

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2007/0295760 A1 Geroult et al.

Dec. 27, 2007 (43) Pub. Date:

(54) POURER CONTAINER AND BREWING APPLIANCE COMPRISING SAME

(76) Inventors: Marc Geroult, Oisseau-le Petit (FR); Christian Jouatel, Radon (FR)

Correspondence Address: YOUNG & THOMPSON 745 SOUTH 23RD STREET 2ND FLOOR ARLINGTON, VA 22202 (US)

(21) Appl. No.: 11/658,140

(22) PCT Filed: Jun. 28, 2005

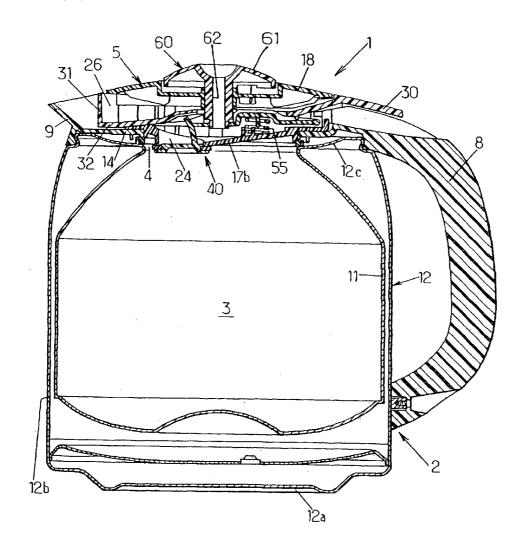
(86) PCT No.: PCT/FR05/01644

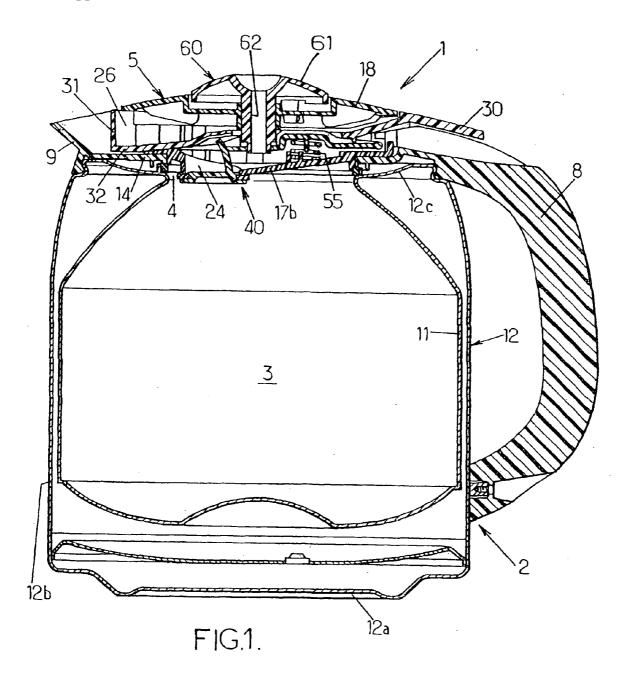
§ 371(c)(1),

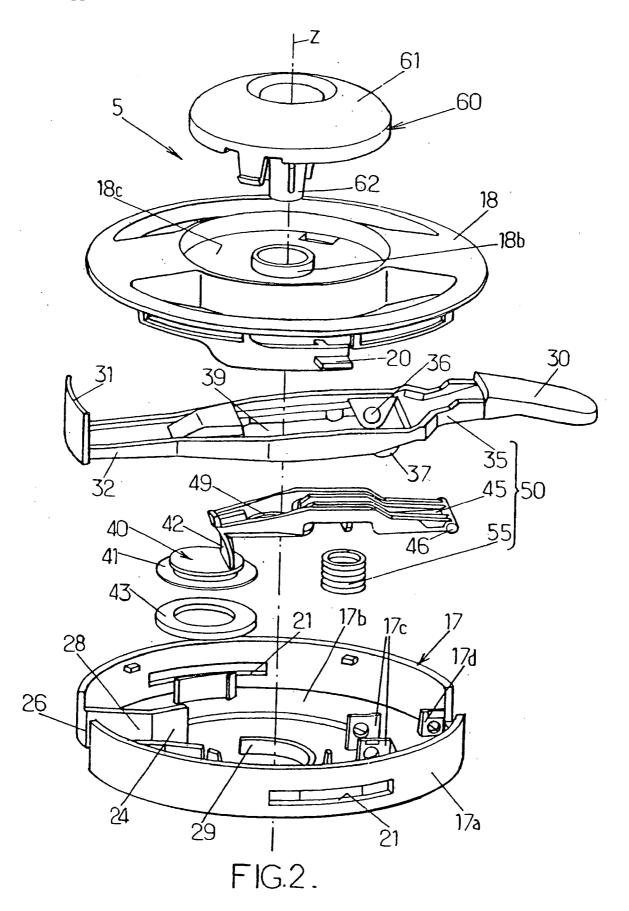
(2), (4) Date: Mar. 23, 2007

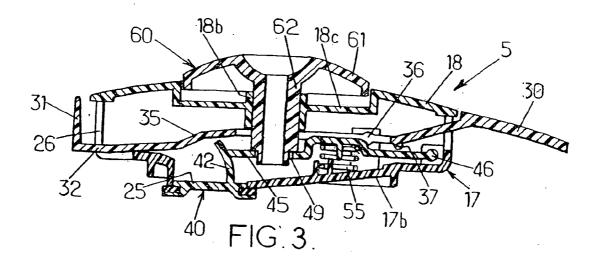
(30)Foreign Application Priority Data

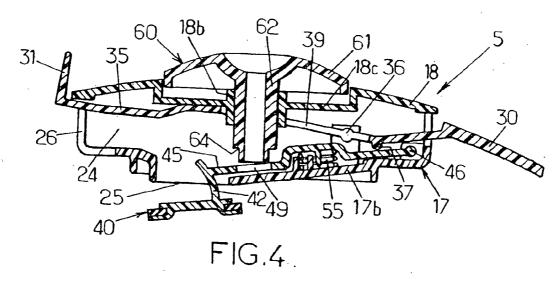
Jul. 26, 2004 (FR).......0408242

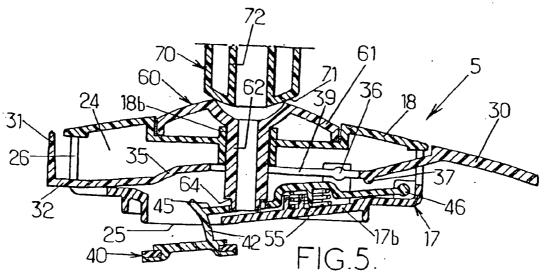

Publication Classification


(51) Int. Cl. A47G 19/12 (2006.01)


(52)


ABSTRACT (57)


A pourer container includes a body (2) including a pouring member (9), an opening (4) and defining a chamber (3), a lid (5) including an inner check valve (40) and a conduit (24) communicating the chamber with the pourer member, the check valve being mobile between a closed position wherein it closes the conduit and an open position wherein it allows communication through the conduit and a pouring control (30) connected to the valve through an actuating mechanism adapted to place the check valve in open position when the pouring control is actuated. The lid (5) further includes a pouring indicator (31) connected to the pouring control and mobile between a closing position and an opening position wherein it projects outside the container upon actuation of the pouring control. A brewing appliance including such a container is also disclosed.



POURER CONTAINER AND BREWING APPLIANCE COMPRISING SAME

[0001] The present invention relates to a pouring receptacle, and particularly but not exclusively, to an isothermal receptacle adapted for a coffeemaker or an electric teamaker.

[0002] More particularly, the invention relates to a pouring receptacle comprising:

- [0003] a body comprising a pouring member and an upper opening, and defining a chamber adapted to contain a liquid;
- [0004] a cover adapted to close the opening, and comprising a check valve internal to the chamber and a conduit ensuring fluid communication from the chamber toward the pouring member through a first and a second outlet, said check valve being movable between a closed position in which it closes said conduit and an open position in which it permits communication between the first and second outlets of the cover; and
- [0005] a pouring control connected to said check valve by an actuating mechanism and adapted to place said check valve in an open position when the pouring control is actuated.

[0006] There is known a pouring receptacle of this type from FR 2 752 712, in which the chamber is thermally insulated. Given that the check valve connected to the cover is located within the chamber, its open position is thus not visible by the user when he wants to pour a beverage. Also, in the absence of any visual indication permitting the user to know that the chamber is in communication or not with the pouring member, it may happen that the user does not understand intuitively the function of the pouring control. Moreover, said users not knowing in which position the check valve is, hesitate to carry out the pouring movement or on the contrary carry out a too abrupt pouring movement. In the opinion of certain users, such isothermal pouring receptacles are thus poorly adapted to the user.

[0007] The present invention has for its object to overcome this drawback by providing a pouring receptacle whose use will be more intuitive and more comfortable.

[0008] To this end, the present invention has for its object a pouring receptacle of the mentioned type, characterized in that the cover comprises moreover an indicator or pouring connected to the pouring control and movable between a so-called closing position and a so-called opening position in which it projects outside the receptacle when the pouring control is actuated.

[0009] Thus, the user has an indicator connected to the cover, clearly visible when he actuates the pouring control, permitting him thus to decide intuitively that the action of this control has an effect on the check valve, and as a result, on the possibility of pouring or not the beverage contained in the receptacle. It will thus be seen that the majority of the users will carry out the pouring movement in a more natural manner.

[0010] In the preferred embodiments of the invention, reference will be had moreover to one and/or the other of the following arrangements:

- [0011] the pouring indicator is a blade carried by an arm connected to the pouring control and projecting outside the cover through the second outlet;
- [0012] the pouring control is resiliently urged toward an inactive position in which the pouring indicator will occupy its closing position;
- [0013] the pouring indicator carries out, from its closing position toward its opening position, a movement overall directed upwardly and of an amplitude suitable that the pouring indicator will project beyond the upper surface of the cover;
- [0014] the actuating mechanism comprises a first lever swingably mounted relative to the cover about a transverse axis, and extending longitudinally between a first end secured to the pouring control and a second end connected to the pouring indicator, and a second lever having a first end mounted pivotably relative to the cover about an axis and a second end secured to the check valve, said second lever being urged by a resilient member toward a position in which the check valve is in closed position, and the first lever having a finger adapted to come to bear against the second lever, said first and second levers being arranged relative to each other such that the actuation of the pouring control brings the check valve into open position and the pouring indicator into the opening position;
- [0015] the swinging axis of the first lever is positioned longitudinally at a predetermined distance from the pouring control so as to amplify the movement of the pouring indicator relative to the movement of the pouring control;
- [0016] the cover comprises moreover a filling means movably mounted in the cover and adapted to act on the second lever so as to bring the check valve into open position during actuation of said filling means, said first lever having an opening through which freely passes the filling means.
- [0017] The present invention relates also to an infusion apparatus, such as for example a coffeemaker or a tea maker, comprising a pouring receptacle as defined above, in which the infusion apparatus comprises an actuating member provided with an infused beverage outlet and adapted to actuate the filling means of the pouring receptacle when the latter is correctly positioned relative to said outlet.
- [0018] Because of the coaction by simple contact between the first and second levers, the pouring indicator remains in the closing position when the filling means is actuated. There is no risk that this indicator will come into contact with a portion of the apparatus.
- [0019] Other characteristics and advantages of the invention will become apparent from the description which follows, given by way of non-limiting example, with reference to the accompanying drawings, in which:
- [0020] FIG. 1 is a vertical cross-sectional view of an isothermal pouring receptacle according to the invention, comprising a cover;
- [0021] FIG. 2 is an exploded view of the cover shown in FIG. 1;

[0022] FIG. 3 is a simplified cross-sectional view of the cover shown in FIG. 1, in which the cover is of a so-called closed configuration;

[0023] FIG. 4 is a view analogous to that of FIG. 3 in which the cover is in a so-called pouring configuration;

[0024] FIG. 5 is a view similar to FIG. 3 in which the cover is in a so-called filling configuration.

[0025] In the different figures, the same reference numerals are used to designate identical or similar elements.

[0026] In FIG. 1 there is shown a pouring receptacle 1. It is more particularly an isothermal receptacle adapted to be placed below the coffee outlet of a drip coffeemaker so as to gather the coffee product and to maintain the latter hot until poured by the user. But it could be a pouring receptacle that is not thermally insulated, or which will not be used with a particular infusion apparatus.

[0027] The receptacle 1 comprises a body 2 which defines a chamber 3 and has an upper opening 4 permitting filling the chamber 3. A removable cover 5 is provided to close the opening 4 of the body.

[0028] The body 2 moreover comprises a gripping handle 8, a pouring member 9 and walls delimiting the chamber 3 and the opening 4.

[0029] The pouring member 9 is present in the form of a spout arranged opposite the handle 8 on a perimeter 14 delimiting the upper opening 4, but the pouring member could have a substantially different configuration. It will be noted that the pouring member 9 does not communication directly with the chamber 3, but is separated from the latter by the perimeter 14 of the opening of the cover 5 when the latter is in place.

[0030] If it is an isothermal receptacle, the walls of the body 2 comprise an internal wall 11 which delimits the chamber 3 and an external wall 12 separated from the internal wall by a space filled with air, which ensures thermal insulation between the container and the chamber 3 and the exterior of the receptacle 1. The outer wall 12 comprises a portion 12a defining the bottom of the receptacle, a portion 12b forming a sidewall which is overall cylindrical and an upper portion 12c which extends to the inner wall 11, such that this latter is suspended in the internal space defined by the external wall 12.

[0031] In the illustrated embodiment, the internal and external walls (11, 12) are metal, but they could also be of a plastic material insulated from each other by the air or any other insulation. The body could also comprise an isothermal glass flask, or else a wall only of plastic, in the case in which it is not necessary that the receptacle be insulated.

[0032] Preferably, the handle 8, the pouring spout 9 and the periphery 14 of the opening 4 are made of a same piece of plastic material which is fixed by any suitable means to the upper portion 12c of the outer wall 12.

[0033] The perimeter 14 of the opening 4 has a horizontal annular portion and a vertical cylindrical portion, not shown in the figures, which extends from the external wall of the annular portion. However, this vertical cylindrical portion has a notch at the level of the pouring member 9, such that at this position, the horizontal annular portion extends up to the pouring member.

[0034] As is better seen in FIG. 2, the cover 5 comprises a cup 17 formed by a circular sidewall 17a and a bottom 17b, as well as a circular upper surface 18. In the illustrated embodiment, the cup 17 and the upper surface 18 are assembled so as to be rotatable relative to each other about a central vertical axis Z. This permits having a locking system for the cover 5 on the body 2 with the help of lugs 20 secured to the upper surface 18, which pass through openings 21 in the cup 17 and coact with release (not shown) formed in the vertical portion of the periphery 14 of the opening 4, the bottom 17b of the cover resting on the horizontal annular portion of this periphery. A coaction between the cover 5 and the perimeter 14 of the opening ensures preferably a certain sealing between these two members

[0035] The cover 5 comprises a conduit 24 extending from a first outlet 25, shown in FIGS. 4 and 5, formed in the bottom 17b, and a second outlet 26 in the sidewall 17a of the cover. The second outlet 26 is arranged relative to the locking system for the cover on the body 2, such that the second outlet 26 will face the pouring member 29 and the conduit 24 ensures fluid communication between the chamber 3 and the pouring member 9 in the locked position. It will be noted that in the illustrated embodiment, the conduit 24 is defined by internal walls of the cup 17 and by an upper surface 18 of the cover, said internal walls being particularly formed, as shown in FIG. 2, by ribs 28 and a flange 29 in the arc of a circle, oriented toward the first outlet 25. However, it could be a conduit having a substantially closed tubular configuration between the two outlets (25, 26).

[0036] The cover 5 also comprises a pouring control 30 connected, in a manner which will be described in detail hereafter, to a check valve 40 which is movable between the closed position in which it closes the outlet 25 and an open position in which it permits flow of fluid between the first and the second outlets (25, 26) of the conduit 24, particularly when the pouring control 30 is actuated.

[0037] In the illustrated embodiment, and as better visible in FIG. 2, the check valve 40 comprises a disc 41 adapted to cover the outlet 25 of the conduit 24, a vertical arm 42 adapted to be moved through the outlet 25 and a sealing ring 43 permitting increasing the sealing between the disc 41 and the periphery of the outlet 25. As can be seen in FIG. 3, in the closed position, the check valve 40 is pressed against the outer periphery of the outlet 25 under the influence of the traction exerted inwardly of the cover 5 by the arm 42. In the open position, shown in FIGS. 4 and 5, the check valve 40 is spaced from the bottom 17b of the cover, such that a fluid can flow through the space separating the check valve 40 from the periphery of the outlet 25.

[0038] It will be noted that the check valve 40 is located in the chamber 3 of the receptacle, whether in the open or closed position, when the cover is mounted on the body 2, which is to say in the normal use position. This arrangement of check valve 40 permits forming with the bottom 17b of the cover a continuous wall delimiting the chamber 3, thereby avoiding loss of heat through the cover 5. In the case in which it is not necessary that the receptacle be isothermal, or even in the case in which the conduit 24 will comprise at least one more closed portion, the check valve could be arranged in the conduit 24 between the first and second outlets. But even in this case, the check valve would be

internal to the chamber and as a result, not visible from outside the receptacle under normal conditions of use, such that a user could not determine if it is in the open or closed position.

[0039] The cover 5 comprises moreover an indicator of pouring 31 connected to the pouring control 30 and movable between a so-called closing position, shown in FIG. 3, in which it is arranged within the pouring member 9 when the pouring control 30 is not activated, and a so-called opening position, shown in FIG. 4, in which it projects outside the receptacle when the pouring control 30 is actuated.

[0040] The pouring indicator 31 is present in the form of a plate in the arc of a circle, as shown in FIG. 2, covering substantially the surface of the second outlet 26 and located facing this latter outside the cover 5. This arrangement of the pouring indicator 31 suggests to the user that in the closing position, it closes the second outlet 26 of the cover 5, although it does not have this function when the conduit 24 is closed by the check valve 40. As a result, the pouring indicator 31 could have a quite different shape and be located differently relative to the second outlet 26 of the cover

[0041] The plate 31 is secured at its lower end to an arm 32 passing through the second outlet 26, which permits connecting the pouring indicator 31 to the pouring control 30 located diametrically opposed relative to the cover, by an actuating mechanism 50 internal to the cover and as a result not visible to the user.

[0042] On the other hand, in the opening position, shown in FIG. 4, the pouring indicator 31 projects outside the receptacle, and particularly beyond the upper surface 18 of the cover 5, which permits the user to know that the actuation of the pouring control 30 has an effect on the cover 5 which closes the opening 4, and to intuitively deduce that when the pouring indicator 31 carries out a movement overall directly upwardly, it is possible to pour the beverage contained in the chamber 3 through the pouring member 9.

[0043] In the illustrated embodiment, the actuating mechanism 50 (FIG. 2) permitting connecting the check valve 40 and the pouring indicator 31 to the pouring control 30, comprises a first lever 35, a second lever 45 and a resilient member 55 which, as will be detailed hereafter, permits returning the pouring indicator 31 resiliently toward its closing position when the pouring control 30 is not actuated, so that the pouring indicator does not remain blocked in its so-called opening position when the check valve 40 is in the closed position.

[0044] The first lever 35 extends longitudinally between a first end forming the pouring control 30 and a second end constituted by the arm 32 supporting the pouring indicator 31. The first lever 35 has a pivotal axle 36 supported by bearings 17c formed integrally with the bottom 17b of the cover

[0045] The pivoting axle 36 is transverse to the first lever 35. It will also be noted that it is positioned longitudinally nearer the pouring control 30 than the pouring indicator 31, such that when said control 30 is actuated, which is to say depressed by a finger of the user from the position shown in FIGS. 1 and 3 in which it is flush with the handle, to an actuated position shown in FIG. 4, the pouring indicator 31 carries out an amplified movement relative to the pouring

control 30, and as a result, it is quite visible. By way of example, in the illustrated embodiment, depressing the pouring control 30 by the amount of 2 mm gives rise to a vertical movement of the pouring indicator 31 of about 8 mm.

[0046] On the other hand, the lever 35 whose axle 36 extends in a horizontal plane when the receptacle 1 is on its bottom 12a, is balanced on opposite sides of the axle 36 such that beyond any urging of the latter, the pouring indicator 31 remains in the closing position. This balancing is obtained by a higher weight of the lever portion 35 extending from the axle 36 toward the pouring indicator 31, than the portion extending from the axle 36 toward the pouring control 30, such that in the equilibrium position, the pouring indicator 31 remains in the lower closing position.

[0047] The second lever 45 has a first end constituted by a pivoting axle 46 parallel to the pivoting axle 36 of the first lever 35, and is secured to the arm 42 of the check valve 40 at its second end. The pivoting axle 46 is supported by bearings 17d formed integrally with the bottom 17b of the cover 5.

[0048] The resilient member 55, formed here by a coil compression spring, is disposed between the bottom 17b of the cover and a second lever 45, such that it resiliently urges the lever 45 toward an upper position in which the check valve 40 occupies its closed position.

[0049] The first lever 35 is arranged above the second lever 45 and their respective pivotal axles (36, 46) are horizontally offset, such that the portion of the first lever 35 extending between the axle 36 and the pouring control 30 is located above a portion of the second lever 45. The first lever 35 has in this portion a finger 37 adapted to come into contact against the second lever 45. This bearing of the finger 37 permits simultaneously, following the actuation of the pouring control 30, to lower the second lever 45, hence to place the check valve 40 in open position and to raise the first lever 35, thus to place the pouring indicator 31 in the opening position, as will be apparent from FIG. 4. The actuating mechanism 50 thus provided with pivoting levers coacting in bearing relationship is less cumbersome to make, the pouring indicator 31 being formed by simple prolongation of the first lever 35. Moreover, the vertical size of this actual mechanism 50 is reduced, which permits having a cover 5 of low height.

[0050] The cover 5 comprises, in the embodiment shown in which the pouring receptacle 1 is adapted for a coffeemaker, a filling means 60 having an upper dome 61 and a vertical tubular portion 61 which opens at an upper end in the center of the dome 61 and at a lower end within the cover 5. The filling means 60 is slidably mounted along the central axis Z (FIG. 2) through a cylindrical guide 18b on the upper surface 18 of the cover and concentric to this latter. The amplitude of sliding of the filling means 60 is limited by a cup 18c formed by the upper surface 18 of the cover 5, said dome 61 at the end of the path of movement coming into abutment against the bottom of the cup 18c. The tubular portion 62 of the filling means 60 extends within the cover through an opening 39 of the first lever 35, such that the filling means does not interfere with this first lever. This tubular portion 62 has, adjacent its lower end, a shoulder 64 against which bears the periphery of an opening 49 formed in the second lever 45 when the check valve is in its closed position, as can be seen in FIG. 3.

[0051] When the filling means 60 is actuated, which is to say moved downwardly from the rest position shown in FIG. 3 to the position shown in FIG. 5, the shoulder 64 moves downwardly the second lever 45 and thus places this latter into a lower position in which the check valve 40 is in the open position. A liquid poured from the upper outlet of the tubular portion 62, which has the shape of a cap, thus flows through this tubular portion, onto the bottom 17b of the cover which is preferably inclined and provided with the rib 29 in the arc of a circle (FIG. 2), then toward the chamber 3 through the first outlet 25 formed in the cover 5.

[0052] The filling means 60 thus provided permits filling the isothermal receptacle 1 when it is used with a coffee-maker provided with an actuating member 70, shown in FIG. 5, whilst maintaining the cover 5 in position on the body 2, and as a result, by limiting the loss of heat in the course of the preparation of the beverage.

[0053] The actuating member 70 of the coffeemaker has a cylindrical shape with a bulbous lower end 71 adapted to coact by sliding contact with the dome 61 of the filling means 60 when the receptacle 1 is in place in the coffeemaker

[0054] The actuating member 70 has a conduit 72 through which flows the infused beverage and which opens in the center of the end 71 so as to come into correspondence with the upper outlet of the filling means 60.

[0055] When the user wishes to pour the liquid contained in the chamber 3, he grasps the handle 8 of the receptacle and actuates with the thumb the pouring control 30, given that the cover 5 is locked on the body 2. The actuation of the pouring control 30 gives rise to swinging of the first lever 35 from the position shown in FIG. 3 to the position shown in FIG. 4. The pouring indicator 31 then carries out a movement through the arc of a circle, directed upwardly, such that it takes the projecting and easily visible position shown in FIG. 4. Simultaneously the swinging of the first lever 35 causes, by means of the finger 37, a downward swinging of the second lever 45 by compressing the resilient member 55, and thus the check valve 40 takes its open position shown in FIG. 4. The user can visually determine, thanks to the projecting position of the pouring indicator 31, that the chamber 3 is in communication with the pouring member 9 even he cannot see that the check valve 40 is in the open position. The user then carries out a pouring movement by inclining the receptacle in a more natural manner than in the absence of a visual indication.

[0056] When the user releases the pressure exerted on the pouring control 30, this latter returns to the inactive position under the action of the resilient member 55, the check valve 40 and the pouring indicator 31 return respectively to their closed and closing position shown in FIG. 3.

[0057] For the preparation of coffee, the user places in the usual manner the pouring receptacle 1 in the coffeemaker, which is to say generally on a base of the coffeemaker and below the conduit 70 for the outlet of coffee. The filling means 60 of the pouring receptacle thus coacts with the control member 70 secured to the coffeemaker, which has the result of lowering the filling means 60, and hence to open the check valve 40, as shown in FIG. 5. The coffee flows through the outlet conduit 72 and then passes through the tubular portion 62 of the filling means 60, the bottom 17b of the cover 5, and the outlet 25 to fill the chamber 3 of the receptacle.

[0058] It will be noted that this operation is automatic, which is to say that it does not require any manipulation by the user. As a result, it is necessary for this configuration of filling only that the user be notified that the first outlet 25 of the cover 5 is in communication with the chamber 3; on the contrary, such a notice could give rise to an erroneous interpretation of the function of the filling indicator 31 and even be detrimental because of the free space necessary for the pouring indicator 31 to project, as shown in FIG. 4. The illustrated embodiment permits fulfilling this function thanks to the possible decoupling between the movements of swinging of the first and second levers (35, 45). Thus, as can be seen in FIG. 5, when the filling means 60 is actuated, the second lever 45 is no longer in contact with the finger 37 of the first lever 35 which, because of its balancing, remains naturally in the inactive position, which is to say with the pouring indicator 31 in the closing position.

[0059] In the illustrated embodiment, the actuating mechanism 50 is provided with the help of pivoting levers, which has the advantage particularly to reduce the size of the mechanism and its cost of production, but of course, the present invention does not exclude the use of any other type of mechanism fulfilling the opening functions of the check valve 40 and for movement of the pouring indicator 31, as such as for example mechanisms having sectors and toothed wheels coacting together. Similarly, the pouring control 30 and the assembly of actuating mechanism 50 are connected to the cover. However, it is perfectly envisagable that the pouring control 30 and/or a portion of the actuating mechanism 50 be connected to the body 2 of the receptacle.

- 1. Pouring receptacle comprising:
- a body (2) comprising a pouring member (9) and an upper opening (4), and defining a chamber (3) adapted to contain a liquid;
- a cover (5) adapted to close the opening, and comprising a check valve (40) internal to the chamber and a conduit (24) ensuring fluid communication from the chamber (3) to the pouring member (9) through a first (25) and a second (26) outlet, said check valve (40) being movable between a closed position in which it closes said conduit and an open position in which it permits communication between the first (25) and second (26) outlets of the cover; and
- a pouring control (30) connected to said check valve (40) by an actuating mechanism (50) adapted to place said check valve in the open position when the pouring control is actuated, characterized in that the cover (5) comprises moreover a pouring indicator (31) connected to the pouring control (30) and movable between a so-called closing position and a so-called opening position in which it projects outside the receptacle when the pouring control (30) is actuated.
- 2. Pouring receptacle according to claim 1, in which the pouring indicator (31) is a plate carried by an arm (32) connected to the pouring control (30) and projecting outside the cover (5) through the second outlet (26).
- 3. Pouring receptacle according to claim 1, in which the pouring control (30) is returned resiliently toward an inactive position in which the pouring indicator (31) occupies its closing position.
- 4. Pouring receptacle according to claim 1, in which the pouring indicator (31) carries out, from its closing position

toward its opening position, an overall upwardly directed movement of an amplitude such that the pouring indicator will project beyond the upper surface (18) of the cover (5).

- 5. Pouring receptacle according to claim 1, in which the actuating mechanism (50) comprises a first lever (35) swingably mounted relative to the cover (5) about a transverse axle (36), and extending longitudinally between a first end secured to the pouring control (30) and a second end connected to the pouring indictor (31), and a second lever (35) having a first end mounted pivotably relative to the cover about an axle (46) and a second end secured to the check valve (40), said second lever (45) being urged by a resilient member (45) toward a position in which the check valve (40) is in the closed position, and in which the first lever (35) has a finger (37) adapted to come into bearing against the second lever (45), said first (35) and second (45) levers being arranged relative to each other such that the actuation of the pouring control (30) brings the check valve (40) into open position and the pouring indicator (31) into the opening position.
- 6. Pouring receptacle according to claim 5, in which the swinging axle (36) of the first lever (35) is positioned longitudinally at a predetermined distance from the pouring control (3) so as to amplify the movement of the pouring indicator (31) relative to the movement of the pouring control (30).
- 7. Pouring receptacle according to claim 5, in which the swinging axle (36) of the first lever (35) is located in a substantially horizontal plane, and in which the first lever

- (35) is balanced relative to said axle such that in the equilibrium position, the pouring indicator (31) will be disposed in the closing position.
- 8. Pouring receptacle according to claim 1, in which the cover (5) moreover comprises a filling means (60) movingly mounted in the cover and adapted to act on the second lever (45) so as to bring the check valve (40) into the open position upon actuation of said filling means (60), the first lever (35) having an opening (39) through which freely passes said filling means.
- 9. Infusion apparatus comprising a pouring receptacle according to claim 8, in which the infusion apparatus comprises an actuating member (70) provided with an outlet (72) for infused beverage and adapted to actuate the filling means (60) of the pouring receptacle when this latter is correctly positioned relative to said outlet (72).
- 10. Pouring receptacle according to claim 2, in which the pouring control (30) is returned resiliently toward an inactive position in which the pouring indicator (31) occupies its closing position.
- 11. Pouring receptacle according to claim 6, in which the swinging axle (36) of the first lever (35) is located in a substantially horizontal plane, and in which the first lever (35) is balanced relative to said axle such that in the equilibrium position, the pouring indicator (31) will be disposed in the closing position.

* * * * *