is received by the corresponding input of the AND-gate 399. Thus, if the just described conditions are met with the two inputs of the AND-gate 399 receive signals from the gates 397, 398, the AND-gate 399 transmits a signal to the flip-flop 401 as soon as it receives a signal from the pulse shaper 101. The flip-flop 401 then transmits a signal to the valve 403 by way of the amplifier 402 whereby the valve 403 causes the cylinder 63 to expel the piston rod 62 which in turn moves the rod 57 and the pack stripping plunger 56 of the adjacent mandrel 43 in the direction indicated by arrow 61 shown in FIG. 5. The piston rod 62 then bears against the flange 58 at the lower end of the rod 57, as seen in FIG. 5. This causes the plunger 56 to strip the empty pack 41 off of the mandrel 43 and to transfer it into the registering pocket 178 of the turret 179. Thus, the empty pack 41 is transferred from the path V into the path Y. When it reaches the fully extended position, the piston rod 62 closes the switch 405 which resets the flip-flop 401. The latter changes the condition of the valve 403 which causes the cylinder 63 to retract the piston rod 62 whereby the spring 59 returns the plunger 56 to the position shown in FIG. 5.

The pocket 178, with an empty pack 41 therein, thereupon advances by two steps in a direction from the transfer station B toward the pack filling station C.

During the interval following the second step of the turret 179, the flip-flops 418, 423 of the control unit 417 shown in FIG. 13b receive a signal from the pulse shaper 101. The flip-flop 418 energizes the solenoid of the electropneumatic valve 422 by way of the amplifier 5 419 whereby the valve 422 causes the cylinder 421 to expel the piston rod 189. The flip-flop 423 energizes the electromagnet 426 for the mouthpiece 192 by way of the amplifir 424. The link 191 thereby advances the mouthpiece 192 toward the turret 179 so that the 10 mouthpiece 192 enters the open end of the empty pack 41 in the adjacent pocket 178. The piston rod 189 of the cylinder 421 causes the pusher 188 to advance toward the turret 179 whereby the pusher 188 expels a group 8 from the registering chambers 39 of the com- 15 pacting turret 35 and causes the thus expelled group 8 to pass through the mouthpiece 192 so that the group enters the empty pack (FIG. 4c). The mouthpiece 192 cooperates with the turret 36 to prevent premature expansion of the compacted group 8. This completes the 20 transfer of the compacted group 8 from the last portion of the path U into the path Y. The filling of empty packs 41 with groups 8 of cigarettes 22 takes place at the station C. The retaining member or flange 186 which is adjacent to the path Y prevents the empty 25 packs 41 from yielding in response to introduction of groups 8. When the piston rod 189 of the cylinder 421 in the control unit 417 reaches its outer end position, it closes the switch 427 which resets the flip-flops 418, 423. This enables the valve 422 to retract the piston 30rod 189, and the electromagnet 426 is deenergized to permit the link 191 to return the mouthpiece 192 to its idle position. The return movement of the mouthpiece 192 to its idle position can take place under the action of a suitable spring, not shown.

When a pocket 178 of the turret 179 moves beyond the pack filling station C, it reaches the tucking device 194 shown in FIG. 4b. The construction of the tucking device 194 is analogous to that of the tucking device 161. When the pocket 178 comes to a halt, the flip-flop 429 of the control unit 428 shown in FIG. 13b receives a signal from the pulse shaper 101 whereby the flip-flop 429 effects energization of the electromagnet 432 which causs the tucking fingers of the device 194 to move toward each other in a manner as described in connection with the tucking fingers 166, 164 of the device 161 shown in FIG. 10. The operation which is performed by the tucking device 194 is shown in the portion 14p of FIG. 14. The portion 14o of FIG. 14 illustrates the transfer of a group 8 of 20 cigarettes 22 into 50 an empty pack 41 at the pack filling station C. The electromagnet 432 of the control unit 428 then closes the switch 433 which resets the flip-flop 429 so that the electromagnet 432 is deenergized and a spring (not shown) returns the tucking fingers of the device 194 to their retracted or idle positions. The turret 179 is thereupon indexed again by a step and the pocket 178 with the pack 41 and a group 8 therein reaches the pivotal folding member 196 shown in FIG. 4b. When the pocket 178 comes to a stop, the adjustable time-lag device 436 transmits to the flip-flop 437 of the control unit 434 shown in FIG. 13b a delayed signal which causes energization of the rotary electromagnet 439 for the shaft 197 of the folding member 196. The folding 65 member 196 then performs the operation which is illustrated in the portion 14q of FIG. 14. When it reaches its end position, the shaft 197 closes the switch 441

which resets the flip-flop 437. This deenergizes the electromagnet 439 whereby a spring (not shown) returns the folding member 196 to its idle position.

The pocket 178 of the turret 179 is thereupon advanced by a step to reach the folding and sealing member 198. This member 198 perfoms the operation which is illustrated in the portion 14r of FIG. 14. Thus, the empty pack 41 with a group 8 of 20 cigarettes 22 therein is converted into a closed pack 201. The member 198 heats the adhesive between the adjacent flaps of the paper envelope consisting of a blank 132 so that the adhesive sets and cannot open during the next-following stages of treatment of the respective pack 201.

In response to renewed indexing of the turret 179, the pocket 178 with a pack 201 therein moves to a position between the front part of the folding member 198 and the transfer station A". When the turret 179 is indexed again, the pack 201 reaches the station A" and is located in the range of the pusher 204. When the turret 179 comes to a halt, the pulse shaper 101 transmits to the flip-flop 443 of the control unit 442 shown in FIG. 13c a signal which energizes the solenoid of the valve 446 whereby the valve causes the cylinder 447 to shift the pusher 204 so that the latter expels the pack 201 from the adjacent pocket 178 into the registering pocket 206 of the turret 207 in the tax stamp applicator 199. When the pusher 204 reaches its extended position, it actuates the switch 448 which resets the flipflop 443 so that the valve 446 reassumes its original condition and causes the cylinder 447 to retract the pusher 204 to the starting or idle position shown in FIG. 4b.

The detector 228 at the transfer station A" determines whether or not a group 8 which has been transferred by the pusher 204 into the adjacent pocket 206 of the turret 207 is surrounded by a layer of tinfoil. If the detector 228 senses the presence of tinfoil, this indicates that the pack 201 is properly formed and is ready to be provided with a tax stamp 202. A signal transmitted by the detector 228 in the control unit 449 of FIG. 13c reaches the corresponding input of the AND-gate 452 together with a signal from the pulse shaper 101. The signal which is transmitted by the AND-gate 452 to the corresponding input of the flipflop 454 does not change the condition of the flip-flop. Therefore, the electromagnetic clutch 279 remains energized and the shaft 281 for the carrier 209 in the applicator 199 can be indexed.

The turret 207 is thereupon indexed by a step so that the freshly received pack 201 is moved in front of the carrier 209 on the shaft 281. During such indexing of the turret 207, the carrier 209 performs a full revolution in the direction indicated by arrow 208. This enables the ram 211 to withdraw the foremost tax stamp 202 from the magazine 213 whereby the thus withdrawn tax stamp adheres to the suction ports 214 in the extensions 210 of the ram 211. The tax stamp is thereupon caused to move along the paster 217 which coats the exposed side of the tax stamp with a suitable adhesive. When the carrier 209 completes a full revolution, the flip-flop 458 of the control unit 457 receives from the pulse shaper 101 a signal while the turret 207 and the carrier 209 are at a standstill. The output signal from the flip-flop 458 is amplified at 459 and is transmitted to the electromagnet 212 which is energized. The thus energized electromagnet 212 advances the

33 34

ram 211 in a direction toward the adjacent pocket 206. The operation of the ram 211 is analogous to that of the draping member 146 shown in FIG. 9. Thus, the median portion 215 of the ram 211 presses the adjacent part of the adhesive-coated tax stamp 202 against the 5 adjacent end face of the pack 201 and the end portions of the stamp are moved against the major surfaces of the pack 201. The operation which is performed by the ram 211 of the carrier 209 in the tax stamp applicator portion 215 of the ram 211 prevents lateral shifting of the tax stamp 202 during its deformation of the extensions 210. The electromagnet 212 thereupon closes the switch 461 which resets the flip-flop 458 of the control the ram 211 to a retracted position. The pack 201 is now provided with a properly applied tax stamp 202 and is ready for transfer onto the upper stretch of the take-off conveyor belt 203 in response to renewed indexing of the turret 207. When the pack 201 reaches 20 a position adjacent to the belt 203 and comes to a standstill, the flip-flop 464 of the control unit 462 shown in FIG. 13c receives a signal from the pulse shaper 101. This enables the flip-flop 464 to energize the solenoid of the valve 463 which causes the cylinder 25 467 to expel the piston rod 218 whereby the entraining member 219 of the piston rod 218 withdraws the pack 201 from the adjacent pocket 206 and transfers it onto the upper stretch of the belt 203. Prior to a working stroke of the piston rod 218, the entraining member 219 is located in the space between the four arms of the turret 207. The entraining member 219 pivots in response to engagement with the adjacent pocket 206 while the piston rod 218 performs a return stroke and the member 219 thereupon pivots to assume a vertical 35 position in which it is ready to expel the pack 201. When it reaches its foremost position, the piston rod 218 closes the switch 468 which resets the flip-flop 464 of the control unit 462 and sets the flip-flop 473 in the control unit 469. The flip-flop 473 thereupon transmits a signal to the valve 476 which admits compressed gas (preferably air) to the ejector nozzle 221. The detector 229 is positioned adjacent to the path of movement of packs 201 from the path Y onto the upper stretch of the belt 203. This detector scans the transferred pack for the presence or absence of a tinfoil blank 71. If the detector 229 detects the presence of a tinfoil blank 71, it transmits a signal to the corresponding input of the flip-flop 473 which causes energization of the solenoid in the valve 476 so that the admission of compressed air to the ejector nozzle 221 is interrupted before the pack 201 reaches the orifice of this nozzle. Thus, the nozzle 221 cannot eject a proper pack 201.

If the operation of the producing machines 1 and 2 is interrupted, or if these machines happen to function improperly for whatever reason so that the rate at which the belt 23 of FIGS. 2 and 3 delivers cigarettes 22 to the hopper 14 of the magazine 4 does not suffice for continuous formation of groups 8 and their introduction into the cells 9 of the chain 11, the level of cigarettes 22 in the hopper 14 descends below the lowermost photoelectric detector 31. The detector 31 then produces a signal which causes a change in the condition of the flip-flop 378 in the control unit 376 of FIG. 13b. The signal at the corresponding input of the ANDgate 377 is changed so that the gate 377 begins to block. When the other input of the AND-gate 377

thereupon receives a signal from the pulse shaper 101, the gate 377 does not produce an output signal and the electropneumatic valve 382 cannot initiate a working stroke of the pusher 7 which serves to transfer the groups 8 from the hopper 14 into successive cells 9 of the chain 11. Thus, the pusher 7 remains at a standstill and at least one cell 9 of the chain 11 remains unfilled. It will be seen that the detector 31 prevents the formation of unsatisfactory groups 8, namely, of groups 199 is shown in the portion 14s of FIG. 14. The median 10 which contain less than twenty cigarettes 22. The empty cell 9 advances toward and around the sprocket wheel 33 of FIG. 4b and reaches the transfer station A'. The pusher 37 performs a working stroke but such stroke does not result in the transfer of a group 8 into unit 457. This enables a spring (not shown) to return 15 the adjacent chamber 39 of the compacting turret 36 because the cell 9 which registers with the pusher 37 is empty. This causes the detector 222 which is adjacent to the path U to produce a signal which is transmitted to the NOT-gate 397 of the control unit 387. The NOTgate 397 transmits a signal to the AND-gate 399 which begins to block. Consequently, the condition of the flip-flop 401 remains unchanged and the valve 403 cannot cause the piston rod 62 to perform a working stroke. The transfer unit 175 remains idle. Consequently, the empty pack 41 which reaches the station B is not transferred into the adjacent pocket 178 of the turret 179. It will be seen that a signal from the detector 222 results in retention of an empty pack 41 in the path V. Furthermore, the signal from the detector 222 is transmitted to the AND-gate 404 which transmits a signal to the error signal input 408 of the counter 407. If the detector 222 determines a certain predetermined number of empty chambers 39, the AND-gate 404 transmits a corresponding number of error signals to the counter 407. When the sum of error signals received by the counter 407 reaches the predetermined number, the counter transmits a signal to the OR-gate 389 of the control unit 386. The output signal from the OR-gate 389 then causes the flip-flop 393 to deenergize the clutch 232 between the motor 231 and the packing machine 12. The packing machine comes to a standstill. The purpose of the switch 396 which is adjacent to the clutch 232 shown in FIG. 13b will be described later.

It will be noted that the detector 222 can initiate an automatic stoppage of the packing machine 12 in response to malfunction of the producing machines 1 and 2, namely, in response to such a drop in the level of cigarettes 22 in the hopper 14 that the detector 31 produces a signal. A stoppage of the packing machine 12 under such circumstances is desirable because it insures that the pusher 7 cannot form incomplete groups 8. However, the packing machine 12 will continue to operate when the cigarettes in the hopper 14 extend to a level above the detector 31 even though the turret 39 fails to receive groups 8 of cigarettes 22. If the interruption in the feed of cigarettes 22 to the hopper 14 is of relatively short duration, namely, when the counter 407 fails to store a requisite number of error signals transmitted thereto by way of the input 408, the packing machine 12 preferably continues to run until each of the mandrels 43 carries an empty pack 41. Each signal which is transmitted to the counter 407 by way of the input 409 erases a signal from the input 408 so that the packing machine 12 continues to run as long as the sum of error signals stored in the counter 407 is less than a predetermined number because the clutch 232

between the motor 231 and the driven parts of the packing machine 12 then remains in energized condition. The input 409 transmits to the counter 407 an erasing signal whenever the detector 222 detects the presence of a group 8 in the adjacent chamber 39 of the 5 turret 36. For example, the detector 222 can detect the absence of groups 8 in two, three or four successive chambers 39. The four empty chambers 39 are followed by two filled chambers 39 whereby two of the error signals transmitted to the counter 407 are erased. 10 If the counter 407 is set to deenergize the clutch 232 in response to a total of six stored error signals, the packing machine 12 continues to operate even though the detector 22 has found four empty chambers 39. The detector 222 causes the transfer of an empty pack 15 41 from the path V into the path Y whenever it detects a filled chamber 39.

If an empty pack 41 is caused to move beyond the transfer station B without being transferred into the path Y, it reaches the detector 223 which is adjacent 20 to the path V downstream of the transfer station B. The detector 223 determines whether or not a mandrel 43 which is adjacent thereto carries a tinfoil blank 71. This detector 223 can readily scan the adjacent tinfoil blank even though the latter is partially surrounded by a de- 25 formed paper blank 132 because the open end of the envelope formed by the tinfoil blank extends beyond the paper envelope. This is shown in the portions 14h to 140 of FIG. 14. When the detector 223 detects a tinfoil blank 71, it transmits a signal to the corresponding 30 input of the AND-gate 304 in the control unit 301. When the AND-gate 304 receives a signal from the detector 223 simultaneously with a signal from the pulse shaper 101, it produces an output signal which is transmitted to the flip-flop 307. The flip-flop 307 transmits 35 a signal to the clutch 263 by way of the amplifier 308, and such signal is also transmitted to the clutch 246. These signals disengage the clutches so that the shafts 74a and 247 are arrested. The conductor between the amplifier 308 and clutch 246 contains the aforemen- 40 tioned switch 302 which insures that the clutch 246 can be disengaged only when the turrets of the packing machine 12 complete a step including an indexing movement and the next-following period of dwell. Thus, the clutch 246 can be disengaged only when the carrier 83 of the blank forming apparatus 69 reaches an end position after it has travelled in the direction indicated by arrow 95 shown in FIG. 6. When the clutches 263 and 246 are disengaged, the apparatus 69 ceases to deliver tinfoil blanks 71 to the path V and the web 73 of tinfoil 50 is not transported lengthwise through distances necessary to form a succession of blanks 71. Thus, the detector 223 prevents the formation of blanks 71 when it detects the presence of an empty pack 41 on a turret 43 which has advanced beyond the transfer station B.

When a mandrel 43 which carries an empty pack 41 reaches the detector 224 which is adjacent to the path V and is close to the movable folding member 127, the detector 224 does not produce a signal because it is positioned in such a way that it cannot detect the tinfoil blank 71 if the latter is covered by a paper blank 132. Consequently, the NOT-gate 318 of the control unit 317 transmits a signal to the corresponding input of the AND-gate 321. When the AND-gate 321 thereupon receives a signal from the pulse shaper 101, it transmits a signal to the corresponding input of the flip-flop 322 which deenergizes the solenoid of the valve 324. There-

fore, the suction drum 134 of the blank feeding apparatus 131 is sealed from the suction generating device. Consequently, the drum 134 cannot withdraw a fresh paper blank 132 from the magazine 133. A mandrel 43, with an empty pack 41 thereon, can travel past the transfer station B" without receiving a paper blank 132.

It will be noted that the making of fresh empty packs 41 is controlled by empty packs which circulate along the path V. Otherwise stated, fresh tinfoil blanks 71 and paper blanks 132 can be fed into the path V only when the approaching mandrels 43 do not carry empty packs 41. The detector 223 detects the presence of tinfoil blanks 71 and the detector 224 detects the presence of paper blanks 132. These detectors insure that a turret 43 which already carries an empty pack 41 cannot receive additional blanks. The empty packs 41, each on a turret 43, continue to circulat along the path V until the detector 222 produces a signal which causes them to be transferred into the path Y AND TO BE UNITED WITH GROUPS * TO FORM THEREWITH FILLED PACKS)-. Each group 8 causes the detector 222 to initiate the transfer of an empty pack 41 from the path V into the path Y, packs 41, each on a turret 43, continue to circulate along the path V until the detector 222 produces a signal which causes them to be transferred into the path Y and to be united with groups 8 to form therewith filled packs 201. Each group 8 causes the detector 222 to initiate the transfer of an empty pack 41 from the path V into the path Y.

In an extreme condition of operation of the packing machine 12, the turret 42 can constitute a magazine or storing device for empty packs 41 which are carried by the corresponding mandrels 43. It can happen that each of the mandrels 43 carries an empty pack 41. Such situation can arise if the chain 11 fails to deliver groups 8 to the transfer station A'. The turret 42 continues to rotate intermittently as long as the clutch 232 in the drive shown in FIG. 12 continues to establish a torque-transmitting connection between the output shaft of the electromotor 231 and the shaft 241a. It will further be noted that, once an empty pack 41 on a turret 43 moves beyond the transfer station B, it can be transferred from the path V into the path Y only after it completes a full revolution about the axis of the turret 42. In other words, an empty pack 41 can be transferred from a predetermined portion of the path V, namely, at the transfer station B.

The detector 227 produces a certain signal regardless of whether it detects an incomplete empty pack 41 or an empty mandrel 43. This is due to the fact that the detector 27 simply responds to the presence of a current-conducting body, such as a tinfoil blank 71 on an adjacent mandrel 43 or the permanent magnet 52 or 53 on such mandrel. It can happen that, due to malfunctioning of the apparatus 69 and/or 131, or due to exhaustion of the supply of web 73 and/or blanks 132, a mandrel 43 which reaches the transfer station B fails to carry an empty pack 41. If this is the case, and if the detector 222 detects a group 8, the transfer unit 187 transfers such group from the adjacent chamber 39 of the turret 36 into the registering pocket 178 of the turret 179. The thus transferred group 8 is indexed with the turret 179 and reaches the transfer station A". The detector 228 at the station A" then fails to produce a signal because it responds only to the presence of a tinfoil blank 71. Consequently, the flip-flop 454 in the

control unit 449 does not receive a signal from the AND-gate 452. This causes the flip-flop 454 to deenergize the clutch 279 which thereby arrests the shaft 281. The carrier 209 in the tax stamp applicator 199 is brought to a halt and cannot withdraw tax stamps 202 from the magazine 213. When the group 8, without a pack 41 therearound, is expelled from the pocket 206 in the corresponding arm of the turet 207, the detector 229 detects the absence of a tinfoil blank and does not produce an output signal. Therefore, the flip-flop 473 10 unit 354. This causes the flip-flop 364 to disengage the in the control unit 469 does not receive a resetting signal and maintains the solenoid of the valve 476 in an energized condition so that the valve 476 connects the ejector nozzle 221 with the source of compressed air. Thus, the nozzle 221 ejects or expels the block 8 from 15 the upper stretch of the take-off conveyor belt 203. This belt transfers satisfactory packs 201 to the packing machine 13 of FIG. 1. The group 8 which is expelled by the nozzle 221 is caused to descend into a suitable collecting receptacle, not shown. The main purpose of 20 the nozzle 221 is to prevent contamination of the second packing machine 13 and interruptions in the operation of such packing machine. Furthermore, tabacco from unpacked cigarettes 22 which are removed from the upper stretch of the belt 203 can be recovered for 25reintroduction into the cigarette rod making machine

If the detector 227 at the station B detects a tinfoil blank 71, this indicates that the blank feeding apparatus 131 failed to deliver a paper blank 132 to the corre- 30 sponding mandrel 43. The detector 227 then produces a signal which is transmitted to the input of the NOTgate 398 in the control unit 387. The gate 398 causes the AND-gate 399 to block so that the flip-flop 401 cannot receive a signal and cannot initiate an operation 35 of the transfer unit 175. The detector 223, which also responds to the presence of tinfoil, prevents the delivery of fresh blanks 71 by the apparatus 69 when it detects a tinfoil blank on the mandrel 43 which has advanced beyond the station B.

As described above, the detector 224 can initiate admission of fresh paper blanks 132 by the blank feeding apparatus 131. If the apparatus 131 has failed to operate only once, namely, during one stage of operation of the packing machine 12, the empty pack on the coresponding mandrel 43 is thereupon completed. However, if the detector 226 detects that the mandrel 43 did not receive a paper blank 132, or that the mandrel does not carry any blanks, the counter 359 of the control unit 354 begins to store error signals which are transmitted thereto by the input 361. When the counter 359 stores a predetermined number of error signals, each produced in response to detection of the absence of a blank, it transmits a signal to the OR-gate 363 which causes the flip-flop 364 to disengage the clutch 367. Such disengagement of the clutch 367 is necessary because the delivery of groups 8 should be interrupted if the turret 42 fails to deliver satisfactory empty packs 41. If desired, the flip-flop 364 can actuate an alarm device (not shown) which indicates to the attendant that the operation of the converting assembly in the packing machine 12 is improper. The input 362 transmits to the counter 359 an erasing signal whenever the detector 226 fails to deliver a signal whereby the counter 359 is 65 automatically reset to zero.

The just described monitoring of tinfoil blanks 71 and paper blanks 132 and the disengagement of the clutch 367 in response to accumulation of a predetermined number of error signals insure that the producing machines 1 and 2 cannot be arrested excepting when the sum of blanks which were not delivered by the apparatus 69 and/or 131 reaches a perdetermined number.

If the level of cigarettes 22 in the hopper 14 of the magazine 4 reaches the uppermost detector 28, the latter transmits a signal to the OR-gate 363 of the control clutch 367 and to thus arrest the producing machines 1 and 2. The clutch 367 can be reengaged by closing the manually operated switch 368 in the control unit 354. Closing of the switch 368 results in resetting of the flip-flop 364. The packing machine 12 can be started by the manually operated switch 391 in the control unit 386. This switch can reset the flip-flop 393 which controls the clutch 232 between the output shaft of the motor 231 and the shaft 241a. The switch 392 of the control unit 386 is opened by hand when the operator wishes to arrest the packing machine 12.

When the packing machine 12 performs operations which involve movements of folding and/or tucking members, or which involve transfer of groups 8 from one turret to another turret, it is undesirable to interrupt such operations before the respective movable parts reach their starting or idle positions. Stoppage of moving parts of the packing machine 12 at inopportune times can result in damage to packs 41, groups 8 and/or movable parts when the packing machine is restarted. Consequently, it is desirable that each stage of operation of the packing machine 12 be completed before the packing machine is arrested. The same holds true for the application of adhesive and for the transfer of blanks 71 and/or 132. To this end, the driven element of the clutch 232 in the control unit 386 is operatively connected with the switch 396. The driven element of the clutch 232 is provided with a lobe or an analogous projection (not shown) which actuates the switch 396 upon completion of a step. In other words, the switch 396 insures that the flip-flop 393 can deenergize the clutch 232 only upon completion of an indexing step and movements of various movable parts in the packing machine 12.

An important advantage of the illustrated packing machine is that it is less prone to malfunction than the presently known packing machines. This is particularly important in connection with packing machines which are directly coupled to one or more producing machines. In the absence of a substantial magazine between the producing and packing machines, it is necessary to insure that the packing machine be arrested simultaneously or substantially simultaneously with the producing machine or machines and that the two groups of machines be started at the same time. Such stoppage and starting of the packing machine must often take place in response to frequent and shortlasting interruptions in operation of the producing machines. Furthermore, the previously described controls of the packing machine 12 insure that the stoppage and starting of the packing machine can take place in automatic response to stoppage and starting of the producing machine or machines so that the operator who is in charge of the producing machine or machines need not be concerned with operation of the packing machine. As a rule, the producing machine or machines are much more sensitive than the packing machines so that the operator or operators are occupied with supervision of the producing machines and can spend little time for supervision of the packing machines.

Another important advantage of the improved packing machine is that it produces empty packs 41 inde- 5 pendently of the rate of delivery of groups 8. Therefore, the packing machine can accumulate a reasonable supply of empty packs which can be transferred from the path V into the path Y whenever necessary, namely, whenever the detector 222 detects the pres- 10 ence of a group 8 in the adjacent chamber 39 of the turret 36. The packing machine automatically continues to make empty packs 41 even if the producing machine or machines are arrested until each of the mandrels 43 carries an empty pack 41. In other words, the packing 15 machine 12 is arrested in automatic response to stoppage of the producing machine or machines but only after the elapse of an interval which is necessary to produce such a number of empty packs 41 that each mandrel 43 carries an empty pack.

FIGS. 15a-15d illustrate a second packing machine 2012 whose control system is shown in FIGS. 16a-16c. All such parts of the second packing machine which are identical with or clearly analogous to the corresponding parts of the packing machine 12 are denoted by similar reference characters plus 2000. Also, the paths for various components of filled packs 2201 and for such filled packs are denoted by reference characters employed in FIGS. 4a-4b followed by the digit "2".

One of the differences between the packing machines 30 12 and 2012 is that the turret 2042 of the converting assembly defines a portion of the path Y2. The turret 2042 does not constitute a magazine for empty packs 2041 but merely serves for the making of empty packs whenever warranted by the detection of a satisfactory group 2008. Thus, the blanks 2071, 2132 are supplied by the respective apparatus 2069, 2131 to the turret 2042 only when the detector 2222 (which is placed adjacent to the path U2) detects a satisfactory group 2008. In other words, empty packs 2041 cannot circu- 40 late along an endless path but only along that portion of the path defined by the mandrels 2043 of the turret 2042 wherein the blanks 2071, 2132 are subjected to deforming operations to be converted into the envelopes of empty packs 2041. The paths along which the blanks 2071, 2132 are supplied into the path Y2 are respectively shown at W2 and X2. The transfer stations where the blanks 2071, 2132 enter the path Y2 are respectively shown at B2' and B2".

Another difference between the packing machines 12 and 2012 is that the turret 2042 does not serve for the making of empty packs 2041 independently of the rate of delivery of satisfactory groups 2008 to the pack filling station C2. Each empty pack 2041 which is formed during travel of blanks 2071, 2132 along the path Y2 is transferred into a pocket 2178 of the turret 2179. Such transfer takes place at the station B2. The transfer of blanks 2071, 2132 from the paths W2, X2 into the path Y2 depends on the detection of satisfactory groups 2008 by the detector 2222.

Still another difference between the packing machines 12 and 2012 is that the machine 2012 comprises a paster 2291 which is located downstream of the pivotable folding member 2173 and serves to apply a wet adhesive to that flap 2041a of the partially completed empty pack 2041 which is to be folded by the stationary folding member 2176. The paster 2291 com-

prises a forked carrier 2292 for a coating roll 2293 and a nozzle 2294 which is connected with a source of adhesive and applies a film of adhesive to the periphery of the roll 2293. The carrier 2292 is reciprocable in directions indicated by a double-headed arrow 2297. The means for reciprocating the carrier 2292 comprises an electromagnet 2296 shown in FIG. 16a.

As mentioned above, the photoelectric detector 2222 is placed adjacent to the upper stretch of the chain 2011, as viewed in FIG. 15b, so that it is remote from the transfer station A2'. This detector scans the cells 2009 for the presence or absence of gropus 2008 and is located at such a distance from the pack filling station C2 that the sprocket wheel 2033 and compacting turret 2036 must be indexed ten times before a scanned group 2008 advances from the testing station (detector 2222) to the filling station C2. The same number of indexing movements (by the turrets 2042 and 2179) is necessary to advance a tinfoil blank 2071 from the transfer station B2' to the filling station C2.

The control system of FIGS. 16a-16c differs from the control system of FIGS. 13a-13c in that it does not include the control units 301 (because the clutch 246 is omitted from the drive means of the packing machine 2012), 317, 354 and 449. Furthermore, the detector 227, the NOT-gate 398 and the AND-gate 399 of the control unit 387 are also omitted. The amplifiers and certain other parts (including the clutch 263, the electropneumatic valve 324 and the clutch 279) are controlled by a shift register 2484 of the control system in the packing machine 2012.

Furthermore, the control system of FIGS. 16a-16c comprises certain parts which are not used in the control system of FIGS. 13a-13c. Such parts include a control unit 2481 (shown in FIG. 16a) which includes the electromagnet 2296 for moving the carrier 2292 of the paster 2291. The control unit 2481 further comprises a pulse shaper 2483 which is connected with the switch 2099, a flip-flop 2485, an amplifier 2482 and a switch 2489 which is actuated by the armature of the electromagnet 2296 and can reset the flip-flop 2485. The pulse shaper 2483 produces a signal of predetermined duration in response to opening of the switch 2099, i.e., the pulse shaper 2483 responds to the downwardly sloping flank of the signal produced by the switch 2099.

The shift register 2484 is connected with the switch 2099 and pulse shaper 2101 and comprises 14 stages. The exact construction of the shift register 2484 forms no part of the present invention; its stages are denoted by the characters a to o and the number of such stages equals the number of steps which a blank 2071 must perform in order to advance from the rollers 2072a, 2072b of the feeding device 2072 to the turret 2207 of the tax stamp application 2199. A conductor 2486 connects the stages of the register 2484 with the output of the pulse shaper 2101 and serves to transmit to such stages shifting pulses. A further conductor 2487 connects the photoelectric 2222 wit the input of the first stage a by way of an AND-gate 2488 in such a way that, when the detector 2222 detects the absence of groups 2008 in the path U2, the first stage a receives a signal in response to detection of the absence of each group. Such signals are thereupon transported through successive stages of the register 2484 in synchronism with operation of the packing machine 2012.

The output of the first stage a is connected with the clutch 2263 by way of an amplifier 2308. The clutch

2263 can drive the shaft 2274a of the roller 2072a in the feeding device 2072. The output of the fourth stage d is connected with the solenoid of the electropneumatic valve 2324 by way of an amplifier 2323. The valve 2324 controls the connection between the suction generating device (not shown) and the suction drum 2134 in the apparatus 2131.

The output of the last stage o is connected with the clutch 2279 by way of an amplifier 2456. The clutch tax stamp applicator 2199.

The operation of the packing machine 2012 is as follows

The cells 2009 of the chain 2011 transport blocks or groups 2008 of 20 cigarettes each along the path U2. The cells 2009 receive groups 2008 from a magazine which preferably corresponds to the magazine 4 of FIG. 2. At the transfer station A2', the groups 2008 are transferred into successive chambers 2039 of the compacting turret 2036 and are moved stepwise to the pack filling station C2. When the detector 2222 detects the presence of a group 2008, it does not produce a signal. Therefore, the NOT-gate 2397 (FIG. 16b) transmits a signal to one input of the AND-gate 2406. When the other input of the AND-gate 2406 receives a signal from the pulse shaper 2101 (which is in series with the switch 2099), the gate 2406 transmits a signal to the signal erasing input 2409 of the counter 2407. Since the AND-gate 2488 (FIG. 16c) which is connected to the detector 2222 by the conductor 2487 does not receive a signal when the detector 2222 detects the presence of a group 2008, the shift register 2484 does not receive a control signal. Therefore, the first stage a cannot disengage the clutch 2263 by way of the amplifier 2308 and the feeding device 2072 is caused to advance the tinfoil web 2073 through a distance corresponding to the length of a blank 2071. Thus, the apparatus 2069 delivers a blank 2071 from the path W2 to the path Y2, namely, to the transfer station B2'. The thus delivered tinfoil blank 2071 is then converted into a tube in a manner as described in connection with FIGS. 4 to 8 and 12 to 14, particularly in connection with FIGS. 6, 7 and 8.

Since the register 2484 did not receive a control sig- 45 nal, the next following timing signals from the pulse shaper 2101 (such timing signals cause a signal which is stored in the register 2484 to move from stage to stage) cannot cause the stage dto produce an output signal so that the valve 2324 continues to connect the 50 suction drum 2134 of the apparatus 2131 with the suction generating device. Consequently, the suction drum 2134 can withdraw a paper blank 2132 from the magazine 2133 and delivers such blank along the path X2 to the transfer station B2". The draping member 2146 thereupon drapes the blank 2132 about the adjacent mandrel 2043 in the same way as described in connection with FIGS. 4a and 4b. The thus draped paper blank 2132 partially surrounds the tinfoil tube on such mandrel. Prior to the draping of a paper blank 2132, the tin- 60foil tube on the mandrel 2043 which moves from the station B2' to the station B2" is treated by the folding members 2127 and 2129 which perform the operations corresponding to those shown in the portions 14e and 14f of FIG. 14. It will be seen that the detector 2222 65 controls the admission of blanks 2071, 2132 into the path Y2 in response to detection of groups 2008 in the adjacent cells 2009 of the chain 2011.

The partially deformed blanks 2071, 2132 are thereupon treated substantially in the same way as described in connection with FIGS. 1 to 14 so that they form an empty pack 2041 when the corresponding mandrel 2043 reaches the station B2. Thus, such blanks are treated by the folding members 2153, 2154 (see the portions 14i and 14k of FIG. 14), by the tucking device 2161 which performs the operation shown in portion 14L of FIG. 14, and by the folding member 2173 (por-2279 can drive the shaft 2281 of the carrier 2209 in the 10 tion 14m of FIG. 14). However, the adhesive which is needed to close one end of the paper envelope on the corresponding mandrel 2043 is applied by the paster 2291 whose coating roll 2293 applies paste to the inner side of the flap 2041a (FIG. 15a). The paster 2291 is operated during an interval which follows a stepwise indexing movement of the turret 2042, namely, when the switch 2099 is open. As stated above, the pulse shaper 2483 (FIG. 16a) produces a signal in response to opening of the switch 2099, and such signal causes the flip-flop 2485 of the control unit 2481 to energize the electromagnet 2296 by way of the amplifier 2482. The energized electromagnet 2296 moves the carrier 2292 of the paster 2291 upwardly, as viewed in FIG. 15a, so that the coating roll 2293 rolls along and coats with adhesive the inner side of the flap 2041a. When the carrier 2292 reaches its upper end position, the armature of the electromagnet 2296 closes the switch 2489 so that the condition of the flip-flop 2485 changes with the result that he electromagnet 2296 is deenergized. This enables a suitable spring (not shown) to return the carrier 2292 of the paster 2291 to the retracted or idle position shown in FIG. 15a. The flap 2041a is thereupon caused to adhere to the flap which was formed by the member 2173 while the respective mandrel 2043 moves along the stationary folding member 2176 (see the portion 14n of FIG. 14).

When the thus obtained empty pack 2041 reaches the transfer station B2, it is automatically removed from its mandrel 2043 by the transfer unit 2175 and is introduced into the registering pocket 2178 of the turret 2179. The transfer unit 2175 receives signals from a detector which scans the compacted groups 2008 in the chamber 2039 of the turret 2036.

The empty pack 2041 then shares the movements of the turret 2179 and reaches the filling station C2 simultaneously with that group 2008 whose scanning by the detector 2222 triggered the admission of corresponding blanks 2071 and 2132 into the path Y2. The group 2008 is transferred into the empty pack 2041 in the same way as described in connection with FIGS. 1-14 (see also FIG. 15c). The thus obtained filled pack is advanced beyond the filling station C2 and the open ends of its tinfoil and paper envelopes are closed by the members 2194, 2196 and 2198 (see the portions 14p, 14q and 14r of FIG. 14). The pack 2201 is thereupon transferred into the adjacent pocket 2206 of the turret 2207 in the tax stamp applicator 2199. The transfer into the pocket 2206 takes place at the station A2" and is carried out by the pusher 2204.

Since the group 2208 whose travel along the paths U2 and Y2 was described in the preceding paragraphs did not cause the detector 2222 to transmit control signal to the shift register 2484, the last stage o of the register does not transmit a signal to the clutch 2279 (FIG. 16c) by way of the amplifier 2456. Therefore, the clutch 2279 remains engaged and the applicator 2199 provides the pack 2201 with a tax stamp 2202. The application of the stamp 2202 takes place in the same way as described in connection with FIG. 4b. The entraining element 2219 thereupon transfers the finished pack 2201, with a tax stamp 2202 applied thereto, onto the upper stretch of the take off belt 2203.

If the detector 2222 detects the absence of a group 2208, namely, that the adjacent cell 2009 of the chain 2011 is empty, the detector 2222 transmits a signal to the corresponding input of the AND-gate 2404 (FIG. 16b). The other input of the AND-gate 2404 thereupon 10 receives a timing signal from the pulse shaper 2101. Consequently, the AND-gate 2404 transmits an output signal to the error signal input 2408 of the counter 2407. At the same time, the detector 2222 transmits a signal to the corresponding input of the AND-gate 15 2488 (by way of the conductor 2487). When the other input of the AND-gate 2488 receives a signal from the pulse shaper 2101, its output transmits a control signal to the first stage a of the shift register 2484. Since the register simultaneously receives a timing signal from the pulse shaper 2101, the first stage a transmits an output signal to the amplifier 2308 which disengages the clutch 2263. Thus, the driving connection between the shafts 2262 and 2074a (FIG. 16c) is terminated and the 25feeding device 2072 cannot advance the tinfoil web 2073 toward the transfer station B2'. It will be seen that a signal from the detector 2222 causes the shift register 2484 to interrupt the delivery of tinfoil blanks 2071 into the path Y2. The corresponding mandrel 2043 30 does not receive a tinfoil blank 2071 and is indexed stepwise to advance toward the transfer station B2". The control signal travels through the stages of the shift register 2484 and reaches the stage d at the time when the contemplated mandrel 2043 (without a tinfoil 35 blank) reaches the station B2". The stage d then transmits a signal to the amplifier 2323 which causes the valve 2324 to seal the suction generating device from the ports of the suction drum 2134. Consequently, the drum 2134 cannot withdraw a paper blank 2132 from 40 the magazine 2133 and the empty mandrel 2043 is thereupon indexed to advance toward the station B2.

The mandrel 2043, without an empty pack thereon, advances stepwise beyond the station B2" and reaches the transfer station B2. The unit 2175 cannot transfer 45 a pack into the adjacent pocket 2178 of the turret 2179 and such pocket does not receive a group 2008. It will be recalled that the absence of a group caused the detector 2222 to prevent the admission of blanks to the turret 2042. The empty pocket 2178 advances toward 50the transfer station A2" and reaches such station at the time when the control signal reaches the last stage o of the register 2484. The output signal from the stage o is amplified at 2456 and causes disengagement of the clutch 2279 so that the shaft 2281 for the carrier 2209 55 in the tax stamp applicator 2199 remains at a standstill and the ram 2211 cannot withdraw a tax stamp from the magazine 2213.

If the detector 2222 detects several successive empty cells 2009, the error signal input 2408 of the counter 2407 receives a corresponding number of signals. When the sum of error signals in the counter 2407 reaches a predetermined number, the counter 2407 emits a signal which results in disengagement of the clutch 2232 and in stoppage of the packing machine 2012 in a manner as described in connection with FIGS. 1 to 14.

If the packing machine 2012 is stopped, for example, in response to actuation of the switch 2392 shown in FIG. 16b, the possibility exists that such stoppage will take place at a time which is inopportune insofar as certain operations which result in the formation of blanks 2041 are concerned. For example, it would be undesirable to stop the packing machine while the coating roll 2293 of the paster 2291 is in the process of coating the adjacent flap 2041a, while a folding or tucking device is in the process of deforming the respective blank or blanks, or while a blank, a pack and/or a group 2008 is being transferred. It could also happen that the packing machine is stopped when a paper blank 2132 is already coated with adhesive but the adhesive-coated portion or portions of the paper blank do not as yet overlap and adhere to uncoated portions of such paper blank. The adhesive is then likely to dry while the packing machine is at a standstill and does not provide a satisfactory bond when the machine is started again. Also, such unsatisfactory paper blank can be caught in the moving parts of the packing machine to cause damage or at least an extended interruption of the operation. Detection of unsatisfactory envelopes would necessitate the provision of additional detectors and would complicate the control system of the packing machine. Therefore, the clutch 2232 is provided with a projection or analogous actuating means (not shown) which actuates the switch 2396 of FIG. 16b only when a stage T in operation of the machine is completed whereby the switch 2396 permits or effects disengagement of the clutch 2232. Thus, the switch 2396 insures that, irrespective of the actual timing of generation of a signal for stoppage of the packing machine, such stoppage can occur only and alone when a stage T in operation is completed.

In the packing machine 12, the adhesive which is applied by the paster 139 remains exposed during several stages of operation of the packing machine. This could result in drying of such adhesive before the corresponding paper blank 132 is converted into an envelope. Therefore, the packing machine 2012 comprises the additional paster 2291 which applies paste immediately before the flap 2041a is folded so that the adhesive is exposed for a period less than that required to complete a stage T in the operation of the packing machine. The adhesive which is applied by the paster 2139 merely serves to prevent opening of the paper tube whose formation is completed by the member 2154 (see the portion 14k of FIG. 14).

An advantage of the packing machine 2012 is that its control system is simpler than the control system of FIGS. 13a-13c. This is due to the fact that the control system of FIGS. 16a-16c need not utilize detectors which scan the path defined by the turret 2042 for the mandrels 2043. Thus, the detectors 223, 224, 226, 227, 228 of the control system shown in FIGS. 13a-13c can be dispensed with.

Another advantage of the packing machine 2012 is that empty packs 2041 cannot be wasted because they are produced only when they are certain to meet groups 2008 of cigarettes at the filling station C2. This is due to the fact that the admission of blanks 2071, 2132 for the making of an empty pack 2041 in the path Y2 is initiated only when the detector 2222 detects the presence of a group 2008. The thus detected group is thereupon introduced into that pack which has been produced in response to such detection.

The main difference between the packing machines 12 and 2012 is that the control system of FIGS. 13a-13c permits the formation of empty packs 41 even if the detector 222 detects the absence of a group 8, whereas the control system of FIGS. 16a-16c prevents 5 the formation of a pack 2041 when the detector 2222 detects the absence of a group 2008. However, the two packing machines share the feature that the delivery of at least one component of an empty pack into the path Y or Y2 is prevented when the detector 222 or 2222 10 detects the absence of a group 8 or 2008. Thus, in the machine 12 of FIGS. 1-14, the detector 222 can prevent the transfer of all components (71 and 132) of a finished empty pack 41 into the path Y whereas the detector 2222 can prevent the delivery of the component 15 2071 and/or 2132 from the path W2 and/or X2 into the path Y2 (depending upon whether the empty packs 2041 contain one or more envelopes).

The packing machines 12, 2012 can be designed to velope, e.g., an envelope made of paper, cardboard, plastic, or paper coated with a liner of tinfoil or the like. In the manufacture of cigarette packs, the customary procedure is to form an inner envelope of tinfoil which prevents changes in moisture content of tobac- 25 co-containing articles and an outer envelope of paper or cardboard which enhances the appearance of the product and is better suited for reception of imprints, particularly trade marks, warnings, manufacturer's name and/or the like. The control systems of FIGs. 30 13a-13c and 16a-16c insure that the withdrawal of blanks 132 or 2132 from the respective sources takes place with a necessary delay following the withdrawal of blanks 71 or 2071 so that the conversion of blanks into containers 41 or 2041 can be carried out in a manner as shown in FIG. 14. Such staggered withdrawal of blanks from the respective sources takes place irrespective of whether the containers (41) are produced independently of the presence or absence of commodities (8) in the path (U) defined by the transporting 40 means (11, 36) which moves the commodities toward the filling station (C), or whether the blanks (2071, 2132) are withdrawn from the respective sources (reel for the web 2173 and the magazine 2133) in response to detection of the presence of a commodity (2008) by the detector means (2222).

Direct coupling of one or more producing machines (such as the machines 1 and 2 of FIG. 1) with the improved packing machine insures that the condition of articles which are to be assembled into groups 8 or 2008 cannot be unduly influenced by surrounding air and also that the introduction of such articles into the packing machine can be carried out with minimal outlays for conveyors, trays, storage space and other auxiliary equipment. The necessary number of articles can be stored in the magazine 4, and the necessary number of groups 8 or 2008 can be temporarily stored in the cells of the chain 11 or 2011.

Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can, by applying current knowledge, readily adapt it for various applications without omitting features which fairly constitute essential characteristics of the generic and specific aspects of our contribution to the art and, therefore, such adaptations should and are intended to be comprehended within the meaning and range of equivalence of the claims.

What is claimed as new and desired to be protected by Letters Patent is set forth in the appended claims:

1. A method of making, filling and treating containers, particularly packs for the reception of groups of rod-shaped tobacco-containing articles or analogous commodities, comprising the steps of conveying commodities along a first path; scanning said first path for the presence and absence of commodities; establishing at least one source of deformable bodies each of which constitutes at least a portion of a container; withdrawing a body from said source only in response to detection of a commodity in said first path and conveying the thus withdrawn body along at least one second path into a third path; transporting the thus conveyed body and the corresponding commodity to an assembling station; assembling the commodity with the body at said assembling station; and thereupon subjecting the resulting assembly to at least one treatment.

2. A method as defined in claim 1, wherein the conmake containers each of which consists of a single en- 20 tainers consist of a plurality of components each of which is withdrawable from a discrete source along a separate second path, said withdrawing step comprising withdrawing components from each of said discrete sources and conveying the thus withdrawn components along the respective second paths into said third path, and further comprising the step of converting such components into an empty container at least during conveying of components along said third path so that the body which reaches said assembling station constitutes an empty container.

> 3. A method as defined in claim 2, wherein said withdrawing step comprises withdrawing one of said components from the respective discrete source prior to withdrawal of another component.

> 4. A method as defined in claim 1, further comprising the step of regulating the speed of transport of said body and the corresponding commodity so that the body reaches the assembling station simultaneously with the corresponding commodity.

5. A method as defined in claim 1, wherein said bodies constitute empty containers and further comprising the steps of establishing at least one source of deformable sheet-like blanks, withdrawing blanks from said last mentioned source and converting the thus withdrawn blanks into empty containers, and storing such empty containers in said first mentioned source.

6. A method as defined in claim 5, wherein a withdrawal of blanks from said last mentioned source takes place only in response to detection of a commodity in 50 said first path.

7. A method as defined in claim 5, wherein said steps of withdrawing blanks from said last mentioned source and converting such blanks into empty containers take place independently of the detection of the presence or absence of commodities in said first path.

8. A method as defined in claim 7, wherein said assembling step comprises introducing a detected commodity into that container which is withdrawn from the first mentioned source in response to detection of said detected commodity.

9. A method as defined in claim 1, wherein said commodities and said bodies are conveyed in stepwise fash-

10. A method as defined in claim 1, wherein said commodities and said bodies are conveyed stepwise, always for a first predetermined interval of time, followed by a second predetermined interval of dwell.

- 11. A method as defined in claim 10, further comprising the steps of subjecting said bodies to at least one treatment during transport from said source to said assembling station, such treatment being terminated during a period including one of said first and one of said 5 second intervals.
- 12. A method as defined in claim 11, further comprising the step of producing a signal to effect an interruption of said last mentioned treatment and of said conveying steps, and delaying such interruption until 10 after the elapse of said period.
- 13. A method as defined in claim 12, wherein said last mentioned treatment comprises the application of adhesive to at least one selected portion of a body and placing of such selected portion into contact with an- 15 other portion of the respective body prior to elapse of said period.
- 14. A method as defined in claim 12, wherein selected portions of said bodies are provided with layers of heat-activatable adhesive and said last mentioned 20 assembling means comprises transfer means for transtreatment comprises the steps of placing such selected portion of a body into contact with another portion of the respective body and heating the selected portion prior to elapse of said period.
- 15. A method as defined in claim 1, wherein said 25 treatment and said conveying steps are carried out in stages and wherein, once started, each such stage is invariably completed.
- 16. A method as defined in claim 1, further comprising the step of producing said commodities and imme- 30 diately introducing the thus produced commodities into said first path.
- 17. A method as defined in claim 1, wherein said commodities consist of arrays of parallel rod-shaped tobacco-containing articles.
- 18. A machine for the making, filling and treatment of containers, particularly packs for groups of rodshaped tobacco-containing articles or analogous commodities, comprising first transporting means for moving commodities along a first path toward an assem- 40 bling station; detector means for determining the presence and absence of commodities in said first path; a supply including at least one source of deformable bodies each of which constitutes at least a portion of a container; second transporting means for moving the bod- 45 ies along a second path toward said assembling station; transfer means operative to transfer from said source a body along a third path into said second path only in response to detection of a commodity by said detector means; means for assembling the thus transferred body 50 at said assembling station with that commodity whose detection caused the operation of said transfer means; and means for subjecting the resulting assembly to at least one treatment.
- 19. A machine as defined in claim 18, wherein said 55 supply includes several sources of deformable blanks each of which is convertible into a portion of a container and said transfer means comprises discrete apparatus each arranged to supply to said second transporting means a blank in response to detection of a com- 60 modity by said detector means.
- 20. A machine for the making, filling and treatment of containers, particularly packs for groups of rodshaped tobacco-containing articles or analogous commodities, comprising first transporting means for mov- 65 shaped tobacco-containing articles. ing commodities along a first path toward a filling sta-

- tion; detector means for determining the presence and absence of commodities in said first path; a supply including several sources of deformable blanks each of which is convertible into a portion of a container; second transporting means for moving the blanks along a second path toward said filling station; transfer means operative to transfer from said sources bodies along a third path and into said second path, said transfer means comprising discrete apparatus each arranged to supply to said second transporting means a blank in response to detection of a commodity by said detector means; means for converting said blanks into a container at least while such blanks are moved by said second transporting means; means for assembling the converted blanks at said filling station with that commodity whose detection caused the operation of said transfer means; and means for subjecting the resulting assembly to at least one treatment.
- 21. A machine as defined in claim 18, wherein said ferring containers from said second path to said assembling station and filling means for introducing the corresponding commodities into the containers at said station.
- 22. A machine as defined in claim 19, wherein each of said apparatus comprises means for moving blanks from the respective source into said second path.
- 23. A machine as defined in claim 18, wherein said bodies are open empty containers and further comprising means for converting blanks into such containers independently of the detection of commodities in said first path.
- 24. A machine as defined in claim 18, further comprising drive means for intermittently operating said transporting means and said assembling means.
- 25. A machine as defined in claim 24, wherein said drive means comprises means for operating said transporting means for first predetermined intervals of time and for maintaining the transporting means at a standstill for second predetermined intervals of time which alternate with said first intervals.
- 26. A machine as defined in claim 25, further comprising means for stopping said drive means and means for preventing stoppage of said drive means prior to completion of a period including one of said first and one of said second intervals.
- 27. A machine as defined in claim 26, further comprising paster means operative to coat with an adhesive selected portions of said bodies in said second path and deforming means for placing the thus coated selected portions into contact with other portions of the respective bodies, said drive means comprising means for operating said paster means and said deforming means during each of said periods.
- 28. A machine as defined in claim 27, further comprising means for preventing the interruption of operation of said paster means and said deforming means prior to elapse of the respective period.
- 29. A machine as defined in claim 18, further comprising at least one producing machine arranged to produce said commodities and to supply the thus produced commodities directly to said first transporting means.
- 30. A machine as defined in claim 18, wherein each of said commodities consists of an array of parallel rod-