PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

GOGF 9728, 19/00, 11/00 Al

(11) International Publication Number:

(43) International Publication Date:

WO 95/23373

31 August 1995 (31.08.95)

(21) International Application Number: PCT/US95/02229

(22) International Filing Date: 23 February 1995 (23.02.95)

(30) Priority Data:

08/203,191 28 February 1994 (28.02.94) us
08/229,609 19 April 1994 (19.04.94) Us
08/377,610 25 January 1995 (25.01.95) Us

(71) Applicant: TELEFLEX INFORMATION SYSTEMS, INC.
[US/US]; Suite 100, 7736 Mc Cloud Road, Greensboro, NC
27408 (US).

(72) Inventors: PETERS, Michael, S.; 2312 North Elm Street,
Grennsboro, NC 27408 (US). HOLT, Clayton, Walter;
2205 New Garden Road, Grennsboro, NC 27408 (US).
ARNOLD, David, J., Jr.; 361 Worth Street, Asheboro, NC
27203 (US).

(74) Agents: LOBSENZ, Charles, B. et al.; Baker & Botts,
LLP., The Warner, 1299 Pennsylvania Avenue, N.W.,
Washington, DC 20004 (US).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH,
CN, CZ, DE, DK, EE, ES, Fl, GB, GE, HU, JP, KE, KG,
KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW,
MX, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
TJ, TT, UA, UG, UZ, VN, European patent (AT, BE, CH,
DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE),
OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR,
NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: NO-RESET OPTION IN A BATCH BILLING SYSTEM

(57) Abstract

A system and method for processing a batch
which is distributed into a plurality of independent
segments. A preferred embodiment of this invention
calls for implementation on a symmetrical multipro-
cessing platform, however, the invention is also ap-
plicable to massively paralle] architectures as well as
uniprocessor environments. The batch is broken into
segments, wherein each segment comprises a plural-
ity of discrete events, each discrete event comprising
a plurality of sub-events to be processed (steps 502-
510). The system operates to process each discrete
event within each segment sequentially and each sub-
event within each discrete event sequentially. The
system and method provide for the reprocessing of a
failed segment without requiring reprocessing of the
entire batch (steps 518, 800, 802).

m—

A

516~ ives

WAIT FOR A SEGMENT

TO COMPLETE
800
518 RE-IrGTIALIZE
DID SEGMENT SEGMENT DATA
COMPLETE W/0 TO ORIGINAL
ERROR? VALUES
520
802
ARE SEGMENTS RE-FORK |/
STILL RUNNING? SEGMENT

522 N\

COMBINE STORED SUMMARY
REPORTING INFORMATION
INTO REPORTS AND INVOICES

524
\] END

applications under the PCT.

AT

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Treland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

MR
MW
NE
NL
NO

PL

RO
RU
SD
SE
SI

SK
SN

TG
T

UA
us
vz

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

WO 95/23373 PCT/US95/02229

10

15

20

25

NO-RESET OPTION IN A BATCH BILLING SYSTEM
FIELD OF THE INVENTION

This invention relates generally to batch processing and more
particularly to batch processing on a symmetrical multiprocessing (SMP)
system. This invention has particular application to the batch processing of
customer account information in order to perform periodic customer billing.
BACKGROUND OF THE INVENTION

There currently exist systems for customer billing in industries
wherein a large number of customers are billed periodically based upon
monthly (recurring) charges as well as dynamic use related (non-recurring)
charges. Of interest in the design of such systems is the flexibility with
which such systems can adjust to changes in such variables as billing
structure, tax rates, bill formatting and incentive program implementation.
Also of great importance in these systems is the ability to service an
increasing number of customers as time progresses.

In a typical billing systems, the system should be designed to
interface with peripheral devices and applications providing customer usage
data from a variety of sources. In addition, such systems usually allow an
employee of the billing company to interact with the system to, for example,
specify the time, format and nature of invoice generation.

One example of an industry in which such a billing system is
an important part of day to day operations is the cellular
telephone /telecommunications industry. In recent years communication via
cellular telephones has grown explosively. The requirement for convenient
communications has become the norm in business as well as residential
markets. Cellular telephones are found everywhere from automobiles and
restaurants to golf courses and airplanes. In meeting the challenge of
providing quality cellular services to this ever expanding subscriber base, the

cellular telecommunications industry has identified a number of issues

WO 95/23373 PCT/US95/02229

10

15

20

25

2

which need to be addressed in order to maintain and/or improve customer
relations.

A primary concern for a cellular carrier is its ability to
provide accurate and easily understood billing statements so that customers
will respond promptly with payment and so that customer service
interactions may be minimized. In order to achieve this objective, it is
often desirable for a cellular carrier to implement such a billing system as
a high-volume application with the ability to communicate with applications
providing for customer service data entry and retrieval as well as automated
data collection mechanisms such as a switch for monitoring customer calls,
airtime and toll information. In addition, the overall system may provide
fraud detection capabilities, security controls, sales and marketing support,
funds collection support and message processing.

Customer service data and applications are generally provided
on-line to customer service agents. Typically, the bill summary, bill detail,
current balance, payment and adjustment information are available on-line.
An agent can view customer information by querying on virtually any field
in the database. Customer account information can be altered through
customer update screens.

Fraud in areas such as subscription, airtime and roaming
fraud have cost the cellular industry millions of dollars over the course of
just a few years. In response to this problem a number of security controls
have recently been developed for use by the industry. Such security
controls include electronic switching networks (ESN’s), identification by
social security number, mobile number detection and monitoring reports
which summarize long distance charges billed versus those recorded at the
switch.

With respect to sales and marketing support, the system may

provide the ability for airtime, product and other rating promotions to be

WO 95/23373 PCT/US95/02229

10

15

20

25

3

created through the construction of a new rate plan in the appropriate
tables. Access, service and equipment charges, like the rate plans are table-
driven. Equipment charges can be categorized as recurring (those that will
bill each month for a specified period of time), or non-recurring (one time
charges).

Because of the periodic nature of the billing process in the
cellular telephone industry, most systems have performed customer billing
and invoicing as a sequential batch process. The traditional thinking on
how to run the batch process has been influenced primarily by the strengths
and weaknesses of the large engine uniprocessor mainframe environment.
Thus, batch processes are performed in a "task oriented manner". In other
words, each of the component tasks for all of the customer accounts is
performed in sequence, prior to the processing of any other component
tasks for each of the customer accounts.

Typically, the above-described batch processing has been
performed on large scale uniprocessors, such as IBM or DEC brand
mainframes which are capable of high throughput. Uniprocessor machines
may be provided which operate at about 100 million instructions per second
(MIPS). One example of a uniprocessor architecture, although not
necessarily operating at 100 MIPS, is the HP 9000 Series 800 Server Family
manufactured by the Hewlett Packard Corporation. Fig. 1 depicts the
architecture of this machine. As can be seen in Fig. 1, only a single CPU
100 is provided. CPU 100 interfaces, through memory and I/O controller
110, to an expandable RAM storage area 120. A single copy of the
operating system will generally reside in main memory 110. System bus 130
is further provided to allow for integration into a local area network or
LAN as well as to attach various peripherals desired in order to meet

system needs.

WO 95/23373 PCT/US95/02229

10

15

20

25

4

As batched applications comprise a plurality of tasks, and
uniprocessor architectures are capable of executing only a single task at a
time, uniprocessors are often complimented with special multitasking
hardware and operating system software (such as UNIX) which allow the
single processing resource to be efficiently distributed among a set of
simultaneously initiated tasks. Although this multitasking increases a
uniprocessor machine’s overall throughput and workflow capabilities, the
simultaneously initiated tasks are still in contention for a single processing
resource and the amount of execution time allotted to each individual task
decreases in proportion to the number of tasks initiated.

To overcome this problem with multitasking, multiprocessor
systems, which utilize more than one CPU, have been developed to provide
tasks with the same resources offered by their uniprocessor counterparts but
further allow these resources to be shared among a set of concurrently
executingr tasks. In multitasking, multiprocessor environments, various tasks
are distributed to the various processors. A fine grain approach parallelizes
groupings of similar tasks with all of the tasks being assembled into a
finished batch after parallel processing completes. Coarse grain, on the
other hand, simply parallelizes groupings of various tasks of the job without
regard for the similarity of the tasks within each grouping.

Several multiprocessor systems have become widely used in
recent years. Some examples include massively parallel processing systems
comprising a plurality of individual processors, each having its own CPU
and memory, organized in a loosely coupled environment, or a distributed
processing system operating in a loosely coupled environment, for example,
over a local area network.

One multiprocessing technology, termed symmetrical
multiprocessing (SMP), is a relatively recent architecture that provides

applications with a set multiple of CPUs which operate in a tightly-coupled

WO 95/23373 PCT/US95/02229

10

15

20

25

5

shared memory environment. Many major hardware vendors, e.g., IBM,
DEC, HP, NCR, Sequent, Tandem, and Stratus, have released or
announced computers that provide this type of architecture and associated
processing. SMP techniques and functions have also been provided in some
operating systems, such as, for example, an operating system sold under the
trademark (MICROSOFT NT) and various derivatives of the multitasking
operating system products sold under the trademark (UNIX). In addition,
certain databases, particularly relational database management systems, sold
under the trademark (ORACLE) and the trademark (INFORMIX) provide
features that accommodate SMP techniques and speed up performance in
SMP environments.

One significant advantage with an SMP system is scalability.
An SMP platform, such as the SMP platforms sold under the
trademark(SEQUENT), for example, includes a plurality of tightly coupled
individual processors each operating under the control of a shared
operating system and each accessing a shared memory. The processors
share peripheral devices and communicate with one another using a high
speed bus (or special switch), special control lines and the shared memory.
A hardware platform designed as an SMP system is generally significantly
less expensive than its uniprocessor counterpart for a comparable number
of MIPS. This is primarily because of the SMP environments ability to use
either a plurality of low cost general purpose CPU’s, for example 486-type
processors, or mass marketed proprietary processors such as some RISC
chips. By contrast, most processors operating in the uniprocessor
environment have been specially designed and produced in small quantities
and therefore, their price is relatively high. Mass marketing of proprietary
processors having broad applications, however, greatly reduces machine
cost. Further, the number of processors employed in an SMP environment

is variable so that processors can be added to the system as desired. Thus,

WO 95/23373 PCT/US95/02229

10

15

20

25

6

for example, one SMP platform may have 4 processors and another may
have 20.

Sequent Computer Systems, Inc. provides one model, the
S2000/450 of its SMP platforms sold under the trademark (SYMMETRY),
which may include from 2 to 10 processors (typically Intel 486/50Mhz
CPUs) and another model, the S2000/750, which may include from 2 to 30
processors. Both models provide from 16 to 512 Mbytes of physical
memory with 256 Mbytes of virtual address space per processor. Each
processor runs a single, shared copy of Sequent’s enhanced version of
UNIX which is sold under the trademark(DYNIX/ptx). Specifically, the
version 2.0 operating system distributed under the trademark (DYNIX/ptx)
is preferred.

For purposes of illustration, a block diagram of the relevant
portions of the S2000/750 is shown in Fig. 2. As will be discussed below,
a preferred embodiment of this invention is resident on the $2000/750 SMP
system manufactured by Sequent Computer Systems, Inc. A system bus 260
is provided to support a multiprocessing environment. System bus 260 is
configured as a 64 bit bus and carries data among the systems CPUs,
memory subsystems and peripheral subsystems. It further supports
pipelined I/O and memory operations. The bus can achieve an actual data
transfer rate of 53.3 Mbytes per second. Each processor board 210 in the
S2000 system contains two fully independent 486 microprocessors of the
type sold, inter alia, by the Intel Corporation. These processor boards (of
which there may be up to 15 in the S2000/750) are identical. The memory
subsystem 220 consists of one or more memory controllers, each of which
can be accompanied by a memory expansion board 270. The controllers
are available with either 16 or 64 Mbytes of memory and the expansion
boards may add 96 or 192 MBytes. |

WO 95/23373 PCT/US95/02229

10

15

20

25

7
The Quad Channel I/O Controller (QCIC) 230 board

supports up to 24 disks 240, six each on four independent channels.
Multiple QCIC boards can support up to 260 GBytes of storage per system.
System I/O performance growth can increase as disks are added. A
VMEDbus interface provides a link to Ethernet 246 and terminal line
controller 248, among other possibilities. Further, the ability to add a
parallel printer 252 is provided through system services module 254.
Finally, a SCSI interface is provided for integration with various secondary
storage devices 258.

In the past, symmetrical multiprocessing platforms such as
those manufactured by Sequent have been utilized primarily for processing
individual events, such as in an On-Line Transaction Processing (OLTP)
environment. OLTP systems frequently involve large databases and
interaction with a plurality of users, each typically operating a terminal and
each using the system to perform some function requiring a predictable
response within an acceptable time. In such an environment, interactive
user requests, such as may be provided in customer service systems, are
processed. Because each of the user requests is typically independent, the
SMP system is particularly effective.

When processing batches, the processor generally performs as
many similar operations as possible in one job step in order to achieve high
throughput for a logical batch run. For example, in a bill processing
environment, if bill processing was oversimplified to comprise four tasks, for
example,:

1) process payments to account;
2) process charges to account;
3) calculate taxes for account based upon charges; and

4) print invoices to disk.

WO 95/23373 PCT/US95/02229

5

10

15

20

25

8

in the traditional batch environment of the prior art, the batch job steps
would be as follows:

1) initialize and start job;

2) sort payments by account number;

3) sort charges by account number;

4) process all payments for each account in account number order;

5) process all charges for each account in account number order;

6) process all tax calculations for each account in account number
order;

7) print all invoices to disk; and

8) end job.
In this environment, if one of the individual processes fails, then the entire
batch must be re-processed. Failures occur in even the most effective
systems.

A need has arisen for a system which can determine and re-
execute groupings of discrete events within a failed batch without having to
re-process every discrete event in the batch. Additionally, a need has arisen
for a scalable computer architecture capable of effectively and efficiently

processing customer account billing statements.

SUMMARY OF THE PRESENT INVENTION

In view of the foregoing, it is a principle object of this
invention to provide a system and method for efficiently executing batch
runs.

It is another object of this invention to provide a system and
method for efficiently executing batch runs in an SMP environment.

It is an object of the present invention to provide a system for

running batch jobs efficiently even if failures occur.

WO 95/23373 PCT/US95/02229

10

15

20

25

9

It is a further object of the present invention to re-process
only improperly processed portion of the batch after a failure.

The present invention subdivides each batch process into
segments. The segments execute in a multi-tasking environment as separate
processes, yet integrate, upon conclusion, as a single batch entry for
continuing processing. The present invention provides significantly
improved resource utilization especially when multi-channel access to the
memory storing the discrete events is provided.

The present invention provides the advantage of being
portable to any or multiples of the available multi-tasking hardware
architectures and configurations, from low cost personal computers running
the multitasking operating system sold under the trademark (UNIX) to
tightly coupled SMP architectures, to loosely coupled massively parallel
architectures, all of which may implement at least linear performance

scalability as needed by adding I/O channels, machines and/or processors.

Further, the present invention provides a system for exploiting
the capabilities of a symmetrical multiprocessing system in a batching
environment. Implementing the segments of the batch on an SMP platform
provides logarithmic scalability in an individual cabinet. Further, as
additional cabinets are added, logarithmic scalability may still be attained.
However, as cabinets are added, the point at which the performance
increase gained through additional processors tapers off will occur at a
higher number of processors. For example, in a system operating with only
one cabinet, the number of transactions processed increases linearly as
additional processors are added up to X number of processors, for example
20, at which point adding processors increases throughput less than linearly.
By adding a second cabinet, linearly performance increase is achieved for

X + Y number of processors, for example 38. In addition, because of the

WO 95/23373 PCT/US95/02229

10

15

20

25

10

scalability of the SMP architecture, optional growth paths based on
performance/capacity requirements and budget limitations allow for
efficient processing of batch jobs. Very high performance is therefore
provided at a relatively low cost.

The present invention also provides a system which enables
a batch to be distributed into a plurality of independent segments. Each
segment comprises a plurality of discrete events, each discrete event
comprising a plurality of sub-events to be processed. The system operates
to process each discrete event within each segment sequentially and each
sub-event within each discrete event sequentially. The plurality of segments
may be processed on an uniprocessor, an SMP system, a massively parallel
processing system or a distributed loosely coupled system. By balancing the
number of discrete events in each segment using a data segment
parallelized "coarse grain" approach, a flexible but efficient use of processor

availability is obtained.

BRIEF DESCRIPTION OF THE FIGURES

Fig. 1 is a system block diagram of a conventional
uniprocessor platform according to the prior art.

Fig. 2 is a system block diagram of an SMP platform
according to the prior art.

Fig. 3 depicts a block diagram of the overall system
organization according to a preferred embodiment of the present invention.

Fig. 4 is a flowchart of an overall computer system operation
according to a preferred embodiment of the present invention.

Fig. 5A-5B is a flowchart of a process of multi-threaded batch

processing according to a preferred embodiment of the present invention.

WO 95/23373 ' PCT/US95/02229

10

15

20

25

11

Fig. 6A-6B is a flowchart of a process for distributing discrete
events into a plurality of segments according to a preferred embodiment of
the present invention.

Fig. 7 is an example sequence of a plurality of discrete events
in a batch to be processed according to a preferred embodiment of the
present invention.

Fig. 8 is a flowchart representing a no-reset process for
processing discrete events according to one preferred embodiment of the
present invention.

Fig. 9 is a flowchart representing a no-reset process for
processing discrete events according to another preferred embodiment of
the present invention.

Fig. 10 depicts a block diagram of a loosely coupled
distributed processing architecture according to another preferred
embodiment of the present invention.

Fig. 11 depicts a block diagram of a massively parallel
processing architecture according to yet another preferred embodiment of
the present invention.

Fig. 12 depicts a block diagram of a linked computing system
utilizing a massively parallel processing system, symmetrical processing
system, uniprocessor system, and loosely coupled distributed processing

system according to another preferred embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Fig. 3 depicts generally a computer system according to a
preferred embodiment of the present invention. For exemplary purposes,
a system for use in the cellular phone industry will be described without
limiting the scope of this invention. The computer system comprises a front

end processor 300 and a back end processor 310. Front end processor 300

WO 95/23373 PCT/US95/02229

10

15

20

25

12

and back end processor 310 communicate via communication link 314.
Front end processor 300 is also connected to a switch 306, which has a
switch memory 316 connected thereto, at least one customer service node
308 and a disk farm 302. Back end processor 310 is connected to a printer
318 and a disk farm 304.

Front end processor 300 communicates with at least one
switch 306 to activate or deactivate customers. Switch 306 may be any type
of switch commonly used in the cellular phone industry for determining
when calls are placed and for making call connections. In order to
determine which customers places a call, a listing of active customers for
that particular switch is maintained at each switch 306. When a customer
attempts to place a call in his or her home market, that customer’s ID is
compared with the active customer list for the home market. If the
customer’s ID is not in the list, then the call is not processed. Verification
of customer calls placed from outside the customer’s home market, a
process called roaming, occurs through another process. In order to
maintain the customer list accurately, front end processor 300 notifies
switch 306 via switch interface software 322 operating on front end
processor 300 whenever a customer is activated, deactivated, suspended or
re-stored or whenever a customer’s custom calling feature is added or
changed or the customer’s service number is changed. Switch interface
software 322 is responsible for updating and verifying the customer lists at
switch 306. Periodically switch interface software 322 runs comparisons
between the customer lists at switch 306 and that at front end processor 300
to verify correspondence between the two. Front end processor
300 also communicates with at least one customer service node 308. These
customer service operations are commonly referred to as On-Line
Transaction Processing or OLTP operations 324 which are performed in

response to commands or requests from customer service nodes 308. OLTP

WO 95/23373 PCT/US95/02229

10

15

20

25

13

operations 324 in general are known, and in the cellular phone industry
comprise a variety of customer service functions as will be described in
detail below. Back end processor 310 connects to printer 318 to generate
hard copy invoices to be sent to customers.

Front end processor 300 and back end processor 310
communicate via communication link 314. This interface may be, for
example, an SQL*NET connection (TCP/IP). Alternatively, front end
processor 300 and back end processor 310 may comprise one processor and
may communicate through a database transfer between databases
maintained by each processor.

‘Two major databases are used by the customer billing system.
These databases typically store large volumes of information and therefore
are preferably relational database management systems. The RDBMS sold
under the trademark(ORACLE?7), is preferable for managing the data in
these two databases. A first database, a customer information database
312, is stored in disk farm 302 at front end processor 300. Customer
information database 312 stores all of the information regarding the
customer including accounts receivable, charges, service plans, etc. The
second database, an invoice processing database 320, resides in disk farm
304 associated with back end processor 310. Invoice processing database
320 stores all of the information necessary for invoice processing, including
customer information and customer calls which are downloaded from front
end processor 300 and switch memory 316 respectively, as described in
detail below.

These databases may reside on one disk, or may be spread
out over several disks in disk farm 302 and 304 respectively. One preferred
method for spreading the database over a plurality of disks is a method
called striping. Striping is a method whereby pieces of information from a

particular entry into the database are spread onto several disks. This

WO 95/23373 PCT/US95/02229

10

15

20

25

14

process is especially useful so that memory accesses will occur to a plurality
of disks instead of the same disk all of the time. This provides for reduced
1/O time because the same I/O channel is not being constantly barraged
with requests; rather, those requests are spread over a number of 1/0
channels.

The operation and interrelation of these components will be
described with reference to Fig. 4. Fig. 4 is a flow diagram representing an
overall system function according to a preferred embodiment of the present
invention. Two basic operations occur simultaneously in two separate
locations, at switch 306 and at customer service nodes 308. In step 400,
cellular calls are received by switch 306. Because customers place cellular
calls at all times of day and night, this is a continuous process. As these
calls are received, switch 306 generates customer call information for
storage in step 402 into switch memory 316. As indicated in Fig. 4, this
process occurs entirely at switch 306.

Periodically, as shown at step 404, customer call information
is transferred from switch 306 to back end processor 310. Switch 306 may
be located in a remote location with respect to back end processor 310 and
therefore, the data collected and stored onto switch memory 316 is
transferred to back end processor 310 via any communication link or stored
onto a tape or other form of secondary storage and manually transported
to the location of back end processor 310 for uploading. For example,
switch 316 may offload the customer call data onto a tape and the tape may
be mailed, or sent via an express courier service to back end processor 310
and then downloaded onto disk farm 304. Alternatively, a data link could
be established between switch 306 and back end processor 310 for
transferring this information over a link.

In one preferred embodiment, one front end processor 300

may service a plurality of switches 306. Therefore, rather than having a

WO 95/23373 PCT/US95/02229

10

15

20

25

15

plurality of data links, manual transfer may be preferred. Step 404 occurs
periodically. Preferably, customer call information is transferred daily,
although weekly or even monthly transfer is possible. Daily transfer is
preferable because the data which is generated over an entire month may
be extremely large and transferring, as well as processing, that volume of
data would likely take an unreasonable amount of time.

After the customer call information is stored at back end
processor 310, each call is rated in step 406. Rating, or message processing,
is a function to format each customer call and then associate certain
charges associated with each customer call. In step 406, messages, or
customer calls, from a variety of cellular switches may be processed and
placed in a standard format. Messages are edited to determine conformity
with a standard format and those which do not pass basic edits are placed
into files for review and re-processing by a user at back end processor 310.
A control report may be generated from the messages which cannot be
processed further and those messages may then be edited and returned for
processing.

Message processing also involves generating message statistics.
With each set of messages uploaded at back end processor 310, summary
statistics may be compiled regarding completed calls, incomplete calls, free
calls, toll calls, local calls, special calls, records in error, and total records
processed. Records corresponding to switch interconnections are also
counted in these report records and are reported separately as well.

Each message is compared to a npa/nxx-based local coverage
area. Each local coverage area is defined separately based on the
customer’s home region, foreign carrier region, single cell site, group of cell
sites and/or service plan, each of which may be changed from time to time
through OLTP operations 324 operating through customer service node 308.

The coverage area is composed of groups of npa’s, npa/nxx’s, or even

WO 95/23373 PCT/US95/02229

10

15

20

25

16

npa/nxx/lines. These groups can be combined into "super groups" to form
coverage areas which can be easily manipulated to support a wide variety
of local calling area scenarios.

After each call has been compared to a local coverage area
to determine the origination of the call, toll rating is performed. Toll rating
is based on the origination npa/nxx, destination npa/nxx, and time and date
of the call (peak, off-peak, weekday, weekend, holiday). Toll rating is
preferably based on tables supplied and updated by a third party supplier,
for example, Q-TEL 9000, and can be modified on an as-needed basis. The
toll rating system from Q-TEL provides toll rating information for all calls
originating from all United States toll carriers. Another toll rating system
is required to process calls placed outside the United States.

Rating also involves toll discounting. At any time, toll charges
may be discounted based on the cell destination and the specific day or
date rate. Day or date range discounting can be easily accomplished
through menu options and is based on customer region or service plan. For
example, toll charges might be discounted 50% for January 1993 for all
customers on a particular service plan in order to support a special
marketing promotion. Call destination discounting is accomplished by
creating a special toll coverage area. Toll discounts may be assigned based
on the call destination npa, npa/nxx or npa/nxx/line. Further, these toll
discounts can be combined with local coverage areas to form sophisticated
local calling area and toll discounting scenarios to support campus or PCN
configurations. Thus, rating is performed on each call to determine a set
rate to charge for that particular call and any flat fees to charge to each
call. Once rating is performed, the rated calls are stored in step 408 to disk
farm 304 in flat file format. As new groups of calls are rated, the rated

calls are simply appended to the end of the flat file.

WO 95/23373 PCT/US95/02229

10

15

20

17

In step 410, after each group of rated calls is stored, back end
processor 310 checks to see if the user has requested that customer invoices
be generated. If not, then the loop of receiving calls in step 400, storing the
calls in step 402, transferring the calls to back end processor 310 in step
404, rating calls in step 206 and storing the rated calls in a flat file in step
408 continues. Alternatively, if the user has requested that the invoice
generation begin, then in step 412, the rated calls stored in the flat file are
transferred into invoice processing database 320 and a new flat file is used
to store the rated calls from step 408. The rated calls stored in invoice
processing database 320 are then ready for invoice processing as performed
in step 422 by the multi-threaded batch processor as will be described in
detail below. The information stored into invoice processing database 320

may comprise, by way of illustration only, the information depicted in Table

1 below.
FIELD NAME FIELD TYPE
Customer Account Number CHAR(10)
Area Code Called CHAR(3)
Exchange Called CHAR(3)
Line Number Called CHAR(4)

System ID Where Call Originated | CHAR(S)

Date of Call DATE
Start Time of Call CHAR(6)
Duration of Call NUMBER(10)

Time of Day Toll Rating CHAR(1)

WO 9523373 PCT/US95/02229

10

15

20

25

18

Time of Day Airtime Rating CHAR(1)

Call Type - Mobile to mobile, CHAR(1)
Land to Land, Mobile to land,
Land to Mobile, etc.

Taxes NUMBER(10)

Batch Id Number CHAR(20)

Table 1: Example of Customer Call Information Passed to Invoice

Processing Database at Back End Processor 310

Concurrent with the call processing operations of steps 400-
412, customer information is periodically received in step 414 at front end
processor 300 through customer service nodes 308. For each customer, a
record of information is maintained in customer information database 312
stored in disk farm 302 at front end 300 and may include the customer’s
name, address, telephone number, credit rating, home cell, service plan,
customer calling features selected, any custom calling information, accounts
receivable, etc. This information is accessible by customer service
representatives through customer service nodes 308. As customers request
changes or request status inquiries, customer service representatives may
enter the changes or requests via OLTP operations 324 running on front
end processor 310.

Payments are also entered through OLTP operations 324 in
step 414. As bills are paid, the payments received are entered into a
customer information database through OLTP operations 324. Payments
are posted in real time, automatically updating bill balance information for

each customer and for collection queues which exist to track delinquent

WO 95/23373 PCT/US95/02229

10

15

20

25

19

customers. Customer information access is also provided through OLTP
operations 324. Deposits and other payments may also be recorded into
customer information database 312.

Collections information may also be updated regarding each
customer in step 414. When an account meets a table-defined collections
criteria, for example, based on the length of time the account has been past
due and the credit class assigned for the particular customer, that account
is selected for collections activity. These accounts are prioritized and
placed in a collections queue for a collections agent. Customer service
managers may also change the order of or add accounts to the collections
queues if desired.

A collections agent located at a customer service node 308 is
then responsible for entering a result code to categorize the response
received when the customer whose payment is past due has been contacted.
This information is also received in step 414. If the result code is a busy
or no answer, then the customer account is placed back into the queue. If,
for example, a customer promises to pay by a certain date, that date is
entered by the collector and received by the front end at step 414. Then,
if payment is not received by a specified number of days past that date, the
account automatically returns to the collection queue for resolution.
Comments may also be stored for each customer account and stored into
customer information database 312 through steps 414 and 416.

Other information may also be entered in step 414, such as
tax information, one time charges, paybacks, adjustments, etc. All of the
types of information concerning the customer may be changed through the
customer service nodes 308 and front end processor 300 operating under
OLTP operations 324.

As customer information is received in step 414, front end

processor 300 stores this information into customer information database

WO 95/23373 PCT/US95/02229

10

15

20

25

20

312 in step 416. In step 418, front end processor 300 checks to see if a
system operator has selected a "cut-off" in customer service information. A
"cut-off" is selected by a system operator, for example, a supervisor for the
cellular phone billing company who wishes to complete the charges for a
particular billing period. Access to cut-off is preferably limited to a
selected few individuals at each of the locations to avoid generating invoices
errantly. If cut-off has not been selected, the loop of receiving and storing
customer information continues. Alternatively, if cut-off has been selected
in step 418, then in step 420, all customer information necessary for billing
is dumped from customer information database 312 at front end processor
300 to invoice processing database 320 at back end processor 310. The
customer information which is dumped generally comprises information, for
example, as depicted in Table 1 below. After the customer information has
been dumped into invoice processing database 320 at back end processor
310 across communications link 314, invoice processing may take place in

step 422 under the control of the multi-threaded batch processor.

FIELD NAME FIELD TYPE
Customer’s Last Name CHAR(15)
Customer’s First Name CHAR(15)
Customer’s Social Security NUMBER(9)
Account Type - Individual, CHAR(1)
Customer Status - Pending, CHAR(1)
Rate Plan CHAR(3)
Credit Class CHAR(1)
Service Plan CHAR(1)

WO 95/23373 PCT/US95/02229

10

15

20

25

21
Accounts Receivable Data structure
Adjustments Data structure
Custom Calling Features Data structure
Recurring Charges | Data structure
Non-recurring charges Data structure
Refunds Data structure
Deposit Data structure

Table 2: Example of data passed from Customer Information Database
at Front End Processor 300 to Invoice Processing Database at Back End

Processor 310

As depicted in Table 2 above, a large volume of data is
collected and stored regarding each customer. A database management
system which is particularly effective at handling this large amount of
information is important. Relational database management systems are
particularly useful. In one preferred embodiment, customer information
database 312 is a relational database management system, for example the
relational database management system sold wunder the
trademark(ORACLE?) which provides simple operations which perform the
mass transfer of database information from one database to another. By
simply executing these operations the transfer of data may be accomplished.
As discussed below, a relational database management system is preferable
additionally because of its ability to support SMP functions. Relational

database management systems such as those sold under the

WO 95/23373 PCT/US95/02229

10

15

20

25

22
trademark(ORACLE7) are particularly suited to SMP functions on a

Sequent platform.

Fig. 5A-5B depicts a flow diagram of the operation of the
multi-threaded batch processor (MTBP) according to a preferred
embodiment of the present invention. The steps discussed with respect to
Fig. 5 correspond to the overall process step 422 depicted in Fig. 4. One
embodiment, implemented in source code, of a multi-threaded batch
processor according to the preferred embodiment is contained in pages 2-31
of the accompanying Microfiche Appendix.

Batch processing, as described above, comprises processing a
plurality of discrete events. As used herein, the term "discrete event" is not
limited to a time specific occurrence, but rather a collection of data which
is to be processed to generate an outcome. Preferably, each discrete event
comprises a plurality of sub-events. Each sub-event is also data which is to
be processed. In a preferred embodiment of the present invention, when
applied to the cellular phone customer account processing, each customer
account to be processed is treated as a discrete event. Further, since a
number of details regarding the customer account must be processed, for
example, recurring charges, non-recurring charges, taxes, customer calls,
accounts receivable, etc., each of the details is treated as a sub-event which
may be processed separately.

Upon start up in step 500, MTBP requests input of the batch
by requesting the batch identification, the number of segments into which
the batch is to be distributed and the requesting user’s identification and
password. If any of these parameters is invalid, then the batch is aborted
in step 528. According to an alternative embodiment, instead of the
number of segments being requested and input by a user, this information

could be automatically determined by the MTBP.

WO 95/23373 PCT/US95/02229

10

15

20

25

23

According to this alternative embodiment, the number of
CPU’s operating on the system may be determined through a system call.
Therefore, if the system were operating in a uniprocessor environment, then
the number of CPU’s would be equal to one. If the system were operating
in 2 SMP or MPP environment, then the operating system could pass this
information as well as the number of active processors to the MTBP. In
one preferred embodiment, the number of segments then could be selected
to be equal to the number of CPU’s. Other algorithms for selecting the
number of segments as compared to CPU’s are also within the scope of the
present invention. For example, the number of segments could be selected
to be some number times the number of CPU’s operating. There could
also be eight (8) CPU’s and 10 segments, for example. The number of
segments need not correspond to the number of CPU’s

Once the number of segments has been input either by a user
or determined automatically and all parameters have been determined to
be valid, in step 504 the account number range is determined from the
batch identification. The account number range then is checked to ensure
that valid accounts exist within that particular range. This step is performed
as a "double-check" to validate the account range specified. Errors that
sometimes might occur are specifying an account range outside of the range
of existing customers or specifying a range wherein certain events are
selected to be within the range but other dependent accounts are not. If
all of the parameters are valid, as checked in step 504, then control passes
to step 506 to determine if valid accounts exist within that particular
account number range. If so, then the job is aborted in step 528. If valid
accounts do exist, however, then in step 508 the MTBP determines the
number of accounts per segment.

Step 508 of loading the segments may be accomplished in

multiple ways. It may be desired to load each segment with similar types

WO 95/23373 PCT/US95/02229

10

15

20

25

24

of customers. Alternatively, it may be desired to load each segment with
a wide range of customers. Another possibility might be to load more
active customers into a segment which contains fewer customers to be
processed. One preferred embodiment of the MTBP for distributing the
accounts into the various segments is represented by the flow diagram of
Fig. 6 which will be described in detail below.

After each segment has been loaded with a set of customer
accounts to be processed, a first segment is forked in step 510. "Fork", as
will be recognized by one of ordinary skill in the art, is a function based on
the multitasking operating system sold under the trademark(UNIX)
representing the activation of a child process on the processor. While the
MTBP acts as a parent process, each fork call generates a child process
corresponding to a segment. When a segment is forked, resources are
allocated to that segment and the segment begins sharing processor time
with other active processes. "Fork"'is a system call generic to the
environment of the multitasking operating system sold under the
trademark(UNIX) which creates a new process having a duplicate copy of
the parent process, here the MTBP, with the same data, register contents,
and program contents as the parent. The forked process, here the segment,
has access to the same files as the MTBP. Also in step 510, the "exec"
system call is made. "Exec" starts the newly created process generated by
the "fork" system call. If the first segment is forked and started successfully,
as detected in step 512, then the MTBP determines in step 514 if all of the
segments have been forked. If the forking and starting in step 510 was
unsuccessful, then the batch is aborted in step 528.

After all of the segments have been forked, then the MTBP
waits in step 516 for a segment to complete processing. If a segment
completes processing, the MTBP verifies whether the process completed

without error and if so continues to step 520. If an error was detected, then

WO 95/23373 PCT/US95/02229

10

15

20

25

25

the remaining segments are terminated in step 526 and the batch is aborted
in step 528. In step 520, the MTBP checks to see if some of the segments
are still being processed. If so, then it continues to loop though steps 516,
518 and 520 until all of the segments complete.

If all of the segments complete without error, then in step
522, the entire batch of customer accounts may be combined, summary
reporting may occur and invoices may be generated for each of the
customer accounts. Often an entire batch must be approved before invoices
are mailed. Thus, by collecting each of the segments back into the batch,
summary approval may be performed. After summary processing is
complete, the MTBP terminates in step 524 until the next batch of customer
accounts needs processing. Summary processing may include
generating a detailed summary or bill detail for use by the system operator
in deciding whether to approve the bill or not. Also, invoice generation
performed as a step performed in step 522.

One method of placing the customer accounts into the various
segments which are generated is depicted in Fig. 6. As shown in Fig. 6, in
steps 610 through 616 the number of segments is determined. This may
alternatively be input by a user. Once the number of segments to be used
has been determined, then the number of customer accounts to be
distributed into those segments must also be determined in step 618.

In general, customer accounts are labeled as either an
individual account, a master account or a child account. This type of
labelling is necessary in order to differentiate between individual customers
and aggregate accounts such as company sponsored customers for whom
cumulative company bills and individualized child bills must be generated
so the company can monitor use by each of its employees.

Therefore, companies are typically labeled as master accounts

and receive an aggregate bill for each of their employees. The employees

WO 95/23373 PCT/US95/02229

10

15

20

25

26

are labeled as child accounts. In order to process a master account,
therefore, each of its child accounts must be processed first. In order to
signify the beginning of a master and child grouping, master customer ID’s
are placed sequentially before child customer ID’s in the account number
listings which are produced for batching. When distributing customer
accounts into the various segments, it is desirable to keep the child accounts
and the master accounts in the same segment. Once the
number of customer accounts to be processed and the number of segments
have been determined, then the number of customer accounts per segment
is determined in step 620 to simply be (number of customer accounts) DIV
(number of segments). Further, in step 622, a remainder is determined to
be equal to (number of customer accounts) MOD (number of segments).
After the remainder has been determined, in step 624 a number of
segments equal to the remainder are selected and in step 626, the segment
size for each of those segments is incremented by one. Thus, for example,
if there were 7 segments and the remainder was 4, then the first four
segments may be selected and the segment size of each may be incremented
by one.

After each segment has a segment size assigned to it, in step
628 the segments are ordered from a first segment to a last segment for
distribution of the customer accounts. In step 630 the first segment is
selected as the current segment and in step 632 a number of customer
accounts, or discrete events, equal to the segment size for that particular
segment are distributed sequentially from the account number listing
provided in the batch into the current segment. At this point, in step 634
it is determined whether the last customer account which was distributed
into the current segment was a child account. If not, then control passes to
step 642 to determine if all of the segments are full. If the last distributed

customer account was a child account, it is determined whether the next

WO 95/23373 PCT/US95/02229

10

15

20

25

27

customer account to be distributed is also a child account. If not, then
control passes to step 642. If it is, then in order to process the child and
master account in the same segment, the next child account is added to the
current segment. This step is performed in step 638. Since adding another
customer account increases the size of the current segment, the size of one
of the other segments must be decremented so that the total distribution of
customer accounts will correspond to the sum of the segment sizes for all
of the segments. Thus in step 640, the next segment’s segment size is
decremented by one. It is possible that the next segment’s segment size
could be reduced to zero or even below zero. This would occur for a very
long distribution of a child account for one particular master account.

If this were to occur, then a number of schemes to correct this
problem are possible. For example, one less segment could be used.
Alternatively, other load balancing schemes could be employed. However,
since each batch may typically include about 10,000 or more customers and
often anywhere between 2 and 20 segments are used, the likelihood of
getting a master and child grouping which is over 5000 or even 500 is
unlikely. Once the next segment’s segment size has been decremented by
one in step 640, control passes back to step 636 to continue to check to see
if all of the child accounts in the sequential listing of child accounts has
been added to the current segment.

In step 642, it is determined whether the current segment is
the last segment to have been distributed customer accounts. If it is, then
the process ends in step 646. If not, then in step 644, the next segment is
selected as the current segment and the loop through steps 632, 634, 636,
638, 640 and 642 continues until all of the segments have had customer
accounts distributed to them.

To further illustrate this process, reference will be made to

an example customer account grouping in Fig. 7. Fig. 7 depicts an example

WO 95/23373 PCT/US95/02229

10

15

20

25

28

of an account number listing. I indicates an individual customer, M, a
master customer and C, a child customer. If 3 CPU’s were available and
no user override were active, then in step 614, the number of segments
would be set to equal 3. Therefore, the MTBP would create three
segments, for example, segment1, segment2, and segment3. In step 618, it
would be determined that there were 13 customer accounts to be processed
in the listing in Fig. 7. In step 620, the number of customer accounts per
segment would equal 4 and in step 622, the remainder would equal 1. In
step 624, segment1 would be selected and its segment size, which was equal
to 4, would be incremented to 5. Thus, we would have segment] with a
size of 5, segment2 with a size of 4 and segment3 with a size of 4.

In step 628, the segments would be ordered segmentl,
segment2, segment3. In step 630, segmentl would be selected as the
current segment. Since segmentl has a segment size of 5, then the first 5
customer accounts (customer accounts 1-5) would be distributed into
segmentl. In step 634, it would be determined that the last customer
account (customer account 5) distributed is a child account. Then in step
636, it would be determined that the next customer account to be
distributed is also a child account. In step 638 then, customer account 6
would be added to segment1 and in step 640, the segment size of the next
segment, segment2 will be decremented from 4 to 3.

Returning to step 636, once again it would be determined that
the next customer account to be distributed (customer account 7) is a child
account. Again, customer account 7 is added to segment1 and segment2’s
segment size is decremented from 3 to 2. After progressing through the
distribution in this example, segment1 would have customer accounts 1-7,
segment2 would have customer accounts 8-11 and segment3 would have

customer accounts 12-13.

WO 95/23373 PCT/US95/02229

10

15

20

25

29

As this example illustrates, this particular scheme may not
balance the load particularly evenly. Other balancing schemes could
therefore be used based upon the expected configurations of data in order
to finely balance the number of customer accounts in each segment.

In a preferred embodiment, both front end processor 300 and
back end processor 310 comprise SMP systems. Because the present
invention processes each customer account as a discrete event, the
advantages of the SMP architecture may be exploited. Particularly, because
each customer account is treated as a discrete event, each discrete event
can be processed independent of the other discrete events and thus utilize
as many CPU’s as are available. The throughput for processing discrete
events according to the present invention may vary when running on
uniprocessing systems, massively parallel processing systems, loosely coupled
distributed processing systems depending, inter alia, upon the number of
1/0 channels, total CPU speed, and system bus capabilities. One preferred
embodiment, implemented in source code, of the present invention’s billing
operations which operates on either an SMP, uniprocessor, a massively
parallel processing system or a distributed loosely coupled system is
contained in pages 32-68 of the accompanying Microfiche Appendix.

For example, in the cellular phone environment, for each
customer account, there may be three tasks which must be performed in
order to generate the bill for the customer account. If those tasks were to
1) process payments, 2) process charges, and 3) process taxes, then for the
first customer account, the customer’s payments would be processed, then
the customer’s charges would be processed, and then the customer’s taxes
would be processed. Once all three tasks for that particular customer are
complete, that particular customer can be stored to the processed data
memory location, possibly another database and the next customer account

in the segment can be processed.

WO 95/23373 PCT/US95/02229

10

15

20

25

30

Processing in this manner makes the system model function
more like an OLTP model in which there are many events being performed
concurrently. This type of model efficiently processes on an SMP machine
running with an RDBMS database. Since a uniprocessor can also perform
OLTP (albeit less effectively), the discrete customer system works fairly well
in that environment as well.

It is possible to run the discrete customer events just like a
traditional OLTP system in which each discrete event is a process and each
process is placed in the queue waiting for the next available processor. In
that instance, one process would be forked for each customer account and
the system and database would handle these transactions transparently.

In order to obtain the control necessary to optimally tune the
system, however, in a preferred embodiment, these discrete events are
distributed into a plurality of segments as discussed. Each segment then is
processed as a separate process and is forked off in that manner. Within
each segment, each discrete event is processed sequentially, never beginning
processing of the next discrete event until the active discrete event has
finished processing. Further, since processing for each discrete event
generally comprises a plurality of tasks, each task is also sequentially
performed until all of the tasks for the active discrete event are complete.
Because a smaller number of segments are forked as processes, the user can
moderate the amount of resources used by the process to match the current
hardware configuration as well as transparently meet future growth.

Existing billing applications which process customer accounts
can be easily modified for use in the present distributed processing
environment. Batches can be processed at many sites and on many
different physical machines and still allow for information on all batches to

be reported on or queried via the inherent functionality of RDBMSs.

WO 95/23373 PCT/US95/02229

10

15

20

25

31

One preferred embodiment of a billing system operating as
a discrete event processor according to the present invention comprises
using a SMP platform sold by Sequent under the trademark(SYMMETRY)
model number S2000/750 running the relational database management
system sold under the trademark(ORACLE7) and running version 2.0 of
the operating system sold under the trademark(DYNIX/ptx). Treating each
customer account as a discrete event, software operating according to the
present invention in one embodiment generated 50,000 customer invoices
in 64 minutes. In this embodiment, twenty four (24) 486 CPU’s sold under
the trademark(INTEL) operating at SOMHz were provided. Main memory
comprised 576 MBytes with each CPU having a cache memory of 512
KBytes. Twenty Four (24) disks in the disk farm comprised 1.3 GBytes of
memory each with a disk having 300 MBytes located at the back end
processor. In that process over 4,000,000 cellular telephone calls were
processed as well as 7,503 adjustments to customer information, 10,004
commission wavers, 47,519 current charges, 32,513 payments and 20,008
non-recurring charges.

The present invention may alternatively operate in a
uniprocessor environment, such as an HP 9000 Series 800 Integrated
Business Server running the relational database management system sold
under the trademark(ORACLE7) and version 9.0 of the operating system
sold under the trademark(HP-UX). As discussed, the processing occurs
with each segment operating as a separate process, but with each discrete
event being processed sequentially within each segment as discussed above.

This invention may similarly be practiced in a loosely coupled
distributed computing environment. An example of such an environment
is illustrated in Fig. 10. In a distributed computing architecture, a plurality
of workstations, PCs or other small computing systems may be connected

so that they share data through a wide area network (WAN) or a local area

WO 95/23373 PCT/US95/02229

10

15

20

25

32

network (LAN). In Fig. 10, four computing systems are shown connected
via LAN. For purposes of illustration, each computing system 1000 and
1010 could be a personal computer having, for example, a 486-type CPU
and one or more hard drives 1040 and 1050. The communication network
could be, for example a LAN sold under the trademark (ETHERNET).
Preferably, system 1000, having the single copy of the master billing process
1020, should be a higher MIPS machine such as a file server.

As mentioned, one copy of the master billing process 1020
resides on system 1000 and master billing process controls each of the
distributed billing segments 1080 resident on systems 1000 and 1010. Each
system may further have other applications 1090 resident in main memory
and executing concurrently with billing segment 1080. Each system 1010,
must have customer data for the appropriate segment moved to local disk
1050 prior to the bill run. Master billing process 1020, containing the
multithreaded batch control system, described above, distributes discrete
events into segments which are distributed to the local systems 1010. The
multithreaded batch processing system when operating on a massively
parallel processing system or a loosely coupled distributed processing system
would include mechanisms to initiate and distribute tasks among the various
processing resources within the system. Each system will then run the
segment it has been assigned. Master billing process 1020 will monitor the
running systems to determine if any segments have failed and need to be
rerun. At the completion of all segments, the master billing process will
produce reports and execute additional billing segments from a new batch
should it be necessary.

The present invention may also be employed on a massively
parallel processing system. Massively parallel systems employ dozens to
hundreds or even thousands of processors to provide performance rates

rivaling the rates provided on even supercomputers.

WO 95/23373 PCT/US95/02229

10

15

20

25

33

By adding more processors into this loosely coupled arrangement, scalability
is provided almost infinitely. In this environment, even tens of thousands
of MIPS are possible using, for example, general purpose CPU’s such as 486
systems.

Fig. 11 depicts a massively parallel architecture. As depicted,
a plurality of CPU’s 1100, each having an associated memory 1102 are
connected to each of the other CPUs 1100 via connections 1104. By having
direct communication with each of the other CPU’s, a loosely coupled
arrangement is obtained.

One example of a massively parallel machine on which the
present invention may operate is the supercomputer sold under the
trademark(nCUBE2). This machine employs from 8 to 8192 nodes each
consisting of a single chip 64 bit computer and memory chip. The
proprietary microprocessor sold under the trademark(nCUBE2)is rated at
7.5 MIPS, so system performance may scale up to over 60,000 MIPS. The
system provides over 512 GBytes of online memory with an interconnect
communication throughput of 270 GByte/sec. This system may utilize the
relational database management system sold under the
trademark(ORACLE7). Multiple database servers run concurrently and
independently, each of the CPU’s 1100 having its own. However, even of
the processing servers may process the requests of each of the CPU’s 1100.
Each parallel server has its own parallel cache manager to track the current
location of database blocks in the caches of all of the servers. Most of
these functions are provided through the relational database management
system and the present invention, therefore takes advantage of the features
present in the management system to effectively process the batch job over
the massively parallel processing system architecture.

In another embodiment as depicted in Fig. 12, a network 1200

may be connected to the massively parallel architecture depicted in Fig. 11

WO 95/23373 PCT/US95/02229

10

15

20

25

34

and shown as 1208. In this embodiment, a plurality of minicomputers 1202,
PC’s 1204 and/or UNIX workstations 1206 may be connected to the
network 1200. Each of the systems 1202, 1204, 1206 could alternatively
comprise a loosely coupled distributed processing system or a symmetrical
processing system. Networking capabilities provided by the relational
database management system sold under the trademark(ORACLE) such as
SQL*NET technology utilizing communications protocols such as TCP/IP
and DECnet are used to utilize the resources of the massively parallel
architecture 1208. In this configuration, the MTBP may reside on either a
PC, workstation or one of the CPU’s 1100 included in the massively parallel
architecture 1208.

Even the most effective systems run into failures while
running batch jobs. When a batch terminates abnormally, heretofore, the
entire batch was re-processed. In one embodiment according to the present
invention, a system is provided for eliminating the need to re-process an
entire batch if only a few of the discrete events within the batch fail. In the
billing context, this may mean that only one or more customer accounts did
not process correctly. The problems involved in this process result from the
need to re-process the failed segments or customer accounts and still be
able to reassemble the originally successfully processed segments and the
re-processed segments into a batch for approval and invoicing.

In order to accomplish this function, it is necessary to
maintain a secondary set of tables associated with the customer information
and reference data (information contained in customer information
database 312). These tables will be used to hold all data created by the
billing process, as well as any changes to erroneous data found by human
intervention (such as would occur during approval, etc.) necessary to
correctly re-process the failed events. The whole of thes‘e secondary tables

preferably should:

WO 95/23373 PCT/US95/02229

10

15

20

25

35

1) include storage for information created during the
billing process;

2) include storage for any new records appended to the
customer or reference data; and

3) include an identifier for the run on which it was
created.

All new information calculated during the billing process is tied through an
artificial key to the original primary customer charge information.

In addition, a table containing all accounts comprising a full
batch run is provided with a status flag indicating the current state of the
account. The valid states are either unapproved or approved. An
unapproved account is available for processing by a billing process. An
approved account has been determined, either by manual intervention or
automatic determination such as through some form of artificial
intelligence, for example, to have been completely and correctly processed.
Further defining the account table is a pair of batching tables which provide
descriptions of the parent batch (typically the full batch run) and a run ID
number. Like the accounts, state information is stored for the batches.
The valid states can be one of pending, active or complete. A pending
batch is available for processing by a billing process. An active batch is one
that is currently being handled by a billing process. A complete batch is
one which has completed a billing process.

Each account is associated to the batching tables by
maintaining its maximum run ID. In other words, every time an account is
run, it stores an initial value for the run ID or the most current run ID.
The maximum run ID is used to determine what pieces of data are the
most current associated with each customer. Using the maximum run ID
in this manner eliminates the need to delete old customer information when

an account is re-processed. The data identified by a run ID equal to the

WO 95/23373 PCT/US95/02229

10

15

20

25

36

accounts maximum run ID is the only correct data available for that
customer.

An initial batch is submitted to the MTBP prior to the first
request for processing. An external approval process and automatic
determination by the billing process are used to handle re-submission of
batches to the MTBP. A human operator is responsible for determining the
completeness and correctness of a batch of accounts. Any accounts within
the batch that are determined to be incorrect are re-submitted as a new
batch comprised of only those accounts in error. Any accounts that contain
one or more fatal processing errors or can otherwise be determined to have
incorrectly processed are automatically re-batched for re-processing.

As an additional process, approval/revenue reporting and
invoicing can be removed from the billing process. These processes can be
placed in an external process. The external reporting mechanisms are
capable of generation of their respective reports and invoices at any point
after the completion of a billing process and can be created on any subset
of the processed batches.

The overall operation of a discrete billing function with a no-
reset function may occur within the multi-threaded batch processor. As
such, the process as depicted in Fig. 5 would be substantially the same.
One embodiment of the present invention for providing a no-reset function
is represented in the flowchart of Fig. 8. In Figs. 8 and 9, numbers in
common with Fig. 5 represent like process steps. In Fig. 8, when the MTBP
reaches step 518 and it is determined that the segment did not complete
without error, the MTBP does not kill all remaining segments as in step
526. Rather, in step 800 the segment data is re-initialized using the
secondary tables associated with the customers in which the data that could
have been changed is stored. At this point, a request to fork a new

segment is issued by the MTBP in step 802. The process of re-initializing

WO 95/23373 PCT/US95/02229

10

15

20

25

37

and re-forking preferably requires human intervention to resolve the error
requiring the re-processing. However, automatic re-processing using some
form of artificial intelligence could also be possible. For example, it may
be desirable to attempt to process a particular segment twice before
involving a human operator. Therefore, the human operator has to resolve
the problem only if the error is due to some form of data error or
equipment problem rather than simply a bad data read or the like.

In another embodiment, as depicted in Fig. 9, only the failed
discrete events, which may be customer accounts for example, are re-
processed. In this embodiment, if a segment fails as determined in step
518, in step 900, it is determined which of the discrete events were
processed without failure and which were not. Again, this process could be
done automatically by comparing the discrete event to some range of
acceptable values, or could be done through an operator. Once it is
determined which customer accounts should be reprocessed, a new segment
is formed in step 902 comprising the failed customer accounts. This new
segment is then forked in step 904 and control passes back to the 516-520
loop.

Having described the preferred embodiments of the invention, it will
be appreciated by those skilled in the art that there exist numerous
alternatives and equivalents which do not depart from the scope or spirit
of the invention. Accordingly, it is intended that the scope of the present
invention be limited only by the appended claims and not by the above

description of the above preferred embodiments.

WO 95/23373 PCT/US95/02229

10

15

20

25

38
CLAIMS
What is claimed is:
1. A method of processing a plurality of discrete events, each discrete

event comprising a plurality of independent sub-events, said method
comprising the steps of:

distributing each discrete event into one of a plurality of segments,
each segment comprising a sequence of at least one discrete event to be
processed;

initiating each of said plurality of segments to execute concurrently
on said at least one processor;

for each segment, processing each discrete event contained within
said segment sequentially;

for each discrete event, processing each independent sub-event of
said discrete event sequentially and then storing the results of said
processing;

monitoring each of said segments to detect failures;

deactivating each segment for which a failure is detected;

re-initializing each failed segment; and

re-initiating each failed segment.
2. The method of claim 1 wherein said discrete event is a customer
account and wherein said step of processing each discrete event comprises
determining billing information for each customer account.
3. The method of claim 1 wherein said discrete event is a customer
account and wherein said independent sub-events comprise customer
information and customer calls.
4. The method of claim 1 wherein said discrete event is a customer
account, wherein said step of processing each discrete event comprises

determining billing information and wherein billing information for each

WO 95/23373 PCT/US95/02229

10

15

20

25

39

customer account is stored immediately after each customer account is
processed.
5. The method of claim 1 wherein said discrete event is a customer
account and wherein said step of processing each discrete event comprises
determining billing information and further comprising the step of
generating an invoice for each customer account immediately after
processing each customer account.
6. The method of claim 1 wherein said step of processing is performed
using a symmetrical multiprocessing system.
7. The method of claim 1 wherein said step of processing is performed
using a massively parallel processing system.
8. The method of claim 1 wherein said step of processing is performed
using a loosely coupled distributed processing system.
9. A method of processing a plurality of discrete events, each discrete
event comprising a plurality of independent sub events, said method
comprising the steps of:

distributing each discrete event into one of a plurality of segments,
each segment comprising a sequence of at least one discrete event to be
processed;

initiating each of said plurality of segments on said at least one
processor;

for each segment, processing each discrete event contained within
said segment sequentially;

for each discrete event, processing each independent sub-event of
said discrete event sequentially and then storing the results of said
processing;

monitoring each segment to detect failures in processing the discrete
events contained within said segment;

deactivating each segment for which a failure is detected;

WO 95/23373 PCT/US95/02229

10

15

20

25

40

creating a new segment containing at least one unprocessed discrete
event from each failed segment; and

initiating each new segment.
10. The method of claim 9 wherein a plurality of new segments are
created, each of said new segments containing at least one unprocessed
discrete event.
11. The method of claim 9 wherein said discrete event is a customer
account and wherein said step of processing each discrete event comprises
determining billing information for each customer account.
12. The method of claim 9 wherein said discrete event is a customer
account and wherein said independent sub-events comprise customer
information and customer calls.
13. The method of claim 9 wherein said step of processing is performed
using a symmetrical multiprocessing system.
14, The method of claim 9 wherein said step of processing is performed
using a massively parallel processing system.
15. The method of claim 9 wherein said step of processing is performed
using a loosely coupled distributed processing system.
16. A computer system for processing a plurality of discrete events, each
discrete event comprising a plurality of independent sub-events, said system
comprising:

distributing means for distributing each discrete event into one of a
plurality of segments, each segment comprising a sequence of at least one
discrete event to be processed,;

initiating means for initiating each of said plurality of segments to
execute concurrently on at least one processor;

said at least one processor for processing each discrete event
sequentially within each segment and for processing each independent sub-

event of each discrete event sequentially within each discrete event;

WO 95/23373 PCT/US95/02229

10

15

20

25

41

memory means for storing each processed discrete event;

monitoring means for monitoring each segment to detect failures in
processing the discrete events contained within each segment;

deactivating means for deactivating each segment for which a failure
is detected;

initializing means for creating a new segment containing at least one
unprocessed discrete event from each failed segment; and

initiating means for initiating each new segment.
17. 'The system of claim 16 wherein a plurality of new segments are
created, each of said new segments containing at least one unprocessed
discrete event.
18. The system of claim 16 wherein said discrete event is a customer
account and wherein said step of processing each discrete event comprises-
determining billing information for each customer account.
19. The system of claim 16 wherein said discrete event is a customer
account and wherein said independent sub events comprise customer
information and customer calls.
20. The system of claim 16 wherein said discrete event is a customer
account, wherein said processing means determines billing information and
wherein billing information for each customer account is stored in said
memory means immediately after each customer account is processed.
21. The system of claim 16 wherein said discrete event is a customer
account, wherein said processing means determines billing information and
further comprising the step of generating an invoice for each customer
account immediately after processing each customer account.
22. The system of claim 16 wherein said at least one processor comprises
a symmetrical multiprocessing system.
23. The system of claim 16 wherein said at least one processor comprises

a massively parallel processing system.

WO 95/23373 PCT/US95/02229

10

15

20

25

42

24, The method of claim 16 wherein said at least one processor
comprises a loosely coupled distributed processing system.
25. A computer system for processing a plurality of discrete events, each
discrete event comprising a plurality of independent sub events, said system
comprising:

distributing means for distributing each discrete event into one of a
plurality of segments, each segment comprising a sequence of at least one
discrete event to be processed;

first initiating means for initiating said plurality of segments on at
least one processor;

at least one processor for processing each discrete event sequentially
within each segment and for processing each independent sub event of each
discrete event sequentially within each discrete event;

memory means for storing each processed discrete event;

monitoring means for monitoring each of said segments to detect
failures;

deactivating means for deactivating each segment for which a failure
is detected,;

segment creating means for creating a new segment from the failed
segment comprising the unprocessed discrete events from the failed
segment; and

second initiating means for initiating the new segment.
26. The system of claim 25 wherein said discrete event is a customer
account and wherein at least one processor determines billing information
for each customer account.
27. The system of claim 25 wherein said discrete event is a customer
account and wherein said independent sub events comprise customer

information and customer calls.

WO 95/23373 PCT/US95/02229

1/13
FLOATING
— PONT K=
COPROCESSOR
INSTRUCTION DATA
cachE < —> CACHE
(140 |
32 BIT = CPU K= 64 BIT
™
100
32 BIT

MEMORY MODULES

MEMORY ;ﬁ

AND
N oodl0 [:N“UUHHD
CONTROLLER

110

i
32 BI7 20
HP
BUS
ADAPTER
130
A
SYSTEM BUS
I l l l
RS232 SCSI LAN | | CONSOLE/ACCESS
PORT

SUBSTITUTE SHEET (RULE 26)

PCT/US95/02229

WO 95/23373

2/13

pInyr

¢ Old

¥3TI0YLNOD 3NN _ 8se
IVNINY3L 13INYIHII N 7N
avz — T~ \\\\ ave %SIa 3dvlL
sng _—| ¥3LNINd N7
INA zcz | 13Tvavd ISOS
_ asz —
371NAOW
A S3IDIAY3S
| walsis
09¢ YA
N
¢ SNA_W3LSAS
\\1\mwm1// | NOISNVdX3
o/z| AYOWIN
MsIa || Msia || »sia
_|J 0¢c oLz
2120 431108.1N0D |- ndaa L7
AHOW3IN wvna

osz—

SUBSTITUTE SHEET (RULE 26)

PCT/US95/02229

WO 95/23373

3/13

0ce

¢ Ol

v0¢

(ALY

1ivi3d
1118

(o

¥0SSI00¥d
anN3
HIALNIYA [AJvE
gLe~’

80¢ —

A0S
C 00¢
|/ 91\€
HOLIMS
¥0SSI00¥d
an3
INOY4
“INI
¢Nnmﬂwwuv HALIMS HOLIMS
4110 zze
e goc —
ﬁ ‘ [L] *
30IAY3S DANIS |, ., .
¥3WoLsna || yawoLsno

SUBSTITUTE SHEET (RULE 26)

WO 95/23373 PCT/US95/02229

4/13
SWITCH FRONT END
T 1
_—{ RECEIVE CUSTOMER ~ RECEIVE CUSTOMER |
400| CALLS AT SWITCH I 414 INFORMATION

| I | !

|
|

J— STORE CALLS ON | || /L STORE CUST. INFORMATION
°|

DISK AT SWITCH 416 IN CUSTOMER INFORMATION

402[_ — # — J DATABASE

TRANSFER DISK | 418
AFROM SWITCH TO B.E.
404 '_ _.{
YES

mose | || PR
|406 & | -—{-N
| |

| |

| |

|

- —-

|

|

|

|

|

|

|

|
|
|
|

i INVOICE PROCESSING
|

DATABASE
_| STORE_RATED CALLS
468|IN FLAT FILE FORMAT

INTO INVOICE
PROCESSING
DATABASE

'

. MULTI-THREADED
BATCH PROCESSOR

|
|
|
|
|
| LOAD RATED CALLS
|
|
|
|
|

BACK END

FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 95/23373 PCT/US95/02229

5713

5od'lli§iill

INPUT BATCH 1D, # OF
502 | SEGMENTS, USER
\J ID/PASSWORD

528 |

08> NO | ABORT

PARAMETERS v
~_VALID?

I

506
DOES ACCT. NR.

RANGE CONTAIN
VALID ACCOUNTS?

DETERMINE # OF ACCOUNTS
PER SEGMENT

510~ '

FORK A SEGMENT PASSING
—{ THE CUSTOMER LIST TO BE
PROCESSED

512
WAS SEGMENT
STARTED
SUCCESSFULLY?

514

ARE ALL
SEGMENTS
STARTED?

NO

FIG. SA

SUBSTITUTE SHEET (RULE 26)

WO 95/23373 PCT/US95/02229

6/13
A B
-
516\ YES
WAIT FOR A SEGMENT
TO COMPLETE
526
518 -
DID SEGMENT KILL REMAINING
COMPLETE W/0O SEGMENTS
ERROR?

520
YES

ARE SEGMENTS
STILL RUNNING ?

COMBINE STORED SUMMARY
522 | REPORTING INFORMATION
NINTO REPORTS AND INVOICES

o B

FIG. 5B

SUBSTITUTE ‘SHEET (RULE 26)

WO 95/23373 PCT/US95/02229

7/13

| DETERMINE NUMBER
510 OF CPU'S

SEGMENTS # SEGMENTS
= USER SELECT = # CPU'S

d DETERMINE #
618 |CUSTOMER ACCOUNTS

|

~# CUST. ACTS PER SEG
620 | =(# CUST. ACTS) DIV
(# SEGMENTS)

1 REMAINDER =
622 |(# CUST. ACTS) MOD
(# SEGMENTS)

|

/7 SELECT # SEGMENTS
624 | = REMAINDER

1 INCREMENT SEGMENT
626 SIZE OF SELECTED
SEGMENTS

S

C

FIG. 6A

SUBSTITUTE SHEET (RULE 26)

WO 95/23373

FIG. 6B

8

A

628

630_~

/13

C

CP

ORDER SEGMENTS
FROM FIRST TO
LAST SEGMENTS

Y

SELECT FIRST
SEGMENT AS
CURRENT SEGMENT

!

PCT/US95/02229

632~_| DISTRIBUTE # DISCRETE

— >

EVENTS = SEGMENT
SIZE INTO CURRENT
SEGMENT

634

636

IS
LAST DISC.
EVENT IN SEGMENT
A CHILD

IS
NEXT
DISCRETE EV.
A CHILD

YES

ADD ANOTHER
DISCRETE EVENT TO
CURRENT SEGMENT

~
638

!

DECREMENT THE
SEGMENT SIZE OF
THE NEXT SEGMENT

644

SELECT NEXT
SEGMENT
AS CURRENT
SEGMENT

NO

IS
CURRENT
SEG=LAST
SEG

YES
END

SUBSTITUTE SHEET (RULE 26)

646

640

642

WO 95/23373 PCT/US95/02229

9/13

FIG. 7

1"
Ve 02

MEMORY MEMORY
| |
1104
CPU e o CPU

P
1100

CPU - » CPU
MEMORY MEMORY
FIG. | |

SUBSTITUTE SHEET (RULE 26)

WO 9523373 PCT/US95/02229

10713

A

YES
316 ~ T

WAIT FOR A SEGMENT

> TO COMPLETE
800
>18 RE IrQTIALIZE
DID SEGMENT SEGMENT DATA
COMPLETE W/0 T0 ORIGINAL
ERROR? VALUES
520
802
ARE SEGMENTS RE-FORK |~
STILL RUNNING? SEGMENT

522 N

COMBINE STORED SUMMARY
REPORTING INFORMATION
INTO REPORTS AND INVOICES

524
\. END

FIG. 8

SUBSTITUTE SHEET (RULE 26)

WO 95/23373 PCT/US95/02229

11713

A

YES
516\ T

» WAIT FOR A SEGMENT

TO COMPLETE
/900
518 DETERMINE WHICH
DID SEGMENT NO DISCRETE EVENTS
COMPLETE W/0 ARE OKAY
ERROR?
902
FORM NEW SEGMENT|
YES OF FAILED
520 DISCRETE EVENTS
YES ARE SEGMENTS - ' 904
STILL RUNNING? ORK NEW
SEGMENT
NO
522~

COMBINE STORED SUMMARY
REPORTING INFORMATION
INTO REPORTS AND INVOICES

l

END

524

FIG. 9

BUBSTITUTE SHEET (RULE 26)

PCT/US95/02229

WO 95/23373

12/13

oS

e

2

060

Sddv
43H10
l 0801

99

Sddv
d3HLO
0601 0801

Oﬁopl/

425

Sddv
43H1O0
0601

G

0801

NVM/NV

ovO0l

OOO—)M

Sddv
d3HIO
0601 0801

SS30038d ONITHE
d3LSVAN

0201

SUBSTITUTE ‘SHEET (RULE 26)

PCT/US95/02229

WO 95/23373

13713

8 v
-vvuméﬁé ‘rvu Svaviva .
< < = ¢ | Old

|
A vV d43AN3S _

137vavd

_ 8 ¥3IAY3S
B 137 VaIvd

SNOILVISHIOM XiINN Ve $3d

V4 v0zZ1
90Z1 zoz!

/\ SYILNANOJINIW

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US95/02229

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GOG6F 9/28, 19/00, 11/00
US CL :364/406; 455/2; 395/650; 371/12
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. @ 364/401, 406, 408, 464.01; 348/3; 379/116; 455/2; 395/650, 800; 371/12

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

NONE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y A Guide to Parallel Programming On Sequent Computer| 1-27
Systems, published by Prentice Hall, Englewood Cliffs, New
Jersey, Osterhaug, copyright 1989, pages 1-1 to 3-6, see
entire document.
Y Encyclopedia of Computer Science, 3rd Edition, Ralston et| 1-27
al., published by Van Nostrand Reinhold, New York,
copyright 1993, pages 1011-1025, see entire document.
Y.P Parallel Computing: Theory and Practice, published by| 1-27

McGraw-Hill, Inc., copyright 1994, Quinn, pages 1-85, see
entire document,

Further documents are listed in the continuation of Box C. D See patent family annex.

d Special categories of cited documents: T later d: published afier the inter 1 filing dste or priority
ape . L X date and not in conflict with the application but cited to understand the
A document defining the generul state of the ant which is not considered principle or theory underlying the invention

1o be part of particular relevance
‘E° carlier document published on or afier the interational filing date

document which may throw doubts on priority claim(s) or which is
cited 10 estublish the publication dute of another citation or other

special reason (as specified)

oM document referring to an oral disclosure. use. exhibition or other
means

°p* document published prior to the international filing date but later than

the priority date claimed

"X document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is inken alone

"Y* document of particular relevance; the claimed invention cannot be
considered to involve an inventive hlcp when the document is
I

combined with one or more other such do such ion
being obvious to a person skilled in the ant

“&" docunent member of the same patent family

Date of the actual completion of the international search

17 MAY 1995

Date of maiting of the international search report

70 JUL 1395

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington. D.C. 20231

Facsimile No. (703) 305-3230

Authorized ofﬁcerhé l .
Yoo
DAVID M. HUNTLEY /

Telephone No. (703) 305-3800

Form PCT/ISA/210 (secand shect)(July 1992)#

INTERNATIONAL SEARCH REPORT International application No.

PCT/US95/02229

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A Datamation, vol. 38, no. 25, 15 December 1992, Kador, pages 1-27

57-58, "Reengineering to Boost Software Productivity”, see entire

document.
Y US, A, 5,247,664 (Thompson et al.) 21 September 1993, see 1-27

entire document.
Y,P US, A, 5,321,698 (Nguyen et al.) 14 June 1994, see entire 1-27

document.
Y COMPCON Spring '93 IEEE Computer Society Int’l Conference, |1-27

1993, IEEE Cat. No. 1063-6390/93, Maier, "Fault Tolerance

Lessons Applied to Parallel Computing", pages 244-252, see

entire document.
Y Parallel and Distributed Processing, 1990 Proceedings, IEEE Cat. |1-27

No. TH0328-5/90/0000/0715, Kambhatla et al., "Recovery with
Limited Replay: Fault-Tolerant Processes in LINDA", pages 715-
718, see entire document.

Form PCT/ISA/210 (continuation of second sheet)(July 1992)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US95/02229

B. FIELDS SEARCHED
Electronic data bases consulted (Name of data base and where practicable terms used):

APS and DIALOG searches.

Search terms included: s billing?/ti,ab and (parallel?(3a)process?)/ti,ab and (retry? or restart? or rollback? or
reinitializ?)/ti,ab

Form PCT/ISA/210 (extra sheet)(July 1992)x

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

