(19) 中华人民共和国国家知识产权局

(12) 发明专利申请

(10) 申请公布号 CN 104091887 A
(43) 申请公布日 2014.10.08

(21) 申请号 201410183020.7
(22) 申请日 2014.04.30

(71) 申请人 上海北京大学微电子研究所
地址 201203 上海市浦东新区盛夏路 608 号

(72) 发明人 刘力锋 王逸然 王国辉 贡献
刘晓彦 康晋锋

(74) 专利代理机构 北京路浩知识产权代理有限公司
代理人 李迪

(51) Int.Cl.
H01L 51/42 (2006.01)
H01L 51/44 (2006.01)
H01L 51/46 (2006.01)
H01L 51/48 (2006.01)

(54) 发明名称
基于全溶胶凝胶工艺的钙钛矿太阳能电池及其制备方法

(57) 摘要
本发明公开了一种基于全溶胶凝胶工艺的钙
钛矿太阳能电池及其制备方法，所述基于全溶胶凝胶工艺的钙钛矿太阳能电池从上到下依次为导电玻璃基片 (14)、金属氧化物层 (13)、钙钛矿膜层 (12)、空穴传输层 (11)、背电极接触层 (10)；所述导电玻璃基片 (14) 上有导电薄膜，所述背电极接触层 (10) 为氧化铟锡 ITO 层，替代了传统的 Au、Ag 等，同时使用 BaTiO3、ZnO、SnO2 等作为金属氧化物层，实现了制备过程使用溶胶凝胶工艺，降低制造成本的同时简化了制备过程，有利于大面积制造。
1. 一种基于全胶凝胶工吹的钙钛矿金太阳能电池，其特征在于，所述基于全胶凝胶工吹的钙钛矿金太阳能电池从上到下依次为导电玻璃基片（14）、金属氧化物层（13）、钙钛矿膜层（12）、空穴传输层（11）、背电极接触层（10）；所述导电玻璃基片（14）上有导电薄膜；所述背电极接触层（10）为氧化铟锡 ITO 层。

2. 根据权利要求1所述的基于全胶凝胶工吹的钙钛矿金太阳能电池，其特征在于，所述金属氧化物层（13）为 BaTiO₃ 层、ZnO 层或 SnO₂层。

3. 根据权利要求1所述的基于全胶凝胶工吹的钙钛矿金太阳能电池，其特征在于，所述钙钛矿膜层（12）为 CH₃NH₃PbI₃ 层、CH₃NH₃PbBr₃ 层或 CH₃NH₃PbCl₃ 层。

4. 根据权利要求1所述的基于全胶凝胶工吹的钙钛矿金太阳能电池，其特征在于，所述空气传输层（11）为 2,2',7,7'-四[N,N-二氨基]-9,9'-螺二芴层。

5. 一种基于全胶凝胶工吹的钙钛矿金太阳能电池的制备方法，其特征在于，包括以下步骤：
 S1. 清洗已好导电薄膜的导电玻璃基片（14）；
 S2. 采用溶胶凝胶工艺，制备金属氧化物层（13），并将其沉淀在所述导电玻璃基片（14）上；
 S3. 采用溶胶凝胶工艺，在所述金属氧化物层（13）上形成钙钛矿膜层（10）。
 S4. 采用溶胶凝胶工艺，旋转涂于氯苯中的 spiro-OMeTAD 溶液在所述钙钛矿膜层（12）上，制备空气传输层（11）；
 S5. 采用溶胶凝胶工艺，在所述空气传输层（11）上生成背电极接触层（10）。

6. 根据权利要求5所述的制备方法，其特征在于，所述步骤 S1 具体为：将已长好导电薄膜的导电玻璃基片（14）置于丙酮溶液中，水浴加热至 50℃，超声 5 分钟；再将所述导电玻璃基片（14）置于无水乙醇中，水浴加热至 50℃，超声 5 分钟。

7. 根据权利要求5所述的制备方法，其特征在于，所述步骤 S2 具体为：
 所述金属氧化物层（13）为 BaTiO₃ 层时，选取醋酸钡 Ba(CH₃COO)₂ 与钛酸正丁酯 Ti(OC₄H₉)₄ 作为前驱材料，冰醋酸 CH₃COOH 作为溶剂，乙酸丙酮 CH₃COCH₂COCl₂ 作为稳定剂；首先，将醋酸钡 Ba(CH₃COO)₂ 在常温下与冰醋酸 CH₃COOH 混合，并进行加热搅拌，待溶质完全溶解，作为样品 1，然后，将与所述醋酸钡同等摩尔比例的钛酸正丁酯 Ti(OC₄H₉)₄ 加入到乙酸丙酮 CH₃COCH₂COCl₂ 中，并持续加热搅拌，直至溶质完全溶解，作为样品 2；随后，在保持样品 2 高速搅拌的前提下，将样品 1 缓缓加入所述样品 2 中，并保持一定的速率持续搅拌，最终得到黄色透明溶液状的混合溶液；随后通过旋涂方式将所述混合溶液涂在所述导电玻璃基片（14）上形成 BaTiO₃薄膜；最后将得到的产品在 120℃的热板上烘烤 5 分钟，并进行退火工艺，所述 BaTiO₃薄膜厚度 300nm~400nm；通过调节冰醋酸的量，控制前驱材料的摩尔浓度均为 0.2mol/L；

所述金属氧化物层（13）为 ZnO 层时，选取醋酸锌 Zn(CH₃COO)₂⋅2H₂O 作为前驱材料，乙酰胺 C₃H₇NO 作为稳定剂，乙二醇甲醚 CH₂OCH₂CH₂OH 作为溶剂；首先将醋酸在常温下与乙二醇甲醚 CH₂OCH₂CH₂OH 混合，并进行搅拌，当溶质完全溶解后，加入乙醇胺作为稳定剂，持续搅拌，直至溶液完全澄清；所述前驱材料的摩尔浓度为 0.2mol/L；随后保持 1500rpm 转速，持续 30 秒，通过旋涂方式将所得的溶液涂在所述导电玻璃基片（14）上形成 ZnO薄膜；最后将得到的产品在 150℃的热板上烘烤 5 分钟，并进行退火工艺，所述 ZnO薄膜厚度为...
300nm-400nm；

所述金属氧化层 (13) 为 SnO₂ 层时：选取 5 水合氯化亚锡 SnCl₄·5H₂O 作为前驱材料，乙酰丙酮 C₅H₆O₂ 作为稳定剂，无水乙醇 CH₃CH₂OH 作为溶剂；首先将 5 水合氯化亚锡在常温下与无水乙醇混合，摩尔浓度为 0.1mol/L，并进行持续搅拌；当溶质完全溶解后，加入少量乙酰丙酮作为稳定剂，持续搅拌，直至溶剂完全澄清；随后保持 1500rpm 的转速，持续 35 秒，通过旋转方式将得到的溶液沉积在所述导电玻璃基片 (14) 上形成 SnO₂ 薄膜；最后将得到的产品在 200℃的热板上烘烤 5 分钟，并进行退火工艺；所述 SnO₂ 薄膜厚度为 300nm-400nm。

8. 根据权利要求 5 所述的制备方法，其特征在于，所述步骤 S3 具体为：

S31、将碘化铅 PbI₂ 粉末溶于 N,N- 二甲基甲酰胺并保持搅拌，所述碘化铅的摩尔浓度为 1mol/L，随后旋涂在所述金属氧化物层 (13) 上，旋涂速度保持在 6500rpm，旋涂时间为 90s；

S32、进行干燥处理；

S33、置于浓度为 0.05mol/L 的甲基溴化碘 CH₃I₃I 的醇溶液中，持续时间为 20s，并且利用同种醇溶液进行清洗、干燥处理，形成金属氧化物层 / 钙钛矿膜层产品，厚度为 200nm-300nm。

9. 根据权利要求 5 所述的制备方法，其特征在于，所述步骤 S4 中的 spiro-OMeTAD 溶液的摩尔浓度为 0.05mol/L；所述空穴传输层的厚度为 50nm-100nm。

10. 根据权利要求 5 所述的制备方法，其特征在于，所述步骤 S5 具体为：选取 4.5 水合硝酸铟 In(N₃)₃·4.5H₂O 和 5 水合氯化亚锡 SnCl₄·5H₂O 作为前驱材料，乙酰丙酮 (C₅H₆O₂) 作为稳定剂，无水乙醇作为溶剂；

S51、将 4.5 水合硝酸铟在 60℃下加入无水乙醇中，进行混合并搅拌，溶解后加入少量乙酰丙酮；

S52、将 5 水合氯化亚锡溶于无水乙醇中，在 60℃下搅拌两分钟，将两份溶液混合，再持续搅拌，5 分钟后关闭加热，溶液呈澄清，保持 3500rpm 的转速，持续 30 秒；所述 4.5 水合硝酸铟的摩尔浓度为 0.13mol/L，所述 5 水合氯化亚锡的摩尔浓度为 0.0135mol/L，所述乙酰丙酮的浓度为 0.39mol/L；

S53、通过旋涂方式将所述步骤 S52 的到的混合溶液沉积在所述空穴传输层 (11) 上，并进行退火工艺，完成背电极接触层的制作；所述背电极接触层的厚度为 50nm-100nm。
基于全溶胶凝胶工艺的钙钛矿太阳能电池及其制备方法

技术领域
【0001】本发明涉及太阳能光电利用技术领域，更具体地涉及一种基于全溶胶凝胶工艺的钙钛矿太阳能电池及其制备方法。

背景技术
【0002】光电转化现象最早由法国科学家贝克雷尔 Henri Becquerel 在 1839 年观察到。1954 年第一款可使用的硅基太阳能电池面世，它是一款具有 pn 结的太阳能电池。这种 pn 结太阳能电池利用太阳光产生工作电流，为外界提供电能。硅基太阳能电池由此逐步走入市场化，但它的工作范围来看，由于硅基电池制造成本较高，光伏电池的安装容量十分有限。除此之外，硅基太阳能电池不利于结合柔性材料制造，大面积生产业存在障碍。1991 年，瑞士科学家格兰泽尔 Grätzel 等第一次制造出了染料敏化纳米太阳能电池 (Dye Sensitized Solar Cells, DSSC)，由此关于 DSSC 的研究得到了蓬勃发展。DSSC 具备纳米薄膜材料、液态或者固态电解质以及多金属基材料构成，它涉及到的主要制备方法包括溶胶凝胶法、水热反应法以及溅射等方法，具有成本较低、性能良好、工艺简单的特点，能够应用于柔性大面积制造。

【0003】然而传统的太阳能电池也存在弱点，特别是填入块量子级后，由于这样的电池将涉及耐高温、低温等昂贵的金属材料，成本因此提高。2009 年首次提出的钙钛矿太阳能电池很好的解决了这个问题。在钙钛矿太阳能电池中，主要涉及到有机–无机钙钛矿结构，这种结构多形如 $A M_3$，其中 A 是 CH_3NH_3 或 HC(NH)_3^+，M 是 Sn 或 Pb。这种钙钛矿材料光电迁移率高，并且适用于低温工艺。目前的钙钛矿太阳能电池已经能达到 15.4% 的转换效率，但是大部分钙钛矿太阳能电池的背电极接触层材料采用 Au、Ag，这样就造成成本高的问题，且目前的钙钛矿太阳能电池还存在制备过程复杂的问题。

发明内容
【0004】（一）要解决的技术问题
【0005】本发明要解决的技术问题是降低钙钛矿太阳能电池的制作成本以及简化制备过程。

【0006】（二）技术方案
【0007】为了解决上述技术问题，本发明提供了一种基于全溶胶凝胶工艺的钙钛矿太阳能电池，所述基于全溶胶凝胶工艺的钙钛矿太阳能电池从上到下依次为导电玻璃基片 14、金属氧化物层 13、钙钛矿层 12、空穴传输层 11、背电极接触层 10；所述导电玻璃基片 14 上有导电薄膜；所述背电极接触层 10 为二氧化钌 TiO₂ 层。

【0008】优选地，所述金属氧化物层 13 为 BaTiO₃ 层、ZnO 层或 SnO₂ 层。

【0009】优选地，所述钙钛矿层 12 为 $\text{CH}_3\text{NH}_3\text{PbI}_3$ 层、$\text{CH}_3\text{NH}_3\text{PbBr}_3$ 层或 $\text{CH}_3\text{NH}_3\text{PbCl}_3$ 层。

【0010】优选地，所述空穴传输层 11 中 2，2’，7，7’-四 [N, N-二氨基]-9，9’-螺二芴层。

【0011】优选地，所述钙钛矿太阳能电池的制备方法，包括以下步骤：
S1. 洗净已长好导电薄膜的导电玻璃基片 14；
S2. 采用溶胶凝胶工艺，制备金属氧化物层 13，并将其淀积在所述导电玻璃基片 14 上；
S3. 采用溶胶凝胶工艺，在所述金属氧化物层 13 上生成钙钛矿膜层 10；
S4. 采用溶胶凝胶工艺，旋涂溶于氟苯中的 spiro-0MeTAD 溶液在所述钙钛矿膜层 12 上，制备空穴传输层 11；
S5. 采用溶胶凝胶工艺，在所述空穴传输层 11 生成背电极接触层 10。
优选地，所述步骤 S1 具体为：将已长好导电薄膜的导电玻璃基片 14 置于丙酮溶液中，水浴加热至 50℃，超声 5 分钟，再将所述导电玻璃基片 14 置于无水乙醇中，水浴加热至 50℃，超声 5 分钟。
优选地，所述步骤 S2 具体为：
所述金属氧化物层 13 为 BaTiO₃ 层时，选取醋酸钡 Ba(CH₃COO)₂ 与钛酸正丁酯 Ti(OC₄H₉)₄ 作为前驱材料，冰醋酸 CH₃COOH 作为溶剂，乙酸丙酯 CH₃COCH₂COCH₃ 作为稳定剂；首先，将醋酸钡 Ba(CH₃COO)₂ 在常温下与冰醋酸 CH₃COOH 混合，并进行加热搅拌，待溶液完全溶解，作为样品 1；随后，将与所述醋酸钡同等摩尔比例的钛酸正丁酯 Ti(OC₄H₉)₄ 加入到乙酸丙酯 CH₃COCH₂COCH₃ 中，并持续加热搅拌，直至溶液完全溶解，作为样品 2；随后，在保持样品 2 高速搅拌的条件下，将样品 1 缓缓加入所述样品 2 中，并保持一定的速率持续搅拌，最终得到黄色透明澄清状的混合溶液；随后通过旋涂方式将会得到所述混合溶液在所述导电玻璃基片 14 上形成 BaTiO₃ 薄膜；最后将得到的产品在 120℃的热板上烘烤 5 分钟，并进行退火工艺；所述 BaTiO₃ 薄膜厚度 300nm-400nm，通过调节冰醋酸的量，控制前驱材料的摩尔浓度均为 0.2mol/L；
所述金属氧化层 13 为 ZnO 层时，选取醋酸锌 Zn(CH₃COO)₂·2H₂O 作为前驱材料，乙醇胺 C₂H₇NO 作为稳定剂，乙二醇甲醚 CH₃OCH₂CH₃OH 作为溶剂；首先将醋酸在常温下与乙二醇甲醚 CH₃OCH₂CH₃OH 混合，并进行搅拌，当溶液完全溶解后，加入乙醇胺作为稳定剂，持续搅拌，直至溶液完全澄清，所述前驱材料的摩尔浓度为 0.2mol/L；随后保持 1500rpm 的转速，持续 30 秒，通过旋涂方式将会得到的溶液在所述导电玻璃基片 14 上形成 ZnO 薄膜；最后将得到的产品在 150℃的热板上烘烤 5 分钟，并进行退火工艺；所述 ZnO 薄膜厚度为 300nm-400nm；
所述金属氧化层 13 为 SnO₂ 层时，选取 5 水合氯化亚锡 SnCl₄·5H₂O 作为前驱材料，乙酸丙酮 CH₃COCH₂CH₃OH 作为稳定剂，无水乙醇 CH₃CH₂OH 作为溶剂；首先将 5 水合氯化亚锡在常温下与无水乙醇混合，摩尔浓度保持在 0.1mol/L，并进行持续搅拌；当溶液完全溶解后，加入少量乙酸丙酮作为稳定剂，持续搅拌，直至溶液完全澄清；随后保持 1500rpm 的转速，持续 35 秒，通过旋涂方式将会得到的溶液在所述导电玻璃基片 14 上形成 SnO₂ 薄膜；最后将得到的产品在 200℃的热板上烘烤 5 分钟，并进行退火工艺；所述 SnO₂ 薄膜厚度为 300nm-400nm。
优选地，所述步骤 S3 具体为：
S31. 将硫化铅 Pb₃S 粉末溶于 N,N-二甲基甲酰胺中并保持搅拌，所述硫化铅的摩尔浓度为 1mol/L，随后旋涂在所述金属氧化物层 13 上，旋涂速度保持在 6500rpm, 旋涂时间为 90s；
S32. 进行干燥处理；
[0025] S33，置于浓度为 0.05mol/L 的甲基溴化碘 CH₃NH₃I 的醇溶液中，持续时间为 20s，并且利用同种醇溶液进行清洗、干燥处理，形成金属氧化物层 / 钙钛矿薄膜层产品，厚度为 200nm-300nm。

[0026] 优选地，所述步骤 S4 中的 spiro-OMeTAD 溶液的摩尔浓度为 0.05mol/L；所述空穴传输层的厚度为 50nm-100nm。

[0027] 优选地，所述步骤 S5 具体为：选取 4.5 水合硝酸铟 In(NO₃)₃·4.5H₂O 和 5 水合氯化亚锡 SnCl₂·5H₂O 作为前驱材料，乙酰丙酮 (C₆H₄O₆) 作为稳定剂，无水乙醇作为溶剂；

[0028] S51，将 4.5 水合硝酸铟在 60℃下加入无水乙醇中，进行混合并搅拌，溶解后加入少量乙酰丙酮；

[0029] S52，将 5 水合氯化亚锡溶于无水乙醇中，在 60℃下搅拌两分钟，将两份溶液混合，在持续搅拌，5 分钟后关闭加热，溶液呈澄清，保持 350rpm 的转速，持续 30 秒；所述 4.5 水合硝酸铟的摩尔浓度为 0.13mol/L，所述 5 水合氯化亚锡的摩尔浓度为 0.0135mol/L，所述乙酰丙酮的浓度为 0.39mol/L；

[0030] S53，通过旋涂方法将所述步骤 S52 的到的混合溶液旋涂在所述空穴传输层 11 上，并进行退火工艺，完成背电极接触层的制作；所述背电极接触层的厚度为 50nm-100nm。

[0031] （三）有益效果

[0032] 本发明提供了一种基于全溶胶凝胶工艺的钙钛矿太阳能电池及其制备方法，本发明的太阳能电池使用 ITO 作为钙钛矿太阳能电池中的背电极接触层材料，替代了传统的 Au、Ag 等，同时使用 BaTiO₃、ZnO、SnO₂ 等作为金属氧化物层，实现了制备过程的使用溶胶凝胶工艺，降低制造成本的同时简化了制备过程，有利于大面积制造。

附图说明

[0033] 为了更清楚地说明本发明实施例或现有技术中的技术方案，下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍，显而易见地，下面描述中的附图仅仅是本发明的一些实施例，对于本领域普通技术人员来讲，在不付出创造性劳动的前提下，还可以根据这些附图获得其他的附图。

[0034] 图 1 为本发明的一种基于全溶胶凝胶工艺的钙钛矿太阳能电池的结构示意图。

[0035] 图例说明：

[0036] 10、背电极接触层；11、空穴传输层；12 钙钛矿膜层；13 金属氧化物层；14 导电玻璃基片。

具体实施方式

[0037] 下面结合附图和实施例对本发明作进一步详细描述。以下实施例用于说明本发明，但不能用来限制本发明的范围。

[0038] 图 1 为本发明的一种基于全溶胶凝胶工艺的钙钛矿太阳能电池的结构示意图；本发明的基于全溶胶凝胶工艺的钙钛矿太阳能电池从上到下依次为采用日本 Nippon Sheet Glass 公司的 FTO（掺氧的氧化锡）导电玻璃基片 14、金属氧化物层 13、钙钛矿膜层 12、空穴传输层 11、背电极接触层 10；所述背电极接触层 10 为氧化铟锡 ITO 层；所述金属氧化物层 13 为 BaTiO₃ 层、ZnO 层或 SnO₂ 层；所述钙钛矿膜层 12 为 CH₃NH₃PbI₃ 层、CH₃NH₃PbBr₃ 层或
CH₃NH₂PbCl₃层；所述空穴传输层11为2, 2’, 7, 7’-四[N,N-二氨基]-9, 9’-螺二芴层。
[0039] 具体制备方法如下；
[0040] S1. 清洗导电玻璃基片14：使用超声清洗机清洗已长好FTO的电玻璃基片，将电玻璃基片置于丙酮溶液中，水浴加热至50°C，超声5分钟；再将导电玻璃基片置于无水乙醇中，水浴加热至50°C，超声5分钟；
[0041] S2. 制备金属氧化物层13；采用溶胶凝胶技术，选取醋酸钡（Ba(CH₃COO)₂）与钛酸正丁酯（Ti(OCH₂)₄）作为前驱材料，冰醋酸（CH₃COOH）作为溶剂，乙烯丙酮（CH₃COCH₂CH₂OH）作为稳定剂；首先将0.002mol醋酸钡（Ba(CH₃COO)₂）在常温下与5ml冰醋酸（CH₃COOH）混合，并进行加热搅拌，待溶液完全溶解，作为样品1；随后，0.002mol钛酸正丁酯（Ti(OCH₂)₄）加入到5ml乙烯丙酮（CH₃COCH₂CH₂OH），并持续加热搅拌，直至溶液完全溶解，作为样品2；随后，将样品1在保持样品2高速搅拌的前提下缓缓加入混合，并保持一定的速率持续搅拌，最终溶液呈现黄色透明澄清状；随后通过旋涂方式将得到的混合溶液沉积在导电玻璃基片上形成BaTiO₃薄膜。BaTiO₃薄膜制作完毕后在120°C的热板上烘烤5分钟，除去有机成分，并进行退火工艺，完成金属氧化物层薄膜的制作，BaTiO₃薄膜厚度300nm-400nm。此外，可通过调节冰醋酸的量，控制前驱材料的摩尔分数均在0.2mol/L左右；
[0042] S3. 制备钙钛矿膜层12；采用溶胶凝胶技术，将0.01mol碘化铅（PbI₂）粉末溶于N,N-二甲基甲酰胺中并保持搅拌，摩尔浓度保持在1mol/L左右，随后旋涂在所述金属氧化物层之上形成钙钛矿膜层，旋涂速度保持在6500rpm，旋涂时间为90s；随后进行干燥处理；随后将得到的产品置于摩尔浓度为0.05mol/L左右的甲基溴化碘（CH₃NHⅢ）的乙醇溶液中，持续时间为20s左右，并利用同种醇溶液进行清洗、干燥处理，形成金属氧化物层/钙钛矿膜层，厚度为200nm-300nm；
[0043] S4. 制备空穴传输层11；采用溶胶凝胶技术，在所述钙钛矿膜层12上旋涂溶于氯苯中的spiro-MeTAD的溶液，摩尔浓度为0.05mol/L左右，制备空穴传输层；所述空穴传输层的厚度为50nm-100nm；
[0044] S5. 制备背电极接触层；采用溶胶凝胶技术，选取4.5水合硝酸铟（In(NO₃)₃·4.5H₂O）与5水合氯化亚锡（SnCl₄·5H₂O）作为前驱材料，乙酰丙酮（C₆H₅CO）作为稳定剂，无水乙醇作为溶剂；其中各物质的物质的量的比为In:Sn₃:In:Sn为1:3，In:Sn为10:1；首先将0.001mol14.5水合硝酸铟在60°C下加入5ml无水乙醇中，进行混合并搅拌，溶解后加入少量乙酰丙酮；随后将0.0001mol15水合氯化亚锡溶于2.5ml无水乙醇中，在60°C下搅拌两分钟后将两份溶液混合，再持续搅拌5分钟，随后关闭加热，溶液呈澄清；保持3500rpm的转速，持续30秒，然后通过旋涂方式将薄膜沉积在所述空穴传输层上，并进行退火工艺，完成背电极接触层的制作。所述背电极接触层厚度为50nm-100nm。
[0045] 上述制备方法制备的钙钛矿太阳能电池的金属氧化层13为BaTiO₃层，所述金属氧化层13还可以是ZnO层或SnO₂层，此时钙钛矿太阳能电池除金属氧化层外的其余结构的制备方法与上述制备方法相同。
[0046] 当金属氧化层13为ZnO时，金属氧化层的制备方法为：采用溶胶凝胶技术，选取醋酸锌（Zn(CH₃COO)₂·2H₂O）作为前驱材料，乙醇胺（C₆H₅NO）作为稳定剂；乙二醇甲醚（CH₃OCH₂CH₂OH）作为溶剂。首先将0.002mol醋酸锌；在常温下与10ml乙二醇甲醚
(CH₃OCH₂CH₂OH) 混合，并进行搅拌，当溶质完全溶解后，加入乙醇胺作为稳定剂，持续搅拌，直至溶液完全澄清；溶液摩尔浓度保持在 0.2mol/L 左右；随后保持 1500rpm 的转速，持续 30秒，通过旋涂方式将薄膜沉积在所述导电玻璃基片 14 上形成 ZnO 薄膜。ZnO 薄膜制作完毕后在 150℃的热板上烘烤 5 分钟，除去有机成分，并进行退火工艺，完成金属氧化层薄膜的制作，ZnO 薄膜厚度 300nm-400nm。

[0047] 当金属氧化层 13 为 SnO 时，金属氧化层的制备方法为：采用溶胶凝胶技术，选取 5 水合氯化亚锡 (SnCl₂·5H₂O) 作为前驱材料，乙酰丙酮 (C₅H₇O₄) 作为稳定剂，无水乙醇 (CH₃CH₂OH) 作为溶剂；首先将 0.002mol/5 水合氯化亚锡在常温下与 20ml 无水乙醇混合，并进行持续搅拌；当溶质完全溶解后，加入乙酰丙酮作为稳定剂，持续搅拌，直至溶液完全澄清；摩尔浓度保持在 0.1mol/L 左右；随后保持 1500rpm 的转速，持续 35 秒，通过旋涂方式将薄膜沉积在所述导电玻璃基片 14 上形成 SnO 薄膜。SnO 薄膜制作完毕后在 200℃的热板上烘烤 5 分钟，除去有机成分，并进行退火工艺，完成金属氧化物薄膜的制作，SnO 薄膜厚度 300nm-400nm。

[0048] 本发明的太阳能电池使用 ITO 作为钙钛矿太阳能电池中的背电极接触层材料，替代了传统的 Au、Ag 等，同时使用 BaTiO₃、ZnO、SnO₂ 等作为金属氧化物层，实现了制备过程的使用溶胶凝胶工艺，降低制造成本的同时简化了制备过程，有利于大面积制造。

[0049] 以上实施方式仅用于说明本发明，而非对本发明的限制。尽管参照实施例对本发明进行了详细说明，本领域的普通技术人员应当理解，对本发明的技术方案进行各种组合、修改或者等同替换，都不脱离本发明技术方案的精神和范围，均应涵盖在本发明的权利要求范围当中。
图 1