SHIELDED ELECTRIC COMPONENTS.

Priority: 14.06.82 US 388310
21.07.82 US 400509

Date of publication of application:
27.06.84 Bulletin 84/26

Publication of the grant of the patent:
31.05.89 Bulletin 89/22

Designated Contracting States:
AT BE CH DE FR LI NL SE

References cited:
US-A-3 559 141
US-A-3 678 432
US-A-3 781 745

Proprietor: RAYCHEM CORPORATION (a Delaware corporation)
300 Constitution Drive
Menlo Park, California 94025 (US)

Inventor: CLABBURN, Robin James Thomas
Buckthorn House Savenhampton
Swindon Wiltshire (GB)
Inventor: FRITSCH, Joel Leigh
192 N. Sunnyvale Avenue
Sunnyvale, CA 94086 (US)
Inventor: HUSEBY, Thomas Signor
303 Cowper
Palo Alto, CA 94301 (US)
Inventor: LARSSON, Peter Lars
303 Cypress Point Drive
Mountain View, CA 94043 (US)
Inventor: LINK, William Trevor
130 The Uplands
Berkeley, CA 94075 (US)

Representative: Jones, David Colin et al
Raychem Limited Intellectual Property Law
Department Faraday Road Dorcan
Swindon, Wiltshire SN3 5HH (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).
The various individual components are provided fuses, reactors, motors and the like. It is customary in electrical power distribution systems to house electrical components such as fuses, distribution transformers and other apparatus, in a common grounded apparatus box or housing. The various individual components are provided with appropriate insulation and protection as required.

Fuses used in power distribution systems can be insulated and protected by modules of molded polymeric material. Such modules generally comprise two molded halves into which the fuse is inserted and the molded halves are secured together. The modules can be provided with a corona preventing inner shield and/or an outer ground shield, if desired. Examples of molded fuse modules can be found in U.S. Patents Nos. 3,559,141, 3,818,407, 3,946,351 and 4,060,785. The molded fuse modules of this type are generally relatively bulky, subject to leakage of moisture at the joint between the molded halves, and expensive to manufacture.

Another approach to providing an enclosure for electrical components such as fuses and the like, is described in U.S. Patent No. 3,085,138. This patent relates to an electric connection assembly adapted for field use. The electric connection assembly can be used to connect a fuse into an electric circuit. The assembly is provided in kit form and includes a pair of socket members each adapted for receive at one end the conductor of a cable and at the other end an electrical instrumentality, e.g. the fuse, and a pair of housing members, which encompass the socket members, electrical instrumentality and cable ends. In use the socket and housing members are installed on the ends of the cables and then the fuse is inserted. The housing members are then joined together where they meet, which is at approximately the mid-point of the fuse. The main disadvantage of this approach is the high possibility of leakage of water at the joint between the two housing members.

Yet another approach is illustrated in U.S. Patent No. 3,678,432. In this approach the insulating body of the fuse is enclosed in a conductive shielding module, and the fuse ends or terminals are inserted into first and second conductor termination modules. The termination modules have frusto-conical end surfaces that form water tight voltage grading seals with the corresponding frusto-conical end surfaces of the fuse module. The termination modules must be specially produced for use with the fuse module and are not suitable for use with other standard electrical components.

This invention provides a modified fuse or other electrical component which is insulated and shielded without requiring a bulky housing or module. Further, the ends of the fuse are modified so that they can be directly terminated to electrical equipment or jointed to high voltage power cables using conventional techniques. For example, the modified component can be used with typical separable insulated connectors such as high voltage elbow connectors and of separable high voltage joints. Alternatively, the ends of the modified component can be directly jointed to the ends of shielded power cables by conventional jointing methods.

The invention provides a shielded electrical component which comprises:

(a) an electrical component having at each end thereof a terminal for electrically connecting the component into an electric circuit;
(b) an electrical conductor connected to one of the end terminals;
(c) a second electrical conductor connected to the other of the terminals;
(d) an electrically insulating layer positioned over the electrical component and said conductors; and
(e) an outer conductive layer positioned over said insulating layer;

characterised in that the electrical conductors are elongate, and in that the electrically insulating layer is positioned such that an end region of each of said conductors remains free of insulation, said electrical component thereby being converted at each end thereof to the electrical and mechanical equivalent of the end of a shielded high voltage power cable having the end region of its conductor free of insulation.

A method of producing said shielded component is also provided.

Brief description of the drawings

Figure 1 illustrates a fuse modified in accordance with this invention.
Figure 2 illustrates the modified fuse inserted in a commercially available insulated elbow connector.
Figure 3 illustrates the modified fuse crimped directly onto the end of a power cable.

Detailed description of the invention

As mentioned above, various electrical components are inserted into high voltage power distribution systems, i.e. power systems of above about 1 kilovolt, typically between 5 and 36 kilovolts. Such components include, for example, transformers, rectifiers, fuses, reactors, motors and the like. This invention concerns modification of such components. For the sake of convenience, the discussion of this invention is directed to current limiting fuses which are modified to be inserted into a power system. It is to be understood, that this invention is not limited to fuses...
but also covers other electrical components. The fuse, or other electrical component, is provided in accordance with this invention with first and second conductors each of which is electrically connected to one of the terminals of the component. In the case of a fuse the terminals are typically conductive end caps on the fuse housing. Such conductors can comprise metal studs which are cylindrical or tubular in configuration and are referred to as conductors, studs or conductive studs in the following discussion of the invention. The stud can be of, for example, copper, tinned copper, aluminum or other metal. The stud can be attached to the metal end cap by any conventional means such as soldering or welding. Alternatively, the stud can be an integral part of, for example, tinned copper, aluminum or other metal. The stud can be of, for example, copper or other materials. The polymeric material and regions of the conductors remain uninsulated portions which slide over the end caps of the fuse to provide an interference fit. The length of the stud or conductor depends on the design of the connector member to be used with the fuse to connect it to the power system.

An insulating layer is positioned over the fuse and is a portion of the conductive studs such that end regions of the conductors remain uninsulated. The length of the uninsulated end regions of the studs depends on the method to be used in connecting the conductive studs to the power line or cable, as described more fully below.

This insulation layer can be resilient or non-resilient and preferably comprises a layer of polymeric material. The polymeric material should have a dielectric strength of at least 78.7 kilovolts per cm (200 volts/mil), preferably at least 118 kilovolts per cm (300 volts/mil). The polymeric material can be a thermoplastic, elastomer or thermostet, for example, polyethylene, ethylene-propylene copolymer or ethylene-propylene-diene terpolymers, polyacrylates, silicone polymers and epoxy resins. The polymer can contain the usual additives, such as stabilizers, antioxidants, anti-tracking agents and the like. Typical compositions for use as high voltage insulating material are described in U.S. Patents Nos. 4,001,128 to Penneck, 4,100,089 to Commack, 4,199,392 to Penneck and 4,219,409 to Commack et al, and U.K. Patents Nos. 1,337,951 and 1,337,952 both to Penneck.

The thickness of the insulation layer depends on the voltage class and type of fuse (or other component) and dielectric properties of the particular polymer composition used. The thickness of the insulation is generally in the range of about 0.2 cm to about 3.5 cm, preferably in the range of about 0.25 cm to about 1 cm.

The insulation layer can be applied by any conventional technique. For example, the insulating layer can be molded and positioned over the fuse and studs. Another method of applying the insulation layer is to place a dimensionally-recoverable, in particular a heat-shrinkable, tubular article of polymeric material over the fuse and conductive studs and then applying heat to cause the tube to shrink into intimate contact therewith. Heat-shrinkable polymeric tubular articles and methods for their manufacture are known, see for example, U.S. Patent No. 3,086,242 to Cook.

Dimensionally-recoverable articles which recover without application of heat can also be used. Such dimensionally-recoverable articles are known, see for example, U.S. Patent No. 4,135,563 to Evans et al.

As is conventional with high voltage insulation, there should be no voids between the insulation and the underlying conductor and/or component. Since the surfaces of the fuse, studs and insulation layer are not perfectly smooth, the inner surface of the polymer layer can be coated with a conductive material, where required. The conductive coating on the inner surface of the insulation prevents localized electrical stress between the insulation and the underlying conductive stud and/or component across any void which might be present.

An outer conductive layer is positioned over the insulating layer. The conductive outer layer preferably has a resistivity of less than about 5000 ohm-cm, and most preferably less than about 100 ohm-cm. Typically the conductive outer layer has a resistivity in the range of from about 10 to about 1000 ohm-cm.

The conductive outer layer can comprise a metal layer or a layer of polymeric matrix having a conductive filler dispersed therein. The polymeric matrix may comprise any of the polymeric materials listed above, and the conductive filler may comprise metal particles or a conductive carbon black. An example of such a composition can be found in British Patent No. 1,394,665 to Heaven. Conductive polymeric compositions which can be used in accordance with this invention generally comprise from about 10 to about 70, preferably from about 10 to about 20, and most preferably from about 15 to about 17, parts by weight of conductive filler, based on a total weight of 100 parts of polymeric matrix plus filler.

The outer conductive layer can be applied over the insulating layer in any convenient manner. The conductive layer can be, for example, applied as a deposited layer of metal, a layer of conductive paint, a layer comprising a conductive polymeric article or the like. For example, the layer can be applied as a molded tubular article of conductive polymeric material or a dimensionally-recoverable tubular article. Preferably, it is a heat-shrinkable tubular article. The tubular article is placed over the insulating layer and heated to cause it to shrink into contact with the insulating layer.

The insulating and outer conductive layers can be applied separately or can be formed into a unitary structure before being placed over the fuse. For example, the two layers can be molded together to form a molded tubular article shaped to accommodate the fuse and conductive studs. If the layers are to be applied as dimensionally-
recoverable tubular articles, such as, heat-shrinkable articles, a composite article of the two layers can be formed, for example, by coextrusion, by coating a conductive layer of metal or paint on the surface of the article or any other convenient technique. The composite article is then positioned over the fuse and conductors and heated to cause it to shrink into contact with the fuse and studs.

The outer conductive layer is generally set back from the ends of the insulating layer. The amount of set back depends on the manner in which the modified fuse is to be connected into a power system. As discussed more fully below, the fuse can be used in conjunction with typical commercially available insulated separable connectors, or can be spliced directly to power cables or other electrical equipment. The amount of set back of the insulation layer on the fuse is determined by the method by which it is to be inserted into the electrical network.

The modified fuse can be provided with an outer protective jacket. This outer jacket is preferably of a polymeric material, such as polymeric materials conventionally used as the outer jacket of power cables. For example, the outer jacket can be of polyethylene, polyvinyl chloride, or the like. Various additives such as stabilizers, flame retardants and the like can be incorporated into the polymeric material. The protective jacket provides mechanical and environmental protection for the conductive and insulation layers.

In the event that the electrical component is such that corona discharge must be suppressed, as is the case with certain current limiting fuses, a corona control layer may be positioned immediately over the tubular housing of the fuse between the fuse housing and the insulation layer.

The corona control layer can comprise a discontinuous conductive layer (i.e., a discontinuous Faraday cage extending over the fuse body between the metal end caps. The discontinuity in the conductive layer provides an insulation filled gap which prevents current flow along the conductive layer in the event the fuse opens to limit current flow through the circuit. The conductive layer can be, for example, a layer of conductive paint sprayed or otherwise coated on the inner surface of the insulation layer. The corona control layer can also be a semiconductive polymeric stress-grading layer which can be continuous or discontinuous.

If the stress-grading layer extends between the end caps of the fuse, the impedance of the stress-grading layer should be at least about 10^7 ohms. If the stress-grading layer is discontinuous, with insulation filling the gap, the stress-grading material and the length of the segments of the stress-grading material should be selected such that when the fuse has opened the electrical field across the gap should be less than about 10,000 volts per centimeter.

Examples of stress-grading materials suitable for use in the invention include: an electrically insulating polymeric material that contains carbon black; a material comprising iron oxide; a material comprising zinc oxide; a material comprising silicon carbide; a polymeric material disclosed in UK Patent Specification Nos. 1470504 or 1470501. Stress-grading materials typically have a specific impedance in the range from about 10^6 ohm-cm to about 10^10 ohm-cm, preferably from about 5×10^6 ohm-cm to about 5×10^8 ohm-cm and most preferably from about 10^8 ohm-cm to 10^9 ohm-cm.

The stress-grading material can be in the form of a molded or a dimensionally-recoverable, for example a heat-shrinkable, tubular article, for example, as described in the above-mentioned U.S. Patent No. 3,950,604. The stress-grading semi-conductive layer can then be applied, for example, by positioning a heat-shrinkable tubular article over the fuse and heating to cause the tubular article to shrink into intimate contact with the fuse. The stress-grading layer and insulation layer can each be heat-shrinkable and can be laminated together or coextruded to form an integral heat-shrinkable article. A suitable heat shrinkable article of this type is available from the Raychem Corporation, Menlo Park, California, under its trademark SCTM.

Stress-grading material in the form of a paint can be applied to the interior surface of the insulation layer or to the exterior surface of the fuse, by coating it, e.g.: by spraying or brushing. Stress-grading material in the form of a paint can comprise, for example, a mixture of graphite and silicon carbide particles in a liquid curable resin system such as an epoxy resin.

By modifying the fuse in the manner described, the ends of the fuse are converted into the electrical and mechanical equivalent of the ends of a shielded power cable. This modification of the ends allows either end of the fuse (or other electrical component) to be terminated in or connected to a shielded or non-shielded manner analogous to the techniques typically used for power cables designed for similar operating voltages.

The modified fuse of this invention can thus be adapted for insertion into insulated separable connectors such as high voltage elbow connectors or separable high voltage joints. The length of the exposed ends of the conductive studs, the length of the insulation layer and the outer shield all depend on the exact particular separable connector to be used with the modified fuse. The modified fuse can be inserted into the end of such a connector generally used for receiving the end of a high voltage power cable. A layer of grease is provided over the exposed insulation layer of the fuse before it is inserted in the connector. The grease aids insertion of the fuse and fills any voids between the insulation layer and the connector thereby preventing electrical discharge between the end of the fuse conductor and conductive shield of the connector or fuse. The other end of the separable connector can be connected to an appropriate component of a high
semi-conductive housing, 30, adhered to the outer surface of insulation layer, 32. The housing further contains conductive insert, 33. The elbow connector is further provided with a grounding eye, 34, a voltage test point, 35, having a protective cap, and a reinforced pulling ring, 36, which enables the connector to be readily moved.

A modified fuse in accordance with this invention is shown inserted into the cable receiving end of the elbow connector. As discussed above, the modified fuse comprises: the fuse, 10, metal end caps, 12 and 14, provided with end fittings, 26 and 28, provided with attachment lugs. Each stud and corresponding end fitting may comprise an integral piece by appropriately forming the end of the stud. End fitting, 26, with a female threaded attachment lug makes an electrical connection via a male threaded copper connecting pin, 38. It is to be noted that when the modified fuse is inserted into the elbow connector, the outer conductive shield, 24, of the fuse makes contact with the conductive shield, 30, of the elbow connector and the conductive stud, 16, of the fuse contacts the semi-conductive insert, 33, of the connector. The electrical connection between the studs, 16 and 18, and separable connectors may also be made with suitable "multi-Lam" or similar connectors known to the art. The elbow connector is provided with a copper contact pin, 38, which is adapted to provide electrical connection to a circuit component inserted in the other end of the elbow connector.

An alternative embodiment is illustrated in Figure 3. In Figure 3, a fuse modified in accordance with this invention is jointed to a shielded power cable. For the sake of convenience, only one end of the fuse is illustrated. It is to be understood that the other end of the modified fuse can be similarly joined to a shielded power cable or joined to such a cable by other conventional techniques. In Figure 3, conductive stud, 16, is connected to end cap, 12, of fuse, 10. A corona control layer, 20, an insulating layer, 22, and an outer conductive shield, 24, are placed over the fuse and conductors as described above and illustrated in Figure 1. Stud, 16, is spliced to cable conductor, 40, by a conventional crimping method indicated as, 41. The crimp can be an integral part of the stud, 16, as shown in Figure 3.

The power cable illustrated in Figure 3 is a 15 kV polyethylene cable comprising a 50 mm² copper conductor, 40, polyethylene dielectric, 42, graphite layer, 44, graphite impregnated cloth layer, 46, tape shield, 48, and outer jacket (not shown). The central copper conductor, 40, was crimped to the conductor, 16, of the modified fuse.

Shield, 48, was cut back from the end of the dielectric for a distance ranging from 9 to 15 cm to expose the graphite impregnated cloth layer, 46. The cloth layer was cut back to 2 cm from the...
screen, and the graphite layer extending beyond 1 cm from the cloth layer was removed. A quantity of epihalohydrin stress-grading material, 50, as described in British Patent No. 1,604,612, was applied over the crimp and exposed conductors, and a piece of heat-recoverable stress-grading tubing, 52, was recovered over the splice so that it conformed to the contours of the splice and overlapped the cable shield, 48, at each end. A piece of high voltage insulating heat-recoverable tubing, 54, of recovered wall thickness 4 mm, having a volume resistivity of at least 10 ohm-cm and a length equal to that of the stress-grading tubing, was then recovered over the stress-grading layer, 52, followed by an outer conductive polymer layer, 56, of wall thickness about 0.7 mm.

Numerous other variations and embodiments are possible, as will be readily apparent to one skilled in the art. The fuse need not be modified in the same manner at each end. Also the modified fuse need not be connected to the power cable or other electrical equipment in the same manner at each end thereof. For example, one end of the modified fuse can be connected to a transformer using a standard elbow connector while the other end can be connected to a power cable by a separable joint.

The elongate electrical conductor need not be unitary, but can comprise interconnected segments. For example, the elongate conductor can comprise a first segment adapted to be secured to the end of the fuse, or other electrical component, and a second segment crimped onto the first segment. The electrical conductor can have pre-installed layers of electrical insulation and shielding. For example, the elongate conductor can comprise, as a first segment, a relatively short stud having a cylindrical end portion which provides an interference fit over end cap of the fuse as illustrated in Figure 1. As the other end of the first segment, a length of electrical cable having insulation and shielding already installed can then be connected to the stud by means of a crimp, similar to the crimp in Figure 3 between a power cable and the elongate conductor. In this embodiment the length of cable is relatively short, about five feet, and is crimped to the stud of the first segment before the fuse is insulated and shielded. After the length of cable has been crimped to the stud, the fuse is insulated and shielded as described above. Since the length of cable is pre-insulated and shielded, the insulation and shielding of the fuse does not need to extend fully along the length of cable. The insulation and shielding should extend beyond the crimped end of the cable and overlap the existing insulation and shield of the cable. The shield of the fuse should make electrical contact with the shield of the length of cable to provide a continuity. The end of the length of cable remote from the fuse should have the insulation and shielding cut back appropriate distances to enable the cable end to be readily connected in-line with a power cable or other electrical equipment.

The present invention has been described in considerable detail with reference to certain preferred embodiments thereof. However, other embodiments are possible. For example, electrical components other than fuses can be modified in accordance with this invention and connected into any electric circuit by appropriate means.

Claims

1. A shielded electrical component (10) which comprises:
(a) an electrical component having at each end thereof at least one terminal (12, 14) for electrically connecting the component into an electric circuit;
(b) an electrical conductor (16) connected to one of the end terminals;
(c) a second electrical conductor (18) connected to the other of the terminals;
(d) an electrically insulating layer (22) positioned over the electrical component and said conductors; and
(e) an outer conductive layer (24) positioned over said insulating layer;
characterised in that the electrical conductors (16, 18) are elongate, and in that the electrically insulating layer (22) is positioned such that an end region of each of said conductors remains free of insulation, said electrical component (10) thereby being converted at each end thereof to the electrical and mechanical equivalent of the end of a shielded high voltage power cable having the end region of its conductor free of insulation.

2. A shielded electrical component in accordance with Claim 1, wherein said electrical component comprises a fuse.

3. A shielded electrical component in accordance with Claim 2, wherein said fuse comprises a fuse body and a pair of metal end caps (12, 14) and said elongate conductors (16, 18) are integral with metal end caps.

4. A shielded electrical component in accordance with Claim 2, which further comprises a corona control layer (20) immediately adjacent said component.

5. A shielded electrical component in accordance with Claim 4, wherein said corona control layer is a semi-conductive layer.

6. A shielded electrical component in accordance with Claim 4, wherein said corona control layer is of a polymeric material having conductive particles dispersed therein.

7. A shielded electrical component in accordance with Claim 6, wherein said corona control layer is a dimensionally-recoverable tube recovered onto said electrical component.

8. A shielded electrical component in accordance with Claim 7, wherein said dimensionally-recoverable tube is a heat-shrinkable tube.

9. A shielded electrical component in accordance with either of Claims 1 or 2, wherein said insulation layer is a layer of thermoplastic material.
11. A shielded electrical component in accordance with Claim 10, wherein the thermoplastic material is polyethylene.

12. A shielded electrical component in accordance with Claims 1 or 2, wherein said insulation layer is a molded tubular article.

13. A shielded electrical component in accordance with either of Claims 1 or 2, wherein said insulation layer is a dimensionally-recoverable tubular member which has been recovered in position over said component and conductors.

14. A shielded electrical component in accordance with Claim 13, wherein said dimensionally-recoverable tubular member is heat-recoverable.

15. A shielded-electrical component in accordance with Claim 1, wherein said outer conductive layer is a recovered dimensionally-recoverable tubular member.

16. A shielded electrical component in accordance with Claim 15, wherein said outer conductive layer is a layer of polymeric material having conductive particles dispersed therein.

17. A shielded electrical component in accordance with Claim 15, wherein said outer conductive layer is a recovered dimensionally-recoverable tubular member.

18. A shielded electrical component in accordance with Claim 17, wherein said dimensionally-recoverable tubular member is heat-recoverable.

19. A shielded electrical component in accordance with Claim 1 or 2, wherein said insulation layer and said outer conductive layer are laminated together.

20. A shielded electrical component in accordance with Claim 1 or 2, wherein said insulation layer and said outer conductive layer are a coextruded tubular member.

21. A shielded electrical component in accordance with Claim 20, wherein said tubular member is a recovered dimensionally-recoverable tubular member.

22. A method of producing a shielded electrical component which comprises:
 (a) providing an electrical component (10) having at least one terminal (12, 14) for electrically connecting the component into an electric circuit;
 (b) connecting a first elongate conductor (16) to one of the terminals;
 (c) connecting a second elongate conductor (18) to the other of the terminals;
 (d) positioning a dimensionally-recoverable tubular member of insulating material over said component and conductors such that an end region of each of said conductors extends beyond the tubular member;
 (e) causing the tubular member to dimensionally recover; and
 (f) positioning an outer conductive dimensionally-recoverable tubular member (24) over the insulating layer and causing it to recover into contact with the insulating layer.

Patentansprüche

1. Abgeschirmtes elektrisches Bauelement (10), umfassend:
 (a) ein elektrisches Bauelement, das an jedem seiner Enden mindestens einen Anschluß (12, 14) zum elektrischen Anschluß des Bauelementes in einer elektrischen Schaltung aufweist;
 (b) einen elektrischen Leiter (16), der mit einem der Endanschlüsse verbunden ist;
 (c) einen zweiten elektrischen Leiter (18), der mit dem anderen der Anschlüsse verbunden ist;
 (d) eine elektrisch isolierende Schicht (22), die über dem elektrischen Bauelement und den Leitern angeordnet ist; und
 (e) eine äußere leitfähige Schicht (24), die über der Isolierschicht angeordnet ist;
 dadurch gekennzeichnet, daß die elektrischen Leiter (16, 18) längs ausgebildet sind und daß die elektrisch isolierende Schicht (22) so angeordnet ist, daß ein Endbereich von jedem der Leiter frei von der Isolierung bleibt, wobei das elektrische Bauelement (10) dadurch an jedem seiner Enden zum elektrischen und mechanischen Äquivalent des Endes eines abgeschirmten Hochspannungskabels umgewandelt wird, dessen Endbereich seines Leiters frei von Isolierung ist.

2. Abgeschirmtes elektrisches Bauelement nach Anspruch 1, wobei das elektrische Bauelement eine Sicherung aufweist.

3. Abgeschirmtes elektrisches Bauelement nach Anspruch 2, wobei die Sicherung einen Sicherungskörper und ein Paar von Metallendkappen (12, 14) aufweist und die langlichen Leiter (16, 18) integral mit den Metallendkappen ausgebildet sind.

4. Abgeschirmtes elektrisches Bauelement nach Anspruch 2, das außerdem eine Koronasteuerschicht (20) unmittelbar angrenzend an das Bauelement aufweist.

5. Abgeschirmtes elektrisches Bauelement nach Anspruch 4, wobei die Koronasteuerschicht eine halbleitende Schicht ist.

6. Abgeschirmtes elektrisches Bauelement nach Anspruch 4, wobei die Koronasteuerschicht aus Polymermaterial besteht, in welchem leitfähige Teilchen fein verteilt sind.

7. Abgeschirmtes elektrisches Bauelement nach Anspruch 6, wobei die Koronasteuerschicht ein geformter rohrförmiger Gegenstand ist.

8. Abgeschirmtes elektrisches Bauelement nach Anspruch 6, wobei die Koronasteuerschicht ein dimensionsmäßig rückstellbares Rohr ist, das auf das elektrische Bauelement rückgestellt ist.

9. Abgeschirmtes elektrisches Bauelement nach Anspruch 7, wobei das dimensionsmäßig rückstellbare Rohr ein durch Wärme schrumpffähiges Rohr ist.

10. Abgeschirmtes elektrisches Bauelement nach einem der Ansprüche 1 oder 2, wobei die Isolierschicht eine Schicht aus thermoplastischem Material ist.

11. Abgeschirmtes elektrisches Bauelement nach Anspruch 10, wobei das thermoplastische Material Polyethylen ist.
12. Abgeschirmtes elektrisches Bauelement nach Anspruch 1 oder 2, wobei die Isolierschicht ein geformter rohrförmiger Gegenstand ist.

13. Abgeschirmtes elektrisches Bauelement nach einem der Ansprüche 1 oder 2, wobei die Isolierschicht ein dimensionsmäßig rückstellbares rohrförmiges Teil ist, das in seine Position über dem Bauelement und den Leitern rückgestellt worden ist.

15. Abgeschirmtes elektrisches Bauelement nach Anspruch 1, wobei die äußere leitfähige Schicht eine Schicht aus Polymermaterial ist, in welchem leitfähige Teile fein verteilt sind.

16. Abgeschirmtes elektrisches Bauelement nach Anspruch 15, wobei die äußere leitfähige Schicht ein leitfähig an Anschluß, der an der Isolierschicht haftet.

17. Abgeschirmtes elektrisches Bauelement nach Anspruch 15, wobei die äußere leitfähige Schicht ein rückgestelltes, dimensionsmäßig rückstellbares rohrformiges Teil ist.

18. Abgeschirmtes elektrisches Bauelement nach Anspruch 17, wobei das dimensionsmäßig rückstellbare rohförmige Teil wärmerückstellbar ist.

19. Abgeschirmtes elektrisches Bauelement nach Anspruch 1 oder 2, wobei die Isolierschicht und die äußere leitfähige Schicht zusammenlaminiert sind.

20. Abgeschirmtes elektrisches Bauelement nach Anspruch 1 oder 2, wobei die Isolierschicht und die äußere leitfähige Schicht ein coextrudiertes rohrförmiges Teil ist.

21. Abgeschirmtes elektrisches Bauelement nach Anspruch 20, wobei das rohrförmige Teil ein rückgestelltes dimensionsmäßig rückstellbares rohrförmiges Teil ist.

22. Verfahren zur Herstellung eines abgeschirmten elektrischen Bauelementes, umfassend:
(a) Herstellen eines elektrischen Bauelementes (10), das an jedem seiner Enden mindestens einen Anschluß (12, 14) hat, um das Bauelement in einer elektrischen Schaltung elektrisch anzu schließen;
(b) Verbinden eines ersten langlichen Leiters (16) mit dem einen der Endanschlüsse;
(c) Verbinden eines zweiten langlichen Leiters (18) mit dem anderen der Anschlüsse;
(d) Positionieren eines dimensionsmäßig rückstellbaren rohrförmigen Teiles aus Isoliermaterial über dem Bauelement und den Leitern, so daß ein Endbereich von jedem der Leiter sich über das rohrförmige Teil hinaus erstreckt;
(e) Bewirken einer dimensionsmäßigen Rückstellung des rohrförmigen Teiles; und
(f) Positionieren eines äußeren leitfähigen dimensionsmäßig rückstellbaren rohrförmigen Teiles (24) über der Isolierschicht und Bewirken, daß es eine Rückstellung in Kontakt mit der Isolierschicht erfährt.

Revendications

1. Composant électrique blindé (10) qui comprend:
(a) un composant électrique ayant, à chacune de ses extrémités, au moins une borne (12, 14) pour connecter électriquement le composant dans un circuit électrique;
(b) un conducteur électrique (16) connecté à l'une des bornes extrêmes;
(c) un second conducteur électrique (18) connecté à l'autre des bornes;
(d) une couche électriquement isolante (22) placée sur le composant électrique et lesdits conducteurs; et
(e) une couche conductrice extérieure (24) pla- cée sur ladite couche isolante;

2. Composant électrique blindé selon la revendication 1, dans lequel le conducteur électrique comprend un fusible.

3. Composant électrique blindé selon la revendication 2, dans lequel le ledit fusible comprend un corps de fusible et deux capuchons extrêmes métalliques (12, 14) et lesdits conducteurs allongés (16, 18) sont réalisés d'une seule pièce avec des capuchons extrêmes métalliques.

4. Composant électrique blindé selon la revendication 2, qui comprend en outre une couche (20) de contrôle d'effluves immédiatement adjacente audit composant.

5. Composant électrique blindé selon la revendication 4, dans lequel ladite couche de contrôle d'effluves est une couche semi-conductrice.

6. Composant électrique blindé selon la revendication 4, dans lequel ladite couche de contrôle d'effluves est en une matière polymérique contenant en dispersion des particules conductrices.

7. Composant électrique blindé selon la revendication 6, dans lequel ladite couche de contrôle d'effluves est un article tubulaire moulé.

8. Composant électrique blindé selon la revendication 6, dans lequel ladite couche de contrôle d'effluves est un tube doué dimensionnellement de reprise de forme, appliqué par reprise de forme sur ledit composant électrique.

9. Composant électrique blindé selon la revendication 7, dans lequel ledit tube doué dimensionnellement de reprise de forme est un tube thermodétractable.

10. Composant électrique blindé selon l'une des revendications 1 et 2, dans lequel ladite couche d'isolation est une couche de matière thermoplastique.

11. Composant électrique blindé selon la reven-
dication 10, dans lequel la matière thermoplastique est un polyéthylène.

12. Composant électrique blindé selon la revendication 1 ou 2, dans lequel ladite couche d'isolation est un article tubulaire moulé.

13. Composant électrique blindé selon l'une des revendications 1 ou 2, dans lequel ladite couche d'isolation est un élément tubulaire doué dimensionnellement de reprise de forme, qui a été appliqué en position par reprise de forme sur ledit composant et les conducteurs.

14. Composant électrique blindé selon la revendication 13, dans lequel ledit élément tubulaire doué dimensionnellement de reprise de forme est doué de reprise de forme à chaud.

15. Composant électrique blindé selon la revendication 1, dans lequel ladite couche conductrice extérieure est une couche de matière polymérique contenant en dispersion des particules conductrices.

16. Composant électrique blindé selon la revendication 15, dans lequel ladite couche conductrice extérieure est une peinture conductrice adhérant à ladite couche d'isolation.

17. Composant électrique blindé selon la revendication 15, dans lequel ladite couche conductrice extérieure est un élément tubulaire doué dimensionnellement de reprise de forme, ayant effectué une reprise de forme.

18. Composant électrique blindé selon la revendication 17, dans lequel ledit élément tubulaire doué dimensionnellement de reprise de forme est doué de reprise de forme à chaud.

19. Composant électrique blindé selon la revendication 1 ou 2, dans lequel ladite couche d'isolation et ladite couche conductrice extérieure sont stratifiées l'une à l'autre.

20. Composant électrique blindé selon la revendication 1 ou 2, dans lequel ladite couche d'isolation et ladite couche conductrice extérieure sont un élément tubulaire co-extrudé.

21. Composant électrique blindé selon la revendication 20, dans lequel ledit élément tubulaire est un élément tubulaire doué dimensionnellement de reprise de forme, ayant effectué une reprise de forme.

22. Procédé de production d'un composant électrique blindé, qui consiste:

(a) à utiliser un composant électrique (10) ayant, à chacune de ses extrémités, au moins une borne (12, 14) pour connecter électriquement le composant dans un circuit électrique;

(b) à connecter un premier conducteur allongé (16) à l'une des bornes extrêmes;

(c) à connecter un second conducteur allongé (18) à l'autre des bornes;

(d) à placer un élément tubulaire doué dimensionnellement de reprise de forme, en matière isolante, sur ledit composant et les conducteurs de manière qu'une zone extrême de chacun desdits conducteurs s'étende au-delà de l'élément tubulaire;

(e) à provoquer une reprise dimensionnelle de forme de l'élément tubulaire; et

(f) à placer un élément tubulaire conducteur extérieur (24), doué dimensionnellement de reprise de forme, sur la couche isolante et à l'amener à effectuer une reprise de forme jusqu'à entrer en contact avec la couche isolante.