
República Federativa do Brasil
Ministério da Economia

Instituto Nacional da Propriedade Industrial

(11) PI 0708265-7 BI ||||||||||||||| |||||||||||||||| III
BRPI0708265B1

(22) Data do Depósito: 21/02/2007

(45) Data de Concessão: 03/03/2020

(54) Título: DISPOSITIVO DE COMPUTAÇÃO E MÉTODO IMPLEMENTADO PELO MESMO

(51) Int.CI.: H04N 19/42; H04N 19/127; H04N 19/156.

(52) CPC: H04N 19/42; H04N 19/127; H04N 19/156.

(30) Prioridade Unionista: 09/02/2007 US 11/673.423; 24/02/2006 US 11/276.336.

(73) Titular(es): MICROSOFT TECHNOLOGY LICENSING, LLC.

(72) Inventor(es): ANAND GANESH; DONALD J. MUNSIL; GARY J. SULLIVAN; GLENN F. EVANS; SHYAM SADHWANI;
STEPHEN J. ESTROP.

(86) Pedido PCT: PCT US2007004638 de 21/02/2007

(87) Publicação PCT: WO 2007/100616 de 07/09/2007

(85) Data do Início da Fase Nacional: 25/08/2008

(57) Resumo: CODIFICAÇÃO DE VÍDEO ACELERADA. Um serviço de aceleração de codificação de vídeo para aumentar uma
ou mais da velocidade e qualidade da codificação de vídeo é descrito. O serviço age como um intermediário entre uma aplicação
de programa de computador de codificador de vídeo arbitrária e hardware de aceleração de vídeo arbitrário. O serviço recebe
uma ou mais consultas do codificador de vídeo para identificar condições específicas de implementação do hardware de
aceleração de vídeo. O serviço faz interface com o hardware de aceleração de vídeo para obter as condições específicas de
implementação. O serviço comunica as condições específicas de implementação para o codificador de vídeo. As condições
especificas de implementação possibilitam que o codificador de vídeo: (a) determine se uma ou mais da velocidade e qualidade
das operações de configuração de codificação de software associadas com o codificador de vídeo podem ser aumentadas com
implementação de uma canalização de uma ou mais configurações e capacidades de canalização de codificação suportadas e (b)
implemente a canalização pela interface com o serviço.

1/78

Relatório Descritivo da Patente de Invenção para
“DISPOSITIVO DE COMPUTAÇÃO E MÉTODO IMPLEMENTADO

PELO MESMO”

PEDIDOS RELACIONADOS

[001] Esse pedido é uma continuação em parte do Pedido de Pa­

tente U.S. co-pendente 11/276.336 depositado em 24 de fevereiro de

2006, intitulado “Accelerated Video Encoding”, e aqui incorporado por

referência.

ANTECEDENTES

[002] As operações de produção e distribuição de conteúdo de

multimídia tipicamente incluem codificação de vídeo. Processos de co­

dificação de vídeo têm tipicamente muitos dados e são intensivos no

sentido computacional. Como um resultado, os processos de codifica­

ção de vídeo podem ser muito consumidores de tempo. Por exemplo,

pode levar várias dezenas de horas para um codificador de software

codificar um filme de alta definição em alta qualidade. Desde que a

qualidade e a velocidade dos processos de codificação de vídeo são

fatores significativos para canalizações de produção e distribuição de

conteúdo de multimídia bem-sucedidas, sistemas e técnicas para au­

mentar a velocidade na qual o conteúdo de vídeo em alta qualidade

pode ser codificado seriam úteis.

SUMÁRIO

[003] Esse sumário é provido para apresentar uma seleção de

conceitos em uma forma simplificada que são também descritos abai­

xo na descrição detalhada. Esse sumário não é planejado para identi­

ficar aspectos chaves ou aspectos essenciais da matéria exposta rei­

vindicada, nem ele é planejado para ser usado como um auxílio na de­

terminação do escopo da matéria exposta reivindicada.

[004] Em vista do acima, um serviço de aceleração de codifica­

ção de vídeo para aumentar um ou mais da velocidade e qualidade da

Petição 870190049427, de 27/05/2019, pág. 4/92

2/78

codificação de vídeo é descrito. O serviço age como um intermediário

entre uma aplicação de programa de computador de codificador de

vídeo arbitrário e hardware de aceleração de vídeo arbitrário. O servi­

ço recebe uma ou mais consultas do codificador de vídeo para identifi­

car condições específicas de implementação do hardware de acelera­

ção de vídeo. O serviço faz interface com o hardware de aceleração

de vídeo para obter as condições específicas da implementação. O

serviço comunica as condições específicas da implementação para o

codificador de vídeo. As condições específicas da implementação pos­

sibilitam que o codificador de vídeo: (a) determine se um ou mais de

velocidade e qualidade das operações de codificação de software as­

sociadas com o codificador de vídeo podem ser aumentadas com a

implementação de uma canalização de uma ou mais configurações e

capacidades de canalização de codificação suportadas e (b) imple­

mente a canalização pela interface com o serviço.

BREVE DESCRIÇÃO DOS DESENHOS

[005] Nas figuras, o dígito mais a esquerda de um número de re­

ferência de componente identifica a figura particular na qual o compo­

nente aparece em primeiro lugar.

[006] A figura 1 ilustra um sistema exemplar para codificação de

vídeo acelerada, de acordo com uma modalidade.

[007] A figura 2 mostra uma modalidade exemplar de uma confi­

guração de canalização de codificação de vídeo, onde alguns dos pro­

cessos de codificação são acelerados em hardware.

[008] A figura 3 mostra um procedimento exemplar para codifica­

ção de vídeo acelerada, de acordo com uma modalidade.

[009] A figura 4 no apêndice mostra uma aplicação de codificador

de vídeo exemplar para ilustrar a maneira na qual as interfaces de

programação da aplicação de aceleração de codificação de vídeo po­

dem ser utilizadas, de acordo com uma modalidade.

Petição 870190049427, de 27/05/2019, pág. 5/92

3/78

[0010] A figura 5 no apêndice mostra uma configuração de canali­

zação de codificação de vídeo exemplar, onde o hardware de acelera­

ção acelera a estimativa do movimento, transformação, quantização e

o processo inverso para produzir imagens codificadas, de acordo com

uma modalidade.

[0011] A figura 6 no apêndice mostra uma configuração de canali­

zação de codificação de vídeo exemplar na qual o hardware acelera

somente a estimativa do movimento, de acordo com uma modalidade.

[0012] A figura 7 no apêndice mostra vários parâmetros de estima­

tiva de movimento exemplar, de acordo com uma modalidade.

[0013] A figura 8 no apêndice mostra dados do vetor de movimen­

to exemplar armazenado em uma superfície 3-Dimensional (D3D) de

exibição, de acordo com uma modalidade.

[0014] A figura 9 no apêndice mostra um diagrama exemplar indi­

cando que a largura de uma superfície iguala uma imagem YCbCr ori­

ginal, de acordo com uma modalidade.

[0015] A figura 10 no apêndice mostra um diagrama exemplar in­

dicando que o número de valor de resíduo por linha de vídeo é ½ da

largura da imagem de vídeo original, de acordo com uma modalidade.

[0016] A figura 11 no apêndice mostra um diagrama exemplar in­

dicando que a largura da superfície de resíduo é ¼ da largura do qua­

dro progressivo original, de acordo com uma modalidade.

DESCRIÇÃO DETALHADA

Visão geral

[0017] Sistemas e métodos para codificação de vídeo acelerada

provêem um serviço de aceleração da codificação de vídeo. Esse ser­

viço permite que uma aplicação de codificador de vídeo arbitrária faça

interface, em uma maneira independente do dispositivo, com o

hardware de aceleração de vídeo arbitrário para definir e implementar

uma canalização de codificação de vídeo substancialmente ótima. Pa­

Petição 870190049427, de 27/05/2019, pág. 6/92

4/78

ra realizar isso, o serviço expõe as interfaces do programa de aplica­

ção (APIs) de aceleração de vídeo (VA). Essas APIs encapsulam um

modelo do processo de codificação de vídeo. Para definir uma canali­

zação de codificação, a aplicação do codificador de vídeo usa as APIs

de VA para consultar condições específicas da implementação (por

exemplo, capacidades, etc.) do hardware de aceleração de vídeo (grá­

ficos) disponível. O codificador de vídeo avalia essas condições espe­

cíficas em vista da arquitetura de codificação de vídeo particular da

aplicação (implementada em software) para identificar quaisquer ope­

rações de codificação que poderiam se beneficiar (por exemplo, bene­

fícios de velocidade e/ou qualidade) por serem aceleradas em hardwa­

re. Tais operações incluem, por exemplo, estimativa do movimento,

transformação e operações de quantização e operações inversas tal

como compensação de movimento, transformações inversas e quanti-

zação inversa. A API também permite que o codificador de vídeo pro­

jete uma canalização de codificação que minimiza substancialmente

as transições de fluxo de dados através dos barramentos e processa­

dores associados com o dispositivo de computação hospedeiro e o

hardware de aceleração, e dessa maneira, aumente mais as velocida­

des de codificação. A API também permite que o hardware de acelera­

ção influencie a localização dos dados para melhorar o caching local

(por exemplo, o hardware de aceleração de vídeo pode funcionar mais

eficientemente na memória local para o hardware de vídeo).

[0018] Com base nessas avaliações, o codificador de vídeo projeta

uma canalização de codificação de vídeo personalizada que executa

algum número de operações de codificação em software e algum nú­

mero de operações de codificação usando o hardware de aceleração

(isto é, pelo menos um subconjunto das operações que poderiam se

beneficiar de serem aceleradas pelo hardware). A aplicação do codifi­

cador então usa a API para criar a canalização e codificar o conteúdo

Petição 870190049427, de 27/05/2019, pág. 7/92

5/78

de vídeo. Essa canalização personalizada é substancialmente otimiza­

da quando comparada com uma canalização completamente imple­

mentada em software porque certas operações de codificação são

aceleradas e as transições de dados entre o hospedeiro e o hardware

de aceleração são minimizadas. Adicionalmente, o tempo de proces­

samento liberado pela aceleração de certos aspectos do processo de

codificação e minimização das transições de dados permite que o(s)

processador(es) hospedeiro(s) execute(m) operações de codificação

de qualidade superior com ciclos de processamento liberados. A API é

também projetada para permitir que os componentes operem em para­

lelo, de modo que o uso do recurso computacional pode ser maximi­

zado.

[0019] Esses e outros aspectos dos sistemas e métodos para codi­

ficação de vídeo acelerada são agora descritos em mais detalhes.

Um Sistema Exemplar

[0020] Embora não requerido, os sistemas e métodos para codifi­

cação de vídeo acelerada são descritos no contexto geral de instru­

ções (módulos de programa) executáveis por computador sendo exe­

cutadas por um dispositivo de computação tal como um computador

pessoal e hardware de aceleração de codificação gráfica (vídeo). Mó­

dulos de programa geralmente incluem rotinas, programas, objetos,

componentes, estruturas de dados, etc., que executam tarefas particu­

lares ou implementam tipos de dados abstratos particulares.

[0021] A figura 1 mostra um sistema exemplar 100 para codifica­

ção de vídeo acelerada, de acordo com uma modalidade. O sistema

100 inclui dispositivo de computação hospedeiro 102. O dispositivo de

computação hospedeiro 102 representa qualquer tipo de dispositivo de

computação tais como um computador pessoal, um laptop, um servi­

dor, dispositivo de computação portátil ou móvel, etc. O dispositivo de

computação hospedeiro 102 inclui uma ou mais unidades de proces-

Petição 870190049427, de 27/05/2019, pág. 8/92

6/78

samento 104 acopladas através de um barramento 103 na memória do

sistema 106. A memória do sistema 106 inclui módulos (“módulos de

programa”) de programa do computador 108 e dados do programa

110. Um processador 104 recupera e executa instruções do programa

de computador dos módulos respectivos dos módulos de programa

108. Módulos do programa 108 incluem módulos de processamento de

vídeo 112 para processar o conteúdo de vídeo, e outros módulos do

programa 114 tais como um sistema operacional, acionadores de dis­

positivo (por exemplo, para fazer interface com o hardware de acelera­

ção de codificação de vídeo, etc.) e/ou assim por diante. Módulos de

processamento de vídeo 112 incluem, por exemplo, codificador de ví­

deo 116, serviço de aceleração de codificação de vídeo 118 e outros

módulos de processamento 120, por exemplo, um decodificador de

vídeo, filtro(s) de vídeo, um renderizador de vídeo, etc.

[0022] Nessa implementação, o codificador de vídeo 116 é um co­

dificador de vídeo arbitrário. Isso significa que a arquitetura particular,

operação, formatos de dados, etc., implementados e/ou utilizados pelo

codificador de vídeo 116 são arbitrários. Por exemplo, o codificador de

vídeo 116 pode ser distribuído por uma terceira parte, um OEM, etc.

Adicionalmente, embora a figura 1 mostre o serviço de aceleração de

codificação de vídeo 118 independente da porção do sistema operaci­

onal de “outros módulos do programa” 114, em uma implementação, o

serviço de aceleração de codificação de vídeo 118 é parte do sistema

operacional.

[0023] Os módulos de processamento de vídeo 112 recebem da­

dos de vídeo de entrada compactados ou descompactados 122.

Quando os dados de vídeo de entrada 122 estão compactados (já co­

dificados), os módulos de processamento do vídeo 112 decodificam os

dados do vídeo de entrada 122 para produzir dados de vídeo de ori­

gem decodificados. Tais operações de decodificação são executadas

Petição 870190049427, de 27/05/2019, pág. 9/92

7/78

por um módulo de decodificador. Em uma outra implementação, dados

parcialmente decodificados poderiam também ser retidos para auxiliar

mais no processo de codificação. Para as finalidades de ilustração

exemplar, um tal módulo de decodificador é mostrado como uma por­

ção respectiva dos “outros módulos de processamento de vídeo” 120.

Assim, os dados de vídeo de origem decodificados são representados

por dados de vídeo de entrada 122 que foram recebidos em um estado

decodificado ou representados com resultados da decodificação dos

dados de vídeo de entrada 122 que foram recebidos em um estado

codificado. Os dados de vídeo de origem decodificados são mostrados

como uma porção respectiva de “outros dados do programa” 124.

[0024] Para projetar e implementar uma canalização de codifica­

ção de vídeo personalizada que pode ser usada para codificar dados

de vídeo de origem decodificados em dados de vídeo codificados 126,

o codificador de vídeo 116 faz interface com o serviço de aceleração

de codificação de vídeo 118 via as APIs de aceleração de vídeo (VA)

128. Uma implementação exemplar de múltiplas implementações pos­

síveis das APIs de VA 128 é descrita no apêndice. Para definir uma

canalização de codificação, a aplicação do codificador de vídeo usa

respectivas da API de VA 128 (por exemplo, favor ver o apêndice,

§3.4, IVideoEncoderService) para obter condições específicas da im­

plementação de hardware de aceleração disponível 130. Tais condi­

ções específicas da implementação incluem, por exemplo:

•um arranjo enumerado identificando configurações de ca­

nalização de codificação de vídeo suportadas do hardware de acelera­

ção 130 (por exemplo, obtido via a interface GetCapabilities descrita

no apêndice, § 3.4.1),

•uma indicação dos formatos de vídeo suportados (por

exemplo, MPEG, WMV, etc.: favor ver o apêndice, GetSupportedFor-

mats, §3.4.2),

Petição 870190049427, de 27/05/2019, pág. 10/92

8/78

•métricas de pesquisa suportadas para operações de esti­

mativa do movimento (ME) (favor ver o apêndice, GetDistanceMetrics,

§3.4.3),
•perfis de pesquisa suportados para tempo de processa­

mento versus decisões de permuta de qualidade (favor ver o apêndice,

GetSearchProfiles, §3.4.4) e/ou

[0025] capacidades de ME suportadas, por exemplo, informação

do tamanho da imagem, tamanho da janela de pesquisa máxima, indi­

cação de suporte de macrobloco variável, etc. (favor, ver o apêndice,

GetMECapabilities, §3.4.5).

[0026] Responsivo ao recebimento de tais solicitações do codifica­

dor de vídeo 116, o serviço de aceleração de codificação de vídeo 118

consulta o hardware de aceleração de vídeo 130 pelas condições es­

pecíficas da implementação solicitada e retorna informação associada

com as respostas correspondentes do hardware de aceleração 130

para o codificador de vídeo 116. O serviço de aceleração de codifica­

ção de vídeo 118 faz interface com o hardware de aceleração de vídeo

130 usando um acionador de dispositivo correspondente. Um tal acio-

nador de dispositivo é mostrado como a porção respectiva de “outros

módulos do programa” 114.

[0027] O codificador de vídeo 116 avalia as condições específicas

da implementação suportadas pelo hardware de aceleração 130 em

vista da arquitetura de codificação de vídeo particular da aplicação

(implementada em software) para identificar quaisquer operações de

codificação que poderiam se beneficiar (por exemplo, benefícios de

velocidade e/ou qualidade) por serem aceleradas em hardware, sele­

cionar um perfil de pesquisa para encapsular uma permuta entre qua­

lidade e velocidade de codificação de vídeo, minimizar transições de

dados através de barramentos e entre processadores, etc. Operações

exemplares que podem se beneficiar da aceleração do hardware in-

Petição 870190049427, de 27/05/2019, pág. 11/92

9/78

cluem, por exemplo, estimativa de movimento, transformação e quan-

tização. Por exemplo, uma razão para executar a quantização em

hardware é minimizar o fluxo de dados entre estágios da canalização.

[0028] A figura 2 mostra uma modalidade exemplar de uma confi­

guração de canalização de codificação de vídeo, onde alguns dos pro­

cessos de codificação são acelerados em hardware. Por finalidades de

ilustração exemplar e descrição, as operações e o fluxo de dados as­

sociados com a figura 2 são descritos com relação aos particulares

dos componentes da figura 1. Na descrição, o número mais a esquer­

da de um numeral de referência indica a figura particular onde o com-

ponente/trajetória de dados/item referenciado foi apresentado primeiro.

Por exemplo, o número mais a esquerda da canalização 200 é, por

exemplo, “2”, indicando que ele é primeiro apresentado na figura 2.

Nesse exemplo, a canalização de codificação 200 foi configura-

da/personalizada pelo codificador de vídeo 116 (figura 1) fazendo in­

terface com o serviço de codificação de vídeo 118, tal que respectivas

das operações de processamento implementadas no hospedeiro 102

são aceleradas em hardware 130. Por finalidades de ilustração, as

operações de processamento ilustradas no lado direito da linha ponti­

lhada em negrito na figura 2 são aceleradas por hardware (por exem­

plo, hardware de aceleração 130 da figura 1) e as operações de pro­

cessamento ilustradas no lado esquerdo da figura são executadas pelo

dispositivo de computação hospedeiro 102 (figura 1). Na canalização

de codificação 200, trajetos de acesso de dados configurados opcio­

nais são mostrados com linhas pontilhadas sem negrito. Os ovais 204

e 212 representam armazenamentos de memória de imagem original e

codificada respectivos.

[0029] Nessa implementação exemplar, o codificador de vídeo 116

(figura 1) toma como entrada alguma forma de dados de vídeo com­

pactados ou descompactados 202 (favor também ver os dados do ví-

Petição 870190049427, de 27/05/2019, pág. 12/92

10/78

deo de entrada 122 da figura 1). Favor observar que a configuração de

canalização exemplar da figura 2 não copia o vídeo da origem de en­

trada 202 (“origem de vídeo bruto”) para o dispositivo de computação

hospedeiro 102 se a origem 202 não está se originando do hospedeiro

102 e se o mecanismo de tomada de decisão do hospedeiro (por

exemplo, codificador de vídeo 116) não usa o vídeo de origem. Por

exemplo, se decisões de quantização não exigem que o hospedeiro

toque nos dados de vídeo, os dados não serão transferidos. Nesse

exemplo, a canalização 200 é configurada para converter os dados de

entrada 202 para uma outra forma compactada usando as operações

respectivas dos blocos 206,208 e 214 até 218.

[0030] Tais operações podem incluir converter dados de vídeo

descompactados (YUV) para MPEG-2 compactados, ou elas podem

incluir transcodificar os dados de vídeo do formato de dados MPEG-2

para o formato de dados WMV. Por finalidades de ilustração exemplar,

assuma que as operações de transcodificação incluem um estágio de

descompactação total ou parcial seguido por um estágio de codifica­

ção (existem modelos mais eficientes que se desviam da descompac-

tação e trabalham puramente no espaço de transformação (DCT)). Um

número de formatos de compactação de vídeo faz uso da estimativa

do movimento, transformação e quantização para realizar a compacta­

ção. Dos estágios de compactação, a estimativa do movimento é tipi­

camente a etapa mais lenta, incluindo uma operação de pesquisa

massiva onde um codificador (por exemplo, codificador de vídeo 116)

tenta encontrar o macrobloco de referência correspondente mais pró­

ximo para os macroblocos em uma dada imagem.

[0031] Depois que os vetores de movimento ótimos são determi­

nados (por exemplo, via o bloco 206) para cada um dos macroblocos,

o codificador 116 calcula os resíduos diferenciais (por exemplo, via o

bloco 208) com base na imagem previamente codificada e no vetor de

Petição 870190049427, de 27/05/2019, pág. 13/92

11/78

movimento ótimo. O vetor de movimento, junto com o resíduo diferen­

cial é uma representação compacta da imagem atual. Os dados do

vetor de movimento são também representados diferencialmente. O

codificador hospedeiro pode opcionalmente solicitar a reavaliação dos

vetores de movimento pelo hardware de aceleração de vídeo para en­

contrar um macrobloco com um vetor de movimento combinado e/ou

residual menor. Os dados do vetor de movimento diferencial resultan­

tes, e os dados residuais são compactados (por exemplo, via o bloco

218), por exemplo, usando técnicas como a codificação run-length

(RLE) e a codificação diferencial (por exemplo, codificação Huffman e

aritmética) para gerar o fluxo de bits codificado final (dados de vídeo

codificados 126) para comunicar para um destino (bloco 218) para

apresentação para um usuário. Nesse exemplo, as operações dos blo­

cos 206, 208 e 214 até 218 (por exemplo, operações tais como estima­

tiva de movimento (206), decisão de modo, seleção do vetor de movi­

mento (MV) e controle de taxa (208), formação de predição (210), ope­

rações de transformação e quantização (214), inversão e transforma­

ção do quantizador e versão (216) e codificação por entropia (218))

são bem conhecidos na técnica e não são assim descritos mais aqui.

[0032] Com referência novamente à figura 1, em uma implementa­

ção, o codificador de vídeo 116 é uma aplicação de múltiplos encade-

amentos provendo utilização completa do hardware de aceleração

130. Nessa implementação, quando determinando quais operações de

codificação de vídeo devem ser aceleradas em hardware, o codificador

de vídeo 116 pode estruturar a configuração da canalização particular

tal que ambos o processador 104 e o hardware de aceleração 113 são

totalmente utilizados. Por exemplo, quando as operações de estimati­

va de movimento da canalização de codificação de vídeo estão sendo

executadas pelo hardware para um quadro particular de dados de ví­

deo, a canalização pode ser configurada para executar as operações

Petição 870190049427, de 27/05/2019, pág. 14/92

12/78

de codificação por entropia (ou aritmética ou de Huffman) no software

pelo hospedeiro em um quadro diferente dos dados de vídeo. Uma ca­

nalização de vetor de movimento única exemplar representando a con­

figuração de canalização particular selecionada/estruturada é descrita

abaixo no apêndice na seção 5.1.1. Canalizações de vetor de movi­

mento múltiplo exemplar (relativamente complexas) onde o codificador

de vídeo 116 solicita vetores de movimento múltiplos do hardware de

aceleração 130 e seleciona uma canalização de vetor de movimento

com base em vários parâmetros são descritas abaixo no apêndice na

seção 5.1.2.

[0033] Com relação à seleção de um perfil de pesquisa, a qualida­

de dos vetores de movimento se refere a uma taxa de transferência de

um fluxo gerado pelo uso dos vetores de movimento. Vetores de mo­

vimento de alta qualidade são associados com fluxos de taxa de trans­

ferência baixa. A qualidade é determinada pela integralidade da pes­

quisa do bloco, a qualidade do algoritmo, a distância métrica usada,

etc. Vetores de movimento de alta qualidade devem ser usados para

executar operações de codificação de vídeo de alta qualidade. Para

tratar disso, o serviço de aceleração de codificação de vídeo 118 provê

uma construção genérica chamada um perfil de pesquisa para encap-

sular uma permuta entre qualidade e tempo. O perfil de pesquisa tam­

bém inclui metadados para identificar o algoritmo de pesquisa usado

pelo hardware de aceleração 130, etc. O codificador de vídeo 116 es­

colhe um perfil de pesquisa particular com base nas exigências parti­

culares da implementação do codificador.

[0034] Com relação à minimização das transições de dados atra­

vés de barramentos e entre processadores, um processo de codifica­

ção implementado por uma configuração de canalização de codifica­

ção de vídeo tipicamente incluirá vários estágios de processamento,

cada um dos quais pode ou não ser acelerado via o hardware de ace­

Petição 870190049427, de 27/05/2019, pág. 15/92

13/78

leração 130. Nos casos onde o codificador de vídeo 116 determina uti­

lizar a aceleração do hardware em estágios sucessivos da canalização

de codificação, pode não ser necessário mover os dados da memória

132 baseada no hardware de aceleração 130 para a memória do sis­

tema 106 associada com o dispositivo de computação hospedeiro 102

e a seguir de volta para a memória baseada no hardware de acelera­

ção 132 para o próximo estágio e assim por diante.

[0035] Mais particularmente, embora ponteiros para vários tipos de

dados de vetor de movimento e vídeo possam ser transferidos de um

lado para outro entre o dispositivo de computação hospedeiro 102 e o

hardware de aceleração 130, em uma implementação, os dados reais

são copiados para a memória do sistema 106 somente quando o pon­

teiro de dados (um ponteiro de superfície D3D9) é explicitamente blo­

queado usando, por exemplo, IDirect3DSurface9::LockRect. Interfaces

exemplares para bloquear uma superfície são conhecidas (por exem­

plo, a IDirect3DSurface9::LockRect.interface bem conhecida). Assim,

nos casos onde dois estágios de canalização de codificação se se­

guem, e o dispositivo de computação hospedeiro 102 não precisa exe­

cutar qualquer processamento intermediário, o dispositivo de compu­

tação hospedeiro 102 pode decidir não “bloquear” o armazenamento

temporário alocado entre os estágios de processamento. Isso impedirá

uma cópia de memória redundante dos dados, e dessa maneira, evita­

rá movimentos/transferências de dados desnecessários. Dessa manei­

ra, o codificador de vídeo 116 projeta uma canalização de codificação

de vídeo que substancialmente minimiza as transferências de dados

através dos barramentos e entre processadores, e por meio disso,

também aumenta as velocidades de codificação de vídeo.

[0036] Nesse ponto, o codificador de vídeo 116 evoluiu as condi­

ções específicas da implementação suportadas pelo hardware de ace­

leração 130 em vista da arquitetura de codificação de vídeo particular

Petição 870190049427, de 27/05/2019, pág. 16/92

14/78

da aplicação (implementada em software) para identificar quaisquer

operações de codificação que poderiam se beneficiar de serem acele­

radas em hardware, selecionou um perfil de pesquisa, minimizou as

transições de dados através dos barramentos e entre processadores

e/ou assim por diante. Com base nessas determinações, o codificador

de vídeo 116 seleciona uma configuração de canalização particular

para codificar os dados de vídeo de origem decodificados, e dessa

forma, gera dados de vídeo codificados 126. A seguir, o codificador de

vídeo 116 faz interface com o serviço de aceleração de codificação de

vídeo 118 para criar um objeto de codificador para implementar a ca­

nalização selecionada (favor ver o apêndice, CreateVideoEncoder API,

§3.4.6). Nessa implementação, um objeto de codificador (por exemplo,

um objeto COM regular) é criado pela identificação da configuração de

canalização selecionada e um ou mais dos seguintes: um formato para

o fluxo de bits codificado de saída, o número de fluxos de dados de

entrada e saída associados com a configuração da canalização, pro­

priedades da configuração estática, um número sugerido de armaze­

namentos temporários (superfícies) para associação com os fluxos de

I/O diferentes com base na configuração de canalização selecionada e

um tamanho de fila de alocador especificada pelo acionador com base

em recursos que um acionador de dispositivo gráfico é capaz de reu­

nir, e outros parâmetros. (O tamanho da fila e o número de armaze­

namentos temporários de dados estão essencialmente se referindo a

mesma coisa: um é “sugerido”, o outro é “real”).

[0037] A seguir, o codificador de vídeo 116 usa o objeto do codifi­

cador criado para fazer interface com o serviço de aceleração de codi­

ficação de vídeo 118 para codificar os dados de vídeo de origem de­

codificados. Para esse fim, o objeto do codificador submete solicita­

ções de execução para o hardware de aceleração 130 (favor ver o

apêndice, IVideoEncode:Execute API, §3.2.1).

Petição 870190049427, de 27/05/2019, pág. 17/92

15/78

[0038] Em vista do acima, o sistema 100 permite implementações

arbitrárias de aplicações de codificador de vídeo 116 para definir e cri­

ar configurações de canalização de codificação de vídeo durante o

tempo de execução para tirar vantagem completa do hardware de ace­

leração de codificação de vídeo disponível para aumentar a velocidade

e a qualidade da codificação. Como parte dessas operações de confi­

guração do tempo de execução, o codificador de vídeo 116 pode usar

APIs de VA 128 para especificar que a canalização de codificação é

para implementar a pesquisa direcionada iterativa (múltiplas passa­

gens de pesquisa de refinamento crescente), definir e usar estratégias

de pesquisa genericamente selecionáveis (por exemplo, selecionar um

algoritmo de pesquisa com base nas métricas de qualidade indepen­

dente de qualquer conhecimento dos detalhes sobre o algoritmo real

utilizado), utilizar metodologias independentes do formato (por exem­

plo, onde um codificador de vídeo 116 não está consciente do formato

de imagem particular dos dados do vídeo de entrada 122 e o hardware

de aceleração 130 não está ciente do formato de saída compactado

para os dados de vídeo codificados 126) para controlar a pesquisa,

adaptar tamanhos de dados (por exemplo, onde o codificador de vídeo

116 seleciona um tamanho de macrobloco com base em um algoritmo

de pesquisa) e assim por diante.

Um Procedimento Exemplar

[0039] A figura 3 mostra um procedimento exemplar 300 para codi­

ficação de vídeo acelerada, de acordo com uma modalidade. Por fina­

lidades de descrição exemplar, as operações do procedimento são

descritas com relação aos componentes do sistema 100 da figura 1. O

numeral mais a esquerda de um número de referência do componente

indica a figura particular onde o componente é descrito em primeiro

lugar.

[0040] No bloco 302, o codificador de vídeo 116 (figura 1) recebe

Petição 870190049427, de 27/05/2019, pág. 18/92

16/78

dados de vídeo de entrada 122. Se os dados de vídeo de entrada 122

não estão compactados, os dados de vídeo de entrada representam

dados de vídeo de origem decodificados. No bloco 304, se os dados

de vídeo de entrada 122 estão compactados, o codificador de vídeo

116 descompacta os dados de vídeo de entrada para gerar dados de

vídeo de origem decodificados. No bloco 306, o codificador de vídeo

116 faz interface com a API de VA 128 para consultar o hardware de

aceleração 130 com relação às capacidades e condições específicas

de implementação da configuração da canalização de codificação de

vídeo. No bloco 308, o codificador de vídeo 116 avalia as capacidade

suportadas e as condições específicas de implementação dentro do

contexto da implementação do codificador de vídeo 116, para identifi­

car as operações de codificação de vídeo associadas com a imple­

mentação particular do codificador de vídeo 116 que podem se benefi­

ciar da aceleração de hardware, tomar decisões de qualidade e/ou ve­

locidade de decodificação, minimizar transições de dados através dos

barramentos e entre processadores e/ou assim por diante.

[0041] No bloco 310, o codificador de vídeo 116 cria um objeto de

codificação que implementa uma canalização de codificação configu­

rada para executar as operações de codificação de vídeo identificadas

que podem se beneficiar da aceleração de hardware no hardware de

aceleração 130, implementar as permutas de velocidade/qualidade

(por exemplo, via um perfil de pesquisa selecionado) e minimizar as

transições de fluxo de dados. No bloco 312, o codificador de vídeo usa

o objeto do codificador criado para codificar os dados de vídeo de ori­

gem decodificados de acordo com a seqüência das operações e arqui­

tetura de codificação delineada pela canalização de codificação de ví­

deo personalizada no bloco 310. Essas operações de codificação do

bloco 312 geram dados de vídeo codificados 126 (figura 1).

Conclusão

Petição 870190049427, de 27/05/2019, pág. 19/92

17/78

[0042] Embora os sistemas e métodos para codificação de vídeo

acelerada tenham sido descritos em linguagem específica para aspec­

tos estruturais e/ou operações ou ações metodológicas, é entendido

que as implementações definidas nas reivindicações anexas não são

necessariamente limitadas aos aspectos ou ações específicas descri­

tos.

[0043] Por exemplo, embora as API's 128 da figura 1 tenham sido

descritas dentro do contexto da codificação de dados de vídeo, as

APIs 128 podem ser usadas fora do contexto de codificação para ace­

leração de hardware de outras funções tais como detecção de borda,

redução de ruído baseada no vetor de movimento, estabilização da

imagem, nitidez, conversão da taxa de quadros, computação da velo­

cidade para aplicações de visão de computador, etc. Por exemplo com

referência à redução do ruído, em uma implementação, o codificador

de vídeo 116 (figura 1) computa vetores de movimento para todos os

macroblocos dos dados da imagem de origem decodificados. A seguir,

o codificador de vídeo 116 utiliza a magnitude do movimento, direção e

correlação com vetores de movimento de macroblocos circundantes

para determinar se existe um movimento de objeto local na imagem de

entrada. Nessa implementação, o codificador de vídeo 116 então utili­

za a magnitude do vetor para direcionar o acompanhamento do objeto

/ agressividade da filtragem ou mudanças médias de um objeto parti­

cular para reduzir o ruído estaticamente aleatório.

[0044] Em um outro exemplo com relação à estabilização da ima­

gem, em uma implementação, o codificador de vídeo 116 calcula veto­

res de movimento para todos os macroblocos e dados de origem de­

codificados. O codificador de vídeo 116 então determina se existe mo­

vimento global na imagem. Isso é realizado correlacionando todos os

valores do vetor de movimento e determinando se os valores correla­

cionados são similares. Se afirmativo, então o codificador de vídeo 116

Petição 870190049427, de 27/05/2019, pág. 20/92

18/78

conclui que existe movimento global. Alternativamente, o codificador

de vídeo 116 utiliza um tamanho de macrobloco grande e determina se

existe movimento geral do macrobloco grande. Depois de determinar

se o movimento global está presente, se o codificador de vídeo 116

também verifica que o vetor de movimento global tende a ser convulsi­

vo através dos quadros, o codificador de vídeo 116 conclui que existe

contração de câmera e compensa isso antes de começar a filtragem

do ruído e as operações de codificação.

[0045] Dessa maneira, os aspectos específicos e as operações do

sistema 100 são revelados como formas exemplares de implementa­

ção da matéria exposta reivindicada.

Apêndice A

[0046] “API de Aceleração de Codificação de Vídeo Exemplar”

Codificação de Vídeo

[0047] Esse apêndice descreve aspectos de uma implementação

exemplar das APIs de aceleração de codificação de vídeo 128 (figura

1) para a codificação de vídeo acelerada, também citada como codifi­

cação VA. Nessa implementação, APIs 128 são projetadas para pos­

sibilitar que as aplicações de processamento de vídeo e codificação

(por exemplo, um módulo do codificador de vídeo 116) alavanquem o

suporte do hardware de aceleração 130 (por exemplo, um GPU) para

aceleração estimativa de movimento, computação de resíduo, com­

pensação e transformação do movimento.

1 Tabela de Conteúdos

[0048] Codificação de vídeo

1 Tabela de conteúdos

2 Projeto exemplar

2.1 Leiaute do codificador

2.2 Configurações de canalização ou modo

2.2.1 VA2_EncodePipeFull

Petição 870190049427, de 27/05/2019, pág. 21/92

19/78

2.2.2 VA2_EncodePipe_MotionEstimation

3 API exemplar

3.1 Definição de interface

3.1.1 IVideoEncoder18 -

3.1.2 IVideoEncoderService

3.2 Métodos: IVideoEncoder

3.2.1 GetBuffer

3.2.2 ReleaseBuffer

3.2.3 Execute

3.3 Estruturas de dados: executar

3.3.1 VA2_Encode ExecuteDataParameter

3.3.2 VA2 Encode_ExecuteConfigurationParameter

3.3.3 DataParameter_MotionVectors

3.3.4 DataParameterResidues

3.3.5 DataParameter_InputImage

3.3.6 DataParameter ReferenceImages

3.3.7 DataParameter DecodedImage

3.3.8 VA2_Encode_ImageInfo

3.3.9 ConfigurationParameter_MotionEstimation

3.3.10 VA2_Encode_SearchResolution

3.3.11 VA2_Encode SearchProfile

3.3.12 VA2_Encode_MBDescription

3.3.13 VA2_Encode SearchBounds

3.3.14 VA2 Encode_ModeType

3.3.15 ConfigurationParameterQuantization

3.4 Métodos: IVideoEncoderService

3.4.1 GetPipelineConfigurations

3.4.2 GetFormats

3.4.3 GetDistanceMetrics

3.4.4 GetSearchProfiles

Petição 870190049427, de 27/05/2019, pág. 22/92

20/78

3.4.5 GetMECapabilities

3.4.6 CreateVideoEncoder

3.5 Estruturas de dados: IVideoEncoderService

3.5.1 VA2_Encode_MECaps

3.5.2 VA2_Encode_StaticConfiguration

3.5.3 VA2_Encode_Allocator

3.5.4 VA2_Encode_StreamDescription

3.5.5 VA2_Encode_StreamType

3.5.6 VA2_Encode_StreamDescription_Video

3.5.7 VA2_Encode_StreamDescription MV

3.5.8 VA2_Encode_StreamDescription_Residues

3.6 Estruturas de dados: vetores de movimento

3.6.1 Leiaute do vetor de movimento

3.6.2 Novos formatos D3D

3.6.3 VA2_Encode_MVSurface

3.6.4 VA2_ Encode_MVType

3.6.5 VA2_Encode_MVLayout

3.6.6 VA2_Encode_MotionVector8

3.6.7 VA2 Encode MotionVectorl6

3.6.8 VA2_Encode_MotionVectorEx8

3.6.9 VA2_Encode_MotionVectorExl6

3.7 Estruturas de dados: resíduos

3.7.1 Plano de brilho

3.7.2 Saturação 4:2:2

3.7.3 Saturação 4:2:0

4 Documentação DDI exemplar

4.1 Enumeração e capacidades

4.1.1 FND3DDDI GETCAPS

4.1.2 VADDI_QUERYEXTENSIONCAPSINPUT

4.1.3 D3DDDIARG_CREATEEXTENSIONDEVICE

Petição 870190049427, de 27/05/2019, pág. 23/92

21 /78

4.2 Funcionalidade da codificação

4.2.1 VADDI Encode_Function_Execute_Input

4.2.2 VADDI Encode_Function_Execute_Output

4.3 Estruturas do dispositivo de extensão

4.3.1 VADDI_PRIVATEBUFFER

4.3.2 D3DDDIARG_EXTENSIONEXECUTE

4.3.3 FND3DDDI_DESTROYEXTENSIONDEVICE

4.3.4 FND3DDDI_EXTENSIONEXECUTE

4.3.5 D3DDDI_DEVICEFUNCS

4.4 Estruturas e funções D3D9

5 Modelo de programação exemplar

5.1 Eficiência da canalização

5.1.1 Exemplo: vetor de movimento único (canalização

completa)

5.1.2 Exemplo: vetores de movimento múltiplos

2 Projeto exemplar

2.1 Leiaute do codificador

[0049] A figura 5 mostra uma aplicação do codificador de vídeo

exemplar para ilustrar a maneira na qual as APIs de aceleração de co­

dificação de vídeo podem ser utilizadas, de acordo com uma modali­

dade. Nesse exemplo, o codificador de vídeo 116 é implementado na

forma de um DMO ou MFT. A figura 5 mostra os dados de entrada

(correspondendo com uma “recepção”) e os dados de saída depois de

vários estágios do processamento. As caixas representam dados en­

quanto os círculos representam funções da API invocadas pela aplica­

ção do codificador. Os círculos assim representam o núcleo da API

como visto pela aplicação do codificador.

2.2 Configurações da canalização ou modo

[0050] O hardware de aceleração é visto como uma canalização, e

o GUID da canalização é usado para descrever os elementos de con­

Petição 870190049427, de 27/05/2019, pág. 24/92

22/78

figuração mais básicos da canalização. A meta da aceleração da codi­

ficação pode ser imaginada como intimamente ligada à meta da efici­

ência da canalização.

[0051] O projeto permite canalizações divididas (ou de múltiplos

estágios) onde os dados passam de um lado para o outro entre o PC

hospedeiro e o hardware, antes da saída final ser obtida. Nenhuma

configuração de canalização de múltiplos estágios foi projetada ainda,

as configurações abaixo descrevem canalizações de estágio único não

divididas.

2.2.1 VA2EncodePipeFuLL

// (BFC87EA2-63B6-4378-A619-5B451EDC8940)

cpp_quote{"DEFINE_GUID(VA2_EncodePipe_Full, Ox-

bfc87ea2, Ox63b6, 0x4378, Oxa6, 0x19, OxSb, 0x45, Oxie, Oxdc,

Oxb9, 0x40);" }

[0052] A figura 6 mostra uma configuração de canalização de codi­

ficação de vídeo exemplar, onde o hardware de aceleração acelera a

estimativa do movimento, transformação, quantização e o processo

inverso para produzir imagens decodificadas, de acordo com uma mo­

dalidade. O hardware produz como saída vetores de movimento, resí­

duos (brilho e saturação) e uma imagem decodificada. A imagem de­

codificada não precisa ser transferida para a memória do sistema já

que a sua única finalidade é calcular os vetores de movimento para o

próximo quadro.

[0053] A documentação posterior se referirá a um parâmetro cha­

mado NumStreams. Para essa configuração de canalização, o

NumStreams é cinco. Os StreamIds reais são mostrados no diagrama

em parênteses.

[0054] Essa é uma canalização de estágio única, não dividida e,

portanto o parâmetro de estágio da execução não se aplica.

Descrições de fluxo

Petição 870190049427, de 27/05/2019, pág. 25/92

23/78

[0055] Observe que StreamType_* é uma abreviação para

VA2_Encode_StreamT ype_*.

Imagem de entrada

[0056] O ID do fluxo é um, e o tipo de fluxo é StreamType_Video.

Esse fluxo representa a imagem para a qual os dados de movimento

são buscados. O alocador para esse fluxo é negociável - ou a interfa­

ce atual pode fornecer um ou um alocador externo pode ser usado. A

escolha do alocador é feita no momento da criação, e se um alocador

externo é escolhido, um ID do fluxo de um será considerado um valor

de entrada ilegal para GetBuffer.

Imagens de referência

[0057] O ID do fluxo é dois, e o tipo do fluxo é StreamType. Esse

fluxo representa uma lista de imagens de referência usadas para cal­

cular vetores de movimento. A interface atual não supre um alocador

separado para esse fluxo. As superfícies de entrada são recicladas a

partir do fluxo de imagem decodificada (ID = 5) ou obtidas de outro lu­

gar.

Vetores de movimento

[0058] O ID do fluxo é três, e o tipo do fluxo é StreamType_MV.

Esse fluxo representa um parâmetro de saída contendo dados do vetor

de movimento. Armazenamentos temporários para esse fluxo são ob­

tidos através de GetBuffer somente.

Resíduos

[0059] O ID do fluxo é quatro, e o tipo do fluxo é Stream-

Type_Residues. Esse fluxo representa um parâmetro de saída con­

tendo valores de resíduo para todos os três planos. Armazenamentos

temporários para esse fluxo são obtidos através de GetBuffer somen­

te.

Imagem decodificada

[0060] O ID do fluxo é cinco, e o tipo do fluxo é Stream-

Petição 870190049427, de 27/05/2019, pág. 26/92

24/78

Type_Video. Esse fluxo representa um parâmetro de saída contendo a

imagem decodificada obtida dos resíduos quantizados e valores do

vetor de movimento. Armazenamentos temporários para esse fluxo

são obtidos através de GetBuffer somente.

2.2.2 VA2EncodePipe MotionEstimation

// {F18B3D19-CA3E-4a6b-AC10-53F86D509E04}

cpp_quote("DEFINE_GUID

{VA2_EncodePipe_MotionEstimation, Oxfl8b3d19 Oxca3e, Ox4a6b,

Oxac, Ox10, Ox53, Oxf8, Ox6d, 0x50, Ox9e, 0x4);" }

[0061] A figura 7 mostra uma configuração de canalização de codi­

ficação de vídeo exemplar na qual o hardware acelera somente a es­

timativa do movimento, de acordo com uma modalidade. Essa configu­

ração de canalização adota um conjunto de imagens de referência

como entrada, e descarrega vetores de movimento como saída. A

imagem decodificada nesse caso tem que ser gerada e suprida pelo

software do hospedeiro.

[0062] NumStreams para essa configuração de canalização é três.

Os StreamIds para os vários fluxos são mostrados no diagrama em

parênteses.

[0063] Essa é uma canalização de estágio único não dividida e o

parâmetro de estágio de execução não se aplica.

3 API Exemplar

3.1 Definição de interface

3.1.1 IVideoEncoder

interface IVideoEncoder : IUnknown {

HRESULT GetBuffer(

[in] UINT8 StreamId,

[in] UINT32 StreamType,

[in] BOOL Blocking,

[out] PVOID pBuffer,

Petição 870190049427, de 27/05/2019, pág. 27/92

25/78

HRESULT ReleaseBuffer(

[in] UINT8 StreamId,

[in] UINT32 StreamType,

[in] PVOID pBuffer

};
HRESULT Execute(

[in] UINT8 Stage,

[in] UINT32 NuminputDataParameters,

[in, size_is(NuminputDataParameters)]

VA2_EnCode_ExecuteDataParameter** pInputData,

[in] UINT32 NumOutputDataParametere,

[out, size_is(NumOutputDataParameters]

VA2_Encode_ExecuteDataParameter** pOutputData,

[in] UINT32 NumConfigurationParameters,

[in, size is(NumConfigurationParameters]

VA2_Encode_ExecuteConfigurationParameter** pConfigu-

ration, [in] HANDLE hEvent,

[out] HRESULT* pStatus

};

}

3.1.2 IVideoEncoderService

interface IVideoEncoderService : IVideoAccelerationService

{
HRESULT GetPipelineConfigurations(

[out] UINT32* pCount,

[out, unique, size_is(*pCount)] QUID** pGuids

};

HRESULT GetFormats(

[out] UINT32* pCount,

[out, unique, size_is(*pCount)] GUID** pGuids

Petição 870190049427, de 27/05/2019, pág. 28/92

26/78

};
HRESULT GetDistanceMetrics(

[out] UINT32* pCount,

[out, unique, size_is(*pCount)] GUID** pGuids

};

HRESULT GetSearchProfiles(

[out] UINT32* pCount,

[out, unique, size_is(*pCount)] VA2_Encode_Search Pro-

file**pSearchProfiles

};

HRESULT GetMECapabilities(

[out] VA2_Encode_MECaps* pMECaps

};

HRESULT CreateVideoEncoder(

[in] REFGUID PipelineGuid, [in] REFGUID FormatGuid,

[in] UINT32 NumStreams,

[in] VA2_Encode_StaticConfiguration* pConfiguration,

[in, size_is(NumStreams)] VA2_Encode_DataDescription

*pDataDescription,

[in, size_is(NumStreams)] VA2_Encode Allocator* Sug-

gestedAllocatorProperties,

[out, size_is(NumStreams)] VA2_Encode_Allocator* pAc-

tualAllocatorProperties,

[out] IVideoEncoder** ppEncode

);

};

3.2 Métodos: IvideoEncoder

3.2.1 GetBuffer

[0064] Essa função retorna armazenamentos temporários (superfí­

cies de codificação) para uso na chamada de execução. Os armaze­

Petição 870190049427, de 27/05/2019, pág. 29/92

27/78

namentos temporários são liberados prontamente depois do uso cha­

mando ReleaseBuffer, para evitar o bloqueio da canalização.

HRESULT GetBuffer(

[in] UINT8 StreamId,

[in] UINT32 StreamType,

[in] BOOL Blocking,

[out] PVOID pBuffer

};
#define E_NOTAVAILABLE HRESULT_FROM_WIN32

(ERROR_INSUFFICIENT BUFFER)

#define E_INVALIDPARAMETER

HRESULT_FROM_WIN32 (ERROR INVALID PARAMETER)

Parâmetros

StreamId

[0065] Refere-se ao fluxo particular para o qual os armazenamen­

tos temporários são desejados. Dependendo do fluxo particular, tipos

diferentes de armazenamentos temporários como armazenamentos

temporários da imagem de entrada, armazenamentos temporários do

vetor de movimento, etc. serão retornados. Nem todos os IDs do fluxo

para uma dada configuração são entradas válidas para essa função.

Valores permitidos para StreamId são especificados como parte da

configuração da canalização.

StreamType

[0066] Especifica o tipo de armazenamento temporário a ser retor­

nado. Tipicamente, o tipo de fluxo será indicado por StreamId, e nego­

ciado no momento da criação. Se StreamType não é consistente com

StreamId, a função retorna um valor de erro. O armazenamento tem­

porário dos dados é interpretado (estereotipado) com base no valor de

StreamType como descrito pela tabela na seção de Observações.

Blocking

Petição 870190049427, de 27/05/2019, pág. 30/92

28/78

[0067] Especifica o comportamento da função quando existe inani­

ção ou alguma outra necessidade para o estrangulamento. Um valor

de verdadeiro indica que a função deve bloquear, enquanto falso indi­

ca que a função deve retornar E_NOTAVAILABLE.

pBuffer

[0068] O ponteiro para um armazenamento temporário de dados a

ser liberado através de ReleaseBuffer. O ponteiro é remodelado (inter­

pretado) com base no parâmetro StreamType, e isso é descrito na ta­

bela na seção de Observações abaixo.

Valores de retorno

S_OK

[0069] Função bem-sucedida.

E_NOTAVAILABLE

[0070] Esse é retornado quando o acionador precisa de armaze­

namentos temporários, e o indicador de bloqueio foi ajustado para fal­

so.

E_INVALIDPARAMETER

[0071] Os parâmetros de entrada estavam incorretos. Isso pode

ser usado, por exemplo, quando StreamType não iguala o valor espe­

rado para o dado StreamId.

E _UNSUPPORTED _ STREAM
[0072] StreamId é inválido. GetBuffer não supre armazenamentos

temporários para o ID do fluxo especificado. Valores permitidos para

StreamId são descritos como parte da configuração da canalização.

Para o ID do fluxo especificado, o alocador pode ser externo ou pode

não existir alocador absolutamente.

E_FAIL

[0073] Função falha.

Observações

[0074] Normalmente essa função retorna o controle muito rápido

Petição 870190049427, de 27/05/2019, pág. 31/92

29/78

quando os armazenamentos temporários já estão presentes na fila do

alocador. As únicas condições sob as quais essa função deve bloque­

ar (ou retornar E_NOTAVAILABLE) são quando todos os armazena­

mentos temporários da fila do alocador foram submetidos ao dispositi­

vo, ou foram consumidos pela aplicação e, portanto não liberados.

[0075] Tipos de fluxo e formatos do armazenamento temporário
Stream-

Type_Video

IDirect3DSurface9** pBuffer.

Stream-

Type_MV

IDirect3DSurface9** pBuffer

Stream-

Type_Residues

IDirect3DSurface9* pBuf-

fer[3]., isto é, pBuffer é um ponteiro para

três ponteiros de superfície D3D.

pBuffer[0] é um ponteiro para

a superfície de brilho.

pBuffer[1] é um ponteiro para

a superfície Cb, ou NULL se não aplicá­

vel.

pBuffer[2] é um ponteiro para

a superfície Cr, ou NULL se não aplicá­

vel.

3.2.2 ReleaseBuffer

[0076] Essa função é usada para liberar uma superfície de volta

para a fila do alocador para reutilização via GetBuffer.

HRESULT ReleaseBuffer(

[in] UINT8 StreamId,

(in] UINT8 StreamType,

[in] PVOID pBuffer

};
Parâmetros

StreamId

Petição 870190049427, de 27/05/2019, pág. 32/92

30/78

[0077] ID do fluxo associado com o armazenamento temporário.

StreamType

[0078] Tipo do fluxo para o armazenamento temporário.

pBuffer

[0079] Armazenamento temporário a ser liberado de volta para a

fila do alocador.

Valores de retorno

S_OK

[0080] Função bem sucedida.

E_FAIL

Função falha.

3.2.3 Execute

[0081] Essa função é usada para submeter solicitações para o

hardware. Ela contém armazenamentos temporários de dados de en­

trada e saída obtidos através de GetBuffer, bem como alguma infor­

mação de configuração. A função é assíncrona e sua conclusão é indi­

cada pelo evento sendo sinalizado. O estado de conclusão é indicado

usando o parâmetro pStatus que é alocado no monte e verificado so­

mente depois que o evento foi sinalizado.

[0082] Os armazenamentos temporários supridos como parâme­

tros para essa função não são lidos de (por exemplo, através de

LockRect), ou escritos pela aplicação até que a função tenha verdadei­

ramente concluído. A conclusão verdadeira é implicada por um valor

de erro sendo retornado pela função ou se essa função retorna suces­

so, então pela sinalização de hEvent (parâmetro para essa função).

Quando o mesmo armazenamento temporário é inserido em várias

instâncias da chamada Execute, ele não será acessado até que todas

as chamadas Execute associadas tenham concluído. O ponteiro para

uma superfície em uso por Execute pode ainda ser suprido como um

parâmetro para as funções VA como Execute desde que isso não re­

Petição 870190049427, de 27/05/2019, pág. 33/92

31/78

quer que os dados fiquem bloqueados. Essa última regra explica como

a mesma imagem de entrada pode ser usada em múltiplas chamadas

Execute ao mesmo tempo.

[0083] Os armazenamentos temporários supridos para essa cha­

mada obedecem à semântica do alocador negociada no tempo da cri­

ação. Se um alocador externo é usado quando GetBuffer é esperado

de ser usado, essa função retornará E_FAIL.

HRESULT Execute(

[in] UINTB Stage,

[in] UINT32 NumInputDataParameters,

[in, size_is(NumInputDataParameters)] VA2_Encode_ Exe-

cuteDataParameter** pInputData,

[in) UINT32 NumOutputDataParameters,

[out, size_ is(NumOutputDataParameters)]

VA2_Encode ExecuteDataParameter** pOutputData,

[in] UINT32 NumConfigurationParameters,

[in, size is(NumConfigurationParameters] VA2_Encode_ Exe­

cuteConfigurationParameter** pConfiguration,

[in] HANDLE hEvent,

[out] HRESULT* pStatus

};
Parâmetros

Stage

[0084] Para configurações de canalização dividida, esse parâme­

tro identifica o estágio específico da canalização dividida. A numera­

ção é baseada em um e para canalizações não divididas esse parâme­

tro é ignorado.

NumInputDataParameters

[0085] Tamanho da formação dos dados de entrada (próximo pa­

râmetro).

Petição 870190049427, de 27/05/2019, pág. 34/92

32/78

pInputData

[0086] Formação de ponteiros para valores dos dados de entrada.

Ponteiros de dados individuais são remodelados apropriadamente com

base no valor StreamId que tem um StreamDescription associado es­

pecificado na criação. Os armazenamentos temporários de dados são

alocados na criação e obtidos durante o processo de transferência

contínua chamando GetBuffer.

NumOutputDataParameters

[0087] Tamanho da formação dos dados de saída (próximo parâ­

metro).

pOutputData

[0088] Formação de ponteiros para valores dos dados de saída.

Os ponteiros de dados individuais são remodelados apropriadamente

com base no valor StreamId que tem um StreamDescription associado

especificado na criação. Os armazenamentos temporários de dados

são alocados na criação e obtidos durante o processo de transferência

contínua chamando GetBuffer.

NumConfigurationParameters

[0089] Tamanho da formação de configuração (próximo parâme­

tro).

pConfiguration

[0090] Formação de parâmetros de configuração controlando a

execução da canalização. A configuração geral é a união dessa estru­

tura junto com parâmetros de configuração estáticos supridos quando

o codificador foi criado.

hEvent

[0091] Alça de evento sinalizando que os dados de saída estão

prontos.

pStatus

[0092] Estado indicando se a operação solicitada completou com

Petição 870190049427, de 27/05/2019, pág. 35/92

33/78

sucesso. Valores permitidos incluem S_OK (conclusão bem-sucedida),

E_TIMEOUT (se o limite de tempo foi excedido) e E_SCENECHANGE

(se a detecção de mudança de cena foi habilitada e detectada). Em

ambos os casos de erro, nenhuma das superfícies de saída contém

quaisquer dados úteis. Esse parâmetro é alocado no monte, e o valor

de retorno é verificado somente depois que hEvent foi sinalizado.

Valores de retorno

S_OK

[0093] Função bem-sucedida.

E_FAIL

Função falha.

Observações

[0094] Se a alça do evento foi sinalizada, isso significa que

LockRect deve completar instantaneamente quando chamado em

qualquer uma das superfícies de saída desde que elas estão prontas.

Em particular, espera-se que a chamada LockRect não bloqueie qual­

quer duração de tempo aguardando quaisquer alças de evento. Nem

ela pode desperdiçar tempo de CPU através de voltas ocupadas.

3.3 Estruturas de dados: Execute

[0095] A chamada Execute tem parâmetros de dados e parâme­

tros de configuração. Parâmetros de dados específicos podem ser

imaginados como derivando da classe de base (ou estrutura)

VA2_Encode_ExecuteDataParameter e parâmetros de configuração

específicos podem ser imaginados como derivando da classe de base

(ou estrutura) VA2_Encode_ExecuteConfi-gurationParameter.

3.3.1 VA2 Encode ExecuteDataParameter

typedef struct _VA2_Encode_ExecuteDataParameter {

UINT32Length;

UINT32StreamId;

} VA2_Encode_ExecuteDataParameter;

Petição 870190049427, de 27/05/2019, pág. 36/92

34/78

Elementos

Length

[0096] Número de bytes nessa estrutura. Provido por extensibili-

dade.

StreamId

[0097] O ID do fluxo de dados como definido na configuração da

canalização. Os formatos do armazenamento temporário são negocia­

dos no tempo de criação usando o parâmetro StreamDescription.

3.3.2 VA2Encode ExecuteConfigurationParameter

typedef struct _VA2_Encode__ExecuteConfiguration­

Parameter {

UINT32Length;

UINT32Streamid;

UINT32ConfigurationType;

} VA2 Encode_ ExecuteConfigurationParameter;

#define VA2_Encode_ConfigurationType_ MotionEstimation

0x1

#define VA2_Encode_ConfigurationType_ Quantization

0x2

Elementos

Length

[0098] Número de bytes nessa estrutura. Provido por extensibili-

dade.

StreamId

[0099] O ID do fluxo de dados como definido na configuração da

canalização. Esse pode ser usado para deduzir se os dados são de

entrada ou de saída.

ConfigurationType

[00100] Esse parâmetro descreve o parâmetro de configuração e é

usado para estereotipar a estrutura atual apropriadamente.

Petição 870190049427, de 27/05/2019, pág. 37/92

35/78

Observações

[00101] Essa estrutura age como um tipo de base para informação

de configuração mais especializada. O tipo de base é estereotipado

para um tipo mais especializado com base no parâmetro Configurati­

onType. O mapeamento entre ConfigurationType e as estruturas es­

pecializadas é descrito na tabela abaixo.

Tipos de configuração

ConfigurationTypeMo-

tion_Estimation

Configuration-

T ypeMotion_Estimation

Configuration-

Type_Quantization

ConfigurationPa-

rameter_Quantization

3.3.3 DataParameter MotionVectors

typedef struct_VA2_Encode_ExecuteDataParameter_

MotionVectors {

UINT32Length;

UINT32Streamld; VA2_Encode_MVSurfaCe* pMVSurface;

} VA2_Encode_ExecuteDataParameter_MotionVectors;

Elementos

Length

[00102] Número de bytes nessa estrutura. Provido por extensibili-

dade.

StreamId

[00103] O ID do fluxo de dados como definido na configuração da

canalização. Isso pode ser usado para deduzir se os dados são de en­

trada ou de saída.

pMVSurface

[00104] Ponteiro para uma estrutura contendo a superfície D3D do

vetor de movimento.

3.3.4 DataParameter Residues

Petição 870190049427, de 27/05/2019, pág. 38/92

36/78

typedef struct _VA2_Encode_ExecuteDataParameter_

Residues {

UINT32Length;

UINT32Streamld;

VA2_Encode_ResidueSurface*pResidueSurfaceY;

VA2_Encode_ResidueSurface*pResidueSurfaceCb;

VA2_Encode_ResidueSurface*pResiduesurfaceCr;

} VA2_Encode_ExecuteDataParameter_Residues;

Elementos

Length

[00105] Número de bytes nessa estrutura. Provido por extensibili-

dade.

StreamId

[00106] O ID do fluxo de dados como definido na configuração da

canalização. Isso pode ser usado para deduzir se os dados são de en­

trada ou de saída.

pResidueSurfaceY

[00107] Superfície do resíduo contendo valores de brilho.

pResidueSurfaceCb

[00108] Superfície do resíduo contendo valores Cb de saturação.

pResidueSurfaceCr

[00109] Superfície do resíduo contendo valores Cr de saturação.

3.3.5 DataParameter inputimage

typedef struct _VA2_Encode_ExecuteDataParameter_

InputImage {

UINT32Length;

UINT32Streamld;

VA2_Encode_ImageInfo* pImageData;

} VA2_Encode_ExecuteDataParameter_InputImage;

Elementos

Petição 870190049427, de 27/05/2019, pág. 39/92

37/78

Length

[00110] Número de bytes nessa estrutura. Provido por extensibili-

dade.

StreamId

[00111] O ID do fluxo de dados como definido na configuração da

canalização. Isso pode ser usado para deduzir se os dados são de en­

trada ou de saída.

pImageData

[00112] Ponteiro para uma estrutura contendo a superfície D3D de

imagem de entrada. Essa é a superfície para a qual os vetores de mo­

vimento são buscados.

3.3.6 DataParameter ReferenceImages

typedef struct _VA2_Encode_ExecuteDataParameter_

ReferenceImages {

UINT32Length;

UINT32StreamId;

UINT32NumReferenceImages; VA2_Encode_ImageInfo*

pReferenceImages

} VA2_Encode_ExecuteDataParameter_ReferenceImages;

Elementos

Length

[00113] Número de bytes nessa estrutura. Provido por extensibili-

dade.

StreamId

[00114] O ID do fluxo de dados como definido na configuração da

canalização. Isso pode ser usado para deduzir se os dados são de en­

trada ou de saída.

DataType

NumReferenceImages

[00115] Tamanho da formação das imagens de referência (próximo

Petição 870190049427, de 27/05/2019, pág. 40/92

38/78

parâmetro).

pReferencelmages

[00116] Formação das imagens de referência na qual basear os ve­

tores de movimento. Para formatos simples como MPEG-2 somente

um quadro progressivo (ou dois campos) podem ser usados. Por outro

lado, formatos como H.264 e VC-1 suportam vetores de movimento

atravessando vários quadros. Um P-quadro no MPEG-2 usa somente

uma imagem de referência enquanto um B-quadro com vídeo entrela­

çado, e movimento do tipo de campo poderiam usar 4 imagens, cada

uma das quais pode se referir a um quadro ou um campo.

3.3.7 DataParameter DecodedImage

typedef struct _VA2_Encode_ExecuteDataParameter_

DecodedImage {

UINT32Length;

UINT32StreamId;

VA2_Encode_Imagelnfo* pYCbCrImage;

} VA2_Encode_ExecuteDataParameter_DecodedImage;

Elementos

Length

[00117] Número de bytes nessa estrutura. Provido por extensibili-

dade.

StreamId

[00118] O ID do fluxo de dados como definido na configuração da

canalização. Isso pode ser usado para deduzir se os dados são de en­

trada ou de saída.

DataType

pYCBCrImage

[00119] Imagem decodificada de saída obtida depois da quantiza-

ção inversa, transformação inversa e compensação de movimento.

Para boa canalização, a superfície D3D associada não deve ser blo-

Petição 870190049427, de 27/05/2019, pág. 41/92

39/78

queada ou os dados transferidos para a memória do sistema desne­

cessariamente. Os ponteiros de superfície podem ainda ser usados

como uma imagem de referência.

3.3.8 VA2EncodeImageInfo

typedef struct VA2_Encode_ImageInfo{IDirect3 DSurface9*

pSurface;

BOOLField;

BOOLInterlaced;

RECTWindow;

} VA2_Encode_ImageInfo;

Elementos

pSurface

[00120] Ponteiro para uma superfície D3D contendo a imagem no

formato YCbCr.

Field

[00121] Um valor de um indica que a superfície contém um campo

de dados de vídeo, e os dados são assumidos como sendo entrelaça­

dos. Zero indica um quadro progressivo total.

Interlaced

[00122] Um valor de um indica que os dados da imagem são entre­

laçados. Esse indicador deve ser usado somente quando Field (parâ­

metro acima) é ajustado para um. Se Field está ajustado para um, é

assumido que os dados estão entrelaçados.

Windows

[00123] Um retângulo dentro da imagem. Isso poderia ser usado

para restringir a chamada de estimativa do movimento para retornar

vetores de movimento para apenas um retângulo dentro de toda a

imagem.

3.3.9 Configurationparameter MotionEstimation

typedef struct _VA2_Encode_ExecuteConfiguration Pa-

Petição 870190049427, de 27/05/2019, pág. 42/92

40/78

rameter_MotionEstimation {

UINT32Length;

UINT32StreamId;

UINT32ConfigurationType;

VA2_Encode_MEParameters* pMEParams;

} VA2_Encode_ExecuteConfigurationParameter_Motion Es­

timation;

Elementos

Length

[00124] Número de bytes nessa estrutura. Provido por extensibili-

dade.

StreamId

O ID do fluxo de dados como definido na configuração da

canalização. Isso pode ser usado para deduzir se os dados são de en­

trada ou de saída.

ConfigurationType

pMEParams

[00125] Ponteiro para uma estrutura definindo vários parâmetros

governando a pesquisa de movimento incluindo a janela de pesquisa,

etc.

Observações

[00126] A figura 8 mostra vários parâmetros exemplares de estima­

tiva do movimento, de acordo com uma modalidade. Esses parâmetros

são para uso nas estruturas abaixo.

3.3.10 VA2 Encode SearchResolution

typedef enum {

VA2_Encode_SearchResolution_FullPixel,

VA2_Encode_SearchResolution_HalfPixel,

VA2_Encode_SearchResolution_QuarterPixel

} VA2_Encode_SearchResolution;

Petição 870190049427, de 27/05/2019, pág. 43/92

41/78

Descrição

FullPixel

[00127] Vetores de movimento são calculados em unidades de pixel

completas.

HalfPixel

[00128] Vetores de movimento são calculados em unidades de

meio pixel. Assim um valor do vetor de movimento de (5,5) se refere a

um macrobloco de dados que está (2,5, 2,5) pixels distante.

QuarterPixel

[00129] Vetores de movimento são calculados em unidades de

quarto de pixel. Assim, um valor do vetor de movimento de (10, 10) se

refere a um macrobloco de dados que está (2,5, 2,5) pixels distante.

[00130] Na computação dos valores do vetor de movimento de sub­

pixel, o codificador estima os valores de brilho e saturação usando in-

terpolação. O esquema de interpolação específico é dependente do

formato e os seguintes GUIDs (parte da configuração estática) contro­

lam o esquema de interpolação.

// {E9AF78CB-7A8A-4d62-887F-86A418364C79}

cpp_quote

("DEFINE_GUID(VA2_Encode_Interpolation_MPEG2Bilinear,

Oxe9af78cb, Ox7a8a, 0x4d62, Ox88, Ox7f, Oxb6, Oxa4, 0x18, 0x36,

Ox4c, 0x79);")

// {A94BBFCB-1BF1-475c-92DE-67298AF56BB0}

cpp_quote("DEFINE_GUID(VA2_Encode_interpolation_MPEG
213icubic, Oxa94bbfcb, Oxlbf1, Ox475c, 0x92, Oxde, 0x67, 0x29,

Ox8a, OxfS, Ox6b, OxbO};")

3.3.11 VA2 Encode SearchProfile

typedef struct_VA2_Encode_SearchProfile

{

UINT8 QualityLevel;

Petição 870190049427, de 27/05/2019, pág. 44/92

42/78

UINT8 TimeTaken;

GUID SearchTechnique;

GUID SubpixelInterpolation;

} VA2_Encode_SearchProfile

Elementos

QualityLevel

[00131] Um número na faixa [0-100] que indica a qualidade relativa

dos vetores de movimento entre os perfis diferentes suportados pelo

dispositivo.

TimeTaken

[00132] Um número na faixa [0-100] que indica o tempo relativo

consumido para perfis de pesquisa diferentes. Isso possibilita que a

aplicação faça uma troca de qualidade-tempo razoável.

SearchTechnique

[00133] Um GUID indicando o algoritmo de pesquisa usado.

SubpixelInterpolation

[00134] Um GUID indicando o esquema de interpolação de subpixel

usado.

Observações

[00135] Não existe definição universalmente aceita de qualidade

absoluta, então nós estamos estabelecendo uma medida relativa. Os

valores indicados contra TimeTaken devem seguir uma regra de pro­

porção restrita. Se perfil 1 consome 10ms e perfil 2 consome 20ms, os

valores de TimeTaken devem estar na relação de 20/10 = 2.

3.3.12 VA2 Encode MBDescription

typedef struct_VA2_Encode_MBDescription {

BOOL ConstantMSSize;

UINT32 MB Width;

UINT32 MBHeight;

UINT32 MBCOUnt;

Petição 870190049427, de 27/05/2019, pág. 45/92

43/78

RECT* pMBRectangles;

} VA2_Encode_MBDescription;

Elementos

ConstantMBSize

[00136] Um valor de um indica que todos os macroblocos na ima­

gem atual têm o mesmo tamanho. Isso pode não ser verdadeiro para

formatos como H.264.

MBWidth

[00137] Largura de um macrobloco. Válido somente se bCons-

tantMBSize é um.

MBHeight

[00138] Altura de um macrobloco. Válido somente se bCons-

tantMBSize é um.

MBCount

[00139] Se bConstantMBSize é zero, então os macroblocos (ou

segmentos) na imagem são descritos usando uma formação de retân­

gulos. Esse parâmetro descreve o tamanho nos elementos do parâme­

tro pMBRectangles seguinte.

pMBRectangles

[00140] Uma formação de retângulos descrevendo como a imagem

é para ser cortada.

3.3.13 VA2 Encode SearchBounds

typedef struct_VA2_Encode_SearchBounds {

BOOL DetectSceneChange;

UINT32 MaxDistanceInMetric;

UINT32 TimeLimit;

UINT32 MaxSearchWindowX;

UINT32 MaxSearchWindowY;

} VA2_Encode_SearchBounds;

Elementos

Petição 870190049427, de 27/05/2019, pág. 46/92

44/78

DetectSceneChange

[00141] Se esse valor é um, então a detecção da mudança da cena

está sendo solicitada. Em um tal caso, se a mudança da cena é detec­

tada, nenhum vetor de movimento será calculado pela chamada Exe­

cute e, portanto, nenhum resíduo ou imagens decodificadas será cal­

culado também. Isso é indicado através do parâmetro pStatus da

chamada Execute que deve ser ajustada para E_SCENECHANGE

nesse caso.

MaxDistanceInMetric

[00142] Refere-se à diferença entre macroblocos quando compara­

ções são feitas usando a métrica de distância de escolha atual. Se es­

sa distância excede esse valor de MaxDistanceInMetric, então um tal

vetor de movimento é rejeitado.

TimeLimit

[00143] Tempo máximo que o hardware pode gastar no estágio da

estimativa do movimento. Se ele é mais longo do que esse tempo, o

parâmetro pStatus da chamada Execute é ajustado para E_TIMEOUT.

E_TIMEOUT.

[00144] Valor máximo do componente x do vetor de movimento re­

tornado. Em outras palavras, o tamanho (ao longo da dimensão x) da

janela de pesquisa.

SearchWindowY

[00145] Valor máximo do componente y do vetor de movimento. Em

outras palavras, o tamanho (ao longo da dimensão y) da janela de

pesquisa.

Observações

3.3.14 VA2 Encode ModeType

typedef struct_VA2_Encode_ModeType {

UINT32 SearchProfileindex;

GUID DistanceMetric;

Petição 870190049427, de 27/05/2019, pág. 47/92

45/78

INT16 HintX;

INT16 HintY;

} VA2_Encode_ModeType;

Elementos

SearchProfileindex

[00146] Índice na lista de perfis de pesquisa como retornado pela

chamada da API GetSearchProfiles.

DistanceMetric

[00147] Métrica a usar quando comparando dois macroblocos. Mé­

tricas geralmente usadas incluem SAD (soma de diferenças absolutas)

e SSE (soma de erros quadrados).

HintX

[00148] Palpite sobre a direção esperada de movimento para guiar

a pesquisa do movimento. Isso se refere ao movimento geral na ima­

gem e pode não ser aplicável em uma base por MB.

HintY

[00149] Palpite sobre a direção esperada de movimento para guiar

a pesquisa do movimento. Isso se refere ao movimento geral na ima­

gem e pode não ser aplicável em uma base por MB.

3.3.15 ConfigurationParameter Quantization

typedef struct_VA2_Encode_ExecuteConfiguration Pa-

rameter_ Quantization {

UINT32 Length;

UINT32 Streamid;

UINT32 ConfigurationType;

UINT32 StepSize;

}

VA2_Encode_ExecuteConfigurationParameter_Quantization;

Elementos

Length

Petição 870190049427, de 27/05/2019, pág. 48/92

46/78

[00150] Número de bytes nessa estrutura. Provido por extensibili-

dade.

StreamId

[00151] O ID do fluxo de dados como definido na configuração da

canalização. Isso pode ser usado para deduzir se os dados são de en­

trada ou de saída.

ConfigurationType

StepSize

[00152] Tamanho da etapa a ser usada quando executando a quan-

tização. Esse projeto permite que somente um tamanho de etapa seja

usado para toda a porção da imagem para a qual vetores de movimen­

to e resíduos foram solicitados nessa chamada.

3.4 Métodos: IVideoEncoderService

[00153] Os métodos nessa interface permitem que uma aplicação

consulte o hardware por suas capacidades e crie um objeto de codifi­

cador com uma dada configuração.

3.4.1 GetPipelineConfigurations

HRESULT GetPipelineConfigurations(

[out] UINT32* pCount,

(out, unique, size_is(*pCount)] GUID** pGuids

};
Parâmetros

pCount

[00154] Valor de retorno descreve o tamanho da formação pGuids

(próximo parâmetro) retornado pela função.

pGuids

[00155] Uma formação de GUIDs descrevendo as várias configura­

ções de canalização suportadas pelo dispositivo. A memória é alocada

pelo chamado, e deve ser liberada pelo chamador usando CoTask-

MemFree.

Petição 870190049427, de 27/05/2019, pág. 49/92

47/78

Valores de retorno

S_OK

[00156] Função foi bem-sucedida

E_OUTOFMEMORY

[00157] Função foi incapaz de alocar memória para retornar a lista

de GUIDs

E_FAIL

[00158] Incapaz de determinar as configurações de canalização su­

portadas por causa de algum erro de dispositivo.

3.4.2 GetFormats

HRESULT GetFormats(

[out] UINT32* pCount,

(out, unique, size_is(*pCount)] GUID** pGuids

};
Parâmetros

pCount

[00159] Valor de retorno descreve o tamanho da formação de

pGuids (próximo parâmetro) retornado pela função.

pGuids

[00160] Uma formação de GUIDs descrevendo os vários formatos

suportados pelo dispositivo (por exemplo, WMV9, MPEG-2, etc.). A

memória é alocada pelo chamado, e deve ser liberada pelo chamador

usando CoTaskMemFree.

3.4.3 GetDistanceMetrics

HRESULT GetDistanceMetrics(

[out] UINT32* pCount,

(out, unique, size_is(*pCount)] GUID** pGuids

);

Parâmetros

pCount

Petição 870190049427, de 27/05/2019, pág. 50/92

48/78

[00161] Valor de retorno descreve o tamanho da formação de

pGuids (próximo parâmetro) retornado pela função.

pGuids

[00162] Uma formação de GUIDs descrevendo as várias métricas

de pesquisa suportadas pelo dispositivo para estimativa do movimen­

to. A memória é alocada pelo chamado e é liberada pelo chamador

usando CoTaskMemFree.

Valores de retorno

S_OK

[00163] Função foi bem-sucedida

E_OUTOFMEMORY

[00164] Função foi incapaz de alocar memória para retornar a lista

de GUIDs

E_FAIL

[00165] Incapaz de determinar a métrica suportada por causa de

algum erro de dispositivo.

3.4.4 GetSearchProfiles

HRESULT GetSearchProfiles(

[out] UINT32* pCount,

(out, unique, size_is(*pCount)] VA2_Encode_Search-

Profile** pSearchProfiles

);
Parâmetros

pCount

[00166] Valor de retorno descreve o tamanho da formação de

pGuids (próximo parâmetro) retornado pela função.

pSearchProfiles

[00167] Uma formação de GUIDs representando os perfis de pes­

quisa suportados pelo dispositivo. Os perfis de pesquisa permitem tro­

cas de qualidade-tempo de aplicação do codec mais efetivamente. A

Petição 870190049427, de 27/05/2019, pág. 51/92

49/78

memória é alocada pelo chamado e é liberada pelo chamador usando

CoTaskMemFree.

Valores de retorno

S_OK

[00168] Função foi bem-sucedida

E_OUTOFMEMORY

[00169] Função foi incapaz de alocar memória para retornar a lista

de GUIDs

E_FAIL

[00170] Incapaz de determinar os perfis de pesquisa suportados por

causa de algum erro de dispositivo.

3.4.5 GetMECapabilities

HRESULT GetMECapabilities(

[out] VA2_Encode_MECaps* pMECaps

);
Parâmetros

pMECaps

[00171] Um ponteiro para as capacidades de estimativa do movi­

mento do dispositivo. Isso inclui informação sobre o tamanho da ima­

gem que o dispositivo pode manipular, o máximo tamanho de janela

de pesquisa e se o dispositivo suporta tamanhos de macrobloco variá­

veis. A memória para isso é alocada pelo chamador.

Valores de retorno

S_OK

[00172] Função foi bem-sucedida

E_FAIL

[00173] Função falhou devido a algum erro de dispositivo.

3.4.6 CreateVideoEncoder

[00174] Essa função cria uma instância de IVideoEncoder.

HRESULT CreateVideoEncoder(

Petição 870190049427, de 27/05/2019, pág. 52/92

50/78

[in] REFGUID PipelineGuid,

[in] REFGUID FormatGuid,

[in] UINT32 NumStreams,

[in] VA2_Encode_StaticConfiguration* pConfiguration,

[in, size_is(NumStreams)] VA2_Encode_StreamDescrip-tion*

pStreamDescription,

[in, size_is(NumStreams)] VA2_Encode_Allocator* Sug-

gestedAllocatorProperties,

[out, size_is(NumStreams)] VA2_Encode_Allocator* pAc-

tualAllocatorProperties,

[out] IVideoEncoder** ppEncode

);
Parâmetros

PipelineGuid

[00175] Um GUID representando a configuração de canalização

desejada. A lista de configurações é obtida através de GetCapabilities,

e cada um dos GUIDs é associado com a documentação pública que

descreve detalhes necessários sobre a configuração.

FormatGuid

[00176] Um GUID representando o formato do fluxo de bits codifi­

cado eventual. Muitas das operações de codificação como transforma­

ção e quantização têm elementos de formato específico para elas.

Embora esses elementos de formato específico possam ser manipula­

dos pela CPU com velocidade suficiente, a troca de informação preci­

sará do uso de estágios extras de canalização e tornará mais difícil

obter alta eficiência da canalização.

NumStreams

[00177] Número de fluxos de dados de entrada e saída associados

com a configuração da canalização. Isso é implicado pelo GUID da

canalização em muitos casos.

Petição 870190049427, de 27/05/2019, pág. 53/92

51/78

pConfiguration

[00178] Um ponteiro para as propriedades de configuração estática.

pStreamDescription

[00179] Uma formação de estruturas, uma por fluxo, que descreve

os dados fluindo através desse fluxo.

SuggestedAllocatorProperties

[00180] O chamador (aplicação do codec) sugere um certo número

de armazenamentos temporários (superfícies) a serem associados

com os fluxos diferentes com base no seu projeto de canalização.

pActualAllocatorProperties

[00181] O acionador especifica o tamanho de fila do alocador atual

com base nos recursos que ele é capaz de reunir e outras considera­

ções. A suposição é que a aplicação abortará o uso dessa interface se

ela não pode construir uma canalização eficiente com o armazena­

mento temporário (tamanho de fila do alocador) disponível.

ppEncode

[00182] Objeto do codificador de saída. O chamador deve conside­

rar isso para ser um objeto COM regular a ser liberado através de

IUnknown::Release.

Valores de retorno

S_OK

[00183] Função bem-sucedida.

E_FAIL

[00184] Função falha (provavelmente por carência de recursos)

3.5 Estruturas de dados: Data Structures: IVideoEncoderService

3.5.1 VA2 Encode MECaps

typedef struct_VA2_Encode_MECaps

BOOB VariableM13SizeSupportedr

BOOL MotionvectorHintSupported;

UINT16 MaxSearchWindowX;

Petição 870190049427, de 27/05/2019, pág. 54/92

52/78

UINT16 MaxSearchWindowY;

UINT32 MaxlmageWidth;

UINT32 MaxlmageHeight;

UINT32 MaxMBSizeX;

UINT32 MaxMBSizeY;

1 VA2_Encode_MECaps;

Elementos

Yana bleMBSizeSupported

[00185] Um valor de um indica que o hardware suporta tamanhos

de macrobloco variáveis quando executando estimativa de movimento.

Em particular, se tamanhos de macrobloco variáveis são suportados, é

legal que o chamador dessa API ajuste ConstantMBSize para zero na

estrutura VA2_Encode_MBDescription, e use o parâmetro pMBRectan-

gles para descrever a partição da imagem.

Motion VectorHintSupported

[00186] Um valor de um indica que o hardware é capaz de usar al­

guns palpites do chamador no seu algoritmo de pesquisa de movimen­

to. Em particular, o chamador pode ajustar os elementos HintX e HintY

de VA2_Encode_ModeType que é um parâmetro de configuração do

Execute.

MaxSearch WindowX

[00187] Valor legal máximo de SearchWindowX, um elemento de

VA2_Encode_SearchBounds, que é um parâmetro de configuração de

estimativa de movimento.

MaxSearch Window I'

[00188] Valor legal máximo de SearchWindowY, um elemento de

VA2_Encode_SearchBounds, que é um parâmetro de configuração de

estimativa de movimento.

MaximageWidth

[00189] Largura máxima permitida da imagem de entrada.

Petição 870190049427, de 27/05/2019, pág. 55/92

53/78

MaximageHeigh t

[00190] Altura máxima permitida da imagem de entrada.

MaxMBSizeX

[00191] Largura máxima permitida do macrobloco.

MaxMBSizeY

[00192] Altura máxima permitida do macrobloco.

3.5.2 VA2Encode StaticConfiguration

typedef struct_VA2_Encode_StaticConfiguration (

GUID TransformOperator;

GUID Pixelinterpolation;

GUID Quantization;

UINTB NumMotionVectorsPerMB;

VA2_Encode MVLayout MVLayout

VA2_Encode__ResidueLayout ResLayout;

} VA2_Encode_StaticConfiguration;

Elementos

Transform Operator

[00193] Um GUID representando o operador da transformação - um

de MPEG-2 DCT, transformação WMV9, etc.

PixelInterpolation

[00194] Um GUID representando o esquema de interpolação de

sub-pixel a ser usado. Os sistemas de interpolação bicúbico e bilinear

têm um número de coeficientes que são específicos do formato.

Quantization

[00195] Um GUID representando o esquema de quantização a ser

usado.

NumMotion VectorsPerMB

[00196] O número de vetores de movimento a ser calculado por

macrobloco. As configurações de canalização simples suportadas por

versões anteriores dessa interface podem exigir que esse valor seja

Petição 870190049427, de 27/05/2019, pág. 56/92

54/78

um.

MVLayout

[00197] O leiaute da superfície do vetor de movimento.

ResidueLayout

[00198] O leiaute da superfície de resíduo.

3.5.3 VA2Encode Allocator

typedef struct_VA2_Encode_Allocator {

BOOL Externa1Allocator;

UINT32 NumSurfaces;

} VA2 EncodeAllocator;

Elementos

ExternalAllocator

[00199] Falso indica que armazenamentos temporários são obtidos

através de GetBuffer enquanto verdadeiro indica que os armazena­

mentos temporários são obtidos via um alocador externo, ou que não

existe alocador associado com o fluxo em questão. A configuração da

canalização força o valor desse campo em muitos casos (freqüente-

mente para zero). Uma exceção notável está no fluxo da imagem de

entrada que pode vir de um alocador externo.

NumSurfaces

[00200] Número de superfícies a serem associadas com a fila do

alocador.

3.5.4 VA2Encode StreamDescription

typedef struct_VA2_Encode_StreamDescription {

UINT32 Length;

UINT32 StreamType;

} VA2_Encode_StreamDescription;

Elementos

Length

[00201] Comprimento de toda a estrutura usada para validar este-

Petição 870190049427, de 27/05/2019, pág. 57/92

55/78

reótipos e permitir a extensibilidade.

StreamType

[00202] Descreve o tipo de dados associados com esse fluxo. Usa­

do para estereotipar.

Observações

[00203] Essa estrutura de base é estereotipada para um tipo deri­

vado no campo StreamType. Os estereótipos são descritos na docu­

mentação para VA2_Encode_StreamType.

3.5.5 VA2Encode StreamType

#define VA2_Encode_StreamType Video0x1

#define VA2_Encode_StreamType_MV0x2

#define VA2_Encode_StreamType_Residues0x3

Descrições de tipo

VA 2Encode StreamType_Video

[00204] A estrutura de descrição de fluxo associada pode ser mode­

lada para VA2_Encode_StreamType MV

[00205] A estrutura de descrição de fluxo associada pode ser mode­

lada para VA2_Encode_Stream_Type_Residues

[00206] A estrutura de descrição de fluxo associada pode ser mode­

lada para VA2_Encode_Stream_Type_Residues.

3.5.6 VA2Encode StreamDescription Video

typedef struct_VA2_Encode_StreamDescription {

UINT32 Length;

UINT32 StreamType;

VA2_VideoDesc_VideoDescription;

} VA2_Encode_StreamDescription;

Elementos

Length

[00207] Comprimento de toda a estrutura usada para validar este­

reótipos e permitir a extensibilidade.

Petição 870190049427, de 27/05/2019, pág. 58/92

56/78

StreamType

[00208] Descreve o tipo de dados associados com esse fluxo. Usa­

do para estereotipar.

VideoDescription

[00209] Descreve várias propriedades do fluxo de vídeo incluindo

as dimensões, taxa de quadros, primários de cor, etc.

3.5.7 VA2Encode StreamDescription MV

typedef struct_VA2_Encode_StreamDescription {

UINT32 Length;

UINT32 StreamType;

VA2_Encode_MVT ype_MVT ype;

VA2_Encode_MVLayout_MVLayout;

} VA2_Encode_StreamDescription;

Elementos

Length

[00210] Comprimento de toda a estrutura usada para validar este­

reótipos e permitir a extensibilidade.

StreamType

[00211] Descreve o tipo de dados associados com esse fluxo. Usa­

do para estereotipar.

MVType

[00212] Descreve o tipo de estrutura do vetor de movimento usado

para retornar dados de movimento. Usado na interpretação dos conte­

údos da superfície do vetor de movimento.

MVLayout

[00213] Descreve como as estruturas do vetor de movimento para

uma dada imagem de entrada são dispostas na memória.

3.5.8 VA2Encode StreamDescriptionResidues

typedef struct_VA2_Encode_StreamDescription {

UINT32 Length;

Petição 870190049427, de 27/05/2019, pág. 59/92

57/78

UINT32 StreamType;

VA2_Encode_SamplingT ype_SamplingT ype;

UINT32 LumaWidth;

UINT32 LumaHeight;

UINT32 ChromaCbWidth;

UINT32 ChromaCbHeight;

UINT32 ChromaCrWidth;

UINT32 ChromaCrHeight;

} VA2_Encode_StreamDescription;

Elementos

Length

[00214] Comprimento de toda a estrutura usada para validar este­

reótipos e permitir a extensibilidade.

StreamType

[00215] Descreve o tipo de dados associados com esse fluxo. Usa­

do para estereotipar.

SamplingType

[00216] Especifica se os dados de resíduos são 4:4:4, 4:2:2, etc.

LumaWidth

[00217] Largura da superfície de brilho.

LumaHeight

[00218] Altura da superfície de brilho.

ChromaCbWidth

[00219] Largura da superfície contendo os valores de resíduo Cb.

ChromaCbHeight

[00220] Altura da superfície contendo os valores de resíduo Cb.

ChromaCrWidth

[00221] Largura da superfície contendo os valores de resíduo Cr.

ChromaCbHeight

[00222] Altura da superfície contendo os valores de resíduo Cr.

Petição 870190049427, de 27/05/2019, pág. 60/92

58/78

3.6 Estruturas de dados: Vetores de movimento

3.6.1 Leiaute do vetor de movimento

[00223] A figura 9 mostra dados do vetor de movimento exemplar

armazenados em uma superfície D3D, de acordo com uma modalida­

de. Cada uma das células descritas como “MV” é uma estrutura do ve­

tor de movimento. Representações diferentes são usadas dependendo

dos valores de VA2_Encode_MVType e VA2_Encode_MVLayout. As

estruturas reais e os leiautes são descritos abaixo.

3.6.2 Novos formatos D3D

typedef enum_D30FORMAT

{
D3DFMT_MOTIONVECTOR16 = 105,

D3DFMT_MOTIONVECTOR32 = 106,

D3DFMT_RESIDUE1 =107,

} D3DFORMAT;

[00224] Superfícies dos vetores de movimento e superfícies de re­

síduo são associadas com os novos tipos de formato D3D acima que

indicam o tamanho dos vetores de movimento individuais e resíduos.

Essa informação de tamanho é usada pelo acionador quando a aplica­

ção cria superfícies usando uma das APIs de superfície ou de criação

de recurso provida por. O indicador de recurso associado com as su­

perfícies de codificação é VA2_EncodeBuffer.

// Huffer Type

enum

{

VA2_EncodeBuffer = 7,

typedef struct_D3DDDI_RESOURCEFLAGS
{

union {

struct

Petição 870190049427, de 27/05/2019, pág. 61/92

59/78

{
UINTTextApil;// 0x20000000

UINTEncodeBufferl;// 0x40000000

DINTReservedl;// 0x80000000 };

UINTValue;

};
} D3DDDI_RESOURCEFLAGS;

3.6.3 VA2Encode MVSurface

[00225] Essa estrutura é efetivamente derivada de IDi-

rect3DSurface9 e transporta informação de estado que permite que

alguém interprete os conteúdos da superfície D3D embutida.

typedef struct_VA2_Encode_MVSurface {

IDirect3DSurface9*pMVSurface;

VA2_Encode_MVTypeMVType;

VA2_Encode_MVLayout MVLayout;

GUID DistanceMetric;

} VA2_Encode_MVSurface;

Elementos

pMVSurface

[00226] Ponteiro para uma superfície D3D contendo vetores de mo­

vimento.

MVType

[00227] Esse valor é usado para identificar a estrutura

(VA2_Encode_MotionVector8, etc.) com a qual interpretar os vetores

de movimento individuais.

MVLayout

[00228] Esse valor identifica como as estruturas individuais do vetor

de movimento são dispostas na superfície D3D.

DistanceMetric

[00229] Um GUID representando a métrica de distância usada para

Petição 870190049427, de 27/05/2019, pág. 62/92

60/78

medir a distância entre dois macroblocos. A métrica de distância é

usada para identificar o macrobloco mais próximo e, portanto, o vetor

de movimento ótimo.

3.6.4 VA2Encode MVType

[00230] Esse valor de enumeração é usado para decodificar os con­

teúdos da superfície D3D9 do vetor de movimento. Dependendo do

tipo do vetor de movimento, uma de várias estruturas de vetor de mo­

vimento diferentes é usada para interpretar os conteúdos da superfí­

cie.

typedef enum {

VA2_Encode MVType_Simple8,

VA2_Encode_MVType_Simplel6,

VA2_Encode_MVType_Extended8,

VA2_Encode_MVT ype_Extended16

} VA2_Encode_MVType;

Descrição

VA2_Encode_MVType_Sirnple8

[00231] A estrutura do vetor de movimento é VA2_Encode_ Mo-

tionVector8.

VA2 Encode_MVType_Sirnplel6

[00232] A estrutura do vetor de movimento é VA2_Encode_ Mo-

tionVector16.

VA2_Encode_MVT ype_Extended8

[00233] A estrutura do vetor de movimento é VA2_Encode_ Mo-

tionVectorEx8.

VA2_Encode_MVType_Extendedl6

[00234] A estrutura do vetor de movimento é VA2_Encode_ Mo-

tionVectorEx16.

3.6.5 VA2 Encode MVLayout

typedef enum {

Petição 870190049427, de 27/05/2019, pág. 63/92

61/78

VA2_Encode_MVLayout_A,

VA2_Encode_MVLayout_B,

VA2_Encode_MVLayout_C
} VA2_Encode_MVLayout;

Descrição

Tipo A

[00235] A superfície D3D real é uma formação de estruturas do ve­

tor de movimento indexadas pelo índice do macrobloco e índice da li­

nha.

Tipo B

[00236] Esse é um leiaute acondicionado onde o número de vetores

de movimento por macrobloco não é constante. Detalha TBD.

Tipo C

3.6.6 VA2Encode MotionVector8

typedef struct_VA2_Encode_MotionVector8 {

INTOx;

INTOy;

} VA2_Encode_MotionVector8;

Elementos

x

coordenada x do vetor de movimento.

y

coordenada y do vetor de movimento.

3.6.7 VA2 Encode MotionVectorl6

typedef struct VA2_Encode_MotionVectorl6 {

INT16 x;

INT16 Y;

} VA2_Encode_MotionVectorl6;

Elementos

x

Petição 870190049427, de 27/05/2019, pág. 64/92

62/78

coordenada x do vetor de movimento.

y
coordenada y do vetor de movimento.

3.6.8 VA2Encode MotionVectorEx8

typedef struct_VA2_Encode_MotionVectorEx8 {

INT8x;

INTBY;

UINT8 ImageIndex;

UINT8 Distance;

} VA2_Encode_MotionVectorEx8;

Elementos

x

coordenada x do vetor de movimento.

y

coordenada y do vetor de movimento.

ImageIndex

[00237] Um índice com base em zero na lista das imagens de refe­

rência que foi provido na chamada para os vetores ComputeMotion

Distance

[00238] a unidade de medição é especificada pelo campo Distan­

ceMetric de VA_Encode_MVSurface. Ela mede a distância do macro-

bloco atual com o macrobloco de referência citado pelo vetor de mo­

vimento real (x, y).

3.6.9 VA2 Encode MotionVectorExl6

typedef struct_VA2-Encode_MotionVectorExl6 {

INT16x;

INT16y;

UINT16 ImageIndex;

UINT16 Distance;

} VA2_Encode_MotionVectorExl6;

Petição 870190049427, de 27/05/2019, pág. 65/92

63/78

Elementos

x

coordenada x do vetor de movimento.

y
coordenada y do vetor de movimento.

ImageIndex

[00239] um índice com base em zero na lista das imagens de refe­

rência que foi provido na chamada para os vetores ComputeMotion

Distance

[00240] a unidade de medição é especificada pelo campo Distan­

ceMetric de VA_Encode_MVSurface. Ela mede a distância do macro-

bloco atual com o macrobloco de referência citado pelo vetor de mo­

vimento real (x, y).

3.7 Estruturas de dados: resíduos

[00241] A superfície do resíduo é uma formação de valores de nú­

mero inteiro assinados que são de dois bytes de comprimento - em

outras palavras, eles são do tipo INT16. Esse esquema parece ser

adequado em todos os casos de importância prática. Por exemplo,

MPEG-2 lida com 9 valores de resíduo de bit e H.264 lida com 12 resí­

duos de bit. Também, se os dados originais eram YUY2, os valores de

brilho ocupam um byte cada, e, portanto, os resíduos usam 9 bits (0 -

255 = -255). Além do que, a aplicação de uma transformação do tipo

DCT aumenta a exigência de dados para 11 bits por valor de resíduo.

Todos esses casos são manipulados adequadamente usando valores

de resíduo assinados de 2 bytes de comprimento.

[00242] A largura de uma superfície de resíduo é o número de valo­

res de resíduo em uma linha. Por exemplo, uma imagem progressiva

de 640x480 com amostragem 4:2:2 tem 640 valores de brilho e 320

valores de saturação por linha. O tamanho da superfície de brilho as­

sociada é 640x480x2 e essa da superfície de saturação é 320x480x2

Petição 870190049427, de 27/05/2019, pág. 66/92

64/78

bytes.

[00243] As superfícies do resíduo são criadas usando o indicador

de formato D3DFMT_RESIDUE16 e o tipo de recurso

VA2_EncodeBuffer.

3.7.1 Plano de brilho

[00244] A figura 10 mostra um diagrama exemplar indicando que a

largura da superfície de brilho iguala a imagem YCbCr original. Por

exemplo, uma imagem de 640x480 tem 480 valores de brilho por linha

e assim a largura da superfície de brilho é 480. Então, o tamanho da

superfície de brilho é 640x480x2 bytes.

[00245] Plano = VA2_Encode_Residue_Y

[00246] Amostragem = VA2_Encode_SamplingType_*

3.7.2 Saturação 4:2:2

[00247] A figura 11 mostra um diagrama exemplar indicando que o

número do valor de resíduo por linha de vídeo é metade com a largura

da imagem de vídeo original, de acordo com uma modalidade. Assim,

para uma imagem de 640x480, o número de valores de resíduo por

linha e, portanto a largura da superfície é 320.

[00248] Plano = VA2_Encode_Residue_U ou
VA_Encode_Residue_V

[00249] Amostragem = VA2_Encode_SamplingType 422

3.7.3 Saturação 4:2:0

[00250] Nesse cenário, a largura da superfície do resíduo é metade

da largura do quadro progressivo original, e a altura é metade também.

Assim, para uma imagem de 640x480, a própria superfície de satura­

ção seria de 320 de largura e 240 de comprimento.

[00251] Plano = VA2_Encode_Residue_U ou
VA_Encode_Residue_V

[00252] Amostragem = VA2_Encode_SamplingType 420

4 Documentação DDI exemplar

Petição 870190049427, de 27/05/2019, pág. 67/92

65/78

[00253] Dispositivos de extensão são um mecanismo de passagem

provido pelas interfaces VA a fim de adicionar nova funcionalidade

além das funções existentes de decodificador de vídeo e processador

de vídeo. Por exemplo, eles serão usados para suportar uma nova

função do codificador de vídeo.

[00254] Dispositivos de extensão agem como um funil não tipificado

através do qual a aplicação pode enviar/receber dados para/do acio-

nador. O significado dos dados é desconhecido para a pilha VA, e é

interpretado pelo acionador com base no parâmetro pGuid da chama­

da CreateExtensionDevice e o parâmetro da função de ExtensionExe­

cute.

[00255] A codificação VA usa o valor de GUID seguinte (o mesmo

que o uuid de IVideoEncoder):

{7AC3D93D-41FC-4c6c-A1CS-A875E4F57CA4}

DEFINE_GUID(VA_Encoder_Extension, Ox7ac3d93d, Ox4lfc,

Ox4c6c, Oxal, Oxcb, OxaB, 0x75, Oxe4, OxfS, Ox7c, Oxa4);

4.1 Enumeração e capacidades

[00256] Dispositivos de extensão são enumerados usando

FND3DDDIGETCAPS com o parâmetro de tipo sendo ajustado para

GETEXTENSIONGUIDCOUNT ou GETEXTENSIONGUIDS. A aplica­

ção do codec busca VA_Encoder_Extension na lista de guids de ex­

tensão retornada por GETEXTENSIONGUIDS para determinar se o

suporte da codificação VA está disponível.

4.1.1 FND3DDDLGETCAPS

typedef HRESULT

(APIENTRY *PFND3DDDI_GETCAPS)
(

HANDLE hAdapter,

CONST DIDDDIARG GETCAPS*

);

Petição 870190049427, de 27/05/2019, pág. 68/92

66/78

[00257] Quando consultando capacidades do dispositivo de exten­

são (o dispositivo do codificador), o GETEXTENSIONCAPS é usado

com a estrutura seguinte como pInfo na estrutura D3DDDIARG

GETCAPS.

4.1.2 VADDI QUERYEXTENSIONCAPSINPUT

typedef etruct_VADDI_QUERYEXTENSIONCAPSINPUT {

CONST GUID*pGuid;

UINTCapType;

VADDI_PRIVATEDATA*pPrivate;

} VADDI_QUERYEXTENSIONCAPSINPUT;

O parâmetro pGuid de

VADDI_QUERYEXTENSIONCAPSINPUT é ajustado para

VA_Encoder_Extension.

#define VADDI_Encode_Captype_Guids

VADDI_EXTENSION CAPTYPE MIN

#define VADDI_Encode_Captype_DietanceMetrics

VADDI_EXTENSION_ CAPTYPE_MIN + 1

#define VADDI_Encode_Captype_SearchProfiles

VADDI_EXTENSION _CAPTYPE_MIN + 2

#define VADDI_Encode_Captype_MECaps

VADDI_EXTENSION _CAPTYPE_MIN + 3

[00258] A saída de GETEXTENSIONCAPS é encapsulada no pa­

râmetro pData de D3DDDIARG_GETCAPS. O parâmetro pData é in­

terpretado como segue:

Captype_Guids: Type = (GUID *) . DataSize = sizeof(GUID)

* guid_count

Captype_DistanceMetrics: Type = (GUID *). DataSize =

sizeof(GUID) * quid count.

Captype_SearchProfiles: Type = (VADDI_Encode_

SearchProfile *) . DataSize = sizeof(VADDI_Encode_ SearchProftle).

Petição 870190049427, de 27/05/2019, pág. 69/92

67/78

Captype_MECaps: Type = (VADDI_Encode_MECaps). Da-

taSize = sizeof(VADDI Encode MECaps).

4.1.3 D3DDDIARG CREATEEXTENSIONDEVICE

[00259] A criação real acontece através de uma chamada D3DDDI

CREATEEXTENSIONDEVICE, cujo argumento primário é mostrado

abaixo:

typedef struct_D3DDDIARG_CREATEEXTENSIONDEVICE

{
CONST GUID**pGuid;

VADDI_PRIVATEDATA*pPrivate;

HANDLEhExtension;

} D3DDDIARG_CREATEEXTENSIONDEVICE;

4.2 Funcionalidade de codificação

[00260] As funções da unidade de extensão reais são invocadas

através de uma chamada D3DDDI EXTENSIONEXECUTE. A instância

da unidade de extensão já está associada com um GUID, então o tipo

da unidade de extensão já é conhecido quando a chamada de execu­

ção é feita. O único parâmetro adicional é Function que indica a ope­

ração particular a executar. Por exemplo, um dispositivo de extensão

do tipo codificador pode suportar MotionEstimation como uma de suas

funções. Tipicamente, o dispositivo de extensão terá uma função Get-

Caps sua própria que enumera as capacidades do dispositivo de ex­

tensão.

typedef struct_D3DDDIARG_EXTENSIONEXECUTE

{

HANDLEhExtension;

UINTFunction;

VADDI_PRIVATEDATA*pPrivateInput;

VADDI_PRIVATEDATA*pPrivateOutput;

UINTNumBuffers;

Petição 870190049427, de 27/05/2019, pág. 70/92

68/78

VADDI_PRIVATEBUFFER*pBuffers;

} D3DDDIARG_EXTENSIONEXECUTE;

[00261] O parâmetro pBuffers não é usado pela codificação VA e

deve ser considerado um parâmetro reservado. O parâmetro Function

adota os seguintes valores para codificação VA:

#define VADDI_ Encode_Function_Execute 1

[00262] Os parâmetros pPrivatelnput e pPrivateOutput de

D3DDDIARG_EXTENSIONEXECUTE são usados para encapsular os

parâmetros da chamada da API de execução. Os parâmetros específi­

cos da codificação embutidos nos parâmetros de entrada e saída

abaixo ainda não foram mapeados da região da API para a região da

DDI - mas isso é apenas uma questão de renome, e nós poderíamos

ser capazes de gerenciar com uma única definição.

4.2.1 VADDI EncodeFunction Execute Input

[00263] Esse parâmetro contém os parâmetros de entrada para a

chamada da API de execução.

typedef struct_VADDI_Encode_Function_Execute_Input

{
UINT32 NumDataParameters;

VA2_Encode_ExecuteDataParameter** pData;

UINT32 NumConfigurationParameters;

VA2_Encode_ExecuteConfigurationParameter** pConfigu-

ration;

} VADDI_Encode_Function_Execute_Input;

4.2.2 VADDI EncodeFunction Execute Output

[00264] Essa estrutura encapsula os dados de saída da chamada

de execute.

typedef struct_VADDI_Encode_Function_Execute_Output

{

UINT32 NumDataParameters;

Petição 870190049427, de 27/05/2019, pág. 71/92

69/78

VA2_Encode_ ExecuteDataParameter** pData;

} VADDI_Encode_Function_Execute_Output;

4.3 Estruturas do dispositivo de extensão

[00265] As seções seguintes descrevem várias estruturas e as

chamadas de autenticação de função associadas com o mecanismo

de extensão VA.

4.3.1 VADDI PRIVATEBUFFER

typedef struct -VADDI_PRIVATEBUFFER {

HANDLEhResource;

UINTSubResourceIndex;

UINTDataOffset;

UINTDataSize;

} VADDI_PRIVATEBUFFER;

typedef struct _VADDI_PRIVATEDATA {

VOID*pData;

UINTDataSize;

} VADDI_PRIVATEDATA;

4.3.2 D3DDDIARG EXTENSIONEXECUTE

typedef struct _D3DDDIARG_EXTENSIONEXECUTE {

HANDLEhExtension;

UINTFunction;

VADDI_PRIVATEDATA*pPrivate2nput;

VADDI_PRIVATEDATA*pPrivateOUtpUt;

UINTNumBuffers;

VADDI_PRIVATEBUFFER*pBuffers;

} D3DDDIARG_EXTENSIONEXECUTE;

typedef HRESULT

(APIENTRY *PFND3DDDI-CREATEEXTENSIONDEVICE)

{

HANDLE hDevice,

Petição 870190049427, de 27/05/2019, pág. 72/92

70/78

D3DDDIARG_CREATEEXTENSIONDEVICE*

};
[00266] O parâmetro hDevice se refere a um dispositivo D3D9, e

ele é criado usando uma chamada para D3DDDI_CREATEDEVICE.

4.3.3 FND3DDDIDESTROYEXTENSIONDEVICE

typedef HRESULT

(APIENTRY

*PFND3DDDI_DESTROYEXTENSIONDEVICE)

(
HANDLE hDevice,

HANDLE hExtension

);

4.3.4 FND3DDDIEXTENSIONEXECUTE

typedef HRESULT

(

(APIENTRY *PFND3DDDI_EXTENSIONEXECUTE)

HANDLE hDevice,

CONST D3DDDIARG_EXTENSIONEXECUTE*

);

4.3.5 D3DDDI DEVICEFUNCS

typedef struct _D3DDDI DEVICEFUNCS

{
PFND3DDDI_CREATEEXTENSIONDEVICEpfnCreateEx-

tensionDevice;

PFND3DDDI_DESTROYEXTENSIONDEVICEpfnDe-

stroyExtensionDevice;

PFND3DDDI_EXTENSIONEXECUTEpfnExtensionExecute;

} D3DDDI_DEVICEFUNCS;

4.4 Estruturas e funções D3D9

[00267] As estruturas D3D seguintes e a chamada de autenticação

Petição 870190049427, de 27/05/2019, pág. 73/92

71/78

representam um mecanismo D3D genérico para obter as capacidades

de um dispositivo de extensão.

typedef enum_D3DDDICAPS_TYPE

{
D3DDDICAPS_GETEXTENSIONGUIDCOUNT=31,
D3DDDICAPS_GETEXTENSIONGUIDS=32,

D3DDDICAPS_GETEXTENSIONCAPS=33,

} D3DDDICAPS_TYPE;

typedef struct _D3DDDIARG_GETCAPS

{

D3DDDICAPS_TYPEType;

VOID*plnfo;

VOID*pData;

UINTDataSize;

} D3DDDIARG_GETCAPS;
5 Modelo de programação exemplar

5.1 Eficiência da canalização

[00268] A fim de obter máxima eficiência, a aplicação do codificador

é estruturada em uma tal maneira que ambos a CPU, bem como o

hardware gráfico são totalmente utilizados. Assim, enquanto a estima­

tiva do movimento está em progresso para um certo quadro, poderia

ser benéfico executar a etapa de quantização em um quadro diferente.

[00269] A obtenção da utilização completa do hardware é facilitada

com um codificador de múltiplos encadeamentos.

5.1.1 Exemplo: vetor de movimento único (canalização

completa)

[00270] A seguinte aplicação encadeada em 2 (em pseudocódigo)

ilustra uma maneira para o codificador implementar uma canalização

de software de 2 estágios, e oferece algumas orientações sobre como

usar as interfaces de codificação VA efetivamente. Em particular, ela

Petição 870190049427, de 27/05/2019, pág. 74/92

72/78

força um armazenamento temporário de k = AllocatorSize como obser­

vado no encadeamento do software. Isso responde pelo fato que exis­

te assincronismo na submissão de uma solicitação de hardware: o en-

cadeamento do hardware submete solicitações enquanto o encadea-

mento do software escolhe os resultados depois de um tempo e os

processa.

HardwareThread()

{
while (Streaming)

{

LoadFrame(pplnputBuffer[n));

Codec->ProcessInput(ppInputBuffer[n]); If blocking Get-

Buffer + Execute

}
SoftwareThread() {

k = AllocatorSize();

while (Streaming)

{

// k represents the buffer between pipeline stages Codec-

>ProcessOutput(ppOutputBuffer(n-k]); // Wait, ReleaseBuffar VLE();

Bitstream();

}

[00271] ProcessInput acima pode ser considerado um envoltório ao

redor de Execute e GetBuffer, enquanto ProcessOutput pode ser con­

siderado um envoltório ao redor de um evento de Esperar na execu­

ção, seguido com chamadas de ReleaseBuffer apropriadas.

[00272] Não é evidente como determinar o parâmetro k que repre­

senta o armazenamento temporário entre os estágios da canalização.

Ele representa o tamanho do alocador, e como um ponto de partida,

nós podemos usar o mesmo valor usado na negociação do alocador

Petição 870190049427, de 27/05/2019, pág. 75/92

73/78

entre o Codec e o objeto do codificador VA (o comprimento da fila). Se

k é maior do que o tamanho do alocador, então a chamada ProcessIn­

put é provável de bloquear de qualquer forma mesmo antes que os

armazenamentos temporários k sejam usados.

[00273] A meta da aplicação deve ser maximizar o tempo gasto no

SoftwareThread sem bloquear no ProcessOutput. Em outras palavras,

a aplicação deve estar funcionando nas funções VLE() e Bitstream()

na maior parte do tempo. Se o hardware é muito lento, então Proces-

sOutput() bloqueará a despeito do tamanho do alocador de “k”. O sof­

tware sempre estará “à frente”. A canalização acima é eficiente so­

mente até a extensão que o hardware leva aproximadamente tanto

tempo para processar um armazenamento temporário quanto o sof­

tware leva para executar VLE e o fluxo de bits. Tudo o que o armaze­

namento temporário de “k” consegue é preencher as instabilidades.

[00274] O fragmento de código seguinte mostra uma implementa­

ção esboçada de GetBuffer e ReleaseBuffer.

IVideoEncoder::GetBUffer(Type, ppBuffer, Blocking)

{
if (Empty)

{

if (Blocking) Wait(NotEmptyEvent);

else return STATUS_EMPTY;

}
*ppBuffer = pQueue(Type)[Head];

Head++;

if (Head == Tail)

{

Empty - 1;

ResetEvent(NotEmptyEvent);

}

Petição 870190049427, de 27/05/2019, pág. 76/92

74/78

return S_OK;

}
IVideoEncoder::ReleaseBuffer(Type, pBuffer)

{
if ((Tail == Head) && :Empty) return STATUS FULL;

pQueue[Type][Tail]pBuffer; Tail++;

if (Empty)

{

Empty = false;

SetEvent(NotEmptyEvent);

}

return S_OK;

}

[00275] O seguinte esboça a implementação do codec de Proces­

sInput e ProcessOutput:

// essa implementação está bloqueando contrária à semân­

tica normal

GetBuffer(TypeUncompressed, pYUVBuffer, true);

GetBuffer(TypeMotionVector, pMVBuffer, true);

GetBuffer(TypeResidues, pResidueBuffer, true);

memory(pYUVBuffer, pInput.Image);

Execute(pYUVBuffer, pMVBuffer, pResidueBuffer, pEvent);

CodecQueue.Enqueue(pYUVBuffer, pMVBuffer, pResi-

dueBuffer, pEvent);

Codec::ProceseOutput(IMediaBuffer pOutput)

{

if (CodecQueue.Empty())

{

pOutput.dwFlags = DMO_OUTPUT_DATABUFFERF_

INCOMPLETE;

Petição 870190049427, de 27/05/2019, pág. 77/92

75/78

return S,FALSE;

}
CodecQueue.Dequeue(pYUVBuffer, pMVBuffer, pResi-

dueBuffer, pEvent);

Wait(pEvent);

memory(pOutput.MVBuffer, pMVBUffar);

memory(pOutput.ResidueBuffer, pResidueBuffer);

Release8uffer(TypeUncompressed, pYUVBuffer);

ReleaseBuffer(TypeMotionvector, pMVBuffer);

ReleaseBuffer(TypeResidues, pResidueBuffer);

return S _OK;

}

[00276] Aqui é uma implementação alternada de Codec:: Proces­

sInput que é não bloqueadora como é a norma.

Codec:: ProcessInput(IMediaBuffEr pInput)

{
if (GetBuffer(TypeUncompreesed, pYUVBuffer, false) _=

STATUS_EMPTY)

{

return DMO_E_NOTACCEPTING;

}

if (GetBuffer(TypeMotionVector, pMVBuffer, false) _=

STATUS_EMPTY)

{

return DMO_E_NOTACCEPTING;

}

if (GetBuffer(TypeResidues, pResidueBuffer, false) ==

STATUS_EMPTY)

{

return DMO_E_NOTACCEPTING;

Petição 870190049427, de 27/05/2019, pág. 78/92

76/78

}
memory (pYUVBuffer, pInput.Image);

Execute(pYUVBuffer, pMVBuffer, pResidueBuffer, pEvent);

CodecQueue.Enqueue(pYUVBuffer, pMVBuffer, pResi-

dueBuffer, pEvent);

5.1.2 Exemplo: vetores de movimento múltiplos

[00277] Nessa seção, nós observamos uma canalização mais com­

plexa onde o codificador solicita múltiplos vetores de movimento do

hardware e escolhe um baseado nos vários parâmetros e os submete

novamente para processamento. O código seguinte simplesmente

continua a usar uma canalização de 2 estágios como antes, solicita

múltiplos vetores de movimento e submete novamente o melhor. Exis­

te seriação inerente envolvida nisso.

HardwareThread()

{
while (Streaming)

{

LoadFrame(ppInputBuffEr[n]);

ProcessInput(ppInputBuffer[n]);

}

}

ProcessOutput(ppOutputBuffer[n));

SelectMV(ppOutputBuffer[n], ppOutputBuffer2[n]);

ProcessInput2(ppOutputBuffer2[n]);

n++;

}

}

SoftwareThread()

{

while (Streaming)

Petição 870190049427, de 27/05/2019, pág. 79/92

77/78

{
ProcessOutput2(ppOutputBuffer2[n - k]);

VLE(ppOutputBuffer2[n - k]);

Bitstream(ppOutputBuffer2[n - k]);

}

}
[00278] No exemplo acima, o software será bloqueado em Proces­

sOutput e ProcessOutput2 metade do tempo, claramente ruim para a

eficiência da canalização. Por outro lado, a utilização da CPU será

muito baixa e a velocidade geral é ainda maior do que a codificação

não acelerada. Uma canalização de 3 estágios com base em 3 enca-

deamentos resolverá o problema de seriação como segue:

HardwareThread1()

{

while (Streaming)

{

LoadFrame(ppInputBuffer[n]);

Process Input(ppInputBuffer[n]);

}

}

HardwareThread2()

{

while (Streaming)

{

ProcessOutput(ppOutputBuffer[n - ki]);

SelectMV(ppOutputBuffer[n - kl]; ppOutputBuffer2[n - kl]);

ProcessInput2(ppOutputBuffer2[n - kl]);

}

}

SoftwareThread()

Petição 870190049427, de 27/05/2019, pág. 80/92

78/78

{
while (Streaming)

{

Processoutput2(ppoutputBuffer2[n - kl - k2]);

VLE(ppOutputBuffer2[n - kl - k2]);

Bitstream(ppOutputBuffer2[n - kl - k2]);

}

}
[00279] Desde que existem 3 estágios de canalização, armazena­

mento temporário adicional é adicionado para enchimento entre os

dois estágios do hardware. Portanto, os dois valores k1 e k2.

Petição 870190049427, de 27/05/2019, pág. 81/92

1/7

REIVINDICAÇÕES
1. Método pelo menos parcialmente implementado por um

ou mais processadores de um dispositivo de computação, o método

caracterizado pelo fato de que compreende as etapas de:

receber, por um serviço de aceleração de codificação de

vídeo implementado pelos um ou mais processadores do dispositivo

de computação, uma ou mais consultas de um codificador de vídeo

para identificar condições específicas de implementação do hardware

de aceleração;

responsivo à recepção das uma ou mais consultas, o servi­

ço de aceleração de codificação de vídeo:

fazer interface com o hardware de aceleração para obter as

condições específicas de implementação;

responsivo à recepção das condições específicas de im­

plementação, comunicar as condições específicas de implementação

para o codificador de vídeo; e

em que as condições específicas de implementação possi­

bilitam que o codificador de vídeo durante o tempo de execução:

(a) determine se uma ou mais de velocidade e qualidade

das operações de codificação de software associadas com o codifica­

dor de vídeo podem ser aumentadas com a implementação de uma

canalização de codificação particular das uma ou mais configurações e

capacidades de canalização de codificação suportadas; e

(b) implemente a canalização de codificação particular pela

interface com o serviço de aceleração de codificação de vídeo;

receber, pelo serviço de aceleração de codificação de ví­

deo, uma solicitação incluindo um conjunto de parâmetros de configu­

ração para criar um objeto de codificador que implementa a canaliza­

ção de codificação particular; e

responsivo à recepção da solicitação, criar o objeto com

Petição 870190049427, de 27/05/2019, pág. 82/92

2/7

base nos parâmetros de configuração, o objeto do codificador para co­

dificar dados de vídeo de origem decodificados usando a canalização

de codificação particular.

2. Método, de acordo com a reivindicação 1, caracterizado

pelo fato de que as operações de codificação de software compreen­

dem uma ou mais de estimativa do movimento, computação de resí­

duo, compensação de movimento e operações de transformação.

3. Método, de acordo com a reivindicação 1, caracterizado

pelo fato de que as operações de codificação de software compreen­

dem uma ou mais de redução do ruído, estabilização da imagem, de­

tecção de borda, nitidez e operações de conversão de taxa de qua­

dros.
4. Método, de acordo com a reivindicação 1, caracterizado

pelo fato de que as uma ou mais consultas compreendem uma con­

sulta de obter capacidades, e onde as condições específicas de im­

plementação recebidas incluem informação associada com as uma ou

mais configurações de canalização de codificação suportadas.

5. Método, de acordo com a reivindicação 1, caracterizado

pelo fato de que as uma ou mais consultas compreendem uma con­

sulta de obter métricas de distância, e onde as condições específicas

de implementação recebidas incluem uma descrição de uma ou mais

métricas de pesquisa suportadas pelo hardware de aceleração de co­

dificação de vídeo para operações de estimativa de movimento.

6. Método, de acordo com a reivindicação 1, caracterizado

pelo fato de que as uma ou mais consultas compreendem uma con­

sulta de obter perfis de pesquisa, e onde as condições específicas de

implementação recebidas incluem uma descrição de um ou mais perfis

de pesquisa suportados pelo hardware de aceleração de codificação

de vídeo, os um ou mais perfis de pesquisa permitindo que o codifica­

dor de vídeo avalie as permutas específicas da implementação entre

Petição 870190049427, de 27/05/2019, pág. 83/92

3/7

os tempos de processamento de codificação de vídeo e as métricas de

qualidade de codificação de vídeo.

7. Método, de acordo com a reivindicação 1, caracterizado

pelo fato de que a uma ou mais consultas compreendem uma consul­

ta de obter capacidades de estimativa de movimento, e onde as condi­

ções específicas de implementação recebidas incluem dados indican­

do um ou mais de tamanho máximo de imagem suportada, tamanho

máximo de janela de pesquisa suportada e uma indicação de se o

hardware de aceleração suporta tamanhos de macrobloco variáveis.

8. Método, de acordo com a reivindicação 1, caracterizado

pelo fato de que os parâmetros de configuração especificam um ou

mais dentre a canalização de codificação particular, um formato de sa­

ída para o vídeo codificado, um número de fluxos de dados de I/O para

associação com a canalização de codificação particular, propriedades

de configuração estática para interpolação de valores de brilho e satu­

ração, um número sugerido de armazenamentos temporários de dados

para os fluxos de dados de I/O e um tamanho de fila especificada pelo

acionador de dispositivo com base nos recursos disponíveis.

9. Método, de acordo com a reivindicação 1, caracterizado

pelo fato de que ainda compreende:

receber, pelo serviço de aceleração de codificação de ví­

deo, solicitações de execução e um conjunto de parâmetros do codifi­

cador de vídeo, as solicitações de execução correspondendo com ope­

rações associadas com a canalização de codificação particular para

codificar os dados de vídeo de origem decodificados,

responsivo à recepção das solicitações de execução, o ser­

viço de aceleração de codificação de vídeo:

comunicar as solicitações de execução e os parâmetros pa­

ra o hardware de aceleração;

receber respostas associadas com as solicitações de exe-

Petição 870190049427, de 27/05/2019, pág. 84/92

4/7

cução comunicadas do hardware de aceleração; e

enviar as respostas para o codificador de vídeo.

10. Método, caracterizado pelo fato de que compreende

as etapas de:

comunicar, por um módulo de programa de codificador de

vídeo implementado por um ou mais processadores configurados com

instruções executáveis, uma ou mais solicitações para um serviço de

aceleração de codificação de vídeo para identificar capacidades de

uma ou mais das configurações de canalização de codificação de ví­

deo e capacidades suportadas pelo hardware de aceleração; e

responsivo à recepção das capacidades do serviço de ace­

leração de codificação de vídeo, o codificador de vídeo:

identifica, com base nas capacidades, uma ou mais opera­

ções de codificação de vídeo associadas com o codificador de vídeo

que se beneficiará de uma ou mais de velocidade e qualidade se im­

plementadas pelo hardware de aceleração;

solicita, pelo codificador de vídeo, o serviço de aceleração

de codificação de vídeo para criar uma canalização de codificação de

vídeo personalizada para implementar as uma ou mais operações de

codificação de vídeo via o hardware de aceleração, tal que quaisquer

operações de codificação de vídeo restantes são implementadas em

software; e

direciona o serviço de aceleração de codificação de vídeo

para criar a canalização de codificação de vídeo personalizada tal que

o fluxo de dados entre a memória do sistema e a memória do disposi­

tivo gráfico é minimizado.
11. Método, de acordo com a reivindicação 10, caracteri­

zado pelo fato de que as uma ou mais operações de codificação de

vídeo compreendem uma ou mais de estimativa do movimento, com­

putação de resíduo, compensação de movimento e operações de

Petição 870190049427, de 27/05/2019, pág. 85/92

5/7

transformação.

12. Método, de acordo com a reivindicação 10, caracteri­
zado pelo fato de que as uma ou mais operações de codificação de

vídeo compreendem uma ou mais de redução de ruído, estabilização

da imagem, detecção de borda, nitidez e operações de conversão de

taxa de quadros.

13. Método, de acordo com a reivindicação 10, caracteri­
zado pelo fato de que ainda compreende:

receber, pelo codificador de vídeo, dados de vídeo de ori­

gem codificados ou decodificados; e

se os dados de vídeo de origem recebidos estão codifica­

dos, pelo menos parcialmente decodificar, pelo codificador de vídeo,

os dados de vídeo de origem para gerar dados de vídeo de origem de­

codificados para a codificação por um objeto de codificação criado pe­

lo serviço de aceleração de codificação de vídeo, o objeto de codifica­

ção implementando a canalização de codificação de vídeo personali­

zada.

14. Método, de acordo com a reivindicação 10, caracteri­
zado pelo fato de que ainda compreende codificar dados de vídeo de

origem decodificados usando a canalização de codificação de vídeo

personalizada.

15. Dispositivo de computação, caracterizado pelo fato de

que compreende:

um processador acoplado a uma memória; e

um módulo mantido na memória e executado no processa­

dor para implementar um serviço de aceleração de codificação de ví­

deo para:

receber uma ou mais consultas de um codificador de vídeo,

as uma ou mais consultas solicitando que o serviço de aceleração de

codificação de vídeo identifique condições específicas de implementa­

Petição 870190049427, de 27/05/2019, pág. 86/92

6/7

ção do hardware de aceleração, as condições específicas de imple­

mentação para possibilitar que o codificador de vídeo:

(a) determine se uma ou mais dentre velocidade e qualida­

de das operações de codificação de software associadas com o codifi­

cador de vídeo podem ser aumentadas com implementação de uma

canalização de codificação particular de uma ou mais configurações e

capacidades de canalização de codificação suportadas, e

(b) implemente a canalização de codificação particular via o

serviço de aceleração de codificação de vídeo para codificar dados de

vídeo de origem decodificados;

consultar o hardware de aceleração para obter as condi­

ções específicas de implementação;

comunicar as condições específicas de implementação re­

cebidas do hardware de aceleração para o codificador de vídeo;

receber uma solicitação de criar objeto de codificador do

codificador de vídeo para criar um objeto de codificador que implemen­

ta a canalização de codificação particular;

receber uma ou mais solicitações de execução do codifica­

dor de vídeo para implementar operações associadas com a canaliza­

ção de codificação particular no hardware de aceleração; e

enviar a informação associada com as uma ou mais solici­

tações de execução para o hardware de aceleração para codificar os

dados de vídeo de origem decodificados.

16. Dispositivo de computação, de acordo com a reivindica­

ção 15, caracterizado pelo fato de que as operações de codificação

de software compreendem uma ou mais de estimativa de movimento,

computação de resíduo, compensação de movimento e operações de

transformação.

17. Dispositivo de computação, de acordo com a reivindica­

ção 15, caracterizado pelo fato de que as operações de codificação

Petição 870190049427, de 27/05/2019, pág. 87/92

7/7

de software compreendem uma ou mais de redução de ruído, estabili­

zação de imagem, detecção de borda, nitidez e operações de conver­

são de taxa de quadros.

Petição 870190049427, de 27/05/2019, pág. 88/92

1

Dispositivo de Computação Hospedeiro 102

100
Processador (es)
Hospedeiro (s)

104 103

Memória do Sistema
Módulos de Programa

Hardware de
Aceleração Memória

132

106

108

Módulos de Processamento de Vídeo 112
Módulo do Codificador de Vídeo

(por exemplo, uma aplicação de terceiros
da arquitetura arbitrária, etc)

116

Dados de Vídeo
- de Entrada —

122

Serviço de Codificação de Vídeo Acelerado
118

Outros Módulos de Processamento
por exemplo, decodificador, filtros, renderização, etc)

120

VA
APIs
128

Outros Módulos de Programa 1*14
(por exemplo, sistema operacional, acionadores

de dispositivo, etc.)

Dados do Programa 0

Dados de Vídeo Codificados
126

Outros Dados de Programa
(por exemplo, dados de vídeo de origem deco­
dificados, objeto(s) do codificador, consultas,
respostas, condições específicas de implemen­
tação do hardware de aceleração, configuração
de canalização de codificação de vídeo sele­
cionada, armazenamento(s) temporário(s) alo-
cado(s), perfis de pesquisa, metadados, etc.)

124

2

200

3

300

3

4

VP = IDIrectXVIdeoProcessar

5

Imagem de
Entrada

I DirectXVideoEncoder

Imagens de
Referência

Vetores de
Movimento
Resíduos

Imagem
Decodificada

Vetores de
Movimento

Janela de

Superfície da Imagem

Parâmetros de Estimativa
do Movimento

7

6

%

N
úm

ero da Linha C
rescente

índice de pixel Crescente

•9 Largura do Resíduo = 2

c c

Avanço = Metade da Largura de imagem

10

7

índice de pixel Crescente

N
úm

ero da Linha C
rescente

* Largura do Resíduo = 2

Metade da Largura de imagem

M
etade da A

ltura da im
agem

11

