
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2017/0132155A1

Bakke et al.

US 201701,32155A1

(54)

(71)

(72)

(21)

(22)

(60)

IMPLEMENTING HARDWARE
ACCELERATOR FOR STORAGE WRITE
CACHE MANAGEMENT

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Brian E. Bakke, Rochester, MN (US);
Joseph R. Edwards, Rochester, MN
(US); Robert E. Galbraith, Rochester,
MN (US); Adrian C. Gerhard,
Rochester, MN (US); Daniel F. Moertl.
Rochester, MN (US); Gowrisankar
Radhakrishnan, Colorado Springs, CO
(US); Rick A. Weckwerth, Oronoco,
MN (US)

Appl. No.: 14/939,254

Filed: Nov. 12, 2015

Related U.S. Application Data
Provisional application No. 62/252,749, filed on Nov.
9, 2015.

1OO

|O ADAPTER,
CONTROLLER 102

(IOA #1)

EXPANDER 11 O
(OPTIONAL)

DEVICE
108

DEVICE
108

HOST SYSTEM
04

PCIE SWITCH 106
(OPTIONAL)

(43) Pub. Date: May 11, 2017

Publication Classification

(51) Int. Cl.
G06F 2/2 (2006.01)
G06F 3/06 (2006.01)
G06F 2/08 (2006.01)

(52) U.S. Cl.
CPC G06F 12/128 (2013.01); G06F 12/122

(2013.01); G06F 12/0806 (2013.01); G06F
3/0689 (2013.01); G06F 3/0619 (2013.01);

G06F 3/0665 (2013.01); G06F 3/065
(2013.01); G06F 22 12/69 (2013.01); G06F

221 2/621 (2013.01)

(57) ABSTRACT

A method and controller for implementing enhanced storage
adapter write cache management, and a design structure on
which the subject controller circuit resides are provided. The
controller includes a hardware write cache engine imple
menting hardware acceleration for storage write cache man
agement. The controller manages write cache data and
metadata with minimum or no firmware involvement for
greatly enhancing performance.

PCE BUS

|O ADAPTER,
ONTROLLER 102

(IOA #2)

EXPANDER 110
(OPTIONAL)

DEVICE
108

DEVICE
108

Patent Application Publication May 11, 2017. Sheet 1 of 34 US 2017/O132155A1

PCE BUS

PCIE SWITCH 106
(OPTIONAL)

IO ADAPTER, IO ADAPTER,
CONTROLLER 102 ONTROLLER 102

(IOA #1) (IOA #2)

SAS

DEVICE
108

FIG. 1A

DEVICE
108

DEVICE
108

DEVICE
108

Patent Application Publication May 11, 2017. Sheet 2 of 34 US 2017/O132155A1

PCE BUS

OA 1 O2

WRITE CACHE 12

CONTROL
STORE

126 PROCESSOR
120

FLASH NVRAM
128 130

WRITE CACHE
ENGINE
132

(SAS CTLR) (SAS CTLR)

SAS SAS

FIG. 1B

Patent Application Publication May 11, 2017. Sheet 3 of 34 US 2017/O132155A1

200 220

HOST LBA AND AFDASD 202 HOST LBA AND VSET222
AFDASD TO ARRAY

(REVERSE DATA STRIPING) VSET TO ARRAY 224
204

ARRAY LBA AND ARRAYD ARRAY LBA AND ARRAY D
206 226

WRITE/READ CACHE 208 WRITE/READ CACHE 228

ARRAY LBA AND ARRAYD ARRAY LBA AND ARRAY D
210 230

DYNAMIC TIER REMAPPING
232

REMAPPED ARRAY LBA(S)
AND ARRAY ID 234

DATA STRIPNG 212 DATA STRIPNG 212 DAIASPNG.22
LOG DEV LBAS AND LDNS LOG DEV LBAS AND LDNS

214 214
PARITY STRIPING (RAID) PARITY STRIPING (RAID)

216 216

PHY DEV LBAS AND LONS PHY DEV LBAS AND LONS
218 218

FIG. 2A FIG. 2B

Patent Application Publication May 11, 2017. Sheet 4 of 34 US 2017/O132155A1

READ 300

5XX LBA 4K LBA SKP SKIP 5XXLBA 4K LBA SKIP SKIP
LENGTH | LENGTH 5XX 4K LENGTH | LENGTH || 5XX LBA

306 3O8 334 336 338

AFDASD TO ARRAY (REVERSE
DATA STRIPING) 310 VSET TO ARRAY 340

RO-1 || R1-1 || R5-1 || R6-1 NO
STRIPE STRIPE STRIPE STRIPE OFFSET PAST END >256K
312 314 316 318 342 OF VSET LENGTH
RO-2 R1-2 R5-2 R6-2 NON-ZERO 346 348

STRIPE STRIPE STRIPE STRIPE OFFSET
320 322 324 326 344

WRITE READ CACHE 328 SN HE
FULL HIT-4K NO HIT-4K ALIGNED PARTIAL HIT-4K
ALIGNED 350 360 ALIGNED 370 RIPIMIPIOIP 380

FULLHIT-skIP 352 || No HIT-skiP 362 PARTATSKF 65 CLS 382
O O 372 O O

FULL HIT-NOT 4K NO HIT-NOT 4K PARTIAL HIT-NOT
ALIGNED BEGIN ALIGNED BEGIN 4K ALIGNED BEGIN wif SA: Class
AND END 354 AND END 364 AND END374 O

FULL HIT-NOT 4K NO HIT-NOT 4K PARTIAL HIT-NOT PARTIAL HIT
ALIGNED BEGIN ALIGNED BEGIN 4K ALIGNED BEGIN CHICKEN SWITCH

356 366 376 386 O
PARTIAL HIT-NOT
4K ALIGNED END

378

FULL HIT-NOT 4K NO HIT-NOT 4K
ALIGNED END 358 ALIGNED END 368

NO
DYNAMIC DYNAMICTIER REMAPPING 390 DYNAMIC TIER REMAPPING 390 TIER388

NO SWAP 391 SWAPN CROSS BANDS
SWAP-SAMERG 392 PROGRESS 394 395 O

NO SWAP-DIFFERENT RG 393 CROSS SUB

DATASTRIPING 389 ARRA 396)
RO-1 STRIPER1-1 STRIPER5-1 STRIPER6-1 STRIPE R1O-1 EXPOSED

312 314 316 318 STRIFE 327 DRIVE 398o
RO-2 STRIPER1-2 STRIPER5-2 STRIPER6-2 STRIPE R10-2

320 322 324 326 STRIPE 329

Patent Application Publication May 11, 2017. Sheet 5 of 34 US 2017/O132155A1

WRITE 400

5XXLBA 4KLBA/ SKIP SKIP 5XXLBA/ 4K LBA SKIP SKIP f
LENGTH | LENGTH 5XX 4K LENGTHLENGTH 5XX 4K LBA

402 404 4O6 4.08 420 422
424

AFDASD TO ARRAY (REVERSE

RO-1 NO
STRIPE OFFSET PAST END >256K
412 428 OF VSET LENGTH
RO-2 NON-ZERO 432 O 434 O

STRIPE OFFSET
414 430

WRITE/READ CACHE 415 NO HE

FAST WRT-4K FWWOV-4K NO
ALIGNED 438 ALIGNED 448 RIP/MPIOIP 458 DYNAMIC

FAST WRT-SKIP 440 FWWOV-SKIP 450 O TIER 462

FAST WRT-NOT 4K FWWOV-NOT 4K
ALIGNED BEGIN ALIGNED BEGIN Dr. Eis
AND END 442 AND END 452 O

FAST WRT-NOT 4K FWWOV-NOT 4K
ALIGNED BEGIN ALIGNED BEGIN

444 454

FAST WRT-NOT 4K FWWOV-NOT 4K
ALIGNED END 446 ALIGNED END 456

DATA STRIPNG 466

468

FIG. 4

Patent Application Publication May 11, 2017. Sheet 6 of 34 US 2017/O132155A1

DESTAGE 500

DESTAGE SEARCH STARTSAT EITHER LRU OR ARRAY OFFSET.
DESTAGE SEARCH STOPSAT EITHEREND AT MAX REOUESTED SIZEISPAN OR END

OF 256K (64CLs)
CLS WITH DIP/MP/OP ARE NOTED BUT OTHERWISE GNORED 502

WWO DUAL
CONTROLLER 504 WRITE/READ CACHE 505

4K LBA/LENGTH 506 DESTAGE-4K ALIGNED 510

DESTAGE-SKIP 512
>32 BIT LBA 508

DESTAGE-NOT 4K ALIGNED
BEGIN AND END 514

DESTAGE-NOT 4KALIGNED
BEGIN 516

DESTAGE-NOT 4K ALIGNED
END 518

NO

DYNAMIC TIER REMAPPING 520 DYNAMIC
TIER 532

NO SWAP 522
CROSS BANDS

SWAP-SAME RG 524 530 O

NO SWAP-DIFFERENT RG 526

RO-1 STRIPE R1-1 STRIPE IR5-1 STRIPE IR6-1 STRIPE | R1O-1

RO-2 STRIPER1-2 STRIPER5-2 STRIPER6-2 STRIPE R10-2

SWAPN
PROGRESS

528 O
CROSS

STRIDE 556

HIT EXPOSED
DRIVE 558

Patent Application Publication May 11, 2017. Sheet 7 of 34 US 2017/O132155A1

CACHE LINE (CL) IN CONTROL STORE (CS)
600

BYTE O BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6 BYTE 7

(40:0=1PB, 44:0=16PB) 6B ARRAYOFFSET, ALWAYS 5XX UNITS
ARRAY ID MASK LOWER3BITS-O
STATE OP BUILD NUMBER
CSADDRESS UP (PREV) POINTERFOR CSADDRESS DOWN (NEXT) POINTER

LRU (LOWER6 BITSEO FOR LRU (LOWER6 BITSEO

HASH (LOWER6 BITS=O LOWER BITS=O

FIG. 6

Patent Application Publication May 11, 2017. Sheet 8 of 34 US 2017/O132155A1

CACHE LINE (CL) IN CONTROL STORE (CS)
BUILT FOR AUTO MIRROR

700

ARRAY ID | MASK 6BARRAYOFFSET, ALWAYS 5XX UNITS (LOWER3BITS-0)

oxor OP BUILD NUMBER
ZERO ZERO

ZERO ZERO

FIG. 7

Patent Application Publication May 11, 2017. Sheet 9 of 34 US 2017/O132155A1

CACHE LINE (CL) IN DATA STORE (DS)
800

(THE CL INDS 800 HAS THE MINIMAL INFORMATION NEEDED TO IDENTIFY THAT
THE CLIS VALID (i.e. ALLOCATED), WHAT ARRAY ID AND LBA THE DATA IS FOR,
THE OPBUILD NUMBER, AND THE COMPRESSION RELATED INFORMATION)

ARRAYD MASK 6B ARRAYOFFSET, ALWAYS 5XX UNITS (LOWER3BITS-0)

OX80 OP BUILD NUMBER

ZERO ZERO

ZERO ZERO

FG. 8

Patent Application Publication May 11, 2017. Sheet 10 of 34 US 2017/0132155A1

LOCAL SAS 90 REMOTE SAS
MIRROR OR SAS MIRROR OR SAS
MIRRORDELETE MIRROR DELETE

904 914

CS (VOLATILE) DS (NON- CS (VOLATILE) DS (NON
VOLATILE) 906 VOLATILE) 912

1020

Patent Application Publication

FREE POOL 1002
7=O ALLOCATE
6=O LOCALITY
5=O PURGE
STATUS
4=0 MIP
3EO HASHVALID
2=O RIP
1=0 DP
O=O OP

DLE1 OO8
7=1 ALLOCATE
6=XLOCALITY
5=O PURGE

May 11, 2017 Sheet 11 of 34

ALLOCATED 1 004
7= 1 ALLOCATE
6=XLOCALITY
5=XPURGE
STATUS
4=O MP
3EO HASH WALD
2=O RIP
1=0 DP
O=O OP

US 2017/O132155A1

MIRROR 1006
7=1 ALLOCATE
6=XLOCALITY
5=XPURGE
STATUS
4=1 MIP
3E1 HASH VALID
2=O RIP
1=0 DP
O=O OP

STATUS (WHEN PURGE STATUSTURNS ON, INC P COUNT. WHEN TRUNS OFF
PURGE STATUS, DECP COUNT & INCUN COUNT)
4E0 MIP
3E1 HASHVALID
2=O RIP
1=0 DP
O=O OP
HASH LIST VALID &LRULIST VALID

ONTURN OFF PURGE ONTURN OFF
THE PURGE STATUS THE PURGE
STATUS STATUS

UNDO OP
TURN OFF OIP,

TURN ON ADD TO LRU, IF TURN ON
PURGE f

STATUS

V & D

UNDO DIP
TURN OFF DIP,
ADD TO LRU, IF

HASHV 8, OP 8.
LRU=NULL 1010 HASH P & LRUENULL 1012

1. JAZYTES
1B, 4. 1B

STATUS

HASHV 8. RIP 8, DIP & LRUNULL 101

JB
F G 1 OA RIP & LRU/HASH=NULL 1018

J55

Patent Application Publication May 11, 2017. Sheet 12 of 34 US 2017/0132155A1

FIG 1 OB 1 OOO
INSTALL LOOP THIS CB TO WOIF 1B FINDS MIP/RIP/DP/OP SET 1022

1A READ PAGE LIST, EACH CLTURN ON MIP & HASHVADD TO LRU & HASH
1B SEARCH NEXT CLIN HASH FOR SAME ARRAYID & ARRAYOFFSET, EACH CL FOUND

TURN ON OIP REMOVE FROMLRU, PUT SAS DELETECL MIRROR PAGE LIST
TURN OFF MP & OP 1024
2A READ PAGE LIST, EACH CLTURN OFF MIP 2A
2B READ NEXT CLIF OP SET AND SAME ARRAYID & ARRAYOFFSET, EACH CL FOUND
TURN OFF OIP, TURN OFF HASHV, REMOVE FROM HASHPUT ON DEALLOCATE PAGE
LIST

UNDONSTALL 1026

3A READ PAGE LIST, EACH CLTURN OFF MIP, TURN OFF HASHV, REMOVE FROM HASH
AND LRU
3B READ NEXT CLIF OP SET AND SAME ARRAY ID & ARRAY OFFSET, EACH CL FOUND
TURN OFF OIP, TURN OFF PURGE, ADD BACK INTO LRU
READ SEARCH LOOP THIS CB TO WOF “4” FINDS MIP/RIP/OP 1028
4 SEARCH HASHFORMATCHING ARRAYID & ARRAYOFFSET, EACH CL FOUND TURN
ONRIP, PUT ON COMBO HDMA2h PAGE LIST, OTHERWISE WRITE VOL INDEX TO COMBO
PAGE LIST

TURN OFF RIP READ COMBO PAGE LIST, USE SKIP MASK 1030

5A EACH CL FOUND WITH HASHV ON, TURN OFF RIP
5B EACH CL FOUND WITH HASHV OFF, TURN OFF RIP, PUT ON DEALLOCATE PAGE
LIST
DESTAGE, GNORE DIP/MPIOP 1032
6 SEARCH HASHFOR A256 KB RANGE OF ARRAY OFFSET, EACH CL FOUND TURN ON
DIP, REMOVE FROMLRU, PUT ON PAGE LIST

TURN OFF DIP, READ PAGE LIST 1034
7A EACH CL FOUND WITH RIP OFF, TURN OFF DIP, TURN OFF HASHV, REMOVE FROM

HASH, PUT ON DEALLOCATE PAGE LIST
7B EACH CL FOUND WITH RIP ON, TURN OFF DIP, TURN OFF HASHV, REMOVE FROM
HASH

UNDO DESTAGE 1036

8 READ PAGE LIST, TURN OFF DIP, TURN OFF PURGE STATUS, ADD BACK TO LRU

PURGE, GNORE MIP OR ALLOCATE=0 OR 4:0=0 ORIF PURGE STATUS=11038
9A EACH CL FOUND WITH OP/DIP OFF AND HASHV ON, TURN ON PURGE STATUS,
TURN ON DIP, REMOVE FROMLRU, PUT ON DEALLOCATE PAGE LIST

9B EACH CL FOUND WITH OIP/DIPON OR HASHV OFF, TURN ON PURGE STATUS

Patent Application Publication May 11, 2017. Sheet 13 of 34 US 2017/0132155A1

EXAMPLE CL CHAINS IN CS 1100
(SAME ARRAY ID/LBA)

DIP: RIP/DIP: ALLOCATED:
ALLOCATEE1 ALLOCATE= 1 ALLOCATEE 1 ALLOCATE=1

LOC=O/1 LOC=O/1 LOC=O/1 LOC=O/1 LOC=O/1
HASHV=1 HASHV=1 HASHV=1 HASHV=1 MP=1
(LRU=VALID) (LRU=VALID) DIP=1 RIP=1 HASHV=1

RP-1 DIP=1 (LRU=VALID)
1102 1104 1106 1108

DLE:
ALLOCATE=1
LOC=O/1
HASHV=1
(LRU=VALID)

LOC=O/1
HASHV=1

1116
1112

FIG. 1 1A

EXAMPLE CL CHAIN INDS 112
(SAME ARRAY D/LBA

ALLOCATED:
ALLOCATE= 1
OP BUILD i = N +X+Y

1122

ALLOCATE
OP BUILD if E NX

1124

ALLOCATED:
ALLOCATE=1
OP BUILD i = N

1126

FIG. 11B

Patent Application Publication May 11, 2017. Sheet 14 of 34 US 2017/0132155A1

WRITES 1200

ALLOCATE NV PAGES 1202

HDMA TODS WITH COMPRESSION 1204

WC OVERLAY SEARCH AND INSTALL 12O6

XOR SECTOR /O MERGE 1208

SAS MIRROR 1210

SAS MIRROR DELETE 1212

TURN OFF MP & OP 1214
(TURN OFF MIP & OP UNDO, E.G., IFSAS
MIRROR OR SAS MIRROR DELETE FAILS)

NVDEALLOCATE 1216

SS SEND 1218

FIG. 12A
NON-OPTIMIZED/PROVISIONAL WRITES 1220

XOR VOLTO NV COPY WIO COMPRESS 1222

FIG. 12B

Patent Application Publication May 11, 2017. Sheet 15 of 34 US 2017/0132155A1

READS 1224

VOL. ALLOCATE 1126

WCREAD SEARCH 1228

SAS READ (OR PARTIAL READ HIT) 1230

HDMA FROMDS WITH DECOMPRESSION
1232

WOL DEALLOCATE 1234

TURN OFF RIP 1236

NVDEALLOCATE 1238 (E.G. FOR
ALREADY DESTAGED DATA)

SS SEND 1240

FIG. 12C

Patent Application Publication May 11, 2017. Sheet 16 of 34 US 2017/0132155A1

DESTAGE 1242

DESTAGE SEARCH 1244

XOR DECOMPRESS 1246

PERFORM VARIOUS ASSISTS INVOLVED
WITH RAID DESTAGE 1248

(VOLALLOCATE/DEALLOCATE, PSL
LOCK/UNLOCK, SET/UPDATE/CLEAR

PUFP, SAS OPS

SAS MIRRORDELETE 1250

TURN OFF DIP 1252
(TURN OFF DIP UNDO, E.G. IF DESTAGE

FAILS)

NVDEALLOCATE 1254

FIG. 12D

Patent Application Publication May 11, 2017. Sheet 17 of 34 US 2017/0132155A1

WRITE PROCESS 1300

WRITE 1302

YES1VOLATILE
ByEss PAGES (X2)

PROVIDED

WRITE VIA
AMGR
1308 VOL

DEALLOCATE

BYPASS
1314

VOL. ALLOCATE
(X2) (OR

PREALLOCATED)

NV
ALLOCATE

1324

HDMA TODS WITH
COMPRESSION

1326

XOR MERGE
SEARCH AND 1330
INSTALL 1328

SAS MIRROR
DELETE (LOCAL

SAS MIRROR

(LOCAL AND/OR AND/OR
REMOTE) 1332 REMOTE 334
A-MP B-OP

SS SEND
1323

TURN OFF NV
MIP & OP DEALLOCATE

1336 1338

Patent Application Publication

BUFFERA (MIP, NEW
DATA) 1402

NEW DATA, LBA=OX1004
NEW DATA, LBA=OX1005
NEW DATA, LBA=OX1006
NEW DATA, LBA=OX1007

NEW DATA, LBA=OX1008
NEW DATA, LBA=OX1009
NEW DATA, LBA=OX100A
NEW DATA, LBA=OX1 OOB
NEW DATA, LBA=OX100C
NEW DATA, LBA=OX100D
NEW DATA, LBA=OX1 OOE
NEW DATA, LBA=OX100F

NEW DATA, LBA=OX1010
NEW DATA, LBA=OX1011

1400
BUFFER BOIP, OLD

DATA) 1404
OLD DATA, LBA=OX1000
OLD DATA, LBA=OX1001
OLD DATA, LBA=OX1002
OLD DATA, LBA=OX1003
OLD DATA, LBA=OX1004
OLD DATA, LBA=OX1005
OLD DATA, LBA=OX1006
OLD DATA, LBA=OX1007

OLD DATA, LBA=OX1008
OLD DATA, LBA=OX1009
OLD DATA, LBA=OX1 OOA
OLD DATA, LBA=OX100B
OLD DATA, LBA=OX100C
OLD DATA, LBA=OX100D
OLD DATA, LBA=OX100E
OLD DATA, LBA=OX100F

OLD DATA, LBA=OX1010
OLD DATA, LBA=OX1011
OLD DATA, LBA=OX1012

May 11, 2017 Sheet 18 of 34

BUFFERA (MIP, MERGED
DATA) 1406

OLD DATA, LBA=OX1000
OLD DATA, LBA=OX1001
OLD DATA, LBA=OX1002
OLD DATA, LBA=OX1003
NEW DATA, LBA=OX1004
NEW DATA, LBA=OX1005
NEW DATA, LBA=OX1006
NEW DATA, LBA=OX1007

NEW DATA, LBA=OX1008
NEW DATA, LBA=OX1009
NEW DATA, LBA=OX100A
NEW DATA, LBA=OX10OB
NEW DATA, LBA=OX100C
NEW DATA, LBA=OX100D
NEW DATA, LBA=OX100E
NEW DATA, LBA=OX10OF

NEW DATA, LBA=OX1010
NEW DATA, LBA=OX1011
OLD DATA, LBA=OX1012

US 2017/O132155A1

Patent Application Publication May 11, 2017. Sheet 19 of 34 US 2017/0132155A1

READ PROCESS 1500
BYPASS

READ 1502 1514

YES/VOLATILE
By Ass PAGES (X2)

PROVIDED

READ VIA
AMGR
1508 WOL

DEALLOCATE

NO POSSIBLE
DATA IN CACHE

1510

OR READ
SEARCH

YES

VOL. ALLOCATE
(X2) (OR

VOL. ALLOCATE
OR

PREALLOCATED
1524

READ VIA AMGR
(2 OPS OF

CROSS 256 KB
BOUNDARY 1528

HDMA FROMDS
WITH

DECOMPRESSION
1530

WCREAD
SEARCH 1526

WOL NV

DEALLOCATE "E" H-DEALLOCATE-SIS SEND 1523
(OR NOOP) 1532 1536

Patent Application Publication May 11, 2017 Sheet 20 of 34 US 2017/O132155A1

DESTAGE BUILD PROCESS 1600
1602

NVOKE DESTAGE SEARCH
STARTING AT LRU (WITH
GAPS FOR HDD, WITHOUT

PERFORMAS

OR
SERIALIZED
DESTAGES

1610

OVERLAPPEDYES

GAPS FOR SDD) 1604

FULL
256K FOUND ANDNYES
FSWALLOWED

1606

NO

CANNOT BE
DONE AS SINGLE
OP TO DRIVE

NO
PERFORM
SINGLE

DESTAGE 1612

PERFORM
NO SINGLE

DESTAGE

BEGINNING
OF MAJOR

PARTY STRIP
1614 1616

YES

NVOKE DESTAGE
SEARCHES STARTING
AT ARRAY OFFSETS

1618

ADDITIONA
SEARCHES ALL
FULL 256K OR

NONE
1620

PERFORM
MULTIPLE YES

DESTAGE
1622

UNDO ADDITIONAL
DESTAGES OR

QUEUE FOR LATER
WORK 1624

PERFORM
SINGLE
DESTAGE

1626

FG 16

Patent Application Publication May 11, 2017. Sheet 21 of 34 US 2017/0132155A1

SINGLE DESTAGE PROCESS 1700

SINGLE
DESTAGE 1702

VOL
YES ALLOCATE XOR

(2X DECOMPRESS
BUFFERS) 1708

17O6

READ NO DEST
(XOR RAID-5/6

DECOMPRESS) 1704
1722

VOL
DEALLOCATE

1712

WRITE VA WRITE VIA
AMGR 1724 AMGR 1710

SAS MIRROR
DELETE (LOCAL TURN OFF DIP NVDEALLOCATE
AND/OR REMOTE) 1716 1718

1714

DONE 1720

FIG. 17

Patent Application Publication May 11, 2017. Sheet 22 of 34 US 2017/0132155A1

MULTIPLE DESTAGE PROCESS 1800
MULTIPLE

DESTAGE 1802

VOL

& E, DEA 3-ATE
BUFFERS) 1808

1804

SAS MIRROR
DELETE (LOCAL TURN OFF DIPN
AND/OR REMOTE) 1812

1810

NVDEALLOCATE
*N
1814

DONE 1816

FIG. 18

Patent Application Publication May 11, 2017. Sheet 23 of 34 US 2017/0132155A1

BYPASS PROCESS 1900

BYPASS 1902

INVOKE DESTAGE
SEARCH STARTING AT
ARRAY OFFSET FOR
SIZEISPAN OF OP 1904

OR OF
STATE BITS=0

AND if OF INDEXES
WRITTEN=O

1906

INDEXES
WRITTENEO

1910

DONE 1908

PERFORMAS
OVERLAPPED
OR SERIALIZED
DESTAGES 1916

OP CANNOT BE
DONE AS SINGLE OP

TO DRIVE 1914

PERFORM
SINGLE

DESTAGE 1918

FIG. 19

Patent Application Publication May 11, 2017. Sheet 24 of 34 US 2017/0132155A1

REGISTER BASED PURGE HW ASSIST TOOLKIT 2000

WCHARDWARE READS ALL THE CLS, ANY THAT MATCH THIS RANGE WILL
HAVE THE FOLLOWING OCCUR:

FALLOCATE=1, PIP=0, MIP=O AND HASHV=1 THENTURN ON PIP AND
INCREMENT COUNTER.

IF INCREMENTED COUNTER, DIP=0 AND OIP=0 THENTURN ON DIP, REMOVE
FROMLRUAND PUT CL ON THE PAGE TABLE LIST.

WC ENGINE CAN PROCESS CBDURING THIS TIME, THIS FUNCTION WILL
INTERLEAVE WITH CB PROCESSING 2002

FWLOADED REGISTERS 2004 CL 2026

PIP(PURGE IN PROGRESS) BIT 2028 ARRAY ID(7:0) 2006
STARTING ARRAY OFFSET(44:0), (INCREMENT PURGE PENDING

COUNT WHEN SET, DECREMENT BITS(2:0)=0 SINCE MUST BE 4KB
PURGE PENDING COUNT ON ALIGNED 2008

ENDING ARRAY OFFSET SIZE(44:0), DEALLOCATE)
BITS(2:0)=0 SINCE MUST BE 4KB

MULTIPLE 2010

PAGE TABLE LIST POINTER(31:0)
2012

EVENTO ENTRIES 2030
THE ABOVE PAUSES WHEN THE

PAGE TABLE LIST IS FULL AND SEND
A PURGE PAGE LIST EVENTO ENTRY

2032

WHEN PURGE FINISHES ASWEEP
AND THE PAGE LIST IS NOT EMPTY
THEN SEND A PURGE PAGE LIST

EVENTO ENTRY 2034

PAGE TABLE SIZE(11:0), UPTO 4K-1
ENTRIES 2014

PAGE TABLE CURRENT SIZE(11:0)
2016

CURRENT CL INDEX(24:0) 2018 (MAY
BE SET TOZERO AT START, HELD

AFTER A PAUSE
AFTER BOTH THE PURGE FINISHES
AND THE COUNTER IS ZERO THEN
SEND A PURGE DONE EVENTO

ENTRY 2036

MAX CL INDEX(24:O) 2020

ACTIVE BIT, PAGE TABLE INTERRUPT
BIT 2022

CURRENT PURGE COUNTER(24:0),
DEALLOCATE WILL DECREMENT FOR

ANY CL WITH PIP BIT SET 2024

FIG. 20

Patent Application Publication May 11, 2017. Sheet 25 of 34 US 2017/0132155A1

PURGE ENGINE PROCESS 2100
PURGE ENGINE
START/RESTART

2102

WC ENGINE
DLE 2104

ALL CLS
PROCESSED

2106

AT 256K
BOUNDARY

2112

PAGE LIST
FULL 2110

PROCESS
CL 2108

INDICATE PARTIAL
PAGE LIST PURGE STATUS WITH
EMPTY 2116 if OF INDEXES VALID

2114

PURGE
COUNTER
ZERO 2118

INDICATE
PURGE

DONE 2120

DONE 2122

FIG 21

Patent Application Publication May 11, 2017. Sheet 26 of 34 US 2017/0132155A1

PURGE ENGINE PROCESS 220

PURGE 2202

IS
YES THERE

OUEUE PURGE CURRENTLY A
REGUEST 2205 PURGEN

PROGRESS

NWOKE PURGE ENGINE
FOR ARRAY ID AND LBA

RANGE 2206 RESTART (UN
PAUSE)

ENGINE 2216

SAS MIRROR
INDEX(S) DELETE TURN OFF NV

FOUND, PURGE (LOCAL AND1 DP DEALLOCATE
ENGINE PAUSED OR REMOTE) 2212 2214

2208 2210

PURGE DONE
2218

IS THERE A
OUEUED PURGE
REGUEST 2220

DONE 2222

FIG. 22

Patent Application Publication May 11, 2017. Sheet 27 of 34 US 2017/0132155A1

HW COUNTER AND STATISTICS 2300

CURRENT COUNTERVALUE CL 2302

CURRENT COUNTERVALUE LOCALITY BIT 2304

HWM CL 2406

HWMLOCALITY BIT 2308

LWM CL 2310

LWMLOCALITY BIT 2312

LRUUP, OLDEST CL ENTRY ON THE LRU, ZERO=NULL 2314

LRUDOWN, NEXT LOCATION A NEW CL WILL BE PLACED,
ZERO=NULL 2316

CURRENT COUNTERVALUE WC INSTALLS TOTAL 2318

CURRENT COUNTERVALUE WC INSTALLS WITH OVERLAY 2320

CURRENT COUNTERVALUE WC READS TOTAL 2322

CURRENT COUNTERVALUE WC READS WITH FULL CACHE READ
HITS 2324

FIG. 23

Patent Application Publication May 11, 2017. Sheet 28 of 34 US 2017/0132155A1

LIMIT AND THRESHOLD EXAMPLE (COMPRESSED CACHE)
2400

OVERALL LIMIT
OVERALL LIMIT FOR 2402 2404 FOR NV 528
NV 4K INDEXES (SIZE o o INDEXES (SIZE

OF CACHE OF REAL
DIRECTORY) CACHE

MEMORY)

OVERALL OVER ALL

THRESHOLD FOR NV HWM 4KINDEXES (NN."
OF THE LIMIT) LWM

HWM THRESHOLD FOR
1 NV 528 INDEXES
WM (NN% OF THE

LIMIT)

ARRAY 1 ARRAY 2 ARRAY 3 ARRAY 4
24O6 24.08

HW HW

(, LWM
FAIR

THRESHOLD Per Array Limit - - - - - -
Per Array Threshold -----------------------

FIG. 24

Patent Application Publication May 11, 2017. Sheet 29 of 34 US 2017/0132155A1

OUTPUTS TO HW
INPUTS FROM HW 2510

2502 UPDATE OF CL LIMIT (PER ARRAY) 2512
REGISTERS 2504

CL COUNT (PER ARRAY ID) NOTE: THIS IS DONE BY DONG
CL LOCALITY COUNT (PER AN ADD OR SUBTRACT USING
ARRAY ID) THE FWARRAY WAIT OUPDATE
NV 4K FREE INDEXES (VIA HEAD/ PORT.
TAIL POINTERS)
NV 528 FREE INDEXES (VIA
HEADITAL POINTERS)

UPDATE OF HWM(S)/
LWM(S) FOR ARRAY BASED
CL COUNTS AND CL
LOCALITY COUNTS 2514 LIMIT AND

THRESHOLD NOTE: THE HWM(S)/
CALCULATION EVENTS 2506 al & WMS). ECRENV4K AND NV 528 FREE

NV 4K ABOVE HWM INDEXES ARE NOT
NV 4K BELOW HWM ROUTINELY CHANGED
NV 528 ABOVE HWM
NV 528 BELOW HWM
AN ARRAY CL COUNT ABOVE OTHER OUTPUTS 2516

HWM DESTAGE RATE 25.18
AN ARRAY CL COUNT BELOW
HWM
AN ARRAY CL LOCALITY COUNT
ABOVE HWM
AN ARRAY CL LOCALITY BELOW
HWM

DESTAGES ARE SCHEDULED TO
GET UNDER THRESHOLD FOREACH

Patent Application Publication May 11, 2017. Sheet 30 of 34 US 2017/0132155A1

GLOBAL EVENT PROCESSING 2600

INCREASE INCREASE DECREASE
PAGE AND CL PAGE AND CL & PAGE
HWM 2606 CL HWM HWM 2620

2610

DECREASE ZERO CL
INCREASE ZERO PAGE TOP LWM. SET
PAC WM NCREASE LWM, SET CL s

CL LWM 2612 W. RESOURCE || PAGELWM
2608 LWM 2628 2634

INCREASE DESTAGE
RATE 2614

NEED TO
LOWER

DESTAGE

NEED TO
LOWER

DESTAGE

DECREASE
DESTAGE
RATE 2630

DONE 2626

FIG. 26

Patent Application Publication May 11, 2017 Sheet 31 of 34

PER ARRAY PROCESSING 2700

HWM

CLOR
LOCALITY

2704

CL

INCREASE CL
HWM & LWM

27O6

DECREASE
ARRAY CL
LIMIT 2708

NEEDSHIGHER
DESTAGE RATE

LOCALITY CL

INCREASE
LOCALITY HWM
& LWM 2710

INCREASE
ARRAY CL
LIMIT 2712

LWM

CLOR

2720

DECREASE
CL HWM 8.
LWM 2722

INCREASE
ARRAY CL
LIMIT 2724

DONE 2718

INCREASE
ARRAY
DESTAGE
RATE 2716

FIG. 27

LOCALITY

US 2017/O132155A1

LOCALITY

DECREASE
LOCALITY
HWM & LWM

2726

DECREASE
ARRAY CL
LIMIT 2728

Patent Application Publication May 11, 2017. Sheet 32 of 34 US 2017/0132155A1

EXAMPLE, GLOBAL TRIGGERS 2800

CL COUNT
. PAGE COUNT

CL LIMIT

:

i
TIME

Patent Application Publication May 11, 2017. Sheet 33 of 34 US 2017/0132155A1

EXAMPLE, PER ARRAY TRIGGERS 2900

CL COUNT
LOCALITY COUNT
CL LIMIT :

s
TIME LARGE/SEOUENTIAL OPS RANDOM OPS

FIG. 29

Patent Application Publication May 11, 2017. Sheet 34 of 34 US 2017/0132155A1

s
3016 — N

so 3012

ote 3020

J.
3022

FIG. 30

US 2017/O 1321 SS A1

IMPLEMENTING HARDWARE
ACCELERATOR FOR STORAGE WRITE

CACHE MANAGEMENT

FIELD OF THE INVENTION

0001. The present invention relates generally to the data
processing field, and more particularly, relates to a method
and controller for implementing enhanced storage adapter
write cache management, and a design structure on which
the subject controller circuit resides.

DESCRIPTION OF THE RELATED ART

0002 Storage adapters are used to connect a host com
puter system to peripheral storage I/O devices such as hard
disk drives, Solid state drives, tape drives, compact disk
drives, and the like. Currently various high speed system
interconnects are to connect the host computer system to the
storage adapter and to connect the storage adapter to the
storage I/O devices, such as, Peripheral Component Inter
connect Express (PCIe), Serial Attach SCSI (SAS), Fibre
Channel, and InfiniBand.
0003 Storage adapters and storage subsystems often con
tain a write cache to enhance performance. The write cache
is typically non-volatile, for example, using Flash backed
DRAM and is used to mask the write penalty introduced by
redundant arrays of independent disks (RAID), such as
RAID-5 and RAID-6. A write cache can also improve
storage performance by coalescing multiple host operations
placed in the write cache into a single destage operation
which is then processed by the RAID layer and disk devices.
For redundancy, the write cache data and directory or
metadata can be mirrored to a second or dual adapter which
advantageously is utilized in the case of an adapter failure.
0004. In a fully associative or other complex cache used
in a storage Subsystem to cache user or host data, many CPU
cycles typically are required to update the needed metadata
to put data into write cache. This metadata includes Cache
Line (CL) structures, a hash table for fast searching, and a
Least Recently Used (LRU) queue for finding the oldest
data. The metadata is used for maintaining coherency, keep
ing the cache directory non-volatile, and to enable finding
data to remove from cache.
0005. A need exists for an effective method and controller
for implementing enhanced storage write cache manage
ment. A need exists to provide Such method and controller
that provides a hardware accelerated design including a
hardware write cache engine which manages the write cache
data and metadata with a minimum of, or no, firmware
involvement to greatly enhance performance.
0006. As used in the following description and claims,
the terms controller and controller circuit should be broadly
understood to include an input/output (TO) adapter (IOA)
and includes an IO RAID adapter connecting various
arrangements of a host computer system and peripheral
storage I/O devices including hard disk drives, solid state
drives, tape drives, compact disk drives, and the like.

SUMMARY OF THE INVENTION

0007 Principal aspects of the present invention are to
provide a method and a controller for implementing storage
adapter enhanced write cache management, and a design
structure on which the subject controller circuit resides.
Other important aspects of the present invention are to

May 11, 2017

provide Such method, controller, and design structure Sub
stantially without negative effects and that overcome many
of the disadvantages of prior art arrangements.
0008. In brief, a method and controller for implementing
enhanced storage adapter write cache management, and a
design structure on which the Subject controller circuit
resides are provided. The controller includes a hardware
write cache engine implementing hardware acceleration for
storage write cache management. The controller manages
write cache data and metadata with minimum or no firmware
involvement for greatly enhancing performance.

BRIEF DESCRIPTION OF THE DRAWINGS

0009. The present invention together with the above and
other objects and advantages may best be understood from
the following detailed description of the preferred embodi
ments of the invention illustrated in the drawings, wherein:
0010 FIGS. 1A and 1B are a schematic and block dia
grams respectively illustrating an example system with dual
controllers and an input/output (IO) adapter for implement
ing storage adapter enhanced write cache management in
accordance with the preferred embodiment;
0011 FIGS. 2A and 2B respectively illustrate an example
logical block address (LBA) translation RAID stack
included with the controller for implementing Storage
adapter enhanced write cache management of FIGS. 1A and
1B with write cache placed high in the RAID stack in FIG.
2A, above Dynamic Tier (Easy Tier), data striping, and
parity striping (RAID) layers where caching is performed on
an Array ID/Array LBA basis in accordance with the pre
ferred embodiment;
0012 FIG. 3 illustrates example read operations sup
ported in hardware including the example logical block
address (LBA) translation of FIGS. 2A and 2B included with
the controller for implementing storage adapter enhanced
write cache management in accordance with the preferred
embodiment;
0013 FIG. 4 illustrates example write operations sup
ported in hardware including the example logical block
address (LBA) translation of FIGS. 2A and 2B included with
the controller for implementing storage adapter enhanced
write cache management of FIGS. 1A and 1B with write
cache placed high in the RAID stack, above Dynamic Tier
(Easy Tier), data striping, and parity striping (RAID) layers
in accordance with the preferred embodiment;
0014 FIG. 5 illustrates example destage operations sup
ported in hardware including the example logical block
address (LBA) translation of FIGS. 2A and 2B included with
the controller for implementing storage adapter enhanced
write cache management in accordance with the preferred
embodiment;
0015 FIG. 6 illustrates an example cache line (CL)
structure in control store (CS) included with the controller
for implementing storage adapter enhanced write cache
management in accordance with the preferred embodiment;
0016 FIG. 7 illustrates an example cache line (CL)
structure in control store (CS) for auto mirror to data store
(DS) included with the controller for implementing storage
adapter enhanced write cache management in accordance
with the preferred embodiment;
0017 FIG. 8 illustrates an example cache line (CL)
structure in data store (DS) included with the controller for
implementing Storage adapter enhanced write cache man
agement in accordance with the preferred embodiment;

US 2017/O 1321 SS A1

0018 FIG. 9 illustrates an example local SAS and remote
SAS cache line (CL) control store (CS) mirror or SAS mirror
delete to data store (DS) included with the controller for
implementing Storage adapter enhanced write cache man
agement in accordance with the preferred embodiment;
0019 FIGS. 10A and 10B illustrates example transac
tions in cache line (CL) states in hardware included with the
controller for implementing storage adapter enhanced write
cache management in accordance with the preferred
embodiment;
0020 FIGS. 11A and 11B illustrates example cache line
(CL) chains having same array ID/LBA in hardware
included with the controller for implementing Storage
adapter enhanced write cache management in accordance
with the preferred embodiment;
0021 FIGS. 12A, 12B, 12C, and 12D respectively illus
trate example control block (CB) based chain of operations
in hardware engines for writes, non-optimized or provisional
writes, reads and destage operations included with the
controller for implementing storage adapter enhanced write
cache management in accordance with the preferred
embodiment;
0022 FIG. 13 is a flow chart illustrating example opera
tions of a write process included with the controller for
implementing Storage adapter enhanced write cache man
agement in accordance with the preferred embodiment;
0023 FIG. 14 illustrates an example XOR merge on fast
write with overlay included with the controller for imple
menting storage adapter enhanced write cache management
in accordance with the preferred embodiment;
0024 FIG. 15 is a flow chart illustrating example opera
tions of a read process included with the controller for
implementing Storage adapter enhanced write cache man
agement in accordance with the preferred embodiment;
0025 FIG. 16 is a flow chart illustrating example opera
tions of a destage build process included with the controller
for implementing storage adapter enhanced write cache
management in accordance with the preferred embodiment;
0026 FIG. 17 is a flow chart illustrating example opera
tions of a single destage process included with the controller
for implementing storage adapter enhanced write cache
management in accordance with the preferred embodiment;
0027 FIG. 18 is a flow chart illustrating example opera
tions of a multiple destage process included with the con
troller for implementing storage adapter enhanced write
cache management in accordance with the preferred
embodiment;
0028 FIG. 19 is a flow chart illustrating example opera
tions of a bypass process included with the controller for
implementing Storage adapter enhanced write cache man
agement in accordance with the preferred embodiment;
0029 FIG. 20 illustrates example register based purge
hardware assist tool kit included with the controller for
implementing Storage adapter enhanced write cache man
agement in accordance with the preferred embodiment;
0030 FIGS. 21 and 22 are flow charts illustrating
example operations of a purge engine process included with
the controller for implementing storage adapter enhanced
write cache management in accordance with the preferred
embodiment;
0031 FIG. 23 illustrates example hardware counters and
statistics included with the controller for implementing
storage adapter enhanced write cache management in accor
dance with the preferred embodiment;

May 11, 2017

0032 FIGS. 24 and 25 illustrate example CL limits and
thresholds included with the controller for implementing
storage adapter enhanced write cache management in accor
dance with the preferred embodiment;
0033 FIG. 26 is a flow chart illustrating example opera
tions of global event processing included with the controller
for implementing storage adapter enhanced write cache
management in accordance with the preferred embodiment;
0034 FIG. 27 is a flow chart illustrating example steps of
per array processing included with the controller for imple
menting storage adapter enhanced write cache management
in accordance with the preferred embodiment;
0035 FIGS. 28 and 29 respectively illustrate example
global triggers and per array triggers included with the
controller for implementing storage adapter enhanced write
cache management in accordance with the preferred
embodiment; and
0036 FIG. 30 is a flow diagram of a design process used
in semiconductor design, manufacturing, and/or test.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0037. In the following detailed description of embodi
ments of the invention, reference is made to the accompa
nying drawings, which illustrate example embodiments by
which the invention may be practiced. It is to be understood
that other embodiments may be utilized and structural
changes may be made without departing from the scope of
the invention.
0038. The terminology used herein is for the purpose of
describing particular embodiments only and is not intended
to be limiting of the invention. As used herein, the singular
forms “a”, “an and “the are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises'
and/or "comprising,” when used in this specification, specify
the presence of Stated features, integers, steps, operations,
elements, and/or components, but do not preclude the pres
ence or addition of one or more other features, integers,
steps, operations, elements, components, and/or groups
thereof.
0039. In accordance with features of the invention, a
method and controller for implementing storage adapter
enhanced write cache management, and a design structure
on which the subject controller circuit resides are provided.
The method and controller of the invention include a write
cache hardware engine managing write cache and providing
Substantially atomic update of a cache directory. Both a
write into and a read from write cache is performed using the
write cache hardware engine without using firmware, chain
ing together hardware engines.
0040 Having reference now to the drawings, FIGS. 1A
and 1B respectively illustrate an example system generally
designated by the reference character 100 with dual con
trollers and an input/output (IO) adapter generally desig
nated by the reference character 102 for implementing
storage adapter enhanced write cache management in accor
dance with preferred embodiments. System 100 includes a
first input/output adapter (IOA) or controller 102, IOA #1
and a second input/output adapter (IOA) or controller 102,
IOA #2 with write cache data and directory or metadata
mirrored to the dual IOA, which can be utilized in the case
of adapter failure. System 100 includes a host system 104,
with the IOAS #1 and #2, controllers 102 directly coupled to

US 2017/O 1321 SS A1

the host system 104 via a Peripheral Component Intercon
nect Express (PCIE) bus or optionally coupled to the host
system 104 via a PCIE switch 106. System 100 includes a
plurality of storage devices 108, such as hard disk drives
(HDDs) or spinning drives 108, and solid state drives
(SSDs) 108 including for example, redundant array of
independent drives (RAID) optionally coupled by a respec
tive expander 110 to the IOAS #1 and #2, controllers 102 via
one or more serial attached SCSI (SAS) connections with
SAS connections between the IOAS #1 and #2, controllers
102.

0041. In FIG. 1B, there are shown further example com
ponents of each of the IOAS #1 and #2, controllers 102 in the
data storage system 100 in accordance with the preferred
embodiments. Controller 102 includes one or more proces
sors or central processor units (CPUs) 120, a write cache 122
including at least a data store (DS) 124, and a control store
(CS) 126. Such as a dynamic random access memory
(DRAM). Controller 102 includes a flash memory 128, and
a non-volatile random access memory (NVRAM) 130.
0042 Controller 102 includes a write cache engine 132 in
accordance with the preferred embodiments. Controller 102
includes a Peripheral Component Interconnect Express
(PCIE) interface 134 connected via the PCIE bus to the host
system and a Serial Attach SCSI control (SAS CTLR) 136
connected to each of a plurality of storage devices 108.
0.043 IOAS #1 and #2, controllers 102 and write cache
engine 132, which includes a plurality of hardware engines,
for example, for implementing a method of chaining
together hardware engines, using no firmware, to perform a
write or write-with-overlay into write cache; and for imple
menting a method of chaining together hardware engines,
using no firmware, to perform a read from write cache.
0044. In accordance with features of the invention, a
method and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 generate a chain of operations, using different
hardware engines, to perform a write or write-with-overlay
into the write cache using no firmware. Controller 102 and
write cache engine 132 implement the method by perform
ing the steps of allocating nonvolatile (NV) buffers, direct
memory access (DMA) for DMAing data from host, deter
mining if existing data in cache may have been overlaid
while updating cache line (CL) states, merging non-4K data
at the beginning and end of the write operation, DMAing
data to a remote adapter while also updating CLS in local and
remote NV memory, clearing CLs for overlaid data in the
local and remote NV memory, final updates to the CL states,
deallocating NV buffers for any overlaid data, and sending
a response to the host command.
0045. In accordance with features of the invention, a
method and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 generating a chain of operations, using different
hardware engines, to perform a read from the write cache
using no firmware. Controller 102 and write cache engine
132 implement the method by performing the steps of:
allocating Vol buffers, searching the write cache for a read
hit, DMAing data to host, deallocating Vol buffers, final
updates to the CL states, deallocating NV buffers for any
data being read which was concurrently destaged from
cache, and sending a response to the host command.
0046. In accordance with features of the invention, a
method and controller 102 for implementing storage adapter

May 11, 2017

enhanced write cache management including the write cache
engine 132 generating a chain of operations, using different
hardware engines, to perform a partial read hit from the
write cache using no firmware. Controller 102 and write
cache engine 132 implement the method by performing the
steps of Allocating Vol buffers, searching the write cache for
a read hit, reading/merging data from HDDs/SSDs for the
partial read hits, DMAing data to host, deallocating Vol
buffers, final updates to the CL states, deallocating NV
buffers for any data being read which was concurrently
destaged from cache, and sending a response to the host
command.
0047. In accordance with features of the invention, a
method and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 generating a chain of operations, using different
hardware engines, to perform a destage operation from the
write cache using minimal firmware. Controller 102 and
write cache engine 132 assist in generating the destage
operation with options to start at either the LRU or a
specified array LBA, and to stop at either a max requested
size/span or the end of a 256K stripe boundary.
0048. In accordance with features of the invention, a
method and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 implementing a set of policies which allow for
a host read and a cache destage to occur simultaneously for
the same CLS. Collisions which do occur are queued and
dispatched by the hardware.
0049. In accordance with features of the invention, a
method and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 that uses an Op Build Number or sequence
number within a (CL) to enable guaranteed correct identi
fication of older vs. newer data in cache for the same array
logical block address (LBA).
0050. In accordance with features of the invention, a
method and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 implementing hardware Turn Offs for use in
completing or undoing CLS updates for writes, reads, and
destage operations.
0051. In accordance with features of the invention, a
method and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 that implements a unique hardware engine used
to identify and update CLs for an array LBA range which are
to be purged from the cache.
0052. In accordance with features of the invention, a
method and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 implementing an XOR (exclusive OR) merge
function, for example, on fast write with overlay.
0053. In accordance with features of the invention, a
method and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 implementing a trigger based method to dynami
cally optimize cache destage rate and adjust the thresholding
and limiting of data in cache for each array, using hardware
provided inputs (registers) and outputs (registers and events)
to assist firmware.

0054. In accordance with features of the invention, a
method and controller 102 for implementing storage adapter
enhanced write cache management including the write cache

US 2017/O 1321 SS A1

engine 132 implementing a high level framework of the
hardware accelerated design which manages the write cache
data and metadata (directory) with a minimum of, or no.
firmware involvement greatly enhancing performance.
0055. In accordance with features of the invention, a
method and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 provides hardware manipulation of CLS (Cache
Lines), the hash table, and per array LRU queues. This is
done in a pseudo atomic fashion Such that updates to these
structures are either left unmodified or are completely
updated each time the hardware engine executes. All entries
being modified, for example, are Checked-Out into a cache,
changed one or more times, and then burst Checked-In if
successful. Only the CLs are kept non-volatile and it is
possible for a subset of the CLs to be modified when an
adapter failure occurs.
0056. In accordance with features of the invention, a
method and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 that includes a CL definition which allows the
following states to be tracked: Overlay In Progress (OIP),
during a write with overlay operation; Read In Progress
(RIP), during a read operation; and Destage In Progress
(DIP), during a destage operation. RIP and DIP are allowed
concurrently to minimize collisions, which is not possible in
conventional designs.
0057. In accordance with features of the invention, a
method and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 implementing writes, non-optimized or provi
sional writes, reads and destage operations providing
enhanced performance.
0058 Referring now to FIGS. 2A and 2B, controller 102
implements an example logical block address (LBA) trans
lation RAID stack generally designated by the reference
character 200 as shown in FIG. 2A for implementing storage
adapter enhanced write cache management. FIG. 2B illus
trates host LBA translation with (VSet) Volume set (i.e. a
logical device which can be read and written by the host)
generally designated by the reference character 220.
0059. In FIG. 2A, controller 102 implements host LBA
and AFDASD (Advanced Function DASD) translation 202
that is used with the IBM i operating system. AFDASD
represents a RAID capable physical device which may be
read and written by the IBM i operating system. Host LBA
and AFDASD translation 202 starts with AFDASD to array
or reverse data striping at block 204 providing array LBA
and array ID at 206 with read/write cache 208 providing
array LBA and array ID at 210. Read/write cache 208 is
placed high in the RAID stack 200, and above (RAID) layers
data striping 212 providing logical device LBAs and LDNs
(logical device numbers) 214, and parity striping 216, which
provides physical device LBAs and LDNs 218 where cach
ing is performed on an Array ID/Array LBA basis in
accordance with the preferred embodiment. The logical
block address (LBA) translation RAID stack 200 reduces
complexity and reduces delay than prior designs which
placed write cache below Dynamic Tier and data striping,
where caching was done on a device LBA basis.
0060 FIG. 2B illustrates RAID stack 220 of host LBA
translation with VSet 222 that is used with Advanced
Interactive eXecutive (AIX), Unix, Linus, and other com
mon operating systems, starting with VSet to Array 224

May 11, 2017

providing array LBA and array ID at 226 with read/write
cache 228 providing array LBA and array ID at 230. RAID
stack 220 includes Dynamic Tier or Easy Tier Remapping
232 providing remapped array LBA(s)/ID at 234, followed
by common code (RAID) layers of data striping 212 pro
viding logical device LBAs and LDNs (logical device
numbers) 214, and parity striping 216, which provides
physical device LBAs and LDNs 218.
0061. In accordance with features of the invention, a
method and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 implementing auto reads to write cache, per
forming a full or partial read hit from write cache typically
with no firmware involvement, or all the way through to
storage devices 108.
0062 Referring to FIGS. 3, 4, and 5, there are shown
example read, write and destage operations with blocks
having a dot in the block corner indicating where hardware
HW will pass control to firmware FW to handle an opera
tion.

0063 Referring now to FIG. 3, there are shown example
read operations generally designated by the reference char
acter 300 supported in hardware including the respective
example logical block address (LBA) translation RAID
Stack of FIGS 2A and 2B included with the controller 102
for implementing storage adapter enhanced write cache
management in accordance with the preferred embodiment.
For a host LBA and AFDASD RAID stack, read LBA length
are shown at blocks 302, 304, and skip mask are shown at
blocks 306, 308. An AFDASD to array or reverse data
striping block 310 provides data stripe blocks 312,314, 316,
318,320,322,324, 326, as shown, applied to the write/read
cache 328. For host LBA and Vset RAID stack, read LBA
length are shown at blocks 330, 332, skip mask are shown
at blocks 334, 336, and a greater than 32 bit at LBA338. A
VSet to Array block 340 provides a no offset block 342, a
non-zero offset block 344, a past end of Vset block 346, and
a less than 256K length block 348 applied to the write/read
cache 328. As shown, write read cache 328 provides full hit,
4K aligned 350, full hit, skip 352, full hit, not 4K aligned
begin and end 354, full hit, not 4K aligned begin 356, and
full hit, not 4K aligned end 358. As shown, write read cache
328 provides no hit, 4K aligned 360, no hit, skip 362, no hit,
not 4K aligned begin and end 364, no hit, not 4K aligned
begin 366, and no hit, not 4K aligned end 368. As shown,
write read cache 328 provides partial hit, 4K aligned 370,
partial hit, skip 372, partial hit, not 4K aligned begin and end
374, partial hit, not 4K aligned begin 376, and partial hit, not
4K aligned end 378.
0064. As shown, write read cache 328 provides read in
progress (RIP), mirror in progress (MIP) and overlay in
progress (01P) at block 380, 65 cache lines (CLs) at block
382, partial hit within less that 4K CL at block 384, and
partial hit chicken switch at block 386, to accommodate an
exception situation. As indicated at block 387 with no cache
and no dynamic tier at block 388, the read goes to data
striping block 389, which provides data stripe blocks 312,
314, 316, 318, 320, 322, 324, 326, 327, and 329 as shown.
Otherwise, a dynamic tier block 390 provides no swap at
block 391, swap-same Redundancy Group (RG) at block
392, no swap-different RG at block 393, swap in progress at
block 394, and/or cross bands at block 395. Data striping
block 389 provides cross sub-array at block 396, and/or hit
exposed drive at block 398.

US 2017/O 1321 SS A1

0065. In accordance with features of the invention, a
method and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 implement Auto Write operations supported in
HW where the hardware generates a chain of operations,
using different control blocks or hardware engines, to per
form a write or write-with-overlay into the write cache
typically with no firmware involvement.
0066 Referring now to FIG. 4, there are shown illustrates
example write operations generally designated by the refer
ence character 400 supported in hardware including the
respective example logical block address (LBA) translation
RAID Stack of FIGS 2A and 2B included with the controller
102 for implementing storage adapter enhanced write cache
management in accordance with the preferred embodiment.
For a host LBA and AFDASD RAID stack, write LBA
length are shown at blocks 402, 404, and skip mask are
shown at blocks 406, 408. An AFDASD to array or reverse
data striping block 410 provides data stripe blocks 412, 414,
as shown, applied to the write/read cache 415. For host LBA
and Vset RAID stack, read LBA length are shown at blocks
416, 418, skip mask are shown at blocks 420, 422, and a
greater than 32 bit LBA at block 424. AVSet to Array block
426 provides a no offset block 428, 430, a non-zero offset
block 432, a past end of Vset block 432, and a greater than
256K length block 434 applied to the write/read cache 415.
As shown, write read cache 415 provides fast write, 4K
aligned 438, fast write, skip 440, fast write, not 4K aligned
begin and end 442, fast write, not 4K aligned begin 444, fast
write, not 4K aligned end 446. As shown, write read cache
415 provides fast write (FW) with overlay (OV), 4K aligned
448, fast write (FW) with overlay (Ov), skip 450, fast write
(FW) with overlay (OV), not 4K aligned begin and end 452,
fast write (FW) with overlay (OV), not 4Kaligned begin 454,
fast write (FW) with overlay (OV), not 4K aligned end 456.
As shown, write read cache 415 provides read in progress
(RIP), mirror in progress (MIP) and overlay in progress
(OIP) at block 458. As indicated at block 460 with no cache
and no dynamic tier at block 462 and non-single drive
RAID-0 at block 464, the write goes to data striping block
466, which provides a data R0-1 stripe block 468.
0067 Referring now to FIG. 5, there are shown example
destage operations generally designated by the reference
character 500 supported in hardware including the example
logical block address (LBA) translation of FIGS. 2A and 2B
included with the controller 102 for implementing storage
adapter enhanced write cache management in accordance
with the preferred embodiment. As shown at block 502, a
destage search starts at either LRU (linked list used in array),
or an array offset (array LBA); and the destage search ends
at a maximum requested size or span, or the end of a 256K
stripe boundary (64 CLs). CLs with DIP. MIP, or OIP set are
noted but otherwise ignored. As shown at block 504, the
destage operations are provided with or without the dual
controller 102. Unlike read and write operations 300, 400,
firmware is used to produce chains of hardware operations
to perform an overall destage. This is done since the number
of variations for destages, due to Support of many different
RAID levels and other complexities, is too much for the
hardware to handle without firmware assistance. A write?
read cache 505 is shown with 4KLBA/length block 506, and
greater than 32 bit LBA block 508. Destage operations
include destage, 4K aligned 510, destage skip 512, destage
not 4K aligned begin and end 514, destage, not 4K aligned

May 11, 2017

begin 516 and destage, not 4K aligned end 518. A dynamic
tier remapping block 520 provides no swap at block 522,
swap-same RG at block 524, Swap-different RG at block
526, swap in progress at block 528, and/or cross bands at
block 530. As indicated at block 532 with no dynamic tier,
the destage goes to data striping block 534, which provides
data stripe blocks 536,538,540, 542, 544, 546, 548,550,
552, 554, as shown. Data striping block 534 provides cross
sub-array at block 556, and/or hit exposed drive at block
558.
0068 Referring now to FIG. 6 there is shown an example
cache line (CL) structure in control store (CS) generally
designated by the reference character 600 included with the
controller 102 for implementing storage adapter enhanced
write cache management in accordance with the preferred
embodiment. The cache line (CL) structure 600 includes
bytes 0-7 with CS State definitions as follows:
7=Allocated CL, set by allocate engine

6=Locality bit

0069 5-PIP (Purge in progress) turned on and increment
counter when CL is marked for Purge(decrement a counter
on de-allocate)
4-MIP (Mirror in progress), in HASH, in LRU

3=HASH Links Valid (may or may not be in LRU)
0070
LRU
1=DIP (Destage in progress) Not in LRU
O=OIP (Overlay remove after mirror, Combine Mask Merge
in progress) Not in LRU.
(0071. The CL state definitions which allows the follow
ing states to be tracked: Mirror In Progress (MIP), during a
write operation while mirroring data/directory to local/
remote NV memory: Overlay In Progress (OIP), during a
write with overlay operation; Read In Progress (RIP), during
a read operation; and Destage In Progress (DIP), during a
destage operation. The operation (OP) build number is
incremented with each cache entry. The CS address Up
pointer for LRU, lower 6 bits=0, and CS address Down or
next pointer for LRU, lower 6 bits=0. The CS address
previous pointer for hash, lower 6 bits=0, and CS address
next pointer for hash, lower 6 bits=0. The cache line (CL)
structure 600 includes compression index values.
0072 The Locality bit is set and a counter is incremented
for all the CLS after the first one on an NV Allocate
operation. The counter is decremented for every CL with the
Locality bit set on an NV Deallocate. This counter is used by
FW when it is determining how full it should allow the Write
Cache to be before starting a Destage operation. A high
Locality count allows a fuller WC.
(0073. Referring now to FIG. 7, there is shown an
example cache line (CL) structure in control store (CS) for
auto mirror to data store (DS) generally designated by the
reference character 700 included with the controller for
implementing Storage adapter enhanced write cache man
agement in accordance with the preferred embodiment. The
cache line (CL) structure in control store (CS) for auto
mirror 700 to data store (DS) includes array ID, mask, 6B
array offset, 0x80 or C0, operation (OP) build number, and
compression index values.
0074 Referring now to FIG. 8 illustrates an example
cache line (CL) structure in data store (DS) generally

2=RIP (Read in progress) May or may not be in

US 2017/O 1321 SS A1

designated by the reference character 800 included with the
controller for implementing storage adapter enhanced write
cache management in accordance with the preferred
embodiment. As shown, the CL in DS 800 has the minimal
information needed to identify that the CL is valid (i.e.
allocated), what array ID and LBA the data is for, the op
build number, and the compression related information.
0075 Referring now to FIG. 9, there is shown an
example local SAS and remote SAS cache line (CL) control
store (CS) mirror or SAS mirror delete to data store (DS)
generally designated by the reference character 900 included
with the controller for implementing storage adapter
enhanced write cache management in accordance with the
preferred embodiment. A local SAS cache line (CL) control
store (CS) 902 includes a local SAS mirror or SAS mirror
delete path 904 to a local data store DS 906. A SAS
interconnect 908 is provided to a remote SAS cache line
(CL) control store (CS) 910 and a remote data store DS 912.
A remote SAS mirror or SAS mirror delete path 914 is
provided from the local CS902 to the remote data store DS
912.

0076 Referring now to FIGS. 10A and 10B illustrates
example transactions in cache line (CL) states in hardware
generally designated by the reference character 1000
included with the controller 102 for implementing storage
adapter enhanced write cache management in accordance
with the preferred embodiment. Cache line CL state trans
actions 1000 include a Free Pool 1002, Allocated 1004,
Mirror 1006 with HASH and LRU valid, and Idle 1008 with
HASH List valid and LRU List valid. Each of the Free Pool
1002, Allocated 1004, Mirror 1006, and Idle 1008 include
CL states of 7=Allocated CL, set by allocate engine,
6–Locality bit, 5=Purge status, 4=MIP 3=HASH Links
Valid, 2=RIP, 1 =DIP, and 0=OIP, as shown. Cache line CL
State transactions 1000 include HASHV & OIP &
LRU=NULL 1010, HASHV, & DIP & LRU=NULL 1012,
and HASHV & DIP & LRU=VALID 1014, HASHV & RIP
& DIP & LRU=NULL 1016, and RIP & LRU/
HASH=NULL 1018. Below a line labeled 1020, HASHV,
RIP, DIP. OIP are listed only if set.
0077 Referring also to FIG. 10B together with respective
CL state transactions lines 1A-9B in FIG. 10A, cache line
CL state transactions 1000 include an Install at 1022
includes loop this control block (CB) if 1B finds MIP/RIP/
DIP/OIP set. As shown at line 1A, a page list is read, and for
each CL, MIP & HASHV are tuned on together with adding
to LRU and HASH. As shown at line 1B, a next CL is
searched in HASH for the same Array ID & Array Offset, for
each CL found, turn on OIP, remove from LRU, put SAS
delete CL mirror page list. As shown at 1024 turn off MIP
& OIP. As shown at line 2A, read page list, for each CL turn
off MIP. As shown a line 2B, read next CL if OIP set and
same Array ID and Array Offset, for each CL found turn off
OIP turn off HASHV, remove form HASH, put on Deallo
cate Page List.
0078. As shown at 1026. Undo Install. As shown at line
3A, the page list is read, for each CL, turn off MIP turn off
HASHV, and remove from HASH. As shown at line 3B, the
next CL is read, turn off OIP, turn off PURGE, and add back
into LRU. As shown at 1028, read search loop this CB to
WQ, if “4” finds MIP/RIP/OIP. As shown at line 4, search
HASH for matching Array ID and Array Offset, each CL
found turn on RIP. put on combo HDMA2h Page List; and
otherwise, write volume Index to Combo Page List.

May 11, 2017

(0079. As shown at 1030, turn off RIP: read combo Page
List, use skip mask. As shown at line 5A, each CL found
with HASHV on, turn of RIP. Each CL found with HASHV
off, turn off RIP. put on Deallocate Page List, as shown at
line 5B. As shown at 1032, destage, ignore DIP/MIP/OIP. As
shown at line 6, search HASH for a 256 KB range of Array
Offset, for each CL found turn on DIP, remove from LRU,
put on Page List. As shown at 1034, turn off DIP read page
list. As shown at line 7A, for each CL found with RIP off,
turn off DIP turn of HASHV, remove from HASH, put on
Deallocate Page List. As shown at line 7B, for each CL
found with RIP on, turn off DIP, turn off HASHV, remove
from HASH.
0080. As shown at 1036, undo destage. As shown at line
8, read page list, turn off DIP. turn off Purge Status, and add
back to LRU. As shown at 1038, Purge, ignore MIP or
Allocate=0 or 4:00 or if Purge Status=1. As shown at line
9A, for each CL found with OIP/DIP off, and HASHV on,
turn on Purge Status, turn on DIP, and remove from LRU,
put on Deallocate Page List. As shown at line 9B, for each
CL found with OIP/DIP on, or HASHV off, turn on Purge
Status.

I0081 Referring now to FIGS. 11A and 11B, there are
shown example cache line (CL) chains having same array
ID/LBA respectively generally designated by the reference
character 1100, 1120 included with the controller 102 for
implementing Storage adapter enhanced write cache man
agement in accordance with the preferred embodiment. In
FIG. 11A, example CL chains 1100 in Control Store (CS)
with same Array ID/LBA include IDLE 1102 including
Allocate=1, LOC=0/1, HASHV=1, (LRU=valid); RIP 1104
including Allocate=1, LOC=0/1, HASHV=1, (LRU=valid),
RIP=1; DIP 1106 including Allocate=1, LOC=0/1,
HASHV=1, DIP=1; RIP/DIP 1108 including Allocate=1,
LOC=0/1, HASHV=1, RIP=1, DIP=1: ALLOCATED 1110
including Allocate=1 and IDLE 1112 including Allocate=1,
LOC=0/1, HASHV=1, (LRU=valid); and MIP 1114 includ
ing Allocate=1, LOC=0/1, MIP-1, HASHV=1,
(LRU=valid), and OIP 1116 including Allocate=1, LOC=0/
1, HASHV=1, as shown.
I0082 In FIG. 11B, example CL chains 1100 in Data Store
(DS) with same Array ID/LBA include ALLOCATED 1122
including Allocate=1 and Op build i=N-X-Y: ALLO
CATED 1124 including Allocate=1 and Op build i=N-X;
and ALLOCATED 1126 including Allocate=1 and Op build
H=N.

I0083) Referring now to FIGS. 12A, 12B, 12C, and 12D
respectively illustrate example control block (CB) based
chain of operations in hardware engines for writes, non
optimized or provisional writes, reads and destage opera
tions included with the controller for implementing storage
adapter enhanced write cache management in accordance
with the preferred embodiment.
I0084. In FIG. 12A, the example write process generally
designated by the reference character 1200 includes an
allocate NV pages 1202 allocating an A Page list in Data
Store (DS); Host DMA to DS with Compression 1204 for
DMAing data from host into the A Page List; a Write Cache
(WC) Overlay Search and Install 1026 determining if exist
ing data in cache may have been overlaid while updating CL
states (turn on MIP and generate OIP list or B Page List,
determine if sector IO is needed); XOR Sector I/O Merge
1208 merging non-4K data at the beginning and end of the
write operation: SAS Mirror 1210 mirroring A page list new

US 2017/O 1321 SS A1

data to local NV DS and to remote NV DS: SAS Mirror
Delete 1212 mirror deleting B Page list; turn off MIP & OIP
1214 turning off MIP for A Page list and generating new list
of OIP or C Page List and turn off MIP & OIP Undo, for
example, if SAS Mirror or SAS Mirror Delete fails: NV
Deallocate 1216 deallocating overlaid pages or C Page List;
and SIS Send 1218 sending a response to the host.
0085. In FIG. 12A, the example non-optimized or pro
visional write process generally designated by the reference
character 1220 includes XOR Vol to NV copy without
compression 1222.
I0086. In FIG. 12C, the example read process generally
designated by the reference character 1224 includes Vol
Allocate 1126; WC Read Search 1228; SAS Read (or partial
read hit) 1230; HDMA from DS with decompression 1232;
Vol Deallocate 1234: Turn Off RIP 1236; NV Deallocate
1238, for example, for already destaged data; and SIS Send
1240.

0087. In FIG. 12D, the example destage process gener
ally designated by the reference character 1242 includes
Destage Search 1244: XOR Decompress 1246: Perform
Various assists involved with RAID Destage 1248, such as,
Vol Allocate/Deallocate, PSL Lock/Unlock, Set/Update/
Clear parity update footprint (PUFP), SAS ops; SAS Mirror
Delete 1250; Turn Off DIP 1252, and Turn Off DIP Undo, for
example, if Destage fails; and NV Deallocate 1254.
I0088 Referring now to FIG. 13, there is shown a flow
chart illustrating example operations generally designated
by the reference character 1300 of a write process included
with the controller 102 for implementing storage adapter
enhanced write cache management in accordance with the
preferred embodiment starting at a block 1302. Checking for
Volatile pages (X2) provided is performed as indicated at a
decision block 1304. When volatile pages are provided, then
bypass as indicated at a block 1306 and write via AMGR as
indicated at a block 1308. Otherwise when volatile pages are
not provided, then checking for possible data in cache is
performed as indicated at a decision block 1310. When
possible data in cache is identified, then checking for skip or
WC overlay exception is performed as indicated at a deci
sion block 1312. When skip or WC overlay exception is
identified, then volatile allocate (x2) or preallocated is
provided as indicated at a block 1316, host direct memory
access (HDMA) as indicated at a block 1318, write via
AMGR as indicated at a block 1320, and Vol Deallocate as
indicated at a block 1322. As indicated at a block 1323, then
SIS Send is provided sending a response to the host.
I0089. Otherwise when the skip or WC overlay exception
is not identified, then a write into write cache is performed
in accordance with the preferred embodiments by perform
ing HW chained steps of allocate NV pages 1324 allocating
an A Page list in Data Store (DS); Host DMA to DS with
Compression 1226 for DMAing data from host into the A
Page List; a Write Cache (WC) Overlay Search and Install
1328 determining if existing data in cache may have been
overlaid while updating CL states (turn on MIP and generate
OIP list or B Page List, determine if sector IO is needed):
XOR Sector I/O Merge 1330 merging non-4K data at the
beginning and end of the write operation: SAS Mirror 1332
mirroring A page list new data to local NV DS and/or to
remote NV DS: SAS Mirror Delete 1334 mirror deleting B
Page list; turn off MIP & OIP 1336 turning off MIP for A
Page list and generating new list of OIP or C Page List; NV

May 11, 2017

Deallocate 1338 deallocating overlaid pages or C Page List:
and SIS Send 1323 sending a response to the host.
0090 Referring now to FIG. 14 illustrates an example
XOR merge on fast write with overlay generally designated
by the reference character 1400 included with the controller
102 for implementing storage adapter enhanced write cache
management in accordance with the preferred embodiment.
XOR merge on fast write with overlay 1400 includes a
Buffer A including mirror in process (MIP) and new data
1402 and a Buffer B including overlay in process (OIP) and
old data 1404 that is merged into Buffer A including MIP and
merged data 1406.
(0091 Referring now to FIG. 15, there is shown a flow
chart illustrating example operations generally designated
by the reference character 1500 of a read process included
with the controller 102 for implementing storage adapter
enhanced write cache management in accordance with the
preferred embodiment starting at a block 1502. Checking for
Volatile pages (X2) provided is performed as indicated at a
decision block 1504. When volatile pages are provided, then
bypass as indicated at a block 1506 and read via AMGR as
indicated at a block 1508. Otherwise when volatile pages are
not provided, then checking for possible data in cache is
performed as indicated at a decision block 1510. When
possible data in cache is identified, then checking for skip or
read search exception is performed as indicated at a decision
block 1512. When skip or read search exception is identified,
then volatile allocate (x2) or preallocated is provided as
indicated at a block 1516, read AMGR as indicated at a
block 1518, host direct memory access (HDMA) as indi
cated at a block 1520, and Vol Deallocate as indicated at a
block 1522. As indicated at a block 1523, then SIS Send is
provided sending a response to the host.
0092. Otherwise when the skip or read search exception
is not identified, then a read from write cache is performed
in accordance with the preferred embodiments by perform
ing HW chained steps of: Vol Allocate 1524 providing
A-Vol; WC Read Search 1526 with B containing Vol indexes
from A and NV indexes for data in cache, skip bits also
generated; Read via AMGR (2 ops of cross 256 KB bound
ary) 1528: HDMA from DS with decompression 1530
receiving B-NVV; Vol Deallocate 1532 (or no op) receiving
A-Vol; Turn Off RIP 1534 receiving B-NVv and providing
C-CLr with RIP turned off for indexes that have skip bits set;
NV Deallocate 1536, providing C-CLr for example, for
already cleared by a destage so only need to deallocate the
NV indexes; and SIS Send 1523.
(0093. Referring now to FIG. 16, there is shown a flow
chart illustrating example operations generally designated
by the reference character 1600 of a destage build process
included with the controller 102 for implementing storage
adapter enhanced write cache management in accordance
with the preferred embodiment starting at a block 1602.
0094. In accordance with features of the invention, a
hardware engine assists in generating a destage operation
with options to start at either the LRU or a specified array
LBA, and to stop at either a max requested size/span or the
end of a 256K stripe boundary. As indicated at a block 1604,
a Destage Search is invoked with hardware assist which will
search the write cache, via the hash table and/or LRU queue,
in order to generate a destage (turn on DIP), with options to
start at either the LRU or a specified array LBA, or starting
at LRU (with gaps for HDD, without gaps for SSD) as
shown. Checking for full 256 K found and Full Stripe Write

US 2017/O 1321 SS A1

(FSW) allowed is performed as indicated at a decision block
1606. When full 256K found and FSWallowed is not found,
checking for Op cannot be done as single op to drive is
performed as indicated at a decision block 1608. When Op
cannot be done as single op to drive is found, the overlapped
or serialized destages are performed as indicated at a block
1610, for example because of gaps when drives do not
Support skip ops or CL contain sector I/O with possible gaps.
When Op cannot be done as single op to drive is not found,
then a single destage is performed as indicated at a block
1612.

0095. When full 256 K found and FSW allowed is
identified, then as indicated at a decision block 1614 check
ing beginning of major parity stripe is performed. When
beginning of major parity stripe is not found, then a single
destage is performed as indicated at a block 1616. When
beginning of major parity stripe is found, then destage
searches are invoked starting at array offsets as indicated at
a block 1618. Checking additional searches all full 256 or
none is performed as indicated at a decision block 1620. If
yes, then multiple destage is performed as indicated at a
block 1622. If not, then undo additional destages or queue
for later work as indicated at a block 1624. Then a single
destage is performed as indicated at a block 1626.
0096. Referring now to FIG. 17 is a flow chart illustrating
example operations generally designated by the reference
character 1700 of a single destage process included with the
controller 102 for implementing storage adapter enhanced
write cache management in accordance with the preferred
embodiment starting at a block 1702. Checking for RAID 5
or 6 is performed as indicated at a decision block 1704. If
RAID 5/6 is identified, then the following HW operations
steps in accordance with the preferred embodiment are
performed including: Vol Allocate (2x buffers) 1706, XOR
Decompress 1708, write via AMGR 1710, Vol Deallocate
1712, SAS MIRROR Delete (local and/or remote) 1714,
receiving B-DIP (Destage in process), Turn Off DIP 1716
receiving B-DIP, and providing C-CLr (Turn Off DIP Undo
for example, if Destage fails), NV Deallocate 1718 receiving
C-CLr, and operations done as indicated at block 1720.
0097. If RAID 5/6 is not identified, then the following
HW operations steps in accordance with the preferred
embodiment are performed including: Read No Dest (XOR
Decompress) 1722, write via AMGR 1724, and continue
with SAS MIRROR Delete (local and/or remote) 1714,
receiving B-DIP (Destage in process), Turn Off DIP 1716
receiving B-DIP, and providing C-CLr (Turn Off DIP Undo
for example, if Destage fails), NV Deallocate 1718 receiving
C-CLr, and operations done at block 1720.
0098 Referring now to FIG. 18, there is shown a flow
chart illustrating example operations generally designated
by the reference character 1800 of a multiple destage pro
cess included with the controller 102 for implementing
storage adapter enhanced write cache management in accor
dance with the preferred embodiment starting at a block
1802. The following HW operations steps in accordance
with the preferred embodiment are performed including: Vol
Allocate (2x buffers) 1804, Strip Write via AMGR1806, Vol
Deallocate 1808, SAS MIRROR Delete (local and/or
remote) 1810, receiving B-DIP Turn Off DIPN 1812
receiving B-DIP and providing C-CLr, NV DeallocateN
1814 receiving C-CLr, and operations done as indicated at
block 1816.

May 11, 2017

(0099 Referring now to FIG. 19, there is shown a flow
chart illustrating example operations generally designated
by the reference character 1900 of a bypass process included
with the controller 102 for implementing storage adapter
enhanced write cache management in accordance with the
preferred embodiment starting at a block 1902. A destage
search is invoked starting at array offset for size/span of op
as indicated at a block 1904. Checking for OR of state bits=0
AND it of indexes written 0 is performed as indicated at a
decision block 1906. If yes, then operations are done as
indicated at block 1908. Otherwise if not, then checking if
it of indexes written 0 is performed as indicated at a
decision block 1910. If the # of indexes written–0, then a
delay is provided as indicated at block 1912, and operations
return to block 1904 invoking a destage search and continue.
If the it of indexes written is not equal to 0, then checking
if op cannot be done as single op to drive is performed as
indicated at a block 1914, for example, because of gaps but
drives do not support skip ops or CL contains sector I/O with
possible gaps. If op cannot be done as single op to drive, then
overlapped or serialized destages are performed as indicated
at a block 1916. If op can be done as single op to drive, then
a single destage is performed as indicated at a 1918. Opera
tions return to block 1904 invoking a destage search and
continue.
0100 Referring now to FIG. 20 illustrates example reg
ister based purge hardware assist tool kit generally desig
nated by the reference character 2000 included with the
controller 102 for implementing storage adapter enhanced
write cache management in accordance with the preferred
embodiment. As indicated at a block 2002, WC Hardware
reads all the CLs, any that match this range will have the
following occur: If Allocate=1, PIP=0, MIP=0, and
HASHV=1 then turn on PIP and increment counter. If
incremented counter, DIP=0, and OIP=0 then turn on DIP,
remove from LRU, and put CL on the page table list. WC
Engine can process CB during this time, this function will
interleave with CB processing. FW loaded registers 2004
include:

Array ID(7:0) 2006
0101 Starting Array Offset (44:0), bits(2:0)=0 since must
be 4 KB aligned 2008
Ending Array Offset Size(44:0), bits(2:0)=0 since must be 4
KB multiple 2010
Page Table List pointer(31:0) 2012
Page Table Size(11:0), up to 4K-1 entries 2014
Page Table current Size(11:0) 2016
Current CL Index(24:0). 2018 (may be set to Zero at start,
held after a pause)

Max CL Index(24:0). 2020
0102) Active bit, Page Table Interrupt bit 2022; and
Current Purge counter(24:0). 2024, deallocate will decre
ment for any CL with PIP bit set.
(0103. CL 2026 includes PIP (Purge in Progress) bit 2028
(Increments Purge Pending Count when set, decrement
Purge Pending Count on deallocate). Event Q Entries 2030
include the above pauses when the Page Table list is full and
send a Purge Page List EventO entry 2032; when Purge
finishes a sweep and the Page Table list is not empty then
send a Purge Page List EventO entry 2034 (11:
10-type=11b), note: Must be restarted; and after both the

US 2017/O 1321 SS A1

Purge finishes and the counter is Zero then send a Purge
Done EventO entry 2036 (11:10–type=10b). It is noted that
FW uses a Destage Search in order to purge cache data for
a small range of LBAs. The Purge engine should be used for
larger ranges of LBAS.
0104 Referring now to FIGS. 21 and 22 are flow charts
illustrating example operations respectively generally des
ignated by the reference character 2100, 2200 of a purge
engine process included with the controller 102 for imple
menting storage adapter enhanced write cache management
in accordance with the preferred embodiment. In FIG. 21,
the purge engine process starting at block 2102, checking for
the WC engine being idle is performed as indicated at a
decision block 2104. When WC engine being idle is iden
tified, the checking for all CLS processed is performed as
indicated at a decision block 2106. If not, the CL is pro
cessed as indicated at a block 2108 and checking for a page
list full is performed as indicated at a decision block 2110.
If the page list is not full, the checking if at a 256K boundary
is performed as indicated at a decision block 2112. If so then
the operations return to checking at decision block 2104 for
the WC engine being idle and continue. Otherwise if the
page list is full, then a partial purge is indicated with # of
indexes valid is provided as indicated at a block 2114. When
all CLS are processed, then checking for an empty page list
is performed as indicated at a decision block 2116. If the
page list is not empty, then the partial purge is indicated with
it of indexes valid provided at block 2114. If the page list is
empty, then checking for a Zero purge counter is performed
as indicated at a decision block 2118. If yes, purge done is
indicated as indicated at a block 2120. Otherwise operations
are done as indicated at block 2122.

0105 Referring to FIG. 22, a purge request starts at block
2202 includes checking for a purge in process currently
being performed as indicated at a decision block 2204. If
yes, then the purge request is queued as indicated at a block
2205. Otherwise a purge engine routine is invoked for Array
ID and LBA range as indicated at a block 2206. Checking for
index(s) found, and purge engine paused is performed as
indicated at a decision block 2208. If yes, then SAS mirror
delete is performed (local and/or remote) as indicated at a
block 2210. DIP is turned off as indicated at a block 2212,
and NV deallocate is provided as indicated at a block 2214.
The purge engine is restarted (unpaused) as indicated at a
block 2216, and checking for index(s) found, and purge
engine paused returns to decision block 2208 and continues.
When index(s) found, and purge engine paused is not
identified, the purge is done as indicated at a block 2218.
Then checking if there is a queued purge request is per
formed as indicated at a decision block 2220. If yes, then
operations return to invoke the purge engine routine for
Array ID and LBA range at block 2206 and continue.
Otherwise operations are done as indicated at block 2222.
0106 Referring now to FIG. 23, there are shown example
hardware counters and statistics generally designated by the
reference character 2300 included with the controller 102 for
implementing Storage adapter enhanced write cache man
agement in accordance with the preferred embodiment. The
hardware counters and statistics 2300 are maintained by HW
on a per Array ID bases including:

May 11, 2017

Current Counter Value CL 2302

Current Counter Value Locality Bit 2304

HWM CL 2306

HWM Locality Bit 2308

LWM CL 2310

LWM Locality Bit 2312

01.07
2314

LRU DOWN, next location a new CL will be placed,
Zero=null 2316
Current Counter Value WC installs total 2318

Current Counter Value WC installs with overlay 2320
Current Counter Value WC reads total 2322; and
Current Counter Value WC reads with full cache read hits
2324.

0108. In accordance with features of the invention, with
much of the cache management under hardware control, it
would be difficult for firmware to help manage the per array
cache thresholds (i.e. desired level of data in cache per array)
and per array cache limits (i.e. maximum amount of data in
cache per array) without assistance from the hardware.
There are also overall (non-array) thresholds and limits to
manage. The hardware provides inputs (registers) from
firmware and outputs (registers and events) to firmware to
help manage cache thresholds and limits.
0109. In accordance with features of the invention, a new
trigger based method is provided to dynamically optimize
destage rate. The new trigger based method uses a set of
registers for cache pages high and low trigger and cache CLS
high and low trigger. Hardware maintains counters for each
of these counts and when the hardware counters cross any of
these high or low triggers, it generates an event for firmware
to process. As these trigger values are crossed, and these
events are processed, firmware then adjusts the destage
queue depth accordingly. If the cache pages or cache CLS
high water mark is crossed, the destage queue depth can be
increased. At the same time, the values of the registers for
the high and low cache pages and or cache CLS will be
increased to detect the next crossing. If the cache pages or
CLS low water mark is crossed, the destage rate may be
lowered along with the setting of the high and low water
marks. The destage rate will be determined by the higher of
the cache pages or cache CLS. To avoid excess events, when
either the cache pages or cache CLS crosses the high water
mark, the high water mark for both will be moved up.
However, it is only important to move the low water mark
of the highest utilized resource. Essentially, the resource
which is causing the higher destage rate is the only resource
for which the low water mark must be monitored to detect
when the destage rate can be lowered.
0110. In accordance with features of the invention, when
a cache pages or CLS low water mark is crossed, if it is the
lower resource, the destage rate will not be changed and only
the low water mark for that resource must be adjusted down.
If it is the higher resource, the lower used resource level
must be checked to determine if it has become the higher

LRUUP oldest CL entry on the LRU, Zero-null

US 2017/O 1321 SS A1

used resource. The destage rate will then be set based on the
higher resource. Also, both of the high water marks are set
based on the higher resource. Next, the low water mark for
the higher resource must be set at the trigger point for the
next lower destage rate. Finally, if the low water mark for the
lower resource is at a higher point than the new setting for
the higher resource, it must also be lowered.
0111. In accordance with features of the invention, a per
array trigger based method to dynamically adjust per
resource limits. This uses a set of registers for per resource
cache CLS high and low trigger, and per resource locality
count high and low trigger. Hardware maintains counters for
each of these counts and when the hardware counters cross
any of these high or low triggers, it generates an event for
firmware to process. Basically these triggers are used to
monitor the ratio of CLs to locality count and adjust the per
resource limit. If the CL count crosses the high water mark,
then the limit should be decreased. At the same time, the
high and low water mark for CLs should be increased. If the
locality count crosses the high water mark, then the limit
should be increased and the high and low water mark for the
locality count should be increased. If the CL count crosses
the low water mark, then the limit should be increased and
the CLS high and low water marks should be decreased. If
the locality count crosses the low water mark, then the limit
should be decreased and the locality count high and low
water marks should be decreased.
0112 Referring now to FIGS. 24 and 25 illustrate
example CL limits and thresholds respectively generally
designated by the reference character 2400, 2500 included
with the controller 102 for implementing storage adapter
enhanced write cache management in accordance with the
preferred embodiment.
0113. In FIG. 24, CL limits and thresholds 2400 Overall
Limit for NV 4K indexes (Size of cache directory) and
Overall Threshold for NV 4K indexes (nn % of the limit)
illustrated at 2402 and Overall Limit for NV 528 indexes
(Size of real cache memory) and Overall Threshold for NV
528 indexes (nn '% of the limit) illustrated at 2404 with
example High Water Mark (HWM) and Low Water Mark
(LWM). As shown at Array #1, 2406, Array #2, 2408, Array
#3, 2410, and Array #4, 2412, respective example Per Array
Limit is shown in dashed line and Per Array Threshold is
shown in dotted line relative to HWM and LWM.
0114. In FIG. 25, CL limits and thresholds 2500 include
inputs from HW 2502 from Registers 2504 including
CL count (per array ID)
CL locality count (per array ID),
NV 4K free indexes (via head/tail pointers), and
NV 528 free indexes (via head/tail pointers). Inputs from
HW 2502 from Events 2506 include:
NV 4K above HWM, NV 4K below LWM, NV 528 above
HWM
NV 528 below LWM
An array CL count above HWM
An array CL count below LWM
An array CL locality count above HWM
An array CL locality count below LWM
0115. A FW Limit and Threshold Calculations function
1508 receives the Inputs from HW 2502 and provides
Outputs to HW 2510 including update of CL limit (per array)
2512. This is done with an add or subtract using the FW
Array Wait Q Update Port. Outputs to HW 2510 include
Update of HWMs/LWMs for array based CL counts and CL

May 11, 2017

locality counts 2514. Note that the HWMs/LWMs for the
NV 4K and NV 528 free indexes are not routinely changed.
Other outputs 2516 include Destage rate 2518.
0116 Referring now to FIG. 26 there is shown a flow
chart illustrating example operations generally designated
by the reference character 2600 of global event processing
included with the controller 102 for implementing storage
adapter enhanced write cache management in accordance
with the preferred embodiment. As indicated at a decision
block 2602, the HWM or LWM is identified. For the HWM,
as indicated at a decision block 2604, a page or CL is
identified. As indicated at a block 2606 the page and CL
HWM are increased for the identified page. As indicated at
a block 2608 the page LWM is increased. As indicated at a
block 2610 the page and CL HWM are increased for the
identified CL. As indicated at a block 2612 the CL LWM is
increased. The destage rate is increased as indicated at a
block 2614. For the LWM, as indicated at a decision block
2615, a page or CL is identified. As indicated at a block
2616, checking if the pages are greater than CLS is per
formed for the identified page. When pages are greater than
CLs, the page and CL HWM are decreased as indicated at a
block 2620. When pages are not greater than CLs, the page
LWM is zeroed, and the CL LWM is set as indicated at a
block 2622. Checking is performed to identify a need to
lower the destage rate as indicated at a decision block 2624.
When need to lower the destage rate is not identified, then
the global event processing is done as indicated at a block
2626. A top resource LWM is decreased as indicated at a
block 2628. The destage rate is decreased as indicated at a
block 2630 and then the global event processing is done at
block 2626. As indicated at a decision block 2632, checking
if the pages are less than CLs is performed for the identified
CL. When pages are less than CLs, the page and CL HWM
are decreased at block 2620. When pages are not less than
CLs, the CL LWM is zeroed, and the page LWM is set as
indicated at a block 2634. Checking is performed to identify
a need to lower the destage rate as indicated at a decision
block 2636. When need to lower the destage rate is not
identified, then the global event processing is done at block
2626. Then the destage rate is decreased as indicated at
block 2630 and then the global event processing is done at
block 2626.

0117 Referring now to FIG. 27 is a flow chart illustrating
example steps generally designated by the reference char
acter 2700 of per array processing included with the con
troller 102 for implementing storage adapter enhanced write
cache management in accordance with the preferred
embodiment. As indicated at a decision block 2702, the
HWM or LWM is identified. For the HWM, as indicated at
a decision block 2704, a locality or CL is identified. As
indicated at a block 2706 the CL HWM and LWM are
increased for the identified CL. As indicated at a block 2708,
an Array CL Limit is decreased. As indicated at a block 2710
the Locality HWM and LWM are increased for the identified
Locality. As indicated at a block 2712, an Array CL Limit is
increased. Then as indicated at a decision block 2714,
checking is performed to determine if the CL Count needs
a higher Destage rate. If the CL Count needs a higher
Destage rate, the array Destage rate is increased as indicated
at a block 2716, and the per array processing ends as
indicated at a block 2718. For the LWM, as indicated at a
decision block 2720, a locality or CL is identified. As
indicated at a block 2722 the CL HWM and LWM are

US 2017/O 1321 SS A1

decreased for the identified CL. As indicated at a block 2724,
an Array CL Limit is increased. As indicated at a block 2726
the Locality HWM and LWM are decreased for the identi
fied Locality. As indicated at a block 2728, an Array CL
Limit is decreased. Then operation returns to decision block
2714, checking is performed to determine if the CL Count
needs a higher Destage rate, and continues.
0118 Referring now to FIGS. 28 and 29, there are shown
respective example global triggers generally designated by
the reference character 2800 and per array triggers generally
designated by the reference character 2900 included with the
controller 102 for implementing storage adapter enhanced
write cache management in accordance with the preferred
embodiment. In FIG. 28, global triggers 2800 include
destage rate and relative percent full shown relative to the
vertical axis, with time shown relative to the horizontal axis.
In FIG. 29, per array triggers 2900 include destage rate and
number of CLS/Locality/Limit shown relative to the vertical
axis, with time shown relative to the horizontal axis together
with regions for large/sequential Ops, and random Ops. In
FIG. 29, CL Count is illustrated with a solid line, Locality
Count is illustrated with a dotted line, and CL Limit is
illustrated with a dashed line, as shown.
0119 FIG. 30 shows a block diagram of an example
design flow 3000. Design flow 3000 may vary depending on
the type of IC being designed. For example, a design flow
3000 for building an application specific IC (ASIC) may
differ from a design flow 3000 for designing a standard
component. Design structure 3002 is preferably an input to
a design process 3004 and may come from an IP provider,
a core developer, or other design company or may be
generated by the operator of the design flow, or from other
sources. Design structure 3002 comprises IOA or controller
102 in the form of schematics or HDL, a hardware-descrip
tion language, for example, Verilog, VHDL, C, and the like.
Design structure 3002 may be contained on one or more
machine readable medium. For example, design structure
3002 may be a text file or a graphical representation of
controller 102 and performance state machine 200. Design
process 3004 preferably synthesizes, or translates, controller
102 into a netlist 3006, where netlist 3006 is, for example,
a list of wires, transistors, logic gates, control circuits, I/O.
models, etc. that describes the connections to other elements
and circuits in an integrated circuit design and recorded on
at least one of machine readable medium. This may be an
iterative process in which netlist 3006 is resynthesized one
or more times depending on design specifications and
parameters for the circuit.
0120 Design process 3004 may include using a variety of
inputs; for example, inputs from library elements 3008
which may house a set of commonly used elements, circuits,
and devices, including models, layouts, and symbolic rep
resentations, for a given manufacturing technology. Such as
different technology nodes, 32 nm, 45 nm, 90 nm, and the
like, design specifications 3010, characterization data 3012,
verification data 3.014, design rules 3016, and test data files
3018, which may include test patterns and other testing
information. Design process 3004 may further include, for
example, standard circuit design processes such as timing
analysis, Verification, design rule checking, place and route
operations, and the like. One of ordinary skill in the art of
integrated circuit design can appreciate the extent of pos
sible electronic design automation tools and applications
used in design process 504 without deviating from the scope

May 11, 2017

and spirit of the invention. The design structure of the
invention is not limited to any specific design flow.
I0121 Design process 3004 preferably translates an
embodiment of the invention as shown in FIGS. 1A, and 1B,
along with any additional integrated circuit design or data (if
applicable), into a second design structure 3020. Design
structure 3020 resides on a storage medium in a data format
used for the exchange of layout data of integrated circuits,
for example, information stored in a GDSII (GDS2), GL1,
OASIS, or any other suitable format for storing such design
structures. Design structure 3020 may comprise information
Such as, for example, test data files, design content files,
manufacturing data, layout parameters, wires, levels of
metal. Vias, shapes, data for routing through the manufac
turing line, and any other data required by a semiconductor
manufacturer to produce an embodiment of the invention as
shown in FIGS. 1A, and 1B. Design structure 3020 may then
proceed to a stage 3022 where, for example, design structure
3020 proceeds to tape-out, is released to manufacturing, is
released to a mask house, is sent to another design house, is
sent back to the customer, and the like.
I0122) While the present invention has been described
with reference to the details of the embodiments of the
invention shown in the drawing, these details are not
intended to limit the scope of the invention as claimed in the
appended claims.

1. A data storage system comprising:
a controller implementing storage adapter enhanced write

cache management for a storage write cache compris
ing
a hardware write cache engine implementing storage

adapter write cache hardware acceleration; and
said hardware write cache engine performing write opera

tions to the storage adapter write cache, and read
operations from the storage adapter write cache only
using said write cache hardware engine by chaining
together multiple hardware engines without using firm
ware, and said write cache hardware engine performing
destage operations from the storage adapter write
cache, and managing write cache data and metadata
Substantially without using firmware.

2. The data storage system as recited in claim 1 wherein
said hardware write cache engine managing write cache data
and metadata includes providing said storage adapter write
cache in a redundant array of independent drives (RAID)
stack where write caching is performed on an Array ID/Ar
ray LBA (Logical Block Address) basis.

3. The data storage system as recited in claim 2 wherein
said hardware write cache engine provides hardware
manipulation of CLS (Cache Lines).

4. The data storage system as recited in claim 2 wherein
said hardware write cache engine uses a CL (Cache Line)
definition for tracking CL States during a write operation, a
read operation, and a destage operation.

5. The data storage system as recited in claim 1 wherein
said hardware write cache engine performs a write into said
storage adapter write cache including said hardware write
cache engine mirroring from a write cache control store (CS)
to a write cache data store (DS).

6. The data storage system as recited in claim 5 wherein
said hardware write cache engine mirroring from a write
cache control store (CS) to a write cache data store (DS)
includes local mirroring in said controller and remote mir
roring to a dual controller.

US 2017/O 1321 SS A1

7. The data storage system as recited in claim 1 wherein
said hardware write cache engine performs a read from said
storage adapter write cache including a full or partial read hit
from said storage write cache.

8. The data storage system as recited in claim 6 wherein
said hardware write cache engine performs a destage from
said storage adapter write cache including said hardware
write cache engine generating a destage operation searching
from said storage write cache using one of a hash table and
a least recently used (LRU) queue.

9. A method for implementing storage adapter write cache
management in a data storage System comprising:

providing a controller comprising a hardware write cache
engine;

providing said hardware write cache engine for imple
menting storage adapter write cache hardware accel
eration; and

providing said hardware write cache engine for perform
ing write operations to the storage adapter write cache,
and read operations from the storage adapter write
cache only using said write cache hardware engine by
chaining together multiple hardware engines without
using firmware, and said write cache hardware engine
for performing destage operations from the storage
adapter write cache, and managing write cache data and
metadata Substantially without using firmware.

10. The method as recited in claim 9 includes providing
said storage adapter write cache in a redundant array of
independent drives (RAID) stack where write caching is
performed on an Array ID/Array LBA (Logical Block
Address) basis.

11. The method as recited in claim 9 includes said
hardware write cache engine providing hardware manipu
lation of CLS (Cache Lines).

12. The method as recited in claim 9 includes said
hardware write cache engine using a CL (Cache Line)
definition and tracking CL States during a write operation, a
read operation, and a destage operation.

13. The method as recited in claim 9 includes said
hardware write cache engine performing a write into said
storage write cache including said hardware write cache
engine mirroring from a write cache control store (CS) to a
write cache data store (DS) in said controller and remote
mirroring to a dual controller.

14. The method as recited in claim 9 includes said
hardware write cache engine performing a read from said

May 11, 2017

storage adapter write cache including a full or partial read hit
from said storage adapter write cache.

15. The method as recited in claim 9 includes said
hardware write cache engine performing a destage from said
storage adapter write cache including said hardware write
cache engine generating a destage operation searching from
said storage adapter write cache using one of a hash table
and a least recently used (LRU) queue.

16. A design structure embodied in a non-transitory
machine readable medium for designing, manufacturing,
and testing an integrated circuit in a computer system, the
design structure specifying a controller circuit tangibly
embodied in the non-transitory machine readable medium
used in the design process, said controller circuit for imple
menting storage adapter enhanced write cache management
in a data storage system, said design structure comprising:

a hardware write cache engine implementing storage
adapter write cache hardware acceleration; and

said hardware write cache engine performing write opera
tions to the storage adapter write cache, and read
operations from the storage adapter write cache only
using said write cache hardware engine by chaining
together multiple hardware engines without using firm
ware, and said write cache hardware engine performing
destage operations from the storage adapter write
cache, and managing write cache data and metadata
substantially without using firmware, wherein the
design structure, when read and used in manufacture of
a semiconductor chip produces a chip comprising said
controller circuit.

17. The design structure of claim 16, wherein the design
structure resides on storage medium as a data format used
for exchange of layout data of integrated circuits.

18. The design structure of claim 16, wherein the design
structure includes at least one of test data files, character
ization data, Verification data, or design specifications.

19. The design structure of claim 16, wherein the design
structure comprises a netlist, which describes said controller
circuit.

20. The design structure of claim 16, wherein said hard
ware cache engine managing write cache data and metadata
includes said hardware cache engine using a CL (Cache
Line) definition and tracking CL States during writing to
storage write cache and reading from said storage adapter
write cache.

