(19)中华人民共和国国家知识产权局

(12)发明专利

审查员 张梅

(10)授权公告号 CN 108051902 B (45)授权公告日 2020.06.16

(21)申请号 201711151245.4

(22)申请日 2017.11.18

(65)同一申请的已公布的文献号 申请公布号 CN 108051902 A

(43)申请公布日 2018.05.18

(73)专利权人 瑞声光学解决方案私人有限公司 地址 新加坡卡文迪什科技园大道85号2楼8 号

(72)发明人 王建明 张磊 王燕妹 崔元善

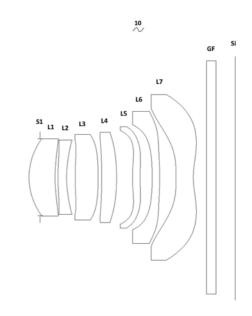
(74)专利代理机构 深圳紫辰知识产权代理有限 公司 44602

代理人 万鹏

(51) Int.CI.

GO2B 13/18(2006.01)

GO2B 13/06(2006.01)


权利要求书2页 说明书12页 附图6页

(54)发明名称

摄像光学镜头

(57)摘要

本发明涉及光学镜头领域,公开了一种摄像光学镜头,该摄像光学镜头自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,以及第七透镜;且满足下列关系式: $1 \le f1/f \le 1.5,1.7 \le n4 \le 2.2,-2 \le f3/f4 \le 2;0.5 \le (R13+R14)/(R13-R14) \le 10;1.7 \le n6 \le 2.2$ 。该摄像光学镜头能获得高成像性能的同时,获得低TTL。

1.一种摄像光学镜头,其特征在于,所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,以及第七透镜;

所述第一透镜具有正屈折力,所述第二透镜具有负屈折力,所述第三透镜具有正屈折力,所述第四透镜具有正屈折力,所述第五透镜具有正屈折力,所述第六透镜具有正屈折力,所述第七透镜具有负屈折力;

所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第三透镜的焦距为f3, 所述第四透镜的焦距为f4,所述第四透镜的折射率为n4,所述第六透镜的折射率为n6,所述 第七透镜物侧面的曲率半径为R13,所述第七透镜像侧面的曲率半径为R14,满足下列关系 式:

 $1 \le f1/f \le 1.5$,

 $1.8 \le n4 \le 2.1624$

 $0 \le f3/f4 \le 1$:

- $0.5 \le (R13+R14) / (R13-R14) \le 5$;
- 1.8≤n6≤1.9809。
- 2.根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜物侧面于近轴为凸面,其像侧面于近轴为凹面:

所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,以及所述第一透镜的轴上厚度为d1,且满足下列关系式:

- $-5.48 \le (R1+R2) / (R1-R2) \le -1.45$;
- $0.31 \text{mm} \le d1 \le 0.94 \text{mm}$.
- 3.根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜物侧面于近轴为凸面,其像侧面于近轴为凹面:

所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,且满足下列关系式:

- $-7.65 \le f2/f \le -2.21$;
- $2.46 \le (R3+R4) / (R3-R4) \le 8.4$:
- 0.1mm≤d3≤0.29mm。
- 4.根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜物侧面于近轴为凸面,其像侧面于近轴为凸面:

所述摄像光学镜头的焦距为f,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,且满足下列关系式:

- $0.92 \le f3/f \le 3.32$;
- $-0.47 \le (R5+R6) / (R5-R6) \le -0.07$:
- $0.12 \text{mm} \le d5 \le 0.78 \text{mm}$.
- 5.根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜物侧面于近轴为凹面,其像侧面于近轴为凸面:

所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率

半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,且满足下列关系式:

- $1.21 \le f4/f \le 81.15$;
- $1.3 \le (R7+R8) / (R7-R8) \le 121.79$;
- $0.17 \text{mm} \leq d7 \leq 0.84 \text{mm}$.
- 6.根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜物侧面于近轴为凸面,其像侧面于近轴为凹面;

所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,且满足下列关系式:

- $2.83 \le f5/f \le 29.37$:
- $-70.14 \le (R9+R10) / (R9-R10) \le -5.08$;
- $0.09 \text{mm} \le d9 \le 0.43 \text{mm}$.
- 7.根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜物侧面于近轴为凹面,其像侧面于近轴为凸面;

所述摄像光学镜头的焦距为f,所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,且满足下列关系式:

- $0.81 \le f6/f \le 28.84$;
- $1.03 \le (R11+R12) / (R11-R12) \le 38.31$;
- $0.09 \text{mm} \leq d11 \leq 0.26 \text{mm}$.
- 8.根据权利要求1所述的摄像光学镜头,其特征在于,所述第七透镜物侧面于近轴为凹面,其像侧面于近轴为凹面;

所述摄像光学镜头的焦距为f,所述第七透镜的焦距为f7,所述第七透镜的轴上厚度为d13,且满足下列关系式:

- $-1.55 \le f7/f \le -0.45$;
- $0.15 \text{mm} \leq d13 \leq 0.58 \text{mm}$.
- 9.根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长 TTL小于或等于5.12毫米。
- 10.根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈F数小于或等于2.06。

摄像光学镜头

技术领域

[0001] 本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。

背景技术

[0002] 近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-OxideSemicondctor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式或四片式透镜结构。并且,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,五片式、六片式、七片式透镜结构逐渐出现在镜头设计当中。迫切需求具有优秀的光学特征、超薄且色像差充分补正的广角摄像镜头。

发明内容

[0003] 针对上述问题,本发明的目的在于提供一种摄像光学镜头,能在获得高成像性能的同时,满足超薄化和广角化的要求。

[0004] 为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,以及第七透镜;

[0005] 所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第三透镜的焦距为f3,所述第四透镜的焦距为f4,所述第四透镜的折射率为n4,所述第六透镜的折射率为n6,所述第七透镜物侧面的曲率半径为R13,所述第七透镜像侧面的曲率半径为R14,满足下列关系式:

[0006] $1 \le f1/f \le 1.5$,

[0007] $1.7 \le n4 \le 2.2$,

[0008] $-2 \le f3/f4 \le 2$;

[0009] $0.5 \le (R13+R14) / (R13-R14) \le 10$;

[0010] $1.7 \le n6 \le 2.2$.

[0011] 本发明实施方式相对于现有技术而言,通过上述透镜的配置方式,利用在焦距、折射率、摄像光学镜头的光学总长、轴上厚度和曲率半径的数据上有特定关系的透镜的共同配合,使摄像光学镜头能在获得高成像性能的同时,满足超薄化和广角化的要求。

[0012] 优选的,所述第一透镜具有正屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凹面;所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,以及所

述第一透镜的轴上厚度为d1,且满足下列关系式:-5.48 \leq (R1+R2) / (R1-R2) \leq -1.45;0.31 \leq d1 \leq 0.94。

[0013] 优选的,所述第二透镜具有负屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凹面;所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,且满足下列关系式: $-7.65 \le f2/f \le -2.21$;2.46 $\le (R3+R4)/(R3-R4) \le 8.4$;0.1 $\le d3 \le 0.29$ 。

[0014] 优选的,所述第三透镜具有正屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凸面;所述摄像光学镜头的焦距为f,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,且满足下列关系式: $0.92 \le f3/f \le 3.32$; $-0.47 \le (R5+R6)/(R5-R6) \le -0.07$; $0.12 \le d5 \le 0.78$ 。

[0015] 优选的,所述第四透镜具有正屈折力,其物侧面于近轴为凹面,其像侧面于近轴为凸面;所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,且满足下列关系式: $1.21 \le f4/f \le 81.15$; $1.3 \le (R7+R8)/(R7-R8) \le 121.79$; $0.17 \le d7 \le 0.84$ 。

[0016] 优选的,所述第五透镜具有正屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凹面;所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,且满足下列关系式:2.83 < f5/f < 29.37; -70.14 < (R9+R10)/(R9-R10) < -5.08;0.09 < d9 < 0.43。

[0017] 优选的,所述第六透镜具有正屈折力,其物侧面于近轴为凹面,其像侧面于近轴为凸面;所述摄像光学镜头的焦距为f,所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,且满足下列关系式: $0.81 \le f6/f \le 28.84$; $1.03 \le (R11+R12)/(R11-R12) \le 38.31$; $0.09 \le d11 \le 0.26$ 。

[0018] 优选的,所述第七透镜具有负屈折力,其物侧面于近轴为凹面,其像侧面于近轴为凹面;所述摄像光学镜头的焦距为f,所述第七透镜的焦距为f7,所述第七透镜的轴上厚度为d13,且满足下列关系式: $-1.55 \le f7/f \le -0.45$: $0.15 \le d13 \le 0.58$ 。

[0019] 优选的,所述摄像光学镜头的光学总长TTL小于或等于5.12毫米。

[0020] 优选的,所述摄像光学镜头的光圈F数小于或等于2.06。

[0021] 本发明的有益效果在于:根据本发明的摄像光学镜头具有优秀的光学特性,超薄,广角且色像差充分补正,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。

附图说明

[0022] 图1是本发明第一实施方式的摄像光学镜头的结构示意图;

[0023] 图2是图1所示摄像光学镜头的轴向像差示意图;

[0024] 图3是图1所示摄像光学镜头的倍率色差示意图;

[0025] 图4是图1所示摄像光学镜头的场曲及畸变示意图;

[0026] 图5是本发明第二实施方式的摄像光学镜头的结构示意图;

[0027] 图6是图5所示摄像光学镜头的轴向像差示意图;

[0028] 图7是图5所示摄像光学镜头的倍率色差示意图:

[0029] 图8是图5所示摄像光学镜头的场曲及畸变示意图;

具体实施方式

[0030] 为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。

[0031] (第一实施方式)

[0032] 参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括七个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7。第七透镜L7和像面Si之间可设置有光学过滤片(filter)GF等光学元件。

[0033] 第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质,第四透镜L4为玻璃材质,第五透镜L5为塑料材质,第六透镜L6为玻璃材质,第七透镜L7为塑料材质。

[0034] 定义整体摄像光学镜头10的焦距为f,所述第一透镜L1的焦距为f1,1 \leq f1/f \leq 1.5,规定了第一透镜L1的正屈折力。超过下限规定值时,虽然有利于镜头向超薄化发展,但是第一透镜L1的正屈折力会过强,难以补正像差等问题,同时不利于镜头向广角化发展。相反,超过上限规定值时,第一透镜的正屈折力会变过弱,镜头难以向超薄化发展。优选的,满足1.05 \leq f1/f \leq 1.5。

[0035] 定义所述第四透镜L4的折射率为n4,1.7 $\leq n4\leq 2.2$,规定了第四透镜L4的折射率,在此范围内更有利于向超薄化发展,同时利于修正像差。优选的,满足1.8 $\leq n4\leq 2.1$ 。

[0036] 定义所述第三透镜L3的焦距为f3,所述第四透镜L4的焦距为f4,-2 \leq f3/f4 \leq 2,规定了第三透镜L3的焦距f3与第四透镜L4的焦距f4的比值,可有效降低摄像用光学透镜组的敏感度,进一步提升成像质量。优选的,满足0 \leq f3/f4 \leq 1。

[0037] 定义所述第七透镜L7物侧面的曲率半径为R13,所述第七透镜L7像侧面的曲率半径为R14,0.5 \leq (R13+R14) / (R13-R14) \leq 10,规定了第七透镜L7的形状,在范围外时,随着向超薄广角化发展,很难补正轴外画角的像差等问题。优选的,满足0.6 \leq (R13+R14) / (R13-R14) \leq 5。

[0038] 所述第六透镜L6的折射率为 $n6,1.7 \le n6 \le 2.2$,规定了第六透镜L6的折射率,有利于实现超薄化。优选的,满足 $1.8 \le n6 \le 2.1$ 。

[0039] 当本发明所述摄像光学镜头10的焦距、各透镜的焦距、相关透镜的折射率、摄像光学镜头的光学总长、轴上厚度和曲率半径满足上述关系式时,可以使摄像光学镜头10具有高性能,且满足低TTL的设计需求。

[0040] 本实施方式中,第一透镜L1的物侧面于近轴处为凸面,像侧面于近轴处为凹面,具有正屈折力。

[0041] 第一透镜L1物侧面的曲率半径R1,第一透镜L1像侧面的曲率半径R2,满足下列关系式: $-5.48 \le (R1+R2)/(R1-R2) \le -1.45$,合理控制第一透镜的形状,使得第一透镜能够有效地校正系统球差;优选的, $-3.61 \le (R1+R2)/(R1-R2) \le -1.81$ 。

[0042] 第一透镜L1的轴上厚度为d1,满足下列关系式: $0.31 \le d1 \le 0.94$,有利于实现超薄化。优选的, $0.47 \le d1 \le 0.76$ 。

[0043] 本实施方式中,第二透镜L2的物侧面于近轴处为凸面,像侧面于近轴处为凹面,具有负屈折力。

[0044] 整体摄像光学镜头10的焦距为f,第二透镜L2焦距f2,满足下列关系式: $-7.65 \le f2/f \le -2.21$,通过将第二透镜L2的负光焦度控制在合理范围,以合理而有效地平衡由具有正光焦度的第一透镜L1产生的负球差以及系统的场曲量。优选的, $-4.78 \le f2/f \le -2.77$ 。

[0045] 第二透镜L2物侧面的曲率半径R3,第二透镜L2像侧面的曲率半径R4,满足下列关系式: $2.46 \le (R3+R4)/(R3-R4) \le 8.4$,规定了第二透镜L2的形状,在范围外时,随着镜头向超薄广角化发展,难以补正轴上色像差问题。优选的, $3.93 \le (R3+R4)/(R3-R4) \le 6.72$ 。

[0046] 第二透镜L2的轴上厚度为d3,满足下列关系式: $0.1 \le d3 \le 0.29$,有利于实现超薄化。优选的, $0.16 \le d3 \le 0.24$ 。

[0047] 本实施方式中,第三透镜L3的物侧面于近轴处为凸面,像侧面于近轴处为凸面,具有正屈折力。

[0048] 整体摄像光学镜头10的焦距为f,第三透镜L3焦距f3,以及满足下列关系式:0.92 $\leq f$ 3/ $f \leq 3$.32,有利于系统获得良好的平衡场曲的能力,以有效地提升像质。优选的,1.47 $\leq f$ 3/ $f \leq 2$.65。

[0049] 第三透镜L3物侧面的曲率半径R5,第三透镜L3像侧面的曲率半径R6,满足下列关系式: $-0.47 \le (R5+R6)/(R5-R6) \le -0.07$,可有效控制第三透镜L3的形状,有利于第三透镜L3成型,并避免因第三透镜L3的表面曲率过大而导致成型不良与应力产生。优选的, $-0.29 \le (R5+R6)/(R5-R6) \le -0.09$ 。

[0050] 第三透镜L3的轴上厚度为d5,满足下列关系式: $0.12 \le d5 \le 0.78$,有利于实现超薄化。优选的, $0.19 \le d5 \le 0.62$ 。

[0051] 本实施方式中,第四透镜L4的物侧面于近轴为凹面,像侧面于近轴处为凸面,具有正屈折力。

[0052] 整体摄像光学镜头10的焦距为f,第四透镜L4焦距f4,满足下列关系式: $1.21 \le f4/f \le 81.15$,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选的, $1.94 \le f4/f \le 64.92$ 。

[0053] 第四透镜L4物侧面的曲率半径R7,第四透镜L4像侧面的曲率半径R8,满足下列关系式: $1.3 \le (R7+R8)/(R7-R8) \le 121.79$,规定的是第四透镜L4的形状,在范围外时,随着超薄广角化的发展,很难补正轴外画角的像差等问题。优选的, $2.07 \le (R7+R8)/(R7-R8) \le 97.44$ 。

[0054] 第四透镜L4的轴上厚度为d7,满足下列关系式: $0.17 \le d7 \le 0.84$,有利于实现超薄化。优选的, $0.27 \le d7 \le 0.67$ 。

[0055] 本实施方式中,第五透镜L5的物侧面于近轴处为凸面,像侧面于近轴处为凹面,具有正屈折力。

[0056] 整体摄像光学镜头10的焦距为f,第五透镜L5焦距f5,满足下列关系式: $2.83 \le f5/f \le 29.37$,对第五透镜L5的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度。优选的, $4.52 \le f5/f \le 23.5$ 。

[0057] 第五透镜L5物侧面的曲率半径R9,第五透镜L5像侧面的曲率半径R10,满足下列关系式: $-70.14 \le (R9+R10)/(R9-R10) \le -5.08$,规定的是第五透镜L5的形状,在条件范围外时,随着超薄广角化发展,很难补正轴外画角的像差等问题。优选的, $-43.84 \le (R9+R10)/(R9-R10) \le -6.36$ 。

[0058] 第五透镜L5的轴上厚度为d9,满足下列关系式: $0.09 \le d9 \le 0.43$,有利于实现超薄化。优选的, $0.14 \le d9 \le 0.34$ 。

[0059] 本实施方式中,第六透镜L6的物侧面于近轴处为凹面,像侧面于近轴处为凸面,具有正屈折力。

[0060] 整体摄像光学镜头10的焦距为f,第六透镜L6焦距f6,满足下列关系式: $0.81 \le f6/f \le 28.84$,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选的, $1.29 \le f6/f \le 23.07$ 。

[0061] 第六透镜L6物侧面的曲率半径R11,第六透镜L6像侧面的曲率半径R12,满足下列关系式: $1.03 \le (R11+R12)/(R11-R12) \le 38.31$,规定的是第六透镜L6的形状,在条件范围外时,随着超薄广角化发展,很难补正轴外画角的像差等问题。优选的, $1.65 \le (R11+R12)/(R11-R12) \le 30.65$ 。

[0062] 第六透镜L6的轴上厚度为d11,满足下列关系式: $0.09 \le d11 \le 0.26$,有利于实现超薄化。优选的, $0.14 \le d11 \le 0.2$ 。

[0063] 本实施方式中,第七透镜L7的物侧面于近轴处为凹面,像侧面于近轴处为凹面,具有负屈折力。

[0064] 整体摄像光学镜头10的焦距为f,第七透镜L7焦距f7,满足下列关系式: $-1.55 \le f7/f \le -0.45$,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选的, $-0.97 \le f7/f \le -0.56$ 。

[0065] 第七透镜L7的轴上厚度为d13,满足下列关系式: $0.15 \le d13 \le 0.58$,有利于实现超薄化。优选的, $0.24 \le d13 \le 0.47$ 。

[0066] 本实施方式中,摄像光学镜头10的光学总长TTL小于或等于5.12毫米,有利于实现超薄化。优选的,摄像光学镜头10的光学总长TTL小于或等于4.88。

[0067] 本实施方式中,摄像光学镜头10的光圈F数小于或等于2.06。大光圈,成像性能好。优选的,摄像光学镜头10的光圈F数小于或等于2.02。

[0068] 如此设计,能够使得整体摄像光学镜头10的光学总长TTL尽量变短,维持小型化的特性。

[0069] 下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。距离、半径与中心厚度的单位为mm。

[0070] TTL:光学长度(第1透镜L1的物侧面到成像面的轴上距离);

[0071] 优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。

[0072] 以下示出了依据本发明第一实施方式的摄像光学镜头10的设计数据,焦距、距离、

半径与中心厚度的单位为mm。

[0073] 表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。

[0074] 【表1】

	R		d		nd		v d	
S1	∞	d0=	-0.302					
R1	1. 616	d1=	0.636	nd1	1. 5435	v 1	56. 09	
R2	4. 383	d2=	0.085	nai	1. 5455	V 1	56. 09	
R3	4. 219	d3=	0. 196	nd2	1.6614	v 2	20. 41	
R4	2. 793	d4=	0. 212	Huz	1.0014	V Z	20. 41	
R5	7. 664	d5=	0. 243	nd3	1. 5435	v 3	56. 09	
R6	-12. 326	d6=	0.079	nuə	1. 5455	V 3	56. 09	
R7	-9. 288	d7=	0. 557	nd4	1. 8236	v 4	56. 09	
R8	-9.062	d8=	0.300	Hu4	1.0230	V 1	50.09	
R9	4. 035	d9=	0. 286	nd5	1. 6355	v 5	23. 97	
R10	4. 272	d10=	0.216	nuə				
R11	-10. 250	d11=	0.170	nd6	1.8470	v 6	56. 09	
R12	-3. 562	d12=	0.496	nuo	1.0470	V 0	30.09	
R13	-7. 178071571	d13=	0. 295	nd7	1. 5348	v 7	55. 72	
R14	1. 803667597	d14=	0.300	nai	1. 5540		55.12	
R15	∞	d15=	0. 210	ndg	1. 5168	V G	64. 17	
R16	∞	d16=	0.360	nug	1.0100	v g	01.11	

[0076]

[0075]

其中,各符号的含义如下。

[0077]

S1:光圈;

[0078]

R: 光学面的曲率半径、透镜时为中心曲率半径;

[0079]

R1:第一透镜L1的物侧面的曲率半径;

[0800]

R2:第一透镜L1的像侧面的曲率半径;

[0081]

R3: 第二透镜L2的物侧面的曲率半径;

[0082]

R4: 第二透镜L2的像侧面的曲率半径;

[0083]

R5:第三透镜L3的物侧面的曲率半径;

[0084]

R6: 第三透镜L3的像侧面的曲率半径;

[0085]

R7: 第四透镜L4的物侧面的曲率半径;

[0086]

R8: 第四透镜L4的像侧面的曲率半径;

[0087]

R9:第五透镜L5的物侧面的曲率半径;

[8800]

R10:第五透镜L5的像侧面的曲率半径;

[0089]

R11: 第六透镜L6的物侧面的曲率半径;

[0090]

R12:第六透镜L6的像侧面的曲率半径;

[0091]

R13: 第七透镜L7的物侧面的曲率半径;

[0092]

R14: 第七透镜L7的像侧面的曲率半径;

[0093]

R15: 光学过滤片GF的物侧面的曲率半径;

[0094]

R16: 光学过滤片GF的像侧面的曲率半径;

[0095]

d:透镜的轴上厚度与透镜之间的轴上距离;

[0096]

d0:光圈S1到第一透镜L1的物侧面的轴上距离;

[0097]

d1:第一透镜L1的轴上厚度;

9

- [0098] d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
- [0099] d3:第二透镜L2的轴上厚度:
- [0100] d4: 第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
- [0101] d5:第三透镜L3的轴上厚度;
- [0102] d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
- [0103] d7:第四透镜L4的轴上厚度;
- [0104] d8: 第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
- [0105] d9:第五透镜L5的轴上厚度;
- [0106] d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
- [0107] d11:第六透镜L6的轴上厚度;
- [0108] d12:第六透镜L6的像侧面到第七透镜L7的物侧面的轴上距离;
- [0109] d13:第七透镜L7的轴上厚度;
- [0110] d14:第七透镜L7的像侧面到光学过滤片GF的物侧面的轴上距离;
- [0111] d15:光学过滤片GF的轴上厚度;
- [0112] d16:光学过滤片GF的像侧面到像面的轴上距离;
- [0113] nd:d线的折射率;
- [0114] nd1:第一透镜L1的d线的折射率;
- [0115] nd2:第二透镜L2的d线的折射率;
- [0116] nd3:第三透镜L3的d线的折射率;
- [0117] nd4: 第四透镜L4的d线的折射率;
- [0118] nd5:第五透镜L5的d线的折射率;
- [0119] nd6:第六透镜L6的d线的折射率;
- [0120] nd7:第七透镜L7的d线的折射率;
- [0121] ndg:光学过滤片GF的d线的折射率;
- [0122] vd:阿贝数;
- [0123] v1:第一透镜L1的阿贝数:
- [0124] v2:第二透镜L2的阿贝数;
- [0125] v3:第三透镜L3的阿贝数;
- [0126] v4: 第四透镜L4的阿贝数;
- [0127] v5:第五透镜L5的阿贝数;
- [0128] v6:第六透镜L6的阿贝数;
- [0129] v7:第七透镜L7的阿贝数;
- [0130] vg:光学过滤片GF的阿贝数。
- [0131] 表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
- [0132] 【表2】

	圆锥系数				非球面系数			
	k	A4	A6	A8	A10	A12	A14	A16
R1	-3. 2793E-01	-1.8805E-03	3.8838E-02	-9. 5230E-02	1.7241E-01	-1.7630E-01	9. 6983E-02	-2. 2008E-0
R2	1. 2495E+01	-1.4775E-01	1. 3133E-01	-1.0951E-02	-1.8641E-01	2. 2530E-01	-1.1599E-01	2. 0105E-0
R3	1. 3924E+01	-2.5384E-01	2. 4581E-01	-3.3413E-02	-2.9937E-01	3. 0946E-01	-1.0419E-01	-2. 2360E-0
R4	6. 8725E+00	-1.6186E-01	1. 4051E-01	-3.3050E-02	-5.4738E-02	-3.5763E-01	6. 4996E-01	-3. 2521E-0
R5	5. 2241E+01	-6.6213E-02	-2.4761E-02	3. 1087E-01	-1.3870E+00	2. 5138E+00	-2. 2095E+00	7. 7982E-0
R6	0.0000E+00	-3.2121E-02	-2.8589E-02	-7.7874E-05	3. 3469E-03	-1.5210E-03	1. 5894E-03	2. 8286E-0
R7	0.0000E+00	-1.6325E-02	-1.9405E-03	-9.7308E-04	7. 1781E-04	-1.1756E-03	-4.3459E-04	1. 2917E-0
R8	-6. 3078E+01	-9.6519E-02	1. 2003E-01	-1.5050E-01	7. 1522E-03	1. 6552E-01	-1. 6045E-01	4. 9070E-0
R9	9. 8582E+00	-3.0738E-01	2. 9396E-01	-3.7219E-01	3. 1579E-01	-2.5702E-01	1. 4631E-01	-4. 0260E-0
R10	-1.0315E+02	-2.3959E-01	2. 0022E-02	2. 0164E-01	-3.3316E-01	2. 6571E-01	-1. 0274E-01	1. 4871E-0
R11	4. 6457E+01	-1.0356E-02	-1.1430E-01	1. 4057E-01	-1.2334E-01	6. 4124E-02	-1.7233E-02	1.8000E-0
	i			1		1		ı
R12	-4, 4066E+01	6. 0279E-02	-5, 4110E-03	-4, 7382E-02	2. 9633E-02	-8, 0035E-03	1.0675E-03	-5, 4546E-0

[0133]

[0134] R13 2. 1428E+00 -2.4131E-01 1.9573E-01 -8.9281E-02 2.5468E-02 -4.3217E-03 3.9603E-04 -1.5024E-05 -1.3404E+01 -1.4995E-01 9.7836E-02 -4.6100E-02 -2.1029E-03 R14 1. 2949E-02 1.8207E-04 -6. 4116E-06

[0135] 其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16是非球面系数。

[0136] IH:像高

 $y = (x^2/R) / [1 + (1 - (k+1) (x^2/R^2))]^{1/2} + A4x^4 + A6x^6 + A8x^8 + A10x^{10} + A12x^{12} + A14x^{14} + A1$ [0137] $A16x^{16}$ (1)

[0138] 为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发 明不限于该公式(1)表示的非球面多项式形式。

表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点 [0139] 设计数据。其中,R1、R2分别代表第一透镜L1的物侧面和像侧面,R3、R4分别代表第二透镜L2 的物侧面和像侧面,R5、R6分别代表第三透镜L3的物侧面和像侧面,R7、R8分别代表第四透 镜L4的物侧面和像侧面,R9、R10分别代表第五透镜L5的物侧面和像侧面,R11、R12分别代表 第六透镜L6的物侧面和像侧面,R13、R14分别代表第七透镜L7的物侧面和像侧面。"反曲点 位置"栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。"驻 点位置"栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。

[0140] 【表3】

反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3 R1 0 R21 0.835R31 0.365 [0141] 0 R4 2 0.4650.895 R50 R6 **R7** 0 R8 1 1.105

[0142]

R9	1	0. 305		
R10	1	0. 245		
R11	0			
R12	3	0. 465	0.805	1.615
R13	1	1. 345		
R14	2	0. 435	2. 225	

[0143] 【表4】

[0144]

	1	1	1
	驻点个数	驻点位置1	驻点位置2
R1	0		
R2	0		
R3	0		
R4	0		
R5	2	0.725	0.945
R6	0		
R7	0		
R8	0		
R9	1	0.555	
R10	1	0.425	
R11	0		
R12	0		
R13	0		
R14	1	0.955	

[0145] 图2、图3分别示出了波长为486nm、588nm和656nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了,波长为588nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。

[0146] 后出现的表9示出各实例1、2中各种数值与条件式中已规定的参数所对应的值。

[0147] 如表9所示,第一实施方式满足各条件式。

[0148] 在本实施方式中,所述摄像光学镜头的入瞳直径为1.967mm,全视场像高为3.261mm,对角线方向的视场角为78.61°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。

[0149] (第二实施方式)

[0150] 第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。

[0151] 表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。

[0152] 【表5】

	R		d	nd		v d	
S1	∞	d0=	-0. 252				
R1	1.758	d1=	0. 586	nd1	1. 5435	v 1	56. 09
R2	3. 619	d2=	0.065	nai	1. 5455	V 1	56. 09
R3	4. 026	d3=	0. 196	nd2	1.6614	v 2	20. 41
R4	2. 806	d4=	0. 193	1102	1.0014	V Z	20. 41
R5	6. 915	d5=	0.519	nd3	1 5425	v 3	56.00
R6	-8. 606	d6=	0.081	nas	1. 5435	V 3	56. 09
R7	-14. 058	d7=	0.334	nd4	nd4 2. 1624	v 4	56. 09
R8	-6. 231	d8=	0.359	Hu4			50.05
R9	3. 457	d9=	0. 171	nd5	nd5 1.6355	v 5	23. 97
R10	4. 500	d10=	0. 274	naə			
R11	-6. 928	d11=	0. 170	nd6	1. 9809	v 6	56. 09
R12	-6. 406	d12=	0.369	nuo	1. 9009	V 6	56. 09
R13	-8. 107176836	d13=	0.388	nd7	1. 5348	v 7	55. 72
R14	2. 037370028	d14=	0.300	nu i	1. 5546	V 1	55.72
R15	∞	d15=	0.210	ndg	1. 5168	17	64. 17
R16	∞	d16=	0. 435	nug	1. 5100	v g	04.17

[0153]

[0154] 表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。

[0155] 【表6】

[0156]

	圆锥系数				非球面系数			
	k	A4	A6	A8	A10	A12	A14	A16
R1	-3.9988E-01	-2. 0565E-03	2. 6418E-02	-8. 7014E-02	1. 7214E-01	-1.8140E-01	9. 5837E-02	-1.9267E-02
R2	9. 4692E+00	-1.6004E-01	1. 2335E-01	-2.0074E-02	-1.6418E-01	1. 9841E-01	-1.1344E-01	2. 5645E-02
R3	1. 2582E+01	-2. 6738E-01	2. 4396E-01	-2. 7045E-02	-3. 2363E-01	3. 3299E-01	-1.1092E-01	-1.6743E-03
R4	6. 7839E+00	-1.7690E-01	1. 3716E-01	-1.9475E-02	-5. 7138E-02	-3.6375E-01	6. 3060E-01	-3.0455E-01
R5	4. 5471E+01	-8. 7804E-02	-1.3428E-02	3. 2059E-01	-1.4180E+00	2. 4807E+00	-2.1398E+00	7. 2685E-01

[0157]

R6	0.0000E+00	-4. 7928E-02	-2.8224E-02	-1.0559E-03	-3.0062E-03	-3. 4008E-03	8. 9042E-05	4. 4660E-03
R7	0.0000E+00	-3.6835E-03	-4.9460E-03	6. 5434E-04	1. 4014E-03	-4.6108E-04	3. 9930E-03	1. 5009E-04
R8	-7.8872E+01	-9. 2122E-02	1. 1684E-01	-1.4155E-01	7. 7765E-03	1. 6025E-01	-1. 5037E-01	4. 5140E-02
R9	7. 1191E+00	-3.0678E-01	2. 4496E-01	-3.4384E-01	3. 1828E-01	-2.8474E-01	1. 6868E-01	-4. 7983E-02
R10	-8. 6961E+01	-2. 1312E-01	3. 1290E-02	1.8925E-01	-3. 2682E-01	2. 5562E-01	-1.0061E-01	1. 4738E-02
R11	2. 4556E+01	-9.0040E-03	-9.6059E-02	1. 4641E-01	-1.4380E-01	7. 1047E-02	-1.7786E-02	1. 5891E-03
R12	-9. 7274E+01	4. 4015E-02	-4.3823E-03	-4.6309E-02	2. 9871E-02	-8. 0173E-03	1. 0374E-03	-5.3308E-05
R13	5. 6558E+00	-2. 5423E-01	1.8901E-01	-8. 2801E-02	2. 4135E-02	-4. 2524E-03	3. 9330E-04	-1.3975E-05
R14	-1.5074E+01	-1.5715E-01	9. 7324E-02	-4.5903E-02	1. 2887E-02	-2.1025E-03	1.8216E-04	-6. 5012E-06

[0158] 表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。

[0159] 【表7】

[0160]

	反曲点个数	反曲点位置1	反曲点位置2	反曲点位置3
R1	0			
R2	1	0.785		
R3	1	0.355		
R4	0			
R5	2	0.445	0.935	

R6	0			
R7	1	0.875		
R8	1	1.035		
R9	1	0.325		
R10	1	0.255		
R11	0			
R12	3	0.465	0.705	1.605
R13	1	1.295		
R14	1	0.415		

[0161] 【表8】

[0162]

	驻点个数	驻点位置1
R1	0	
R2	0	
R3	1	0.805
R4	0	
R5	1	0. 695
R6	0	
R7	1	1.045
R8	0	
R9	1	0. 585
R10	1	0. 455

[0163]

RII	0	
R12	0	
R13	0	
R14	1	0.865

[0164] 图6、图7分别示出了波长为486nm、588nm和656nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为588nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。

[0165] 如表9所示,第二实施方式满足各条件式。

[0166] 在本实施方式中,所述摄像光学镜头的入瞳直径为1.932mm,全视场像高为3.261mm,对角线方向的视场角为80.33°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。

[0167] 【表9】

[0168]

参数及条件式	实施例1	实施例 2
f	3. 934	3. 864
f1	4. 336	5. 636
f2	-13.066	-14. 788
f3	8. 696	7. 109
f4	212. 831	9. 371
f5	77. 043	21. 834
f6	6. 343	74. 287
f7	-2. 653	-2. 992
f3/f4	0.041	0. 759
(R1+R2)/(R1-R2)	-2. 168	-2.889
(R3+R4)/(R3-R4)	4. 916	5. 599
(R5+R6) / (R5-R6)	-0. 233	-0. 109
(R7+R8) / (R7-R8)	81. 196	2. 592
(R9+R10) / (R9-R10)	-35. 069	-7. 627
(R11+R12)/(R11-R12)	2. 065	25. 539
(R13+R14) / (R13-R14)	0. 598	0. 598
f1/f	1.102	1. 459
f2/f	-3. 321	-3. 827
f3/f	2. 210	1.840
f4/f	54. 097	2. 425
f5/f	19. 583	5. 651
f6/f	1.612	19. 227
f7/f	-0. 674	-0. 774
d1	0. 636	0. 586
d3	0. 196	0. 196
d5	0. 243	0. 519
d7	0. 557	0. 334
d9	0. 286	0. 171
d11	0.170	0. 170
d13	0. 295	0. 388
Fno	2. 000	2.000
TTL	4. 641	4. 650
d5/TTL	0.052	0. 112
n1	1. 5435	1. 5435
n2	1. 6614	1.6614
n3	1. 5435	1. 5435
n4	1.8236	2. 1624
n5	1. 6355	1.6355
n6	1.8470	1.9809
n7	1. 5348	1. 5348

[0169]

[0170] 本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

10 ~

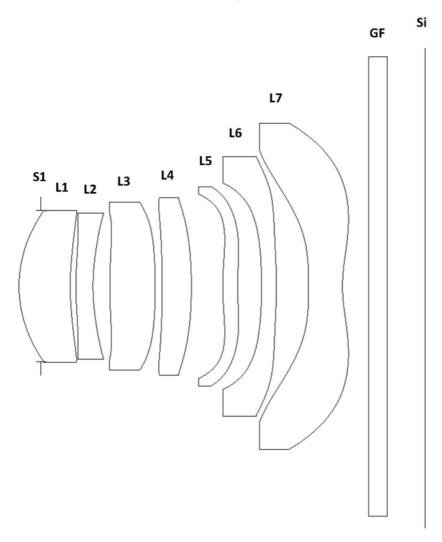


图1

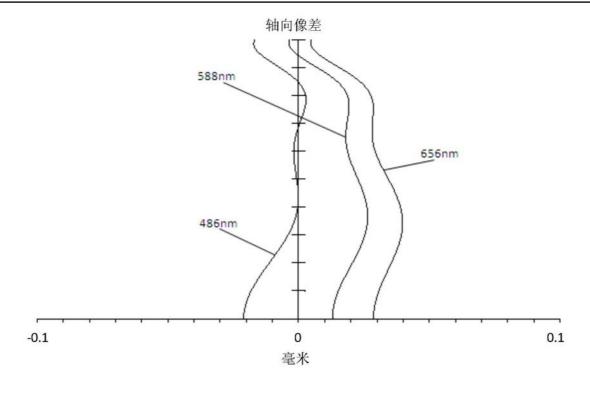


图2

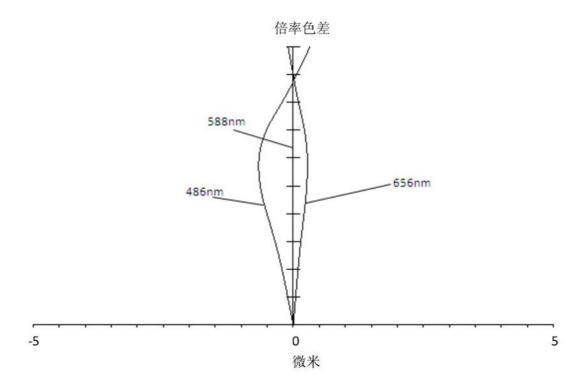
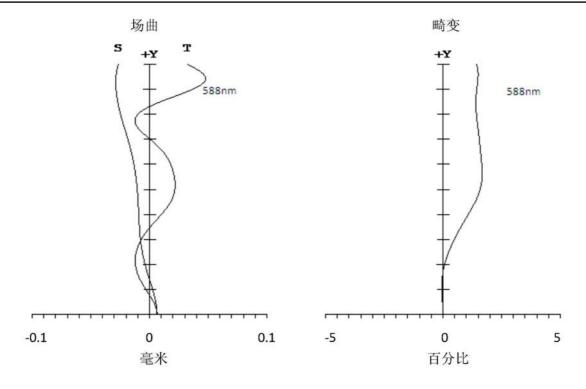



图3

附

冬

图4

20

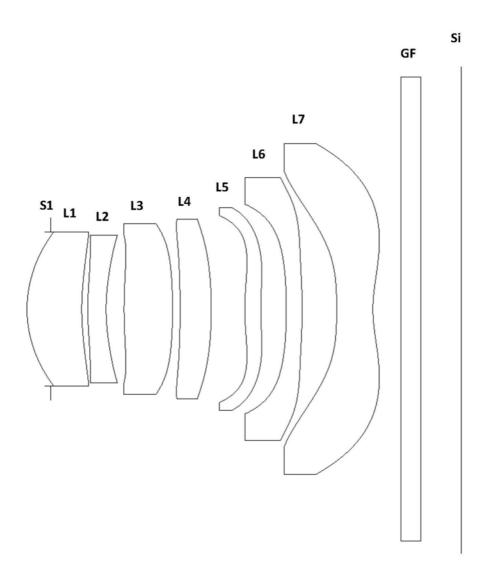


图5

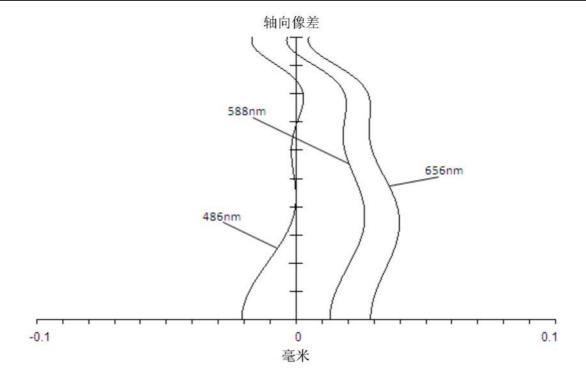


图6

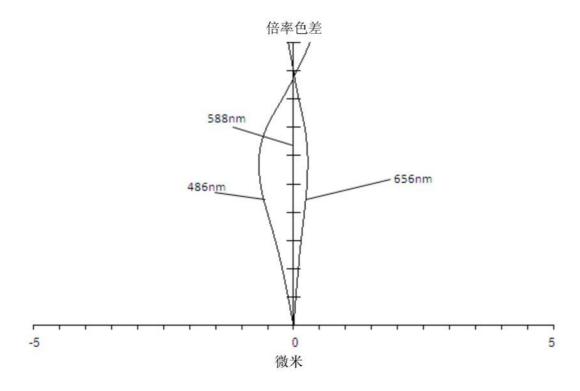


图7

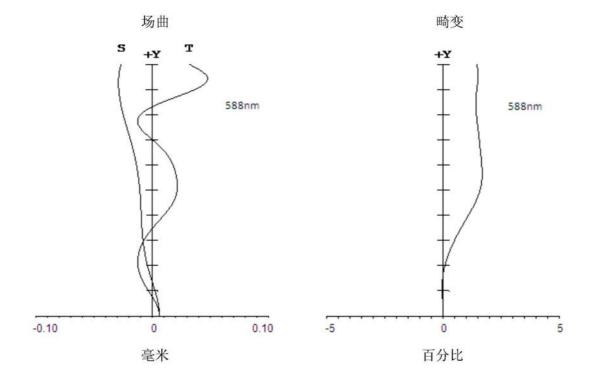


图8