

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2005321898 B2

(54) Title
Use of compositions comprising various tumor-associated antigens as anti-cancer vaccines

(51) International Patent Classification(s)
A61K 39/00 (2006.01) **A61P 35/00** (2006.01)

(21) Application No: **2005321898** (22) Date of Filing: **2005.12.29**

(87) WIPO No: **WO06/071983**

(30) Priority Data

(31) Number **60/640,598** (32) Date **2004.12.29** (33) Country **US**

(43) Publication Date: **2006.07.06**
(44) Accepted Journal Date: **2012.07.19**

(71) Applicant(s)
MannKind Corporation

(72) Inventor(s)
Chiang, Chih-Sheng;Liu, Xiping;Bot, Adrian Ion;Simard, John J.L.;Diamond, David C.

(74) Agent / Attorney
Davies Collison Cave, 1 Nicholson Street, Melbourne, VIC, 3000

(56) Related Art
Moingeon (2001) Vaccine, 19:1305-1326
Reynolds et al (2000) Journal of Immunological Methods, 244:59-67
Kessler et al (2001) Journal of Experimental Medicine, 193(1):73-88
WO 2001/085932 A2 (Aventis Pasteru Limited) 15 November 2001

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

CORRECTED VERSION

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
6 July 2006 (06.07.2006)

PCT

(10) International Publication Number
WO 2006/071983 A3

(51) International Patent Classification:
A61K 39/00 (2006.01) A61P 35/00 (2006.01)

Xiping [US/US]; 6035 Camellia Avenue, Temple City, California 91780 (US).

(21) International Application Number:
PCT/US2005/047407

(74) Agent: DELANEY, Karoline, A.; Knobbe, Martens, Olson & Bear, LLP, 2040 Main Street, 14th Floor, Irvine, California 92614 (US).

(22) International Filing Date:
29 December 2005 (29.12.2005)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

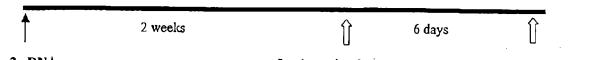
(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/640,598 29 December 2004 (29.12.2004) US

(71) Applicant (for all designated States except US):
MANNKIND CORPORATION [US/US]; 28903 North Avenue Paine, Valencia, California 91355 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).


[Continued on next page]

(54) Title: USE OF COMPOSITIONS COMPRISING VARIOUS TUMOR-ASSOCIATED ANTIGENS AS ANTI-CANCER VACCINES

Schedule of immunization with plasmids (pCBP expressing SSX2 41-49; and pSEM expressing Melan A)

Schedule of immunization

Immunization Schedule:

Experimental Setup:

Group 1: Plasmids separately (pCBP, pSEM)
Group 2: Plasmids admixed (pCBP+pSEM)

WO 2006/071983 A3

(57) Abstract: Disclosed herein are methods and compositions for inducing an immune response against various combinations of tumor-associated antigens, which can promote effective immunologic intervention in pathogenic processes. Embodiments of the invention disclosed herein are directed to the use of effective combinations of TuAAs for the immunotherapy of patients with various types of cancer. Both immunogenic compositions for inducing an immune response to these combinations of antigens and methods for their use are disclosed.

Published:

— *with international search report*

(88) Date of publication of the international search report:

8 March 2007

(48) Date of publication of this corrected version:

19 April 2007

(15) Information about Correction:

see PCT Gazette No. 16/2007 of 19 April 2007

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

COMBINATIONS OF TUMOR-ASSOCIATED ANTIGENS IN COMPOSITIONS FOR VARIOUS TYPES OF CANCERS

Cross Reference to Related Applications

[0001] This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 60/640,598, filed on December 29, 2004, entitled COMBINATIONS OF TUMOR-ASSOCIATED ANTIGENS IN COMPOSITIONS FOR VARIOUS TYPES OF CANCERS; the disclosure of which is hereby expressly incorporated by reference in its entirety.

Background of the Invention

Field of the Invention

[0002] Disclosed herein are methods and compositions for inducing an immune response against various combinations of tumor-associated antigens, which can promote effective immunologic intervention in pathogenic processes.

Description of the Related Art

[0003] The American Cancer Society has estimated that over one million people get cancer each year, and that approximately one out of every two American men and one out of every three American women will have some type of cancer at some point during their lifetime.

[0004] Cancer generally develops when cells in a part of the body begin to grow out of control. Although there are many kinds of cancer, they typically begin with out-of-control growth of abnormal cells.

[0005] Normal body cells grow, divide, and die in an orderly fashion. Cancer cells are different in that they continue to grow and divide. Instead of dying, they outlive normal cells and continue to form new abnormal cells.

[0006] Usual treatment options for cancer include surgery, radiation therapy, and chemotherapy. A fourth branch of treatment is developing, which is referred to as immunotherapy. Immunotherapies attempt to help the immune system recognize cancer cells, and/or to strengthen a response against cancer cells in order to destroy the cancer.

Immunotherapies include active and passive immunotherapies. Active immunotherapies attempt to stimulate the body's own immune system to fight the disease. Passive immunotherapies generally do not rely on the body to attack the disease; instead, they use immune system components (such as antibodies) created outside of the body.

[0007] A continuing need exists for additional treatment options.

Summary of the Invention

[0008] Embodiments of the invention disclosed herein are directed to the use of effective combinations of tumor-associated antigens (TuAAs) for the immunotherapy of patients with various types of cancer. In some embodiments, the TuAAs are antigens expressed by the cancer cell itself. In some embodiments, the TuAAs are antigens associated with non-cancerous components of the tumor, such as tumor-associated neovasculature or other stroma. In some embodiments, the combinations further include a tumor growth factor and/or a signal transduction protein. Both immunogenic compositions for inducing an immune response to these combinations of antigens and methods for their use are disclosed.

[0009] Some embodiments relate to methods of treating neoplastic diseases. The methods can include the step of immunizing a patient against, for example, PRAME and at least one other tumor associated antigen. To immunize a patient against an antigen such as, for example, PRAME means in preferred embodiments to administer to the patient some portion of the antigen, or some other immunogenic product that is capable of inducing a specific immune response directed against the antigen. Accordingly, in some embodiments, immunizing against PRAME includes administering a complete and intact PRAME antigen to the patient. In some embodiments, immunizing against PRAME includes administering one or more epitopes, one or more epitope clusters, one or more fragments, and the like, of PRAME, and/or administering, for example, a nucleic acid encoding any of the foregoing epitope(s), cluster(s), fragment(s), and the like. Although PRAME is used as a representative antigen for the purpose of discussion, any antigen against which a patient can be immunized can be used.

[0010] Some embodiments relate to methods of treating ovarian or colorectal cancer. The methods can include the step of immunizing a patient against, for example, PRAME and/or PSMA and at least one other tumor associated antigen. In some embodiments, the at least one other tumor associated antigen can include, for example,

SSX-2, NY-ESO-1, PSMA, PRAME, mesothelin, a MAGE protein, MAGE-3, Melan-A, PLK1, VEGF-A, VEGFR2, Tie-2, and the like, or subsets thereof. Preferably, the methods include immunizing against PRAME, NY-ESO-1 and/or SSX-2, for example. More preferably, the methods include immunizing against PRAME, NY-ESO-1, SSX-2, and PSMA, for example. The methods can further include the step of immunizing against at least one antigen associated with tumor neovasculature. The antigen associated with tumor neovasculature can be, for example, PSMA, VEGFR2, and/or Tie-2. The methods can further include immunizing against a growth factor, such as VEGF-A, and/or a signal transduction protein, such as PLK1. In preferred embodiments, the methods induce a cytolytic T cell response.

[0011] In some embodiments, methods of inducing an anti-cancer immune response in the treatment of ovarian or colorectal cancer are disclosed. The methods can include, for example, the step of immunizing a patient against PRAME and/or PSMA and at least one tumor-associated antigen. In some embodiments, the at least one other tumor-associated antigen can be, for example, SSX-2, NY-ESO-1, PSMA, PRAME, mesothelin, a MAGE protein, MAGE-3, Melan-A, PLK1, VEGF-A, VEGFR2, Tie-2, and the like, or subsets thereof. For example, in some embodiments, the methods can include immunization against PRAME, NY-ESO-1, and/or SSX-2. The methods can further include immunizing against PSMA. The methods can further include the step of immunizing against at least one antigen associated with tumor neovasculature. The antigen associated with tumor neovasculature can be, for example, PSMA, VEGFR2, and/or Tie-2. The methods can further include immunizing against a growth factor, such as VEGF-A, and/or a signal transduction protein, such as PLK1. In preferred embodiments, the anti-cancer immune response is a CTL response.

[0012] Other embodiments relate to methods of treating pancreatic cancer. The methods can include the step of immunizing against, for example, PRAME and/or PSMA and at least one other tumor-associated antigen. In an embodiment, the methods further include immunizing against at least one antigen selected from an antigen associated with tumor neovasculature, a growth factor and a signal transduction protein. The at least one other tumor-associated antigen can be, for example, PRAME, PSMA, mesothelin, SSX-2 and/or NY-ESO-1, a MAGE protein, MAGE-3, Melan-A, PLK1, VEGF-A, VEGFR2, Tie-2, and the like, or subsets thereof. For example, the methods can include immunizing against PSMA, NY-ESO-1, and/or SSX-2. In some embodiments,

the methods can include immunizing against PRAME, NY-ESO-1, and/or SSX-2. In some embodiments, the methods can include immunizing against PRAME, PSMA, NY-ESO-1, and SSX-2. The methods can further include the step of immunizing against at least one antigen associated with tumor neovasculature. The antigen associated with tumor neovasculature can be, for example, PSMA, VEGFR2 and/or Tie-2. In some embodiments, the growth factor is VEGF-A. In some embodiments, the signal transduction protein is PLK1. In a preferred embodiment, the methods induce a cytolytic T cell response.

[0013] Further, in some embodiments, methods of inducing an anti-cancer immune response in the treatment of pancreatic cancer are disclosed. The methods can include, for example, the step of immunizing a patient against PRAME and/or PSMA and at least one tumor-associated antigen. In an embodiment, the methods further include immunizing against at least one antigen selected from an antigen associated with tumor neovasculature, a growth factor and a signal transduction protein. In some embodiments, the at least one other tumor-associated antigen can be, for example, PRAME, PSMA, SSX-2, NY-ESO-1, mesothelin, a MAGE protein, MAGE-3, Melan-A, PLK1, VEGF-A, VEGFR2, Tie-2, and the like, or subsets thereof. For example, the methods can include immunization against PSMA and NY-ESO-1, and/or SSX-2. In some embodiments, the methods can include immunizing against PRAME and NY-ESO-1 and/or SSX-2. In some embodiments, the methods can include immunizing against PRAME, PSMA and NY-ESO-1 and/or SSX-2. The methods can further include the step of immunizing against at least one antigen associated with tumor neovasculature. The antigen associated with tumor neovasculature can be, for example, PSMA, VEGFR2 and/or Tie-2. In some embodiments, the growth factor is VEGF-A. In some embodiments, the signal transduction protein is PLK1. In preferred embodiments, the anti-cancer immune response is a CTL response.

[0014] Still other embodiments relate to methods of treating non-small cell lung cancer. The methods can include the step of immunizing a patient against, for example, PSMA and at least one other tumor associated antigen. For example, the tumor-associated antigen can be a MAGE protein, MAGE-3, Melan-A, mesothelin, SSX-2, NY-ESO-1, PRAME, PSMA, VEGF-A, PLK1, VEGFR2, Tie-2, and the like, or subsets thereof. Preferably, the methods can include immunizing against PSMA, NY-ESO-1 and/or SSX-2. More preferably, the methods can include immunization against PSMA,

NY-ESO-1, SSX-2, and/or MAGE-3, for example. The methods can further include the step of immunizing against at least one antigen associated with tumor neovasculature. The antigen associated with tumor neovasculature can be, for example, PSMA, VEGFR2 and/or Tie-2. The methods can further include immunizing against a growth factor, such as VEGF-A, and/or a signal transduction protein, such as PLK1. In a preferred embodiment, the methods can induce a cytolytic T cell response.

[0015] In a further embodiment, methods of inducing an anti-cancer immune response in the treatment of non-small cell lung cancer are disclosed. The methods can include, for example, the step of immunizing a patient against PSMA and at least one tumor-associated antigen. The at least one other tumor-associated antigen can be, for example, a MAGE protein, MAGE-3, Melan-A, mesothelin, SSX-2, NY-ESO-1, PRAME, PSMA, VEGF-A, PLK1, VEGFR2, Tie-2, and the like, or subsets thereof. For example, the methods can include immunization against PSMA, NY-ESO-1, and/or SSX-2. The methods can further include immunization against PSMA, NY-ESO-1, SSX-2, and/or MAGE-3. In an embodiment, the methods can further include the step of immunizing against at least one antigen associated with tumor neovasculature. The antigen associated with tumor neovasculature can be, for example, PSMA, VEGFR2 and/or Tie-2. The methods can further include immunizing against a growth factor, such as VEGF-A, and/or a signal transduction protein, such as PLK1. In preferred embodiments, the anti-cancer immune response is a CTL response.

[0016] Other embodiments relate to methods of treating renal cell carcinoma. The methods can include the step of immunizing a patient against, for example, PSMA and/or PRAME and at least one other tumor associated antigen. The at least one other tumor-associated antigen can be, for example, PRAME, PSMA, SSX-2, NY-ESO-1, a MAGE protein, MAGE-3, Melan-A, mesothelin, VEGF-A, VEGFR2, Tie-2, and the like, or subsets thereof. Preferably, the methods can include immunizing against PSMA, PRAME, and/or SSX-2, for example. The methods can further include the step of immunizing against at least one antigen associated with tumor neovasculature. The antigen associated with tumor neovasculature can be, for example, PSMA, VEGFR2 and/or Tie-2. In a preferred embodiment, the methods induce a cytolytic T cell response.

[0017] Further, in some embodiments, methods of inducing an anti-cancer immune response in the treatment of renal cell carcinoma are disclosed. The methods can include, for example, the step of immunizing a patient against PSMA and at least one

other tumor-associated antigen. In some embodiments, the tumor-associated antigen can be PRAME, PSMA, SSX-2, NY-ESO-1, a MAGE protein, MAGE-3, Melan-A, mesothelin, VEGF-A, VEGFR2, Tie-2, and the like, or subsets thereof. For example, the methods can include immunization against PSMA, PRAME, and/or SSX-2. The methods can further include the step of immunizing against at least one antigen associated with tumor neovasculature. The antigen associated with tumor neovasculature can be, for example, PSMA, VEGFR2 and/or Tie-2. In preferred embodiments, the anti-cancer immune response is a CTL response.

[0018] Some embodiments relate to methods of treating melanoma. The methods can include the step of immunizing a patient against, for example, at least one tumor-associated antigen selected from each of two groups. The first group can include, for example, tyrosinase, Melan-A, and the like. The second group can include, for example, SSX-2, NY-ESO-1, and the like. In some embodiments, the methods can include immunizing against Melan-A, SSX-2, and/or NY-ESO. In some embodiments, the methods can include immunization against Melan-A, SSX-2, and/or tyrosinase, for example. The methods can further include the step of immunizing against at least one antigen associated with tumor neovasculature. The antigen associated with tumor neovasculature can be, for example, PSMA, VEGFR2, and/or Tie-2. The methods can further include immunizing against a growth factor, such as VEGF-A, and/or a signal transduction protein, such as PLK1. In a preferred embodiment, the methods induce a cytolytic T cell response.

[0019] In some embodiments, methods of inducing an anti-cancer immune response in the treatment of melanoma are disclosed. The methods can include, for example, the step of immunizing a patient against at least one tumor-associated antigen selected from each of two groups. The first group can include, for example, tyrosinase, Melan-A, and the like. The second group can include, for example, SSX-2, NY-ESO-1, and the like. For example, the method can include immunization against Melan-A, SSX-2, and/or NY-ESO. Alternatively, the method can include, for example, immunization against Melan-A, SSX-2, and/or tyrosinase. The method can further include the step of immunizing against at least one antigen associated with tumor neovasculature. The antigen associated with tumor neovasculature can be, for example, PSMA, VEGFR2, and/or Tie-2. The methods can further include immunizing against a growth factor, such

as VEGF-A, and/or a signal transduction protein, such as PLK1. In preferred embodiments, the anti-cancer immune response is a CTL response.

[0020] Some embodiments relate to the use of a composition comprising, for example, PRAME and/or PSMA and at least one other tumor associated antigen, in the preparation of a medicament for the treatment of ovarian or colorectal cancer. In some embodiments the at least one other tumor associated antigen can include, for example, SSX-2, NY-ESO-1, PSMA, PRAME, mesothelin, a MAGE protein, MAGE-3, Melan-A, PLK1, VEGF-A, VEGFR2, Tie-2, and the like, or subsets thereof. Thus, the composition can comprise NY-ESO-1 and/or SSX-2, for example. In some embodiments, the composition can comprise NY-ESO-1, SSX-2, and/or PSMA, for example. The composition can further include at least one antigen associated with tumor neovasculature. The antigen associated with tumor neovasculature can be, for example, PSMA, VEGFR2, and/or Tie-2. In a preferred embodiment, the medicament induces a cytolytic T cell response.

[0021] Other embodiments relate to the use of a composition comprising, for example, PRAME and/or PSMA and at least one other tumor-associated antigen in the preparation of medicament for the treatment of pancreatic cancer. The composition can further include an antigen associated with tumor neovasculature, a growth factor, or a signal transduction protein. The at least one other tumor-associated antigen can be, for example, PRAME, PSMA, SSX-2 and/or NY-ESO-1, mesothelin, a MAGE protein, MAGE-3, Melan-A, PLK1, VEGF-A, VEGFR2, Tie-2, and the like, or subsets thereof. In an embodiment, the composition comprises PSMA and NY-ESO-1, and/or SSX-2. In an embodiment, the composition comprises PRAME and NY-ESO-1, and/or SSX-2. The composition can further include at least one antigen associated with tumor neovasculature. The antigen associated with tumor neovasculature can be, for example, PSMA, VEGFR2 and/or Tie-2. The growth factor can be VEGF-A, for example. The signal transduction protein can be, for example, PLK1. In a preferred embodiment, the medicament can induce a cytolytic T cell response. In some embodiments, the medicament is for use in combination with at least one additional medicament comprising a tumor-associated antigen.

[0022] Still other embodiments relate to the use of a composition comprising PSMA and at least one other tumor associated antigen in the preparation of a medicament for the treatment of non-small cell lung cancer. In some embodiments, the tumor-

associated antigen can be a MAGE protein, MAGE-3, Melan-A, mesothelin, SSX-2, NY-ESO-1, PRAME, PSMA, VEGF-A, PLK1, VEGFR2, Tie-2, and the like, or subsets thereof. Preferably, the composition comprises PSMA, NY-ESO-1 and/or SSX-2. More preferably, the composition comprises PSMA, NY-ESO-1, SSX-2, and/or MAGE-3, for example. The composition can further include at least one antigen associated with tumor neovasculature. The antigen associated with tumor neovasculature can be, for example, PSMA, VEGFR2 and/or Tie-2. In a preferred embodiment, the medicament can induce a cytolytic T cell response.

[0023] Alternative embodiments relate to the use of a composition comprising PRAME and/or PSMA and at least one other tumor associated antigen in the preparation of a medicament for the treatment of renal cell carcinoma. The at least one other tumor-associated antigen can be, for example, PSMA, PRAME, SSX-2, NY-ESO-1, a MAGE protein, MAGE-3, Melan-A, mesothelin, VEGF-A, VEGFR2, Tie-2, and the like, or subsets thereof. Preferably, the composition comprises PSMA, PRAME, and/or SSX-2, for example. The composition can further include at least one antigen associated with tumor neovasculature. The antigen associated with tumor neovasculature can be, for example, PSMA, VEGFR2 and/or Tie-2. In a preferred embodiment, the medicament can induce a cytolytic T cell response.

[0024] Still other embodiments relate to the use of a composition comprising at least one tumor-associated antigen selected from each of two groups in the preparation of a medicament for the treatment of melanoma. The first group can include, for example, tyrosinase, Melan-A, and the like. The second group can include, for example, SSX-2, NY-ESO-1, and the like. Preferably, the composition comprises Melan-A, SSX-2, and/or NY-ESO. More preferably, the composition comprises Melan-A, SSX-2, and/or tyrosinase, for example. The method can further include the step of immunizing against at least one antigen associated with tumor neovasculature. The antigen associated with tumor neovasculature can be, for example, PSMA, VEGFR2, and/or Tie-2. The composition can further include a growth factor, such as VEGF-A and/or a signal transduction protein, such as PLK1. In a preferred embodiment, the medicament can induce a cytolytic T cell response.

[0025] Other embodiments relate to immunogenic compositions for inducing an anti-cancer immune response, comprising, individually or in combination, 1) whole antigens, 2) fragments of antigens, 3) epitope clusters derived from antigens, 4) epitopes

derived from antigens, or 5) nucleic acids encoding any of 1 to 4; wherein the antigens comprise a first antigen selected from PRAME, PSMA, and/or tyrosinase; and at least one other tumor-associated antigen. The cancer treated by the immunogenic compositions can be, for example, ovarian cancer, colorectal cancer, pancreatic cancer, non-small cell lung cancer, melanoma, renal cell carcinoma, and the like. In a preferred embodiment, the at least one other tumor-associated antigen is selected from NY-ESO-1, SSX-2, a MAGE protein, MAGE-3, mesothelin, Melan-A, VEGFR2, Tie-2, and the like, or subsets thereof. In some embodiments, the compositions can further include a neovasculature antigen or other stromal cell antigen. In some embodiments, the compositions can also include an extra-cellular factor. In some embodiments, the compositions further include a non-target antigen. In some embodiments, the compositions can include a means for inducing immunity to a factor that promotes the growth, survival, invasiveness, or metastasis of a tumor. The compositions can also include a means for inducing bystander help for the tumor-associated antigens. In some embodiments, the compositions can include a means for causing inflammation in a tumor lesion. The compositions can further include a growth factor and/or a signal transduction protein. The growth factor can be, for example, VEGF-A. The signal transduction factor can be, for example, PLK1.

[0026] Still other embodiments relate to immunogenic compositions for the treatment of cancer. The compositions can include, for example, individually or in combination, 1) whole antigens, 2) fragments of antigens, 3) epitope clusters derived from antigens, 4) epitopes derived from antigens, or 5) nucleic acids encoding any of 1 to 4; wherein the antigens can include PRAME and/or PSMA and/or tyrosinase and at least one other tumor-associated antigen. In a preferred embodiment, the at least one other tumor-associated antigen can be selected from SSX-2 and/or NY-ESO-1, a MAGE protein, MAGE-3, mesothelin, Melan-A, VEGFR2, Tie-2, and the like, or subsets thereof. The cancer treated can be, for example, ovarian cancer, colorectal cancer, pancreatic cancer, non-small cell lung cancer, melanoma, renal cell carcinoma, and the like. The compositions can further include at least one antigen associated with tumor neovasculature or stroma. The antigen associated with tumor neovasculature can be, for example, PSMA, VEGFR2 and/or Tie-2. Thus, in some embodiments, immunogenic compositions comprising a PSMA antigen and further comprising at least one additional antigen selected from PRAME, NY-ESO and SSX-2 are disclosed. In some embodiments, immunogenic compositions comprising a PRAME antigen and further

comprising at least additional antigen selected from PRAME, NY-ESO and SSX-2 are disclosed. In some embodiments, the compositions further include an extra-cellular factor. In some embodiments, the compositions further include a non-target antigen. In some embodiments, the compositions further include a means for inducing immunity to a factor that promotes the growth, survival, invasiveness, or metastasis of a tumor. In some embodiments, the compositions further comprise a means for inducing bystander help for the tumor-associated antigens. In some embodiments, the compositions further comprise a means for causing inflammation in a tumor lesion. The compositions can further include a growth factor and/or a signal transduction protein. The growth factor can be, for example, VEGF-A. The signal transduction factor can be, for example, PLK1.

[0027] Other embodiments relate to immunogenic compositions for the treatment of or for inducing an anti-cancer response against ovarian or colorectal cancer, for example. The compositions can include, for example, individually or in combination, 1) whole antigens, 2) fragments of antigens, 3) epitope clusters derived from antigens, 4) epitopes derived from antigens, 5) nucleic acids encoding any of 1 to 4, and the like; wherein the antigens can include a first antigen selected from PRAME, PSMA, and/or tyrosinase and at least one other tumor-associated antigen. The at least one other tumor-associated antigen can include, for example, SSX-2, NY-ESO-1, a MAGE protein, MAGE-3, Melan-A, mesothelin, VEGF-A, PLK1, PRAME, PSMA, VEGFR2, Tie-2, and the like, or subsets thereof. The compositions can further include at least one antigen associated with tumor neovasculature or stroma. The antigen associated with tumor neovasculature can be, for example, PSMA, VEGFR2 and/or Tie-2. The compositions can further include a growth factor and/or a signal transduction protein. The growth factor can be, for example, VEGF-A. The signal transduction factor can be, for example, PLK1.

[0028] Other embodiments relate to immunogenic compositions for the treatment of, or for inducing an anti-cancer response against, pancreatic cancer. The compositions can include, for example, individually or in combination, 1) whole antigens, 2) fragments of antigens, 3) epitope clusters derived from antigens, 4) epitopes derived from antigens, or 5) nucleic acids encoding any of 1 to 4; wherein the antigens are PRAME and/or PSMA and at least one other tumor-associated antigen. In a preferred embodiment, the at least one other tumor-associated antigen can be selected from PSMA, PRAME, mesothelin, SSX-2, NY-ESO-1, a MAGE protein, MAGE-3, Melan-A, VEGF-

A, PLK1, VEGFR2, Tie-2, and the like, or subsets thereof. In some embodiments, the composition comprises PRAME and NY-ESO-1 and/or SSX-2. In some embodiments, the composition comprises PSMA and NY-ESO-1 and/or SSX-2. In some embodiments, the composition comprises PRAME, PSMA and NY-ESO-1 and/or SSX-2. In some embodiments, the compositions can further include a neovasculature antigen or other stromal cell antigen. The antigen associated with tumor neovasculature can be, PSMA, VEGFR2 and/or Tie-2. In some embodiments, the compositions can also include an extra-cellular factor. In some embodiments, the compositions further include a non-target antigen. In other embodiments, the compositions can include a means for inducing immunity to a factor that promotes the growth, survival, invasiveness, or metastasis of a tumor. The compositions can also include a means for inducing bystander help for the tumor-associated antigens. In some embodiments, the compositions can include a means for causing inflammation in a tumor lesion. The compositions can further include a growth factor and/or a signal transduction protein. The growth factor can be, for example, VEGF-A. The signal transduction factor can be, for example, PLK1.

[0029] Some embodiments relate to immunogenic compositions for the treatment of or for inducing an anti-cancer response against non-small cell lung cancer. The compositions can include, for example, individually or in combination, 1) whole antigens, 2) fragments of antigens, 3) epitope clusters derived from antigens, 4) epitopes derived from antigens, or 5) nucleic acids encoding any of 1 to 4; wherein the antigens can include a first antigen selected from PRAME, PSMA, and/or tyrosinase and at least one other tumor-associated antigen. The at least one other tumor associated antigen can include, for example, a MAGE protein, MAGE-3, Melan-A, PLK1, VEGF-A, SSX-2, NY-ESO-1, mesothelin, PRAME, PSMA, VEGFR2, Tie-2, and the like, or subsets thereof. The compositions can further include at least one antigen associated with tumor neovasculature or stroma. The antigen associated with tumor neovasculature can be, for example, PSMA, VEGFR2 and/or Tie-2. The compositions can further include a growth factor and/or a signal transduction protein. The growth factor can be, for example, VEGF-A. The signal transduction factor can be, for example, PLK1.

[0030] Some embodiments relate to immunogenic compositions for the treatment of or for inducing an anti-cancer response against renal cell carcinoma. The compositions can include, for example, individually or in combination, 1) whole antigens, 2) fragments of antigens, 3) epitope clusters derived from antigens, 4) epitopes derived

from antigens, or 5) nucleic acids encoding any of 1 to 4; wherein the antigens can include a first antigen selected from PRAME, PSMA, and/or tyrosinase and at least one other tumor-associated antigen. In some embodiments, the at least one other tumor associated antigen can be a MAGE protein, MAGE-3, Melan-A, mesothelin, NY-ESO-1, SSX-2, PSMA, PRAME, VEGF-A, VEGFR2, Tie-2, and the like, or subsets thereof. The compositions can further include at least one antigen associated with tumor neovasculature or stroma. The antigen associated with tumor neovasculature can be, for example, PSMA, VEGFR2 and/or Tie-2.

[0031] Still other embodiments relate to immunogenic compositions for the treatment of or for inducing an anti-cancer response against melanoma. The compositions can include, for example, individually or in combination, 1) whole antigens, 2) fragments of antigens, 3) epitope clusters derived from antigens, 4) epitopes derived from antigens, or 5) nucleic acids encoding any of 1 to 4; wherein the antigens can be selected from each of two groups; wherein the first group includes, for example, PRAME, PSMAE and/or tyrosinase; and wherein the second group includes a MAGE protein, MAGE-3, Melan-A, SSX-2 and/or NY-ESO-1, and the like. The compositions can further include at least one antigen associated with tumor neovasculature or stroma. The antigen associated with tumor neovasculature can be, for example, PSMA, VEGFR2 and/or Tie-2. The compositions can further include a growth factor and/or a signal transduction protein. The growth factor can be, for example, VEGF-A. The signal transduction factor can be, for example, PLK1.

[0032] Further embodiments relate to compositions and methods for inducing an anti-cancer response using combinations of tumor-associated antigens, including fragments of tumor-associated antigens, clusters and epitopes. The compositions can include nucleic acid constructs, for example, a single construct that encodes all of the desired antigens. In other embodiments a single construct encodes a single antigen, while in other embodiments one construct can have a combination of epitopes with similar immunogenicity and another construct can have epitopes with similar immunogenicity.

[0033] Still other embodiments relate to methods of designing and preparing immunogenic compositions, which methods can include the steps of determining the presence of one or more antigens on a tumor type, and obtaining the one or more antigens for inclusion in a composition that induces CTL.

[0034] In some embodiments, methods of inducing an anti-cancer immune response are disclosed. The cancer can be, for example, ovarian cancer, colorectal cancer, pancreatic cancer, non-small cell lung cancer, melanoma, and renal cell carcinoma, and the like, or any subset thereof. The methods can include, for example, the step of immunizing against a first antigen and at least one tumor associated antigen. The first antigen can be, for example, PRAME, PSMA, tyrosinase, and the like. For example, in some embodiments, the methods include the step of immunizing against PRAME and at least one tumor-associated antigen and the cancers treated can be ovarian cancer, colorectal cancer, pancreatic cancer, melanoma, and renal cell carcinoma. In some embodiments, the methods include the step of immunizing against PSMA and at least one tumor-associated antigen, and the cancer can be non-small cell lung cancer, ovarian cancer, colorectal cancer, pancreatic cancer, and renal cell carcinoma. The at least one tumor-associated antigen can be, for example, PRAME, PSMA, VEGFR-2, NY-ESO 1, SSX-2, a MAGE protein, MAGE-3, mesothelin, PLK-1, VEGF-A, Melan A, VEGFR2, Tie-2, and the like, or subsets thereof.

[0035] In some embodiments, the methods can further include the step of immunizing against a stromal cell antigen, such as by active immunotherapies, passive immunotherapies, or the like. In some embodiments, the methods can further include a step for causing inflammation in a tumor lesion. In some embodiments, the methods further include immunizing against an extra-cellular factor. The extra-cellular factor can be, for example, an autocrine factor, a paracrine factor, a growth factor, chorionic gonadotropin, gastrin, an NF- κ B activating factor, VEGF-A CXCL1, CXCL8, CCL2 and the like. In some embodiments, the methods can further include immunizing against a factor that promotes the growth, survival, invasiveness, or metastasis of a tumor.

[0036] In another embodiment, the methods can include immunizing against a non-self antigen, such as a B cell epitope or a Th epitope. The methods can also include a step for co-inducing a helper response, such as a B cell response or a Th cell response.

[0037] In some embodiments, the methods can further include administering a treatment such as, for example, chemotherapy, radiotherapy, chemotherapy, biotherapy, passive immunotherapy, antibody therapy, surgery, and the like. In some embodiments, the methods further include a step for tumor debulking. In some embodiments, the methods can include a step for inducing tissue damage, necrosis, or apoptosis within a

tumor. In some embodiments, the methods can include a step for inducing inflammation within a tumor.

Brief Description of the Drawings

[0038] Figure 1 is a timeline depicting the schedule of immunization with two plasmid (pCBP expressing SSX2 41-49 and pSEM expressing Melan A).

[0039] Figure 2 is a bar graph that shows CTL activity obtained using the protocol in Figure 1.

[0040] Figure 3 is a timeline depicting the schedule of immunization of an entrain-and-amplify immunization protocol using plasmids and peptides representing two epitopes.

[0041] Figure 4 is a table showing *in vivo* clearance of epitope-pulsed cells in mice immunized according to the protocol of Figure 3.

[0042] Figures 5A and 5B are timelines depicting preferred immunization protocols for inducing strong multivalent responses. Figure 5A shows the use of peptides for boosting restores multivalent immune responses even if plasmids and peptides are used as mixtures. Figure 5B shows segregation of plasmid and peptide components allows induction of multivalent immune responses.

Detailed Description of the Preferred Embodiment

[0043] The frequency of expression of many tumor-associated antigens (TuAAs) in various types of cancers is known. However, the frequency of appearance of some antigens, and especially certain combinations of TuAAs, in various types of cancers has not been reported. Accurate measurement of the presence of TuAAs in tumor tissues aids in determining which TuAAs will be useful for the treatment of a particular type of cancer.

[0044] Many attempts to develop active immunotherapies for cancer have utilized a single antigen. This can be problematic for two distinct reasons. Firstly, the expression of any particular TuAA in cancer can be mosaic with the antigen expression ranging from high in some cells within a tumor mass to completely absent in others. Moreover, the TuAA may be expressed in some lesions but not others. By directing an immune response against more than a single antigen, if properly selected, the number of tumor cells that can be recognized is maximized. Secondly, some tumors lose expression

of a TuAA following immunization, giving rise to a resistant population. If the immune response is directed against more than one TuAA it becomes much more difficult for a resistant tumor to arise because it must then simultaneously lose expression of each of the antigens in order to escape. Thus, in treating cancer with immunotherapy, it can be advantageous to use a combination of TuAAs both due to more complete coverage of the population of tumor cells, and because there will be less chance of tumor escape through loss of expression of the TuAAs. In preferred embodiments, this technique is employed when the tumor is positive for two, three, or more of the TuAAs of the combination used.

[0045] Multivalent attack can offer another advantage in increasing the sensitivity of the tumor to attack. If more than a single antigen on a tumor cell is targeted, the effective concentration of anti-tumor agent is increased. In addition, attack on stroma associated with the tumor, such as vasculature, can increase the accessibility of the tumor cells to the agent(s) targeting them. Thus, even an antigen that is also expressed on some normal tissue can receive greater consideration as a target antigen, if the other antigens to be targeted in a multivalent attack are not also expressed by that tissue.

[0046] In some embodiments, practice of the methods includes use of at least two different compositions and, especially when there is more than a single target antigen, can involve several compositions to be administered together and/or at different times. Thus, embodiments of the invention include sets and subsets of immunogenic compositions and individual doses thereof. Multivalency can be achieved using compositions comprising multivalent immunogens, combinations of monovalent immunogens, coordinated use of compositions comprising one or more monovalent immunogens or various combinations thereof. Multiple compositions, manufactured for use in a particular treatment regimen or protocol according to such methods, define an immunotherapeutic product. In some embodiments all or a subset of the compositions of the product are packaged together in a kit.

Definitions

[0047] Unless otherwise clear from the context of the use of a term herein, the following listed terms shall generally have the indicated meanings for purposes of this description.

[0048] PROFESSIONAL ANTIGEN-PRESENTING CELL (pAPC) – a cell that possesses T cell co-stimulatory molecules and is able to induce a T cell response. Well characterized pAPCs include dendritic cells, B cells, and macrophages.

[0049] PERIPHERAL CELL – a cell that is not a pAPC.

[0050] HOUSEKEEPING PROTEASOME – a proteasome normally active in peripheral cells, and generally not present or not strongly active in pAPCs.

[0051] IMMUNOPROTEASOME – a proteasome normally active in pAPCs; the immunoproteasome is also active in some peripheral cells in infected tissues or following exposure to interferon.

[0052] EPITOPE – a molecule or substance capable of stimulating an immune response. In preferred embodiments, epitopes according to this definition include but are not necessarily limited to a polypeptide and a nucleic acid encoding a polypeptide, wherein the polypeptide is capable of stimulating an immune response. In other preferred embodiments, epitopes according to this definition include but are not necessarily limited to peptides presented on the surface of cells, the peptides being non-covalently bound to the binding cleft of class I MHC, such that they can interact with T cell receptors (TCR). Epitopes presented by class I MHC may be in immature or mature form. “Mature” refers to an MHC epitope in distinction to any precursor (“immature”) that may include or consist essentially of a housekeeping epitope, but also includes other sequences in a primary translation product that are removed by processing, including without limitation, alone or in any combination, proteasomal digestion, N-terminal trimming, or the action of exogenous enzymatic activities. Thus, a mature epitope may be provided embedded in a somewhat longer polypeptide, the immunological potential of which is due, at least in part, to the embedded epitope; likewise, the mature epitope can be provided in its ultimate form that can bind in the MHC binding cleft to be recognized by TCR.

[0053] MHC EPITOPE – a polypeptide having a known or predicted binding affinity for a mammalian class I or class II major histocompatibility complex (MHC) molecule.

[0054] HOUSEKEEPING EPITOPE – In a preferred embodiment, a housekeeping epitope is defined as a polypeptide fragment that is an MHC epitope, and that is displayed on a cell in which housekeeping proteasomes are predominantly active. In another preferred embodiment, a housekeeping epitope is defined as a polypeptide containing a housekeeping epitope according to the foregoing definition, that is flanked by

one to several additional amino acids. In another preferred embodiment, a housekeeping epitope is defined as a nucleic acid that encodes a housekeeping epitope according to the foregoing definitions. Exemplary housekeeping epitopes are provided in U.S. Patent Application Nos. 10/117,937, filed on April 4, 2002 (Pub. No. 20030220239 A1), 11/067,159 (Pub. No. 2005-0221440 A1), filed February 25, 2005, 11/067,064 (Pub. No. 2005-0142144 A1), filed February 25, 2005, and 10/657,022 (Pub. No. 2004-0180354 A1), filed September 5, 2003, and in PCT Application No. PCT/US2003/027706 (Pub. No. WO 2004/022709 A2), filed 9/5/2003; and U.S. Provisional Application Nos. 60/282,211, filed on April 6, 2001; 60/337,017, filed on November 7, 2001; 60/363,210 filed March 7, 2002; and 60/409,123, filed on September 6, 2002. Each of the listed applications is entitled "EPITOPE SEQUENCES." Each of the applications mentioned in this paragraph is incorporated herein by reference in its entirety.

[0055] IMMUNE EPITOPE – In a preferred embodiment, an immune epitope is defined as a polypeptide fragment that is an MHC epitope, and that is displayed on a cell in which immunoproteasomes are predominantly active. In another preferred embodiment, an immune epitope is defined as a polypeptide containing an immune epitope according to the foregoing definition, that is flanked by one to several additional amino acids. In another preferred embodiment, an immune epitope is defined as a polypeptide including an epitope cluster sequence, having at least two polypeptide sequences having a known or predicted affinity for a class I MHC. In yet another preferred embodiment, an immune epitope is defined as a nucleic acid that encodes an immune epitope according to any of the foregoing definitions.

[0056] TARGET CELL – In a preferred embodiment, a target cell is a cell associated with a pathogenic condition that can be acted upon by the components of the immune system, for example, a cell infected with a virus or other intracellular parasite, or a neoplastic cell. In another embodiment, a target cell is a cell to be targeted by the vaccines and methods of the invention. Examples of target cells according to this definition include but are not necessarily limited to: a neoplastic cell and a cell harboring an intracellular parasite, such as, for example, a virus, a bacterium, or a protozoan. Target cells can also include cells that are targeted by CTL as a part of an assay to determine or confirm proper epitope liberation and processing by a cell expressing immunoproteasome, to determine T cell specificity or immunogenicity for a desired epitope. Such cells can be

transformed to express the liberation sequence, or the cells can simply be pulsed with peptide/epitope.

[0057] TARGET-ASSOCIATED ANTIGEN (TAA) – a protein or polypeptide present in a target cell.

[0058] TUMOR-ASSOCIATED ANTIGEN (TuAA) – a TAA, wherein the target cell is a neoplastic cell. In alternate embodiments, a TuAA is an antigen associated with non-cancerous cells of the tumor such as tumor neovasculature or other stromal cells within the tumor microenvironment.

[0059] HLA EPITOPE – a polypeptide having a known or predicted binding affinity for a human class I or class II HLA complex molecule.

[0060] ANTIBODY – a natural immunoglobulin (Ig), poly- or monoclonal, or any molecule composed in whole or in part of an Ig binding domain, whether derived biochemically, or by use of recombinant DNA, or by any other means. Examples include *inter alia*, F(ab), single chain Fv, and Ig variable region-phage coat protein fusions.

[0061] SUBSTANTIAL SIMILARITY – this term is used to refer to sequences that differ from a reference sequence in an inconsequential way as judged by examination of the sequence. Nucleic acid sequences encoding the same amino acid sequence are substantially similar despite differences in degenerate positions or minor differences in length or composition of any non-coding regions. Amino acid sequences differing only by conservative substitution or minor length variations are substantially similar. Additionally, amino acid sequences comprising housekeeping epitopes that differ in the number of N-terminal flanking residues, or immune epitopes and epitope clusters that differ in the number of flanking residues at either terminus, are substantially similar. Nucleic acids that encode substantially similar amino acid sequences are themselves also substantially similar.

[0062] FUNCTIONAL SIMILARITY – this term is used to refer to sequences that differ from a reference sequence in an inconsequential way as judged by examination of a biological or biochemical property, although the sequences may not be substantially similar. For example, two nucleic acids can be useful as hybridization probes for the same sequence but encode differing amino acid sequences. Two peptides that induce cross-reactive CTL responses are functionally similar even if they differ by non-conservative amino acid substitutions (and thus may not be within the substantial similarity definition). Pairs of antibodies, or TCRs, that recognize the same epitope can

be functionally similar to each other despite whatever structural differences exist. Testing for functional similarity of immunogenicity can be conducted by immunizing with the “altered” antigen and testing the ability of an elicited response, including but not limited to an antibody response, a CTL response, cytokine production, and the like, to recognize the target antigen. Accordingly, two sequences may be designed to differ in certain respects while retaining the same function. Such designed sequence variants of disclosed or claimed sequences are among the embodiments of the present invention.

[0063] EXPRESSION CASSETTE – a polynucleotide sequence encoding a polypeptide, operably linked to a promoter and other transcription and translation control elements, including but not limited to enhancers, termination codons, internal ribosome entry sites, and polyadenylation sites. The cassette can also include sequences that facilitate moving it from one host molecule to another.

[0064] EMBEDDED EPITOPE – in some embodiments, an embedded epitope is an epitope that is wholly contained within a longer polypeptide; in other embodiments, the term also can include an epitope in which only the N-terminus or the C-terminus is embedded such that the epitope is not wholly in an interior position with respect to the longer polypeptide.

[0065] MATURE EPITOPE – a peptide with no additional sequence beyond that present when the epitope is bound in the MHC peptide-binding cleft.

[0066] EPITOPE CLUSTER – a polypeptide, or a nucleic acid sequence encoding it, that is a segment of a protein sequence, including a native protein sequence, comprising two or more known or predicted epitopes with binding affinity for a shared MHC restriction element. In preferred embodiments, the density of epitopes within the cluster is greater than the density of all known or predicted epitopes with binding affinity for the shared MHC restriction element within the complete protein sequence. Epitope clusters are disclosed and more fully defined in U.S. Patent Application No. 09/561,571, filed April 28, 2000, entitled “EPITOPE CLUSTERS,” which is incorporated herein by reference in its entirety.

[0067] LIBERATION SEQUENCE – a designed or engineered sequence comprising or encoding a housekeeping epitope embedded in a larger sequence that provides a context allowing the housekeeping epitope to be liberated by processing activities including, for example, immunoproteasome activity, N terminal trimming, and/or other processes or activities, alone or in any combination.

[0068] CTLp – CTL precursors are T cells that can be induced to exhibit cytolytic activity. Secondary *in vitro* lytic activity, by which CTLp are generally observed, can arise from any combination of naïve, effector, and memory CTL *in vivo*.

[0069] MEMORY T CELL – A T cell, regardless of its location in the body, that has been previously activated by antigen, but is in a quiescent physiologic state requiring re-exposure to antigen in order to gain effector function. Phenotypically they are generally CD62L⁻ CD44^{hi} CD107α⁻ IGN-γ⁻ LTβ⁻ TNF-α⁻ and is in G0 of the cell cycle.

[0070] EFFECTOR T CELL – A T cell that, upon encountering antigen antigen, readily exhibits effector function. Effector T cells are generally capable of exiting the lymphatic system and entering the immunological periphery. Phenotypically they are generally CD62L⁻ CD44^{hi} CD107α⁺ IGN-γ⁺ LTβ⁺ TNF-α⁺ and actively cycling.

[0071] EFFECTOR FUNCTION – Generally, T cell activation generally, including acquisition of cytolytic activity and/or cytokine secretion.

[0072] INDUCING a T cell response – Includes in many embodiments the process of generating a T cell response from naïve, or in some contexts, quiescent cells; activating T cells.

[0073] AMPLIFYING a T cell response – Includes in many embodiments, the process or increasing the number of cells, the number of activated cells, the level of activity, rate of proliferation, or similar parameter of T cells involved in a specific response.

[0074] ENTRAINMENT – Includes in many embodiments an induction that confers particular stability on the immune profile of the induced lineage of T cells. In various embodiments, the term “entrain” can correspond to “induce,” and/or “initiate.”

[0075] TOLL-LIKE RECEPTOR (TLR) – Toll-like receptors (TLRs) are a family of pattern recognition receptors that are activated by specific components of microbes and certain host molecules. As part of the innate immune system, they contribute to the first line of defense against many pathogens, but also play a role in adaptive immunity.

[0076] TOLL-LIKE RECEPTOR (TLR) LIGAND – Any molecule capable of binding and activating a toll-like receptor. Examples include, without limitation: poly IC A synthetic, double-stranded RNA known for inducing interferon. The polymer is made of one strand each of polyinosinic acid and polycytidyllic acid, double-stranded RNA, unmethylated CpG oligodeoxyribonucleotide or other immunostimulatory sequences

(ISSs), lipopolysacharide (LPS), β -glucans, and imidazoquinolines, as well as derivatives and analogues thereof.

[0077] IMMUNOPOTENTIATING ADJUVANTS – Adjuvants that activate pAPC or T cells including, for example: TLR ligands, endocytic-Pattern Recognition Receptor (PRR) ligands, quillaja saponins, tucaresol, cytokines, and the like. Some preferred adjuvants are disclosed in Marciani, D.J. *Drug Discovery Today* 8:934-943, 2003, which is incorporated herein by reference in its entirety.

[0078] IMMUNOSTIMULATORY SEQUENCE (ISS) – Generally an oligodeoxyribonucleotide containing an unmethylated CpG sequence. The CpG may also be embedded in bacterially produced DNA, particularly plasmids. Further embodiments include various analogues; among preferred embodiments are molecules with one or more phosphorothioate bonds or non-physiologic bases.

[0079] VACCINE – In preferred embodiments a vaccine can be an immunogenic composition providing or aiding in prevention of disease. In other embodiments, a vaccine is a composition that can provide or aid in a cure of a disease. In others, a vaccine composition can provide or aid in amelioration of a disease. Further embodiments of a vaccine immunogenic composition can be used as therapeutic and/or prophylactic agents.

[0080] IMMUNIZATION – a process to induce partial or complete protection against a disease. Alternatively, a process to induce or amplify an immune system response to an antigen. In the second definition it can connote a protective immune response, particularly proinflammatory or active immunity, but can also include a regulatory response. Thus in some embodiments immunization is distinguished from tolerization (a process by which the immune system avoids producing proinflammatory or active immunity) while in other embodiments this term includes tolerization.

[0081] ENCODE – an open-ended term such that a nucleic acid encoding a particular amino acid sequence can consist of codons specifying that (poly)peptide, but can also comprise additional sequences either translatable, or for the control of transcription, translation, or replication, or to facilitate manipulation of some host nucleic acid construct.

[0082] COVERAGE – the fraction or proportion of tumor cells expressing a particular TuAA or at least one TuAA from a set of selected TuAAs.

[0083] REDUNDANCY – the degree to which a population of tumor cells, or some subset of them, express more than one of a selected set of TuAAs.

[0084] CO-TARGETING – in preferred embodiments, co-targeting involves inducing and/or amplifying an immune response against a target cell, while also inducing an immune response against at least one other agent in the vicinity and/or *milieu* of a tumor. In some embodiments, agents within the vicinity and/or *milieu* of the tumor include, but are not limited to, cancer cells, stromal cells, including those associated with neovasculature, endothelial cells, fibroblasts, inflammatory cells, epithelial cells, autocrine factors, and paracrine factors. In some embodiments, tumor cells and stromal cells are specifically targeted. In other embodiments, an immune response is induced and/or amplified against neovasculature and other non-transformed, non-lymphoid cells within the tumor microenvironment. In still other embodiments, an immune response is induced against cancer cells and autocrine and/or paracrine factors produced by cells in the tumor microenvironment.

Tumor Associated Antigens

[0085] Examples of TuAAs useful in embodiments disclosed herein include tyrosinase (SEQ. ID NO. 1), melan-A, (SEQ. ID NO. 2), SSX-2, (SEQ. ID NO.3), PSMA (prostate-specific membrane antigen) (SEQ. ID NO. 4), MAGE-1, (SEQ. ID NO. 5), MAGE-3 (SEQ. ID NO. 6), NY-ESO-1, (SEQ. ID NO. 7), PRAME, (SEQ. ID NO.8), Her2/Neu (SEQ. ID NO. 9), mesothelin (SEQ. ID NOS. 10 and 11), VEGF-A (SEQ. ID NO. 12), and PLK1 (SEQ. ID NO. 13). The natural coding sequences for these proteins, or any segments within them, can be determined from their cDNA or complete coding (cds) sequences, SEQ. ID NOS. 14-26, respectively. The protein and cDNA sequences are identified by accession number and provided in the sequence listing filed herewith.

Table 1. SEQ. ID NOS.

SEQ. ID NO.	IDENTITY	ACCESSION NUMBER**
1	Tyrosinase protein	P14679
2	Melan-A protein	Q16655
3	SSX-2 protein	NP_003138
4	PSMA protein	NP_004467
5	MAGE-1 protein	P43355

6	MAGE-3 protein	P43357
7	NY-ESO-1 protein	P78358
8	PRAME protein	NP 006106
9	Her2/Neu protein	P04626
10	Mesothelin, isoform 1, protein	NP005814
11	Mesothelin, isoform 2, protein	NP037536
12	VEGF-A protein	P15692
13	PLK1 protein	P53350
14	Tyrosinase cDNA	NM_000372
15	Melan-A cDNA	U06452
16	SSX-2 cDNA	NM_003147
17	PSMA cDNA	NM_004476
18	MAGE-1 cds	M77481
19	MAGE-3 cds	U03735
20	NY-ESO-1 cDNA	U87459
21	PRAME cDNA	NM_006115
22	Her2/Neu cDNA	M11730
23	Mesothelin, isoform 1, cDNA	NM005823
24	Mesothelin, isoform 2, cDNA	NM013404
25	VEGF-A cDNA	NM_001025366
26	Plk1 cDNA	NM_005030

**All accession numbers used here and throughout can be accessed through the NCBI databases, for example, through the Entrez seek and retrieval system on the world wide web.

[0086] Tyrosinase is a melanin biosynthetic enzyme that is considered one of the most specific markers of melanocytic differentiation. Tyrosinase is expressed in few cell types, primarily in melanocytes, and high levels are often found in melanomas. The usefulness of tyrosinase as a TuAA is taught in U.S. Patent No. 5,747,271, entitled “METHOD FOR IDENTIFYING INDIVIDUALS SUFFERING FROM A CELLULAR ABNORMALITY SOME OF WHOSE ABNORMAL CELLS PRESENT COMPLEXES OF HLA-A2/TYROSINASE DERIVED PEPTIDES, AND METHODS FOR TREATING SAID INDIVIDUALS” which is hereby incorporated by reference in its entirety.

[0087] GP100, also known as PMel17, is another melanin biosynthetic protein expressed at high levels in melanomas. GP100 as a TuAA is disclosed in U.S. Patent No. 5,844,075, entitled “MELANOMA ANTIGENS AND THEIR USE IN DIAGNOSTIC

AND THERAPEUTIC METHODS," which is hereby incorporated by reference in its entirety.

[0088] Melan-A, also known as MART-1 (Melanoma Antigen Recognized by T cells), is another melanin biosynthetic protein expressed at high levels in melanomas. The usefulness of Melan-A/MART-1 as a TuAA is taught in U.S. Patent Nos. 5,874,560 and 5,994,523, both entitled "MELANOMA ANTIGENS AND THEIR USE IN DIAGNOSTIC AND THERAPEUTIC METHODS," as well as U.S. Patent No. 5,620,886, entitled "ISOLATED NUCLEIC ACID SEQUENCE CODING FOR A TUMOR REJECTION ANTIGEN PRECURSOR PROCESSED TO AT LEAST ONE TUMOR REJECTION ANTIGEN PRESENTED BY HLA-A2," each of which is hereby incorporated by reference in its entirety.

[0089] SSX-2, also known as Hom-Mel-40, is a member of a family of highly conserved cancer-testis (CT) antigens (Gure, A.O. *et al.*, *Int. J. Cancer* 72:965-971, 1997, which is hereby incorporated by reference in its entirety). Its identification as a TuAA is taught in U.S. Patent No. 6,025,191, entitled "ISOLATED NUCLEIC ACID MOLECULES WHICH ENCODE A MELANOMA SPECIFIC ANTIGEN AND USES THEREOF," which is hereby incorporated by reference in its entirety. Cancer-testis antigens are found in a variety of tumors, but are generally absent from normal adult tissues except testis. Expression of different members of the SSX family has been found in various tumor cell lines. Due to the high degree of sequence identity among SSX family members, similar epitopes from more than one member of the family will be generated and able to bind to an MHC molecule, so that some vaccines directed against one member of this family can cross-react and be effective against other members of this family.

[0090] MAGE-1 (melanoma-associated antigen-1), MAGE-2 (melanoma-associated antigen-2), and MAGE-3 (melanoma-associated antigen-3) are members of another family of cancer-testis antigens originally discovered in melanoma but found in a variety of tumors. The identification of MAGE proteins as TuAAs is taught in U.S. Patent No. 5,342,774, entitled "NUCLEOTIDE SEQUENCE ENCODING THE TUMOR REJECTION ANTIGEN PRECURSOR, MAGE-1," which is hereby incorporated by reference in its entirety, and in numerous subsequent patents. Currently there are 17 entries for (human) MAGE in the SWISS Protein database. There is extensive similarity among these proteins, such that in many cases, an epitope from one can induce a cross-

reactive response to other members of the family. A few members of the MAGE family have not been observed in tumors, most notably MAGE-H1 and MAGE-D1, which are expressed in testes and brain, and bone marrow stromal cells, respectively. The possibility of cross-reactivity on normal tissue is ameliorated by the fact that they are among the least similar to the other MAGE proteins.

[0091] GAGE-1 is a member of the GAGE family of cancer testis antigens (Van den Eynde, B., *et al.*, *J. Exp. Med.* 182: 689-698, 1995; U.S Patent Nos. 5,610,013; 5648226; 5,858,689; 6,013,481; and 6,069,001, each of which is hereby incorporated by reference in its entirety). The PubGene database currently lists 12 distinct accessible members, some of which are synonymously known as PAGE or XAGE. GAGE-1 through GAGE-8 have a very high degree of sequence identity, so most epitopes can be shared among multiple members of the family.

[0092] BAGE is a cancer-testis antigen commonly expressed in melanoma, particularly metastatic melanoma, as well as in carcinomas of the lung, breast, bladder, and squamous cells of the head and neck. Its usefulness as a TuAA is taught in U.S. Patent Nos. 5,683,88, entitled “TUMOR REJECTION ANTIGENS WHICH CORRESPOND TO AMINO ACID SEQUENCES IN TUMOR REJECTION ANTIGEN PRECURSOR BAGE, AND USES THEREOF,” and 5,571,711, entitled “ISOLATED NUCLEIC ACID MOLECULES CODING FOR BAGE TUMOR REJECTION ANTIGEN PRECURSORS,” each of which is hereby incorporated by reference in its entirety.

[0093] NY-ESO-1, also known as CTAG-1 (Cancer-Testis Antigen-1) and CAG-3 (Cancer Antigen-3), is a cancer-testis antigen found in a wide variety of tumors. NY-ESO-1 as a TuAA is disclosed in U.S. Patent 5,804,381, entitled “ISOLATED NUCLEIC ACID MOLECULE ENCODING AN ESOPHAGEAL CANCER ASSOCIATED ANTIGEN, THE ANTIGEN ITSELF, AND USES THEREOF,” which is hereby incorporated by reference in its entirety. A paralogous locus encoding antigens with extensive sequence identity, LAGE-1a/s and LAGE-1b/L, has been disclosed in publicly available assemblies of the human genome, and has been concluded to arise through alternate splicing. Additionally, CT-2 (or CTAG-2, Cancer-Testis Antigen-2) appears to be either an allele, a mutant, or a sequencing discrepancy of LAGE-1b/L. Due to the extensive sequence identity, many epitopes from NY-ESO-1 can also induce immunity to tumors expressing these other antigens. NY-ESO-1 and LAGE are virtually

identical through amino acid 70. From amino acid 71 through 134 the longest run of identity between the two proteins is 6 residues, but potentially cross-reactive sequences are present. From amino acid 135 through 180, NY-ESO and LAGE-1a/s are identical except for a single residue, but LAGE-1b/L is unrelated due to the alternate splice. The CAMEL and LAGE-2 antigens appear to derive from the LAGE-1 mRNA, but from alternate reading frames, thus giving rise to unrelated protein sequences. More recently, GenBank Accession AF277315.5, Homo sapiens chromosome X clone RP5-865E18, RP5-1087L19, complete sequence, reports three independent loci in this region which are labeled as LAGE1 (corresponding to CTAG-2 in the genome assemblies), LAGE2-A and LAGE2-B (both corresponding to CTAG-1 in the genome assemblies).

[0094] PRAME, also known as MAPE, DAGE, and OIP4, was originally observed as a melanoma antigen. Subsequently, it has been recognized as a cancer-testis (CT) antigen, but unlike many CT antigens, such as, MAGE, GAGE and BAGE, PRAME is expressed in acute myeloid leukemias. PRAME is a member of the MAPE family, which consists largely of hypothetical proteins with which it shares limited sequence similarity. The usefulness of PRAME as a TuAA is taught in U.S. Patent No. 5,830,753, entitled "ISOLATED NUCLEIC ACID MOLECULES CODING FOR TUMOR REJECTION ANTIGEN PRECURSOR DAGE AND USES THEREOF," which is hereby incorporated by reference in its entirety.

[0095] PSMA (prostate-specific membranes antigen), a TuAA described in U.S. Patent No. 5,538,866 entitled, "PROSTATE-SPECIFIC MEMBRANES ANTIGEN," which is hereby incorporated by reference in its entirety, is expressed by normal prostate epithelium and, at a higher level, in prostatic cancer. It has also been found in the neovasculature of non-prostatic tumors. PSMA can thus form the basis for vaccines directed to both prostate cancer and to the neovasculature of other tumors. This later concept is more fully described in a provisional U.S. Provisional Patent Application No. 60/274,063, and U.S. Patent Application Nos. 10/094,699 (Pub. No. 20030046714 A1), filed on March 7, 2002, and 11/073,347 (Pub. No. _____), filed June 30, 2005, each entitled "ANTI-NEOVASCULATURE PREPARATIONS FOR CANCER," each of which is hereby incorporated by reference in its entirety. Briefly, as tumors grow they recruit ingrowth of new blood vessels. This is understood to be necessary to sustain growth as the centers of unvascularized tumors are generally necrotic and angiogenesis inhibitors have been reported to cause tumor regression. Such new blood vessels, or

neovasculature, express antigens not found in established vessels, and thus can be specifically targeted. By inducing CTL against neovascular antigens the vessels can be disrupted, interrupting the flow of nutrients to, and removal of wastes from, tumors, leading to regression.

[0096] Alternate splicing of the PSMA mRNA leads to a protein with an apparent start at Met₅₈, thereby deleting the putative membrane anchor region of PSMA as described in U.S. Patent No. 5,935,818, entitled "ISOLATED NUCLEIC ACID MOLECULE ENCODING ALTERNATIVELY SPLICED PROSTATE-SPECIFIC MEMBRANES ANTIGEN AND USES THEREOF," which is hereby incorporated by reference in its entirety. A protein termed PSMA-like protein, Genbank accession number AF261715, is nearly identical to amino acids 309-750 of PSMA, but has a different expression profile. Thus, the most preferred epitopes are those with an N-terminus located from amino acid 58 to 308.

[0097] PSA (prostate specific antigen) is a peptidase of the kallikrein family and a differentiation antigen of the prostate. Expression in breast tissue has also been reported. Alternate names include gamma-seminoprotein, kallikrein 3, seminogelase, seminin, and P-30 antigen. PSA has a high degree of sequence identity with the various alternate splicing products prostatic/glandular kallikrein-1 and -2, as well as kallikrein 4, which is also expressed in prostate and breast tissue. Other kallikreins generally share less sequence identity and have different expression profiles. Nonetheless, cross-reactivity that might be provoked by any particular epitope, along with the likelihood that that epitope would be liberated by processing in non-target tissues (most generally by the housekeeping proteasome), should be considered in designing a vaccine.

[0098] PSCA (prostate stem cell antigen) and also known as SCAH-2, is a differentiation antigen preferentially expressed in prostate epithelial cells, and overexpresssed in prostate cancers. Lower level expression is seen in some normal tissues including neuroendocrine cells of the digestive tract and collecting ducts of the kidney. PSCA is described in U.S. Patent No. 5,856,136, entitled "HUMAN STEM CELL ANTIGENS," which is hereby incorporated by reference in its entirety.

[0099] Synaptonemal complex protein 1 (SCP-1), also known as HOM-TES-14, is a meiosis-associated protein and also a cancer-testis antigen (Tureci, O., *et al.*, *Proc. Natl. Acad. Sci. USA* 95:5211-5216, 1998, which is hereby incorporated by reference in its entirety). As a cancer antigen its expression is not cell-cycle regulated and

it is found frequently in gliomas, breast, renal cell, and ovarian carcinomas. It has some similarity to myosins, but with few enough identities that cross-reactive epitopes are not an immediate prospect.

[0100] The ED-B domain of fibronectin is also a potential target. Fibronectin is subject to developmentally regulated alternative splicing, with the ED-B domain being encoded by a single exon that is used primarily in oncofetal tissues (Matsuura, H. and S. Hakomori *Proc. Natl. Acad. Sci. USA* 82:6517-6521, 1985; Carnemolla, B. *et al.*, *J. Cell Biol.* 108:1139-1148, 1989; Lordin-Rosa, B. *et al.*, *Cancer Res.* 50:1608-1612, 1990; Nicolo, G. *et al.*, *Cell Differ. Dev.* 32:401-408, 1990; Borsi, L. *et al.*, *Exp. Cell Res.* 199:98-105, 1992; Oyama, F. *et al.*, *Cancer Res.* 53:2005-2011, 1993; Mandel, U. *et al.*, *APMIS* 102:695-702, 1994; Farnoud, M.R. *et al.*, *Int. J. Cancer* 61:27-34, 1995; Pujuguet, P. *et al.*, *Am. J. Pathol.* 148:579-592, 1996; Gabler, U. *et al.*, *Heart* 75:358-362, 1996; Chevalier, X. *Br. J. Rheumatol.* 35:407-415, 1996; Midulla, M. *Cancer Res.* 60:164-169, 2000, each of which is hereby incorporated by reference in its entirety).

[0101] The ED-B domain is also expressed in fibronectin of the neovasculature (Kaczmarek, J. *et al.*, *Int. J. Cancer* 59:11-16, 1994; Castellani, P. *et al.*, *Int. J. Cancer* 59:612-618, 1994; Neri, D. *et al.*, *Nat. Biotech.* 15:1271-1275, 1997; Karelina, T.V. and A.Z. Eisen *Cancer Detect. Prev.* 22:438-444, 1998; Tarli, L. *et al.*, *Blood* 94:192-198, 1999; Castellani, P. *et al.*, *Acta Neurochir (Wien)* 142:277-282, 2000, each of which is hereby incorporated by reference in its entirety). As an oncofetal domain, the ED-B domain is commonly found in the fibronectin expressed by neoplastic cells in addition to being expressed by the neovasculature. Thus, CTL-inducing vaccines targeting the ED-B domain can exhibit two mechanisms of action: direct lysis of tumor cells, and disruption of the tumor's blood supply through destruction of the tumor-associated neovasculature. As CTL activity can decay rapidly after withdrawal of vaccine, interference with normal angiogenesis can be minimal. The design and testing of vaccines targeted to neovasculature is described in Provisional U.S. Provisional Patent Application No. 60/274,063, filed on March 7, 2001, and U.S. Patent Application Nos. 10/094,699, (Pub. No. 20030046714 A1), filed March 7, 2002, and 11/073,347 (Pub. No. _____), filed June 30, 2005, all entitled "ANTI-NEOVASCULATURE PREPARATIONS FOR CANCER," filed on March 7, 2002, each of which is hereby incorporated by reference in its entirety. A tumor cell line is disclosed in U.S. Provisional Application No. 60/363,131, filed on March 7, 2002, entitled "HLA-TRANSGENIC

MURINE TUMOR CELL LINE," which is hereby incorporated by reference in its entirety.

[0102] Carcinoembryonic antigen (CEA) is a paradigmatic oncofetal protein first described in 1965 (Gold and Freedman, *J. Exp. Med.* 121: 439-462, 1965, which is hereby incorporated by reference in its entirety). Fuller references can be found in the Online Mendelian Inheritance in Man; record *114890. It has officially been renamed carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5). Its expression is most strongly associated with adenocarcinomas of the epithelial lining of the digestive tract and in fetal colon. CEA is a member of the immunoglobulin supergene family and the defining member of the CEA subfamily.

[0103] Survivin, also known as Baculoviral IAP Repeat-Containing Protein 5 (BIRC5), is another protein with an oncofetal pattern of expression. It is a member of the inhibitor of apoptosis protein (IAP) gene family. It is widely over-expressed in cancers (Ambrosini, G. *et al.*, *Nat. Med.* 3:917-921, 1997; Velculiscu V.E. *et al.*, *Nat. Genet.* 23:387-388, 1999, which is hereby incorporated by reference in its entirety) and its function as an inhibitor of apoptosis is believed to contribute to the malignant phenotype.

[0104] HER2/NEU is an oncogene related to the epidermal growth factor receptor (van de Vijver, *et al.*, *New Eng. J. Med.* 319:1239-1245, 1988, which is hereby incorporated by reference in its entirety), and apparently identical to the c-ERBB2 oncogene (Di Fiore, *et al.*, *Science* 237: 178-182, 1987, which is hereby incorporated by reference in its entirety). The over-expression of ERBB2 has been implicated in the neoplastic transformation of prostate cancer. As with HER2, it is amplified and over-expressed in 25-30% of breast cancers among other tumors where expression level is correlated with the aggressiveness of the tumor (Slamon, *et al.*, *New Eng. J. Med.* 344:783-792, 2001, which is hereby incorporated by reference in its entirety). A more detailed description is available in the Online Mendelian Inheritance in Man; record *164870.

[0105] MESOTHELIN is an antigen originally found in mesotheliomas but also known to be upregulated in many pancreatic and ovarian cancers. Its use as a vaccine target and useful epitopes are described in Thomas, A.M. *et al.*, *J. Exp. Med.* 200:297-306, 2004, which is hereby incorporated by reference in its entirety.

[0106] Vascular Endothelial Growth Factor (VEGF-A or VEGF) is a mitogenic protein structurally related to platelet-derived growth factor, but with narrower

mitogenic activity focused on vascular endothelial cells. The protein and its receptors are important to tumor growth and their potential as targets of cancer therapies has been noted (Folkman, *J. Nature Med.* 1: 27-31, 1995, which is hereby incorporated by reference in its entirety). A more detailed description is available in the Online Mendelian Inheritance in Man; record *192240.

[0107] PLK1 is an intracellular serine/threonine kinase that plays a critical role in cell cycle regulation and in DNA damage responses. Mutation or knock down of PLK1 result in abnormal mitosis, cell cycle arrest and apoptosis (Reagan-Shaw S. and Ahmad N., *FASEB J.* 19:611, 2005). PLK1 belongs to the Polo-like kinase family of structurally conserved kinases. The PLK1 family contains two conserved regions, an N-terminal kinase domain and a C-terminal non-catalytic Polo box region (Lowery DM *et al.*, *Oncogene* 24:248.2005) responsible for subcellular localization. PLK1 is predominantly found in the cytoplasm during interphase and localizes to the nucleus during mitosis (Takai N *et al.*, *Oncogene* 24:2872005). Nuclear localization of PLK1 is essential for its biological function (Lee KS *et al.*, *Proc Natl Acad Sci U S A* 95:9301, 1998). While most classical tumor associated antigens are not known to participate in tumor initiation or disease progression, PLK1 has been shown to drive tumor growth. Thus, in some embodiments, PLK1 can be considered a tumor-associated antigen that can be used as a target for cancer immunotherapy. Based on its expression profile, PLK1 is expressed in proliferating cells, with elevated expression found in most solid tumors. This expression pattern renders PLK1 a valid target for active and passive immunotherapy.

[0108] Further examples of tumor-associated antigens include MelanA (MART-1), gp100 (Pmel 17), tyrosinase, TRP-1, TRP-2, MAGE-1, MAGE-3, BAGE, GAGE-1, GAGE-2, p15(58), CEA, RAGE, NY-ESO (LAGE), SCP-1, Hom/Mel-40, PRAME, p53, H-Ras, HER-2/neu, BCR-ABL, E2A-PRL, H4-RET, IGH-IGK, MYL-RAR, Epstein Barr virus antigens, EBNA, human papillomavirus (HPV) antigens E6 and E7, TSP-180, MAGE-4, MAGE-5, MAGE-6, p185erbB2, p180erbB-3, c-met, nm-23H1, PSA, TAG-72-4, CA 19-9, CA 72-4, CAM 17.1, NuMa, K-ras, β -Catenin, CDK4, Mum-1, p16, TAGE, PSMA, PSCA, CT7, telomerase, 43-9F, 5T4, 791Tgp72, alpha-fetoprotein, β -HCG, BCA225, BTAA, CA 125, CA 15-3 (CA 27.29\BCAA), CA 195, CA 242, CA-50, CAM43, CD68\KP1, CO-029, FGF-5, G250, Ga733 (EpCAM), HTgp-175, M344, MA-50, MG7-Ag, MOV18, NB/70K, NY-CO-1, RCAS1, SDCCAG16, TA-90

(Mac-2 binding protein\cyclophilin C-associated protein), TAAL6, TAG72, TLP, TPS, and the like.

[0109] Additional tumor-associated antigens are described in Chen, YT, “Identification of human tumor antigens by serological expression cloning: an online review on SEREX” *Cancer Immun.* 2004 [updated 2004 Mar 10; cited 2004 Apr 1] at world wide web cancerimmunotherapy.org/SEREX/; and Renkvist, N. *et al.*, “A listing of tumor antigens recognized by T cells,” *Cancer Immunology Immunotherapy*, 50:3-15 (2001), each of which is hereby incorporated by reference in its entirety.

[0110] Table 2, adapted from Scanlan *et al.*, “The cancer/testis genes: Review, standardization, and commentary,” *Cancer Immunity* 4:1 (January 23, 2004), which is hereby incorporated by reference in its entirety, provides a listing of CT Antigens. Table 3 provides the frequency of mRNA expression in various tumor types for the CT antigens in Table 2. Scanlan *et al.*, “The cancer/testis genes: Review, standardization, and commentary,” *Cancer Immunity* 4:1 (January 23, 2004), which is hereby incorporated by reference in its entirety.

Table 2
Listing of CT genes

CT Identifier	Transcript/Transcript family	Family Members/CT Identifier (Synonyms)
CT1	MAGEA	MAGEA1/CT1.1, MAGEA2/CT1.2, MAGEA3/CT1.3, MAGEA4/CT1.4, MAGEA5/CT1.5, MAGEA6/CT1.6, MAGEA7/CT1.7, MAGEA8/CT1.8, MAGEA9/CT1.9, MAGEA10/CT1.10, MAGEA11/CT1.11, MAGEA12/CT1.12
CT2	BAGE	BAGE/CT2.1, BAGE2/CT2.2, BAGE3/CT2.3, BAGE4/CT2.4, BAGE5/CT2.5
CT3	MAGEB	MAGEB1/CT3.1, MAGEB2/CT3.2, MAGEB5/CT3.3, MAGEB6/CT3.4
CT4	GAGE1	GAGE1/CT4.1, GAGE2/CT4.2, GAGE3/CT4.3,

		GAGE4/CT4.4, GAGE5/CT4.5, GAGE6/CT4.6, GAGE7/CT4.7, GAGE8/CT4.8
CT5	SSX	SSX1/CT5.1, SSX2/CT5.2a, SSX2/CT5.2b, SSX3/CT5.3, SSX4/CT5.4
CT6	NY-ESO-1	NY-ESO-1/CT6.1, LAGE-1a/CT6.2a, LAGE-1b/CT6.2b
CT7	MAGEC1	MAGEC1/CT7.1, MAGEC3/CT7.2
CT8	SYCP1	SYCP1/CT8
CT9	BRDT	BRDT/CT9
CT10	MAGEE1	MAGEE1/CT10
CT11	CTp11/SPANX	SPANXA1/CT11.1, SPANXB1/CT11.2, SPANXC/CT11.3, SPANXD/CT11.4
CT12	XAGE-1/GAGED	XAGE-1a/CT12.1a, XAGE-1b/CT12.1b, XAGE-1c/CT12.1c, XAGE-1d/CT12.1d, XAGE-2/CT12.2, XAGE-3a/CT12.3a, XAGE-3b/CT12.3b, XAGE-4/CT12.4
CT13	HAGE	HAGE/CT13
CT14	SAGE	SAGE/CT14
CT15	ADAM2	ADAM2/CT15
CT16	PAGE-5	PAGE-5/CT16.1, CT16.2
CT17	LIP1	LIP1/CT17
CT18	NA88	NA88/CT12
CT19	IL13RA1	IL13RA1/CT19

CT20	TSP50	TSP50/CT20
CT21	CTAGE-1	CTAGE-1/CT21.1, CTAGE-2/CT21.2
CT22	SPA17	SPA17/CT22
CT23	OY-TES-1	OY-TES-1/CT23
CT24	CSAGE	CSAGE/CT24.1, TRAG3/CT24.2
CT25	MMA1/DSCR8	MMA-1a/CT25.1a, MMA-1b/CT25.1b
CT26	CAGE	CAGE/CT26
CT27	BORIS	BORIS/CT27
CT28	HOM-TES-85	HOM-TES-85/CT28
CT29	AF15q14/ D40	D40/CT29
CT30	E2F-like/HCA661	HCA661/CT30
CT31	PLU-1	PLU-1/CT31
CT32	LDHC	LDHC/CT32
CT33	MORC	MORC/CT33
CT34	SGY-1	SGY-1/CT34
CT35	SPO11	SPO11/CT35
CT36	TPX1	TPX-1/CT36
CT37	NY-SAR-35	NY-SAR-35/CT37
CT38	FTHL17	FTHL17/CT38

CT39	NXF2	NXF2/CT39
CT40	TAF7L	TAF7L/CT40
CT41	TDRD1	TDRD1/CT41.1, NY-CO-45/CT41.2
CT42	TEX15	TEX15/CT42
CT43	FATE	FATE/CT43
CT44	TPTE	TPTE/CT44
---	PRAME	(MAPE, DAGE)

Table 3.

CT Family (Member)	Frequency (%) of Expression in Tumor Type										Re f						
	Bia d	Br n	Brst	Co l	Eso	Gas	H/N	Live r	Leuk/ Lymph	Lung (NSCLC)	Me l	O v	Panc r	Pros	Rena l	Sar c	
MAGEA1/CT1.1	22	-	18	2	53	29	28	80	0	49	48	28	-	15	0	14	<u>44</u>
BAGE1/CT2.1	15	-	10	0	-	-	8	-	0	4	26	15	-	0	0	6	<u>44</u>
MAGEB1/CT3.1	0	0	17	0	-	0	0	-	0	14	22	-	-	0	0	9	<u>45</u>
GAGE/CT4.1	12	-	9	0	-	-	19	38 ^b	1	19	28	31	-	10	0	25	<u>44</u>
SSX2/CT5.2	44	6	7	12	-	-	35	9 ^b	36	16	35	-	-	40	5	50	<u>46</u>
NY-ESO-1/CT6.1	80	0	30	0	-	0	-	29	0	17	34	25	0	25	9	0	<u>8</u>
MAGEC1/CT7.1	44	-	30	10	-	-	36	-	-	33	70	-	-	-	-	60	<u>20</u>
SYCP1/CT8	-	47	20	0	-	7	-	28 ^b	0	7	14	0	-	0	8	0	<u>9</u>
BRDT/CT9	0	-	0	0	8	-	8	-	-	25	0	-	-	0	-	-	<u>16</u>
MAGEE1/CT10	44	-	38	0	-	-	36	-	-	24	50	-	-	-	-	0	<u>12</u>
SPANXC/CT11.3	9	-	25	22	0	-	-	-	-	33	70	-	0	-	-	-	<u>14</u>

D40/CT29	-	20	-	13	-	0	-	-	41	-	36	27	-	-	-	-	55
HCA661/CT30	0	-	-	-	0	0	29	-	-	20	-	-	-	-	-	-	56
PLU-1/CT31	-	-	86	-	-	-	-	-	-	-	-	-	-	-	-	-	27
LDHC/CT32	-	35	15	-	-	-	-	-	47	44	42	-	37	57	-	18	
MORC/CT33	-	0	0	-	-	-	-	-	18	18	14	-	0	0	-	18	
SGY-1/CT34	-	20	0	-	-	-	-	-	12	25	57	-	12	0	-	18	
SPO11/CT35	-	0	0	-	-	-	-	-	0	6	0	-	0	0	-	18	
TPX1/CT36	-	15	0	-	-	-	-	-	-	6	14	-	37	14	-	18	
NYSAR35/CT37	42	-	23	0	8	-	-	-	17	6	8	-	-	0	8	57	
FTHL17/CT38	22	-	14	0	0	-	10	-	0	25	0	-	0	0	0	58	
NXF2/CT39	19	-	0	11	12	-	5	-	0	15	55	-	-	14	0	27	
TAF7L/CT40	10	-	0	0	0	-	10	-	0	9	21	-	-	0	0	58	
TDRD1/CT41.1	28	-	37	0	10	-	22	-	5	5	0	-	-	38	0	58	
TEX15/CT42	21	-	0	0	20	-	11	-	0	21	27	-	-	12	33	28	

FATE/CT43	-	-	21	-	7	-	66	-	0	-	-	-	-	-	-	19
TPTE/CT44	-	-	0	-	0	-	39	-	36	-	-	-	-	-	-	19

^aAbbreviations: Blad, bladder; Brn, brain; Brst, breast; Col, colon; Gas, gastric; H/N, head and neck; Leuk, leukemia; Lymph, lymphoma, NSCLC, non-small cell lung carcinoma; Mel, melanoma; Ov, ovarian; Pancr, pancreatic; Pros, prostate; Sarc, sarcoma; Ref, reference.

^bReference 59.

Many antigens listed in the tables above have no documented role in maintaining the transformed phenotype of a cell, and thus, a transformed cell may lose expression of such antigens without affecting the viability of the cell or the malignancy of the disease. Although some CT antigens, such as the SSX proteins, are known to be transcriptional regulators, their role, if any, in tumorigenicity remains obscure. It has also recently emerged that PRAME can repress signaling through the retinoic acid receptor to inhibit retinoic acid-induced differentiation, growth arrest, and apoptosis, thereby suggesting that PRAME over-expression can impart tumor cells with a growth or survival advantage. It would be advantageous to target an antigen, the loss of which necessarily would affect viability of the cell or the malignancy of the disease. Such antigens are included in preferred embodiments of the combinations of tumor and/or tumor and stromal antigens disclosed herein.

However, many genes involved in the regulation of proliferation are important in oncogenesis primarily in mutated form so that specific immune attack on the mutated form depends on the mutation being appropriately placed within an epitope. Furthermore, epitopes present in the wild type molecule (whether or not the targeted molecule is wild type or mutant) will generally only be considered if there is a substantial difference in expression level between transformed and normal cells, or at least the normal cells of vital organs. Thus appropriate antigens have been difficult to recognize.

The expression of PLK1 is regulated during cell cycle progression as well as throughout the various disease stages. PLK1 expression is minimal during the initial phases of cell division, begins to increase during G2 and peaks at M phase. PLK1 is targeted for degradation by the proteasome pathway after cells exit from mitosis. In normal tissues, PLK1 is expressed in adult organs containing highly proliferative cells, such as in the spleen, placenta, ovary, and testis. Its expression is undetected in vital organs such as heart, lung, liver, brain, intestines, smooth muscle, and skin. Wild type PLK1 is overexpressed in tumor tissues, including breast, prostate, ovarian, non-small cell lung, head/neck, colon, pancreatic, endometrial, and esophageal carcinomas (Table 4). Importantly, the level of PLK1 expression often correlates with more advanced stages of tumor progression and poor prognosis (Wolf G *et al*, *Oncogene* 14:543, 1997; Takai N *et al*, *Cancer Lett.* 164:41, 2001). This has been specifically demonstrated in the case of NSCLC, esophageal, and head/neck carcinomas. Thus, PLK1 is a viable target for cancer immunotherapy for those tumors in which it is overexpressed.

Table 4. Plk-1 Expression Profile

Tumor	Penetrance	Expression Level	Reference
Lung (NSCLC)	> 90 %	Med/strong	Wolf G <i>et al</i> , <i>Oncogene</i> 14:543, 1997.
Ovarian	> 85 %	Low/strong	Takai N <i>et al</i> , <i>Cancer Lett.</i> 164:41, 2001
Breast	43 %	Med/strong	Weichert W <i>et al</i> , <i>Virchows Arch</i> , 446: 442, 2005.
Prostate	53 %	Med/strong	Weichert W <i>et al</i> , <i>Curr. Biol.</i> 101:4419, 2004.
Colorectal	73 %	Med/strong	Takahashi T <i>et al</i> , <i>Cancer Sci.</i> 94:148 2003.
Pancreatic	48 %	Med/strong	Gray JP <i>et al</i> , <i>Mol Cancer Ther.</i> 3:641,2004.
Head & Neck	72 %	Med/strong	Knecht R <i>et al</i> , <i>Cancer Res.</i> 59:2794, 1999.
Melanoma	53 %	Med	Strebhardt K <i>et al</i> , <i>JAMA</i> . 283:479, 2000.
Esophageal	96 %	Med	Tokumitsu Y <i>et al</i> , <i>Int J Oncol.</i> 15:687, 1999.

[0111] Each reference listed in this table is incorporated herein by reference in its entirety.

[0112] Additional antigens associated with tumor neovasculature are VEGFR2 (vascular endothelial growth factor receptor 2) described in U.S. Patent No. 6,342,221, which is hereby incorporated by reference in its entirety; and Tie-2, an endothelium specific receptor tyrosine kinase, which is described in WO 99/43801, and which is hereby incorporated by reference in its entirety.

[0113] In addition to disrupting blood flow to tumors that can be achieved using anti-neovasculature agents such as those recited above, co-targeting molecules expressed on cancer cells as well as molecules expressed on underlying non-transformed stromal cells (including neovasculature as well as interstitial tissue, for example) can also improve the

effectiveness of the disclosed methods and compositions in limiting tumor growth and promoting cancer regression by other mechanisms. Stroma encompasses neovasculature as well as fibroblasts, and in general, all non-transformed, non-lymphoid cells within a tumor microenvironment. For example, immune mediated attack of the endothelial cells (via cytotoxic T lymphocytes (CTLs) or antibody dependent cytotoxic cells (ADCC) can result in neovasculature permeabilization and initiation of inflammatory events that result in recruitment and translocation of immune effectors, such as CTLs, targeting the neoplastic cells within primary tumor and metastatic lesions. Moreover, as attacks based, for example, on T cell recognition of endothelial cell MHC-peptide complexes occur in the luminal environment, any immune suppressive influence of the tumoral environment is minimized. Compared to strategies targeting only cancer cells, methods to co-target associated stromal tissue thus improve the efficacy of the former. In some embodiments, the efficacy is synergistically enhanced. Similarly, compared to strategies targeting neovasculature only, methods to co-target cancer cells improve the overall therapeutic effect by attacking lesions, including those of limited size and vascularization, especially those adversely located within vital organs. With regard to neovasculature, co-targeting VEGFRs (such as II), CD55 and PSMA as well as other molecules expressed by neovasculature, can be accomplished by generating CTL or antibodies with capability to initiate ADCC or complement activated cell injury. Alternatively, initial endothelial injury can be brought about through passive immunotherapy using available anti-angiogenic antibodies.

[0114] In addition or alternatively, co-targeting target-associated antigens, together with growth, metastasis, or survival promoting factors produced by cancer cells or non-transformed cells that are found in the extracellular compartment (diffusing or associated with the extracellular matrix), can also result in a more substantial therapeutic effect. By co-targeting antigens expressed within or on cancer cells as well as factors that exert autocrine or paracrine effects (growth, survival, and/or invasiveness), the pathogenic process can be slowed or disrupted to a significant degree. Co-targeting autocrine or paracrine factors (such as, but not limited to, NF- κ B activating molecules - CXCL1, CXCL8, CCL2; or growth factors such as, but not limited to, chorionic-gonadotrophic hormone gastrin, and VEGF-A) can be carried out by co-induction of neutralizing antibodies or secondarily, by CTLs recognizing cells that produce such factors.

[0115] The interaction between transformed and stromal cells is mediated by VEGF-A. VEGF-A has been shown to play a key role in the establishment and functionality of tumor neovasculature; thus, deprival of VEGF-A by using specific passive immunotherapy (via anti-VEGF-A antibodies such as bevacizumab (AVASTIN®) resulted in control of tumor progression and metastatic disease for colorectal, lung, breast, ovarian carcinoma and other cancers. The mechanism of action likely involves direct neutralization of VEGF-A, thereby slowing down the establishment and progression of neovasculature. Neutralization of VEGF-A by passive immunotherapy can be combined with the active immunotherapies disclosed herein. VEGF-A can also be used as the target antigen for active or T-cell based immunotherapy directed against cells that produce VEGF-A in excess (most likely a subpopulation of tumoral cells, and most often the transformed cancer cells within the tumor environment). Such a strategy can be more effective in controlling a tumoral process both by mediating immune damage of cancer cells that express VEGF-A and by depriving the tumor neovasculature of an essential growth factor.

[0116] Overall, co-targeting multiple elements of biological importance for tumor growth and metastasis can limit progression of the malignant process by impacting the processes of clonal selection, immune evasion and escape. Thus, co-targeting stroma-associated antigens provides an additional mode of attack in that such activities are inhibited and/or disrupted.

[0117] One of skill in the art will appreciate that any other antigen or protein associated with vascular or other tumor-associated stromal cells can be a target for the immunogenic compositions, including those that are presently known and those yet to be identified.

Compositions

[0118] Immunogenic compositions, including, for example, vaccines, can be prepared using whole antigen or an epitopic peptide. Peptide immunogens can be readily prepared using standard peptide synthesis means known in the art, for example. Immunogens can be prepared commercially by one of numerous companies that do chemical synthesis. An example such a company is American Peptides, Inc., where the distributor is CLINALFA AG (Laufelfingen, Switzerland). The antigens or immunogens can be prepared in accordance with GMP standards and purity can be assessed by analytical

HPLC. The product can be characterized by amino-acid analysis and tested for sterility and the absence of pyrogens.

[0119] The immunogenic compositions can also include adjuvants or other biological response modifiers (BRMs). Particularly advantageous methods of using adjuvants and BRMs are disclosed in U.S. provisional patent application 60/640,727, filed December 29, 2004 and U.S. Application No. ____/____, (Pub. No. _____) (Attorney Docket No. MANNK.046A), filed on even date with this application, both entitled, "METHODS TO TRIGGER, MAINTAIN AND MANIPULATE IMMUNE RESPONSES BY TARGETED ADMINISTRATION OF BIOLOGICAL RESPONSE MODIFIERS INTO LYMPHOID ORGANS," each of which is hereby incorporated by reference in its entirety.

[0120] An antigen can be delivered to an animal's system either directly or indirectly. For example, a polypeptide can be delivered directly as the polypeptide, or it can be delivered indirectly, for example, using a DNA construct or vector, or a recombinant virus that codes for the desired antigen. Any vector driving expression in a professional antigen presenting cell can be suitable for this purpose. In indirect delivery, the antigen is expressed in the cell, then presented by the MHC Class I on the surface of the cell to stimulate a CTL response. Expression of a secreted form of the antigen can be useful to induce an antibody response recognizing antigens that are membrane proteins.

[0121] In a preferred embodiment, an encoded antigen can be delivered in the form of a naked plasmid expression vector. Particularly useful constructs are disclosed in U.S. Patent Application Nos. 09/561,572, filed April 28, 2000, 10/225,568 (Pub No. 2003-0138808), filed August 20, 2002; and PCT Application No. PCT/US2003/026231 (Pub. No. WO 2004/018666); all entitled "EXPRESSION VECTORS ENCODING EPITOPES OF TARGET-ASSOCIATED ANTIGENS;" U.S. Patent Application Nos. 10/292,413 (Pub. No. 2003-0228634 A1), filed November 7, 2002, 10/777,053 (Pub. No. 2004-0132088 A1), filed February 10, 2004, and 10/837,217 (Pub. No. _____), filed April 30, 2004, all entitled "EXPRESSION VECTORS ENCODING EPITOPES OF TARGET-ASSOCIATED ANTIGENS AND METHODS FOR THEIR DESIGN;" U.S. Patent No. 6,709,844, and U.S. Patent Application No. 10/437,830 (Pub. No. 2003-0180949 A1), filed May 13, 2003, both entitled "AVOIDANCE OF UNDESIRABLE REPLICATION INTERMEDIATES IN PLASMID PROPAGATION," and in U.S. Patent Application Nos. 10/026,066 (Pub. No. 2003-0215425 A1), filed December 7, 2001, 10/895,523 (Pub.

No. 2005-0130920 A1), filed July 20, 2004, 10/896,325 (Pub. No. _____), filed July 20, 2004, all entitled "EPITOPE SYNCHRONIZATION IN ANTIGEN PRESENTING CELLS," each of which is hereby incorporated by reference in its entirety. Additional methodology, compositions, peptides, and peptide analogues are disclosed in U.S. Provisional Application No. 60/581,001, filed June 17, 2004, and U.S. Patent Application No. 11/156,253 (Pub. No. _____), filed on June 17, 2005, both entitled "SSX-2 PEPTIDE ANALOGS;" U.S. Provisional Patent Application No. 60/580,962, filed June 17, 2004, and U.S. Patent Application No. 11/155,929 (Pub. No. _____), filed on June 17, 2005, both entitled "NY-ESO PEPTIDE ANALOGS;" U.S. Patent Application No. 09/999,186, filed November 7, 2001, entitled "METHODS OF COMMERCIALIZING AN ANTIGEN"; U.S. Provisional Patent Application No. 60/640,402, filed on December 29, 2004 and U.S. Patent Application No. ____/____ (Pub. No. _____), (Attorney Docket No. MANNK.047A), filed on even date as the instant application, both entitled, "METHODS TO ELICIT, ENHANCE AND SUSTAIN IMMUNE RESPONSES AGAINST MHC CLASS I- RESTRICTED EPITOPES, FOR PROPHYLACTIC OR THERAPEUTIC PURPOSES"; and U.S. Provisional Patent Application No. 60/640,821, filed on December 29, 2004 and U.S. Patent Application No. ____/____ (Pub. No. _____), (Attorney Docket No. MANNK.048A), filed on even date as the instant application, both entitled "METHODS TO BYPASS CD4+ CELLS IN THE INDUCTION OF AN IMMUNE RESPONSE," and U.S. Provisional Patent Application Nos. 60/691,579, filed June 17, 2005, entitled "METHODS AND COMPOSITIONS TO ELICIT MULTIVALENT IMMUNE RESPONSES AGAINST DOMINANT AND SUBDOMINANT EPITOPES EXPRESSED ON CANCER CELLS AND TUMOR STROMA," and 60/691,581, filed June 17, 2005, entitled "MULTIVALENT ENTRAIN-AND-AMPLIFY IMMUNOTHERAPEUTICS FOR CARCINOMA," each of which is hereby incorporated by reference in its entirety. The feasibility of and general procedures related to the use of naked DNA for immunization are described in U.S. Patent No. 5,589,466, entitled "INDUCTION OF A PROTECTIVE IMMUNE RESPONSE IN A MAMMAL BY INJECTING A DNA SEQUENCE" and in U.S. Patent No. 5,679,647, entitled "METHODS AND DEVICES FOR IMMUNIZING A HOST AGAINST TUMOR-ASSOCIATED ANTIGENS THROUGH ADMINISTRATIONS OF NAKED POLYNUCLEOTIDES WHICH ENCODE TUMOR-ASSOCIATED ANTIGENIC PEPTIDES," each of which is hereby incorporated by reference in its entirety. The former

teaches only intramuscular or intradermal injection while the latter teaches only administration to skin or mucosa.

[0122] In a preferred embodiment, the antigen can be administered directly to the lymphatic system. Intranodal administration for the generation of CTL is taught in U.S. Patent Application No. 09/380,534, filed September 1, 1999, and U.S. Patent No. 6,977,074, and in PCT Application No. PCTUS98/14289 (Pub. No. WO 99/02183 A2) each entitled "METHOD OF INDUCING A CTL RESPONSE," each of which is hereby incorporated by reference in its entirety. Single bolus injection intra lymph node (i.ln.) required only 0.1% of the dose required in order to obtain a similar level of CTL response by intramuscular (i.m.) injection. Therefore a protective response can be established against systemic viral infection with a single bolus delivered i.ln., but not with a dose nearing the practical limit delivered i.m. Repeated bolus injections i.m. failed to establish a protective response against a peripheral virus infection or transplanted tumor, whereas lower doses administered i.ln. were completely effective. Particularly useful intranodal immunization protocols are taught in Provisional U.S. Patent Application No. 60/479,393, filed June 17, 2003, entitled "METHODS TO CONTROL MHC CLASS I-RESTRICTED IMMUNE RESPONSE," and in U.S. Patent Application No. 10/871,707, (Pub. No. 20050079152 A1), filed June 17, 2004, entitled "METHODS TO ELICIT, ENHANCE AND SUSTAIN IMMUNE RESPONSES AGAINST MHC CLASS I-RESTRICTED EPITOPES, FOR PROPHYLACTIC OR THERAPEUTIC PURPOSE," each of which is hereby incorporated by reference in its entirety.

[0123] A class of epitopes that can be advantageous in anti-cancer immunogenic compositions are housekeeping epitopes. These are produced through the action of the housekeeping (or standard) proteasome. Housekeeping epitopes can be liberated from the translation product of expression vectors through proteolytic processing by the immunoproteasome of professional antigen presenting cells (pAPC). In one embodiment of the invention, sequences flanking the housekeeping epitope(s) can be altered to promote cleavage by the immunoproteasome at the desired location(s). Housekeeping epitopes, their uses, and identification are described in U.S. Patent Application Nos. 09/560,465 filed on April 28, 2000, and 10/026,066 (Pub. No. 2003-0215425 A1), filed on December 7, 2001, 10/895,523 (Pub No. 2005-0130920 A1), filed July 20, 2004, 10/896,325 (Pub. No. _____), filed July 20, 2004, all entitled "EPITOPE SYNCHRONIZATION IN ANTIGEN PRESENTING CELLS," and U.S.

Patent No. 6,861,234 and U.S. Patent Application No. 10/956,401 (Pub. No. 2005-0069982 A1), filed October 1, 2004, both entitled “METHOD OF EPITOPE DISCOVERY,” each of which is hereby incorporated by reference in its entirety.

[0124] Examples of housekeeping epitopes are disclosed in Provisional U.S. Patent Applications Nos. 60/282,211, filed on April 6, 2001; 60/337,017, filed on November 7, 2001; 60/363,210 filed March 7, 2002; and 60/409,123, filed on September 6, 2002; U.S. Patent Application Nos. 10/117,937 (Publication No. 20030220239 A1), filed on April 4, 2002; and 10/657,022 (Pub. No. 2004-0180354), filed September 5, 2003, and PCT Application No. PCT/US2003/027706 (Pub. No. WO 04/022709 A2), filed September 5, 2003, all entitled “EPITOPE SEQUENCES,” each of which is hereby incorporated by reference in its entirety.

[0125] In other embodiments of the invention, the housekeeping epitope(s) can be flanked by arbitrary sequences or by sequences incorporating residues known to be favored in immunoproteasome cleavage sites. As used herein the term “arbitrary sequences” refers to sequences chosen without reference to the native sequence context of the epitope, their ability to promote processing, or immunological function. In further embodiments of the invention multiple epitopes can be arrayed head-to-tail. These arrays can be made up entirely of housekeeping epitopes. Likewise, the arrays can include alternating housekeeping and immune epitopes. Alternatively, the arrays can include housekeeping epitopes flanked by immune epitopes, whether complete or distally truncated. Further, the arrays can be of any other similar arrangement. There is no restriction on placing a housekeeping epitope at the terminal positions of the array. The vectors can additionally contain authentic protein coding sequences or segments thereof containing epitope clusters as a source of immune epitopes. The term “authentic” refers to natural protein sequences.

[0126] Epitope clusters and their uses are described in U.S. Patent Application Nos. 09/561,571, entitled “EPITOPE CLUSTERS,” filed on April 28, 2000; 10/005,905, filed on November 7, 2001; 10/026,066 (Pub. No. 2003-0215425 A1), filed on December 7, 2001; 10/895,523 (Pub. No. 2005-0130920 A1), filed July 20, 2004, and 10/896,325 (Pub. No. _____), filed July 20, 2004, all entitled “EPITOPE SYNCHRONIZATION IN ANTIGEN PRESENTING CELLS,” each of which is hereby incorporated by reference in its entirety.

[0127] In another embodiment of the invention an encoded antigen can be delivered in the form of a viral vector. A wide array of viruses with modified genomes adapted to express interposed reading frames but often no, or at least a reduced number of, viral proteins are known in the art, including without limitation, retroviruses including lentiviruses, adenoviruses, parvoviruses including adeno-associated virus, herpesviruses, and poxviruses including vaccinia virus. Such viral vectors facilitate delivery of the nucleic acid component into the cell allowing for expression. A subset of these vectors, such as retroviruses and parvoviruses, promote integration of their nucleic acid component into the host genome, whereas others do not.

[0128] Bacteria can also serve as vectors, that is, they can be used to deliver a nucleic acid molecule capable of causing expression of an antigen. For example, a strain of *Listeria monocytogenes* has been devised that effects its own lysis upon entering the cytosol of macrophages (its normal target), thereby releasing plasmid from which antigen is subsequently expressed (Dietrich, G. *et al.*, *Biotechnology* 16:181-185, 1998, which is hereby incorporated by reference in its entirety). *Shigella flexneri* and *Escherichia coli* have been similarly used (Sizemore, D.R. *et al.*, *Science* 270:299-302, 1995, and Courvalin, P. *et al.*, *Life Sci.* 318:1207-1212, 1995, respectively, each of which is hereby incorporated by reference in its entirety).

[0129] The use of microbial vectors for nucleic acid delivery can be complicated by the immune reactions the vectors themselves provoke. When prolonged or repeated administration is required, antibody elicited by the earlier treatment can prevent useful quantities of the vector from ever reaching its intended host. However, by direct administration intra lymph node, for example, the combination of proximity to host cells and the much reduced effective dose makes it possible to administer a dose capable of evading or overwhelming an existing antibody titer.

[0130] The word vector has been used, here and elsewhere, in reference to several modalities and variously modified (*e.g.*, expression vector, viral vector, delivery vector, etc.). The underlying principle is that a nucleic acid capable of causing expression of an antigen, rather than the antigen itself, ultimately arrives in an APC. Unless modified, explicitly or by local context, in preferred embodiments, the term vector as used herein is intended to encompass all such possibilities.

[0131] The techniques discussed above are distinct from the approach of modifying the microbial genome, including extra-chromosomal DNA, such that the antigen

is produced as a component of the microbe, which is then itself administered as the immunogen. Examples of microbes used in the genomic modification approach include viruses, bacteria, fungi, and protozoa. In embodiments of the invention described herein, the compositions, including the vaccines, can include the already synthesized antigen or a nucleic acid capable of causing an APC to express the antigen *in vivo*. In alternative embodiments, combinations of these two techniques are used. For example, one embodiment contemplates the use of a virus vector as discussed above that also incorporates a target epitope into a capsid or envelope protein.

[0132] Antigens may be used alone or may be delivered in combination with other antigens or with other compounds such as cytokines. Cytokines that are known to enhance immune stimulation of CTL responses, include, for example, GM-CSF, IL-12, IL-2, TNF, IFN, IL-18, IL-3, IL-4, IL-8, IL-9, IL-13, IL-10, IL-14, IL-15, G-CSF, IFN alpha, IFN beta, IFN gamma, TGF alpha, TGF beta, and the like. Cytokines are known in the art and are readily available in the literature or commercially. Many animal and human tumors have been shown to produce cytokines, such as IL-4, IL-10, TGF-B, that are potent modulators of the immune response and that protect tumors from immune-mediated destruction. The production of IL-4, IL-10 or TGF-B by tumors may achieve this protective effect by suppressing the induction of cellular immunity, including the elaboration of CTL responses. Alternatively, cytokines that support CTL responses can be exogenously added to help in the balance between induction of anti-tumor cell mediated and non-tumor-destructive humoral responses. Several such exogenous cytokines show utility in experimental mouse vaccination models which are known to enhance CTL responses, including GM-CSF, IFN and IL-2. An example of an effective exogenous cytokine that can be used is GM-CSF. GM-CSF is reported to enhance the expression of the so called "co-stimulatory" molecules, such as B7-1 or B7-2 on antigen presenting cells (APC). These co-stimulatory molecules are important players in the variety of interactions that occur during stimulation of CTL by APC. Moreover, GM-CSF is known to induce activation of APCs and to facilitate growth and differentiation of APCs, thereby making these APCs important CTL stimulating cells available both in greater numbers and potency.

[0133] Immunogenic compositions can additionally contain non-target antigens in order to improve the response to the target antigen. Thus, co-induction of a helper response, such as Th and/or B cell immunity against non-self or foreign antigens not expressed within the tumoral process or in the body, can result in a substantial

improvement in the magnitude and quality of the immune response to the "self" or "self-modified" target antigens expressed within the tumor or underlying stroma. For example, co-initiating a Th immune response against a non-target antigen such as tetanus toxoid can result in the generation of helper cells with bystander effect relative to generation of CTL or B cell responses against the target tumor or self antigens. Any defined sequence expressing or encompassing peptide motifs that bind to at least one class II MHC protein expressed by recipient, where such sequences are non-homologous or contain non-homologous segments relative to self antigens, can be used. Preferably, such sequences are of microbial origin and shown to be immunogenic in HLA-defined or broader populations. In addition to tetanus toxoid (whole or portions, including, but not limited to, portions that are 90%, 80%, 75%, 70%, 60%, 50%, 40%, 30%, 25%, 20%, 15%, 10%, or 5% of a whole toxoid), further examples include, but are not limited to, sequences derived from HBVcore, influenza hemagglutinin, Plasmodium circumsporozoite antigen, and HTLV-1 envelope protein, and fragments of these sequences that are 90%, 80%, 75%, 70%, 60%, 50%, 40%, 30%, 25%, 20%, 15%, 10%, or 5% of the respective full-length sequences. In some embodiments, the tetanus toxoid portion is 5% to 90% of a whole toxoid, in other embodiments, the portion is 15% to 80% of a whole toxoid, in still other embodiments, the toxoid portion is 25% to 70% of a whole toxoid, in yet other embodiments, the toxoid portion is 35% to 60% of a whole toxoid, in still other embodiments, the toxoid portion is 45% to 55% of a whole toxoid. Similarly, co-administration of a strongly immunogenic B cell epitope (a non-self antigen) with or without a Th epitope (a non-self antigen) with target epitopes (self, tumoral) in a cognate fashion (that is, within the same molecule), can result in improved immune response, or even break of tolerance (T cell) against the therapeutic target, via immune antibody-antigen complexes and bystander T cell help.

Delivery of the Antigen

[0134] While not wanting to be bound by any particular theory, it is thought that T cells do not have a functional memory that is long-lived. Antibody-mediated B-cell memory, on the other hand, appears to have a long-lived effector memory. Thus, delivering an antigen that induces a CTL response is most preferably done over time to keep the patient's immune system appropriately stimulated to attack the target cells. In one approach the presence of antigen is maintained virtually continuously within the lymphatic system to maintain effector CTL function as disclosed in U.S. Patent No. 6,977,074, entitled

“METHOD OF INDUCING A CTL RESPONSE,” which is hereby expressly incorporated by reference. In another approach T cell memory is repeatedly induced, and re-amplified and reactivated as described in Provisional U.S. Patent Application No. 60/479,393, filed June 17, 2003, entitled “METHODS TO CONTROL MHC CLASS I-RESTRICTED IMMUNE RESPONSE,” and in U.S. Patent Application No. 10/871,707 (Pub. No. 20050079152 A1), filed June 17, 2004, both entitled “METHODS TO ELICIT, ENHANCE AND SUSTAIN IMMUNE RESPONSES AGAINST MHC CLASS I-RESTRICTED EPITOPEs, FOR PROPHYLACTIC OR THERAPEUTIC PURPOSE,” each of which is hereby incorporated by reference in its entirety. While it has been suggested that antigens and adjuvants can be prepared as biodegradable microspheres or liposomes, none of these preparations have thus far provided a CTL response that is useful for attacking cancer cells or pathogens on a long term basis. Preferably, delivery of the antigen is sustained over the desired period of time at a level sufficient to maintain the antigen level to obtain the desired response. In one embodiment, a reservoir having fluid antigen composition can be used to deliver the antigen such that it reaches the animal's lymphatic system. While much of the following discussion focuses on the use of infusion to deliver the antigen it is also possible to use bolus injections directly into the lymphatic system, the number and frequency of which will depend on the persistence of antigen conferred by the particular form and formulation of antigen used.

[0135] Ultimately antigen finds its way into the lymphatic system in order to most efficiently stimulate CTL. Delivery of antigen can involve infusion into various compartments of the body, including but not limited to subcutaneous, intravenous, intraperitoneal and intralymphatic, the latter being preferred. While each of these points of infusion results in antigen uptake into the lymphatic system, the relative amounts of antigen needed to induce a beneficial CTL response varies according to the site of infusion. In general, direct infusion of antigen into the lymph system is deemed to be the most efficient means of inducing a CTL response, however, any delivery route can be used. Pump systems are capable of delivering material quantities of antigen in a range that is suitable for inducing a CTL response through delivery to all compartments of the body. CTL stimulation following delivery of antigen via the various routes will vary depending on the properties of different antigens, including factors that influence antigen behavior in the body and its rate of equilibration to (or longevity in) the lymph, such as antigen stability in

the body fluid, solubility of antigen in body fluid, binding affinity for HLA and potency as a stimulator of CTL.

[0136] In a preferred embodiment, introduction of the antigen is done as directly as possible to the lymphatic system to avoid the destruction of the antigen by metabolism in the body. When introduction of a fluid antigen composition occurs subcutaneously, larger quantities of antigen are needed to assure enough antigen reaches the lymphatic system. Such subcutaneous injection is contemplated by the invention disclosed herein, depending on factors such as cost, stability of the antigen, how quickly the antigen gets to the lymph system, how well it equilibrates with the lymph, and other factors that the attending doctor or specialist will recognize. Subcutaneous delivery generally can require 100 to 1000 times more antigen than direct delivery to the lymph system. It is preferable, therefore, that the antigen composition is introduced through a device for local administration to the lymphatic system, *e.g.*, the spleen, a lymph node, or a lymph vessel. The device for local administration can be positioned outside the patient or implanted into the patient. In either case, the device can have a reservoir to hold the fluid antigen-containing composition, a pump to transfer the composition, and a transmission channel leading from the reservoir to be directed to the preferred region of administration in the patient's body. In either case it is preferably portable.

[0137] For the device positioned outside the patient's body (the external device), there are numerous devices used for delivering insulin to diabetic patients that are useful in delivering antigen according to the embodiments described herein. Generally these devices can be comprised of a reservoir for holding the antigen composition (instead of insulin), a programmable pump to pump the composition out of the reservoir, a transmission channel or line for transmitting the composition, and a means to introduce the composition into the animal's body to ultimately reach the lymphatic system.

[0138] Preferably, the reservoir for the antigen composition should be large enough for delivery of the desired amount of antigen over time and easily refillable or replaceable without requiring the user to reinsert the means for introducing the antigen composition to the lymph system.

[0139] In preparing the antigen compositions of embodiments of the invention disclosed herein, a composition (preferably aqueous) can be prepared to be compatible with the lymph system and physiologically acceptable to the animal being treated. Relevant considerations include, for example, the physicochemical properties of the antigen, such as

the isoelectric point, molecular weight, glycosylation or other post-translational modification, and overall amino acid composition. These properties along with any known behavior of the drug in different solutions (*e.g.*, different buffers, cofactors, etc.) as well as its *in vivo* behavior can help guide the choice of formulation components. One parameter that impacts all the major degradation pathways is the solution pH. Thus, the initial formulations also assess the pH dependence of the degradation reactions and the mechanism for degradation, which can often be determined from the pH dependence to determine the stability of the protein in each solution. Rapid screening methods usually involve the use of accelerated stability at elevated temperatures (*e.g.*, 40° C) using techniques known in the art.

[0140] In general the antigen compositions useful in embodiments described herein can be suitable for parenteral injection, in very small quantities. As such a composition should be free of contamination and have a pH compatible with the lymphatic system. However, because very small quantities of the antigenic composition will be delivered it need not be the same pH as blood or lymph, and it need not be aqueous-based. The preferable pH range that is compatible is from about 6.7-7.3 and can be prepared using water for injection to meet USP specifications (*see* Remington: *The Science and Practice of Pharmacy*, Nineteenth Edition; Chapters 86-88, which is hereby incorporated by reference in its entirety). For antigens that are less soluble, a suitable cosolvent or surfactant can be used, such as dimethyl sulfoxide (DMSO) or PLURONIC brand surfactants. Generally, a standard saline solution that is buffered with a physiologically acceptable weak acid and its base conjugate, *e.g.*, a phosphate or citrate buffering system, will be the basis of the antigen composition. In some cases, a small amount of an antioxidant may be useful to stabilize the composition and prevent oxidation. Factors to consider in preparing the antigen compositions can be found in the 1994 American Chemical Society book entitled *Formulation and Delivery of Proteins and Peptides* (Acs Symposium Series, No. 567) by Jeffery L. Cleland and Robert Langer (Editor), which is hereby incorporated by reference in its entirety.

[0141] For nucleic acid encoded antigens similar considerations can apply, although the variety of physico-chemical properties encountered with polypeptides is absent, so that acceptable formulations will have nearly universal applicability. As seen in Examples 6-10, plasmid DNA in standard phosphate buffered saline (PBS) is an acceptable and effective formulation. In some embodiments of the invention, DNA is administered

continuously or intermittently at short intervals, from a reservoir worn on, or implanted in, the patient's body. It is preferable that the DNA be maintained in a soluble, stable form at or near body temperature over a period of time measured minimally in days. In such applications where the formulated nucleic acid will be delivered from a reservoir over a period of several days or longer, the stability of the nucleic acid at room or body temperature for that period of time, as well as its continued sterility, take on increased importance. The addition of bacteriostatic agents (*e.g.*, benzyl or ethyl alcohol) and chelating agents (*e.g.*, EDTA) is useful toward these ends. Formulations containing about 0.5-2 % ethyl alcohol, 0.25-0.5mM EDTA generally perform well. Such formulations are also appropriate for bolus injections.

[0142] Generally the amount of the antigen in the antigen composition will vary from patient to patient and from antigen to antigen, depending on such factors as the activity of the antigen in inducing a response and the flow rate of the lymph through the patient's system. In general the antigen composition may be delivered at a rate of from about 1 to about 500 microliters/hour or about 24 to about 12000 microliters/day. The concentration of the antigen is such that about 0.1 micrograms to about 10,000 micrograms of the antigen will be delivered during 24 hours. The flow rate is based on the knowledge that each minute approximately about 100 to about 1000 microliters of lymph fluid flows through an adult inguinal lymph node. The objective is to maximize local concentration of vaccine formulation in the lymph system. A certain amount of empirical investigation on patients will be necessary to determine the most efficacious level of infusion for a given vaccine preparation in humans.

[0143] To introduce the antigen composition into the lymphatic system of the patient the composition is preferably directed to a lymph vessel, lymph node, the spleen, or other appropriate portion of the lymphatic system. Preferably, the composition is directed to a lymph node such as an inguinal or axillary node by inserting a catheter or needle to the node and maintaining the catheter or needle throughout the delivery. Suitable needles or catheters are available made of metal or plastic (*e.g.*, polyurethane, polyvinyl chloride (PVC), TEFLO, polyethylene, and the like). In inserting the catheter or needle into the inguinal node for example, the inguinal node is punctured under ultrasonographic control using a Vialon™ Insyte-W™ cannula and catheter of 24G3/4 (Becton Dickinson, USA) which is fixed using Tegaderm™ transparent dressing (Tegaderm™ 1624, 3M, St. Paul, MN 55144, USA). This procedure is generally done by an experienced radiologist. The

location of the catheter tip inside the inguinal lymph node is confirmed by injection of a minimal volume of saline, which immediately and visibly increases the size of the lymph node. The latter procedure allows confirmation that the tip is inside the node. This procedure can be performed to ensure that the tip does not slip out of the lymph node and can be repeated on various days after implantation of the catheter. In the event that the tip does slip out of location inside the lymph node, a new catheter can be implanted.

Formulation and Treatment protocol

[0144] There are several approaches to utilizing the combination of TuAAs with DNA vaccines. A first approach is to include all the antigens or epitopes from all the antigens in a given combination into a single DNA expression vector. This approach has the advantages of simplicity for manufacturing and administration to patients. However, in some instances, epitope competition can limit the usefulness of this approach. That is, it is possible that only the most immunogenic epitope will elicit an immune response when a vaccine with several epitopes representing all TuAAs in the combination is given to patients. It is also more difficult to design and construct a DNA vaccine in which all epitopes are expressed at high efficiencies. Nevertheless, because the procedure for treating patients is simple and uniform within each type of cancer, the cost is likely to be lower than for the other approaches described below.

[0145] An alternate approach is to include only one antigen or epitopes of one antigen in a DNA expression vector. This approach has the advantages of simplicity in designing and constructing the DNA vector, flexibility, and customized administration to patients. If a large number of individual TuAA vaccines are available, then one can customize treatment for each individual patient based on the TuAA expression profile of his or her tumor. For example, if the standard combination for treating a given type of cancer is TuAA A, B, and C (where A, B, and C designate different tumor associated antigens), but a patient's tumor expresses TuAA A, C, and Z (but not B), then the patient can be treated with separate vaccines for each of A, C, and Z. This flexibility and customizability improves the success rate of immunotherapy because antigen redundancy can be achieved for each patient. However, the procedure of treating the patient can be more complex. For example, delivery using this approach can include a sequential administration scheme (one antigen at a time), or injection into multiple, anatomically separate sites of the patient at about the same time.

[0146] Still another approach is to combine epitopes from multiple TuAAs that have similar immunogenicity into a DNA expression vector (more than one vector may be used for some combinations). This approach can have some of the advantages of the above two approaches but also can suffer from the disadvantages of the previous two.

[0147] A profile of the antigen expression of a particular tumor can be used to determine which antigen or combination of antigens to use. Exemplary methodology is found in U.S. Provisional Application No. 60/580,969, filed June 17, 2004, U.S. Patent Application No. 11/155,288 (Publication No. _____), filed June 17, 2005, and U.S. Patent Application No. ____/____, ____ (Publication No. _____) (Attorney Docket No. MANNK.050CP1), filed on the same date as the instant application, all entitled “COMBINATIONS OF TUMOR-ASSOCIATED ANTIGENS IN DIAGNOSTICS FOR VARIOUS TYPES OF CANCERS,” and which is hereby incorporated by reference in its entirety. Specific antigenic combinations of particular benefit in directing an immune response against particular cancers are disclosed in U.S. Provisional Patent Application No. 60/479,554, filed on June 17, 2003, U.S. Patent Application No. 10/871,708 (Publication No. 2005-0118186 A1), filed on June 17, 2004, both entitled “COMBINATIONS OF TUMOR-ASSOCIATED ANTIGENS IN COMPOSITIONS FOR VARIOUS TYPES OF,” and PCT Patent Application No. PCT/US2004/019571 (Pub. No. WO 2004/112825 A1), filed June 17, 2004, each of which is hereby incorporated by reference in its entirety.

[0148] Patients that can benefit from such methods of immunization can be recruited using methods to define their MHC protein expression profile and general level of immune responsiveness. In addition, their level of immunity can be monitored using standard techniques in conjunction with access to peripheral blood. Finally, treatment protocols can be adjusted based on the responsiveness to induction or amplification phases and variation in antigen expression. For example, repeated entrainment doses preferably can be administered until a detectable response is obtained, and then administering the amplifying peptide dose(s), rather than amplifying after some set number of entrainment doses. Similarly, scheduled amplifying or maintenance doses of peptide can be discontinued if their effectiveness wanes, antigen-specific regulatory T cell numbers rise, or some other evidence of tolerization is observed, and further entrainment can be administered before resuming amplification with the peptide. The integration of diagnostic techniques to assess and monitor immune responsiveness with methods of immunization is discussed more fully in U.S. Provisional Patent Application No. 60/580,964, filed on June

17, 2004, and U.S. Patent Application No. 11/155,928 (Pub. No. _____), filed on June 17, 2005, both entitled "IMPROVED EFFICACY OF ACTIVE IMMUNOTHERAPY BY INTEGRATING DIAGNOSTIC WITH THERAPEUTIC METHODS," each of which is hereby incorporated by reference in its entirety.

[0149] Combination of active immunotherapies, as disclosed herein, with other treatment modalities can increase the susceptibility of tumoral processes to the elicited immune response and thereby result in increased therapeutic benefit. In some embodiments, the therapeutic benefit is synergistically enhanced. Tumor debulking prior to or during active immunotherapy increases the potential for any particular level of immune response to slow or halt disease progression or to bring about tumor regression or elimination. Additionally, tissue damage, necrosis, or apoptosis initiated with antibody therapy, radiotherapy, biotherapy, chemotherapy, passive immunotherapy (including treatment with mono- and/or polyclonal antibodies, recombinant TCR, and/or adoptive transfer of CTL or other cells of the immune system) or surgery, can facilitate the active immunotherapeutic approach via general inflammation resulting in recruitment of immune effector cells including antigen-specific effectors. In general, any method to induce a transient or more permanent general inflammation within one or multiple tumors / metastatic lesions can facilitate the active immunotherapy. Alternatively or in addition to enabling recruitment of effectors, general inflammation can also increase the susceptibility of target cells to immune mediated attack (e.g., as interferons increase expression of target molecules on cancer cells and underlying stroma). Still other strategies to increase susceptibility of tumor cells to immune mediated attack - by providing factors that interfere with the "stress response" or increase target molecules on cancer cells or stromal cells – can synergize with active immunotherapy.

[0150] Many variations and alternative elements of the invention have been disclosed. Still further variations and alternate elements will be apparent to one of skill in the art. Various embodiments of the invention can specifically include or exclude any of these variations or elements.

[0151] In some embodiments, the numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth used to describe and claim certain embodiments of the invention are to be understood as being modified in some instances by the term "about." Accordingly, in some embodiments, the numerical

parameters set forth in the written description and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by a particular embodiment. In some embodiments, the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of some embodiments of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as practicable. The numerical values presented in some embodiments of the invention may contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements.

[0152] In some embodiments, the terms “a” and “an” and “the” and similar referents used in the context of describing a particular embodiment of the invention (especially in the context of certain of the following claims) may be construed to cover both the singular and the plural. The recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g. “such as”) provided with respect to certain embodiments herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.

[0153] Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is herein deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.

[0154] Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations on those preferred embodiments will become apparent to those of ordinary skill in the art upon

reading the foregoing description. It is contemplated that skilled artisans may employ such variations as appropriate, and the invention may be practiced otherwise than specifically described herein. Accordingly, many embodiments of this invention include all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.

[0155] Furthermore, numerous references have been made to patents and printed publications throughout this specification. Each of the above cited references and printed publications are herein individually incorporated by reference in their entirety.

[0156] In closing, it is to be understood that the embodiments of the invention disclosed herein are illustrative of the principles of the present invention. Other modifications that may be employed may be within the scope of the invention. Thus, by way of example, but not of limitation, alternative configurations of the present invention may be utilized in accordance with the teachings herein. Accordingly, the present invention is not limited to that precisely as shown and described.

[0157] Each of the references cited herein is hereby incorporated herein by reference in its entirety.

[0158] The following examples are for illustrative purposes only and are not intended to limit the scope of the embodiments in any way.

Examples

TuAA analysis and selection of combinations

[0159] The presence of TuAAs was measured by Real-Time PCR (RT-PCR). Briefly, total RNA was isolated from tumor specimens by standard methods and cDNA was made with standard reverse transcription procedures. Complementary DNA (cDNA) was amplified with specially designed, gene specific, primers that anneal only to cDNA but not genomic DNA. TuAA expression patterns of 12 ovarian and 7 colorectal tumor specimens were analyzed by RT-PCR. The results are summarized in the Table 5 below.

Table 5

	Total #	PRAME	NY-ESO-1	SSX-2	PSMA	MAGE1	MAGE3
Ovarian	12	12	5	6	6	4	3
Colorectal	7	5	1	2	5	0	1

Example 1Ovarian Cancer

[0160] In the case of ovarian cancer, all samples analyzed were positive for PRAME. Thus the inclusion of PRAME in the combination improves coverage of the cases with ovarian cancer.

[0161] In order to achieve antigen redundancy and improve coverage in a large population, combinations of other antigens in addition to PRAME were considered. SSX-2 as well as PSMA were present in 6 of the 12 cases individually, but the combination of SSX-2 and PSMA provided coverage in 9 of 12 cases. Although NY-ESO-1 and SSX-2 were only present in 5 and 6 of the 12 cases, respectively, either NY-ESO-1 or SSX-2 was detected in 7 of the 12 cases.

[0162] Thus, the combination of PRAME, SSX-2, and PSMA or PRAME, NY-ESO-1, and SSX-2 provided preferable coverage and redundancy compared to the combination of PRAME and PSMA or the combination of PRAME and SSX-2. The combination of PRAME, SSX-2, and PSMA provided excellent coverage of cases and good antigen redundancy because the majority of ovarian tumor samples analyzed had at least two of the four TuAA in the combination present. The combination of PRAME, SSX-2, PSMA, and NY-ESO-1 provided more preferred antigen redundancy, and thus, lower possibility of tumor escape.

Example 2Colorectal cancer

[0163] In the case of colorectal cancer, PRAME and PSMA were each detected in 5 of the 7 samples analyzed. In 6 of the 7 cases, either PRAME or PSMA was detected. Although SSX-2 was only detected in 2 of 7 cases, both SSX-2-PRAME and SSX2-PSMA combinations increased coverage to 6 of 7. Similarly, although NYESO-1 was detected in only 1 of 7 cases, the combination of NY-ESO-1-PRAME as well as the NYESO-1-PSMA combination increased coverage to 6 of 7. The addition of SSX-2 or NYESO-1 to the

PRAME and PSMA combination improved coverage to 7 of 7. Thus, the combination of PRAME, PSMA, and NYESO-1, or the combination of PRAME, PSMA, and SSX-2 provided good coverage of cases and redundancy of antigens for a majority of patients. The combination of PRAME, PSMA, NY-ESO-1, and SSX-2 provided further redundancy.

Example 3

Pancreatic Cancer

[0164] Real-Time PCR (RT-PCR) was utilized to determine the presence of PRAME, SSX2, NY-ESO-1, and PSMA. Briefly, total RNA was isolated from 5 pancreatic tumor specimens by standard methods and cDNA was made with standard reverse transcription procedures. Complementary DNA (cDNA) was amplified with specially designed, gene-specific primers that anneal only to cDNA but not genomic DNA.

[0165] In the pancreatic cancer specimens, the presence of PRAME, NYESO-1, SSX-2, and PSMA was detected in 100%, 40%, 20%, and 100% of the specimens, respectively (see Table 6). Elsewhere, PSMA and over-expression of HER2-/neu were reported to be present in 100% and 21% of pancreatic tumors, respectively (Chang SS *et al.*, *Cancer Res* 1999, 59:3192; Safran H *et al.*, *Am J Clin Oncol*. 2001, 24:496, each of which is hereby incorporated by reference in its entirety). Although over-expression of HER2/neu may render the cancer tissue a preferred target, thus providing some specificity for immunotherapy, low level expression of HER2/neu in normal tissues remains a concern. Thus, the combination of NYESO-1, SSX-2, plus PRAME or PSMA provides excellent coverage and some redundancy for treating pancreatic cancer. Inclusion of both PRAME and PSMA significantly improves redundancy.

Table 6

TAA	PRAME	SSX2	NY-ESO-1	PSMA
Detection Freq.	5/5	1/5	2/5	5/5
% positive	100	20	40	100

Example 4

Non-small cell lung cancer

[0166] For non-small cell lung cancer, the reported presence of NYESO-1, SSX-2, MAGE-3, BAGE, over-expression of Her2/neu, and PSMA was 21, 15, 60, 6, 16, and 100%, respectively (Scanlan MJ *et al.*, *Cancer lett* 2000, 150:155; Chang SS *et al.*, *Cancer Res* 1999, 59:3192; Selvaggi G *et al.*, *Cancer* 2002, 94:2669, each of which is

hereby incorporated by reference in its entirety). Thus, the combination of NYESO-1, SSX-2, MAGE-3, and PSMA provides coverage and antigen redundancy for the immunotherapy of non-small cell lung cancer.

Example 5

Renal cell carcinoma

[0167] For renal cell carcinoma, SSX-2, PSMA and PRAME were detected with frequencies of 5, 100 and 40%, respectively (Sahin, U *et al.*, *Clin Cancer Res.* 2000, 6:3916; Chang SS *et al.*, *Urology* 2001, 57:801; Neumann E *et al.*, *Cancer Res.* 1998, 58:4090, each of which is hereby incorporated by reference in its entirety). Thus, the combination of PSMA and PRAME provides excellent coverage and redundancy for renal cell carcinoma. Adding SSX-2 to the combination of PSMA and PRAME improves redundancy.

Example 6

Melanoma

[0168] For melanoma, Melan A, Tyrosinase, NYESO-1, and SSX-2 were reported to be present in 92, 92, 41, and 35% of tumor specimens, respectively (Fetsch PA, *et al.*, *Cancer* 1999, 87:37; Fetsch PA, *et al.*, *Cancer* 2000, 90:252; Schultz-Thater E *et al.*, *Br J Cancer* 2000, 83:204; Sahin, U *et al.*, *Clin Cancer Res.* 2000, 6:3916). Therefore, the combination of Melan A, Tyrosinase, NYESO-1, and SSX-2 provides excellent coverage and antigen redundancy for the immunotherapy of melanoma. Significant redundancy is achieved using tyrosinase and melan-A together, or by combining NY-ESO-1 and SSX-2 with either of tyrosinase or melan-A.

Example 7

[0169] Further studies involving the foregoing tumor types confirmed the observed expression patterns and preferred panels of TuAA. A total of 34 ovarian, 44 colon, 18 renal, and 13 pancreatic tissue samples obtained from various vendors were analyzed for tumor-associated antigen expression using qRT-PCR. The results of these assays demonstrated that PRAME and PSMA were expressed frequently (ranging from 68% to 100%) in all four types of tumors studied. NY-ESO-1 and SSX2 were expressed in 20% to 40% of ovarian and pancreatic tumors.

Table 7:
Overall Expression Profiles for Tumor Associated Antigens
From RTPCR analysis of Primary Tumors and Metastases

Tumor- Associated Antigen	% Samples Expressing a Given Antigen			
	Ovarian ^a	Renal ^b	Pancreatic ^c	Colorectal ^d
SSX2	36	6	20	8
NY-ESO-1	30	6	40	12
PRAME	97	83	80	76
PSMA	91	100	100	68
MAGE-1	27	6	33	8
MAGE-3	30	22	42	20
SCP-1	30	11	0	0
CEA	30	0	58	92

^a 33 samples (27 primary tumors and 6 metastases)

^b 18 samples (18 primary tumors)

^c 15 samples (14 primary tumors and 1 metastasis; PSMA on 10 samples)

^d 25 samples (13 primary tumors and 12 metastases)

Example 8

Schedule of immunization with plasmids expressing epitopes from two antigens

[0170] Two groups of HHD mice (n=4) were immunized via intra lymph node injection with either pSEM expressing Melan-A₂₆₋₃₅A27L (ELA) and pCBP expressing SSX-2₄₁₋₄₉ as a mixture; or with pSEM in the left inguinal lymph node and pCBP in the right inguinal lymph node, twice, at day 0 and 4 as shown in Figure 1. The amount of the plasmid was 25 μ g/plasmid/dose. Two weeks later, the animals were sacrificed, and cytotoxicity was measured against T2 cells pulsed or not with peptide.

Example 9

Co-administration of different vectors carrying distinct antigens

[0171] The animals immunized as described in Example 8, were sacrificed and splenocytes from each group pooled and stimulated with the two peptides (ELA or SSX-2₄₁₋₄₉) in parallel. The cytotoxicity was measured by incubation with Cr⁵¹-tagged, peptide

loaded T2 target cells. Data in Figure 2 show mean of specific cytotoxicity (n=4/group) against various target cells.

[0172] The results show that use of plasmid mixture interferes with the response elicited by pCBP plasmid; however, segregating the two plasmids relative to site of administration rescues the activity of pCBP. Thus, the co-administration of different vectors carrying distinct antigens can result in establishment of a hierarchy with regard to immunogenicity. Vector segregation can rescue the immunogenicity of the less dominant component, resulting in a multivalent response.

Example 10

Rescue of Multivalent Response by Addition of Peptide Boost Steps

[0173] Four groups of HHD mice (n=6) were immunized via intra lymph node injection with either pSEM and pCBP as a mixture; or with pSEM in the left inguinal lymph node and pCBP in the right inguinal lymph node, twice, at day 0 and 4 as shown in Figure 3. As a control, mice were immunized with either pSEM or pCBP plasmid. The amount of the plasmid was 25 μ g/plasmid/dose. Two weeks later, the animals were boosted with melan A and/or SSX-2 peptides, mirroring the plasmid immunization dose and combination. Two weeks later, the animals were challenged with splenocytes stained with CFSE and loaded or not with Melan A or SSX-2 peptide, for evaluation of *in vivo* cytotoxicity.

Example 11

Peptide amplification rescues the immunogenicity of the less dominant epitope

[0174] Mice were immunized as described in Example 10 and challenged with HHD littermate splenocytes coated with ELA or SSX-2 peptide, employing a triple peak CFSE *in vivo* cytotoxicity assay that allows the assessment of the specific lysis of two antigen targets simultaneously. Equal numbers of control-CFSE^{lo}, SSX-2₄₁₋₄₉-CFSE^{med}, and ELA-CFSE^{hi} cells were intravenously infused into immunized mice and 18 hours later the mice were sacrificed and target cell elimination was measured in the spleen (Figure 4) by CFSE fluorescence using a flow cytometry. Figure 4 shows the percent specific lysis of the SSX2 and Melan-A antigen targets from individual mice, as well as the mean and SEM for each group.

[0175] The results show that immunizing the animals with a mixture of the two vaccines comprising plasmids followed by peptides generated immunity to both antigens and resulted in the highest immune response, representing an average SSX-2 percent specific lysis in the spleen of 30+-11, and an average Melan-A percent specific lysis of 97+-1.

Example 12

Clinical practice for entrain-and-amplify immunization

[0176] The data in figures 2 and 4 suggest two scenarios for achieving a strong multivalent response in the clinic, shown in Figure 5. In the first scenario (A), use of peptides for boosting restores multivalent immune responses even if plasmids and peptides are used as mixtures. In the second scenario (B), segregation of plasmid and peptide components respectively, allows induction of multivalent immune responses.

Example 13

MKC1207: an Entrain-and-Amplify Therapeutic for Melanoma

[0177] MKC1207 comprises the plasmid pSEM (described in U.S. Patent Application No. 10/292,413 (Pub. No. 2003-0228634 A1), filed November 7, 2002, 10/777,053 (Pub. No. 2004-0132088 A1), filed February 10, 2004, 10/837,217 (Pub. No. _____), filed April 30, 2004, each of which is hereby incorporated by reference in its entirety, in which it is referred to as pMA2M) and peptides corresponding to Melan-A 26-35 and tyrosinase 369-377. The plasmid encodes the A27L analogue of the Melan-A epitope and the native tyrosinase epitope sequence. The plasmids encode both of these epitopes in such a manner that they can be expressed and presented by pAPC. In alternate embodiments of the therapeutic, the peptides can comprise the native sequence or be analogues such as those disclosed in U.S. Patent Application No. 11/156,369 (Pub. No. _____), entitled EPITOPE ANALOGUES, filed on June 17, 2005, and incorporated herein by reference in its entirety.

[0178] Briefly, the plasmid is administered intranodally to the inguinal lymph nodes as an entraining immunogen. Subsequently, the peptides are administered intranodally, one to the left node, the other to the right as amplifying immunogens. The entrain-and-amplify protocol is described in greater detail in U.S. Patent Application Nos.

10/871,707 (Pub. No. 2005-0079152 A1), filed on June 17, 2004 and 60/479,393, filed on June 17, 2003, each of which is hereby incorporated by reference in its entirety.

[0179] Melanoma patients can be screened according to the methods disclosed herein and MKC1207 administered to patients whose tumor antigen profile includes Melan-A and/or tyrosinase. In a preferred embodiment, the patient's tumor tissue also expresses HLA-A2, particularly HLA-A*0201.

Example 14

MKC1106: a Tetravalent Entrain-and-Amplify Therapeutic for Carcinoma

[0180] MKC1106 comprises the plasmids pCBP (described in U.S. Patent Application No. 10/292,413 (Pub. No. 2003/0228634 A1), filed November 7, 2002, 10/777,053 (Pub. No. 2004-0132088 A1), filed February 10, 2004, 10/837,217 (Pub. No. _____), filed April 30, 2004, each of which is hereby incorporated by reference in its entirety) and pRP12 (described in U.S. Provisional Application No. 60/691,579, entitled METHODS AND COMPOSITIONS TO ELICIT MULTIVALENT IMMUNE RESPONSES AGAINST DOMINANT AND SUBDOMINANT EPITOPES, EXPRESSED ON CANCER CELLS AND TUMOR STROMA, filed on June 17, 2005, and incorporated herein by reference in its entirety; and peptides corresponding to NY-ESO-1 157-165, SSX-2 41-49, PRAME 425-433 and PSMA 288-297. The plasmids encode both of these epitopes in such a manner that they can be expressed and presented by pAPC. In alternate embodiments of the therapeutic, the peptides can comprise the native sequence or be analogues such as those disclosed in U.S. Patent Application Nos. 11/156,253 (Pub. No. _____), entitled SSX-2 PEPTIDE ANALOGS, and 11/155,929 (Pub. No. _____), entitled NY-ESO-1 PEPTIDE ANALOGS, and 11/156,369 (Pub. No. _____), entitled EPITOPE ANALOGS, and U.S. Provisional Patent Application No. 60/691,889, entitled EPITOPE ANALOGS, each of which was filed on June 17, 2005, and each of which is expressly incorporated by reference in its entirety.

[0181] Briefly, the plasmids are administered intranodally to the inguinal lymph nodes, one to the left side and one to the right, as entraining immunogens. Subsequently the peptides are sequentially administered intranodally, two on separate days to the left node, the other two on separate days to the right as amplifying immunogens. Preferably, the peptides are administered to the same lymph node that received the plasmid encoding the corresponding epitopes. The entrain-and-amplify protocol is described in greater detail

in U.S. Patent Application Nos. 10/871,707 (Pub. No. 2005-0079152 A1), filed on June 17, 2004 and 60/479,393, filed on June 17, 2003, each of which is expressly incorporated by reference in its entirety.

[0182] Carcinoma patients, especially those with ovarian, colorectal, pancreatic, or renal cell carcinoma, can be screened according to the methods disclosed herein and MKC1106 administered to patients whose tumor profile includes PRAME, PSMA, NY-ESO-1, and/or SSX-2. The NY-ESO-1 epitope targeted by MKC1106 is also found in LAGE 1a/s, so the presence of this antigen in a profile would also be considered a match. As tumor antigen expression tends to be heterogeneous, any particular tissue sample is likely not to give a complete indication of all the antigens expressed. Thus, it is not necessary that a patient's profile contain all four of the antigens for that patient to be a candidate for treatment with MKC1106. However, preferably the profile contains 2, 3, or 4 of the antigens.

[0183] Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

[0184] The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.

04 Jul 2012

2005321898

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. Use of a PSMA antigen and a PRAME antigen for the manufacture of a medicament for the treatment of pancreatic cancer, wherein the medicament is suitable for inducing an immune response.
2. The use of Claim 1, wherein the medicament further comprises at least one other tumor-associated antigen selected from the group consisting of NY-ESO-1, SSX-2, a MAGE protein, MAGE-3, and Melan-A.
3. A method for the treatment of pancreatic cancer by inducing an immune response, which comprises immunizing with a composition comprising a PSMA antigen and a PRAME antigen.
4. The method of Claim 3, wherein the composition further comprises at least one other tumor-associated antigen selected from the group consisting of NY-ESO-1, SSX-2, a MAGE protein, MAGE-3, and Melan-A.
5. The use of Claim 1 or the method of Claim 3, wherein a cytolytic T cell response is induced.
6. The use of Claim 1 or the method of Claim 3, further comprising the use of at least one antigen selected from the group consisting of an antigen associated with tumor neovasculature, a growth factor, and a signal transduction protein for inducing an immune response.
7. The use or method of Claim 6, wherein the antigen associated with tumor neovasculature is selected from the group consisting of VEGFR2 and Tie-2.
8. The use or method of Claim 6, wherein said growth factor is VEGF- Λ .
9. The use or method of Claim 6, wherein said signal transduction protein is PLK1.
10. The use of Claim 1 or the method of Claim 3, further comprising the use of a stromal cell antigen, an extracellular factor antigen, or a non-self antigen for inducing an immune response, or the use of means for inducing immunity to a factor that promotes the growth, survival, invasiveness, or metastasis of a tumor.
11. The use or method of Claim 10, wherein the extra-cellular factor is selected from the group consisting of an autocrine factor, a paracrine factor, a growth factor,

2005321898 04 Jul 2012

C:\NRP\b1\b2\000444X164_1.DOC\43\07.2012

chorionic gonadotropin, gastrin, an NF- κ B activating factor, VEGF-A, CXCL1, CXCL8, and CCL2.

12. The use or method of Claim 10, wherein the non-self antigen comprises a B cell epitope, or a Th epitope.

13. The use of Claim 1 or the method of Claim 3, wherein the use is combined with a treatment selected from the group consisting of chemotherapy, radiotherapy, biotherapy, passive immunotherapy, antibody therapy, and surgery.

14. The use of Claim 1 or the method of Claim 3, wherein the medicament further comprises a NY-ESO-1 antigen.

15. The use of Claim 1 or the method of Claim 3, further comprising a step for co-inducing a helper response, tumor debulking, inducing tissue damage, necrosis, or apoptosis within a tumor, or inducing inflammation within a tumor.

16. The use or method of Claim 15, wherein the helper response comprises a B cell response, or a Th cell response.

17. An immunogenic composition for the treatment of pancreatic cancer comprising a PSMA antigen and a PRAME antigen.

18. The immunogenic composition of Claim 17, wherein the antigens are provided in the form of 1) whole antigens, 2) fragments of antigens, 3) epitope clusters derived from antigens, 4) epitopes derived from antigens, or 5) nucleic acids encoding any of 1 to 4.

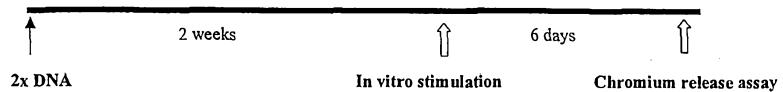
19. The composition of claim 17, further comprising at least one other tumor-associated antigen selected from the group consisting of NY-ESO-1, SSX-2, a MAGE protein, MAGE-3, and Melan-A.

20. The composition of Claim 19, wherein the at least one other tumor-associated antigen is selected from NY-ESO and SSX-2.

21. The composition of Claim 20, further comprising at least one antigen selected from the group consisting of an antigen associated with tumor neovasculature, a growth factor, and a signal transduction protein.

22. The composition of Claim 21, wherein the antigen associated with tumor neovasculature is selected from the group consisting of VEGFR2 and Tie-2.

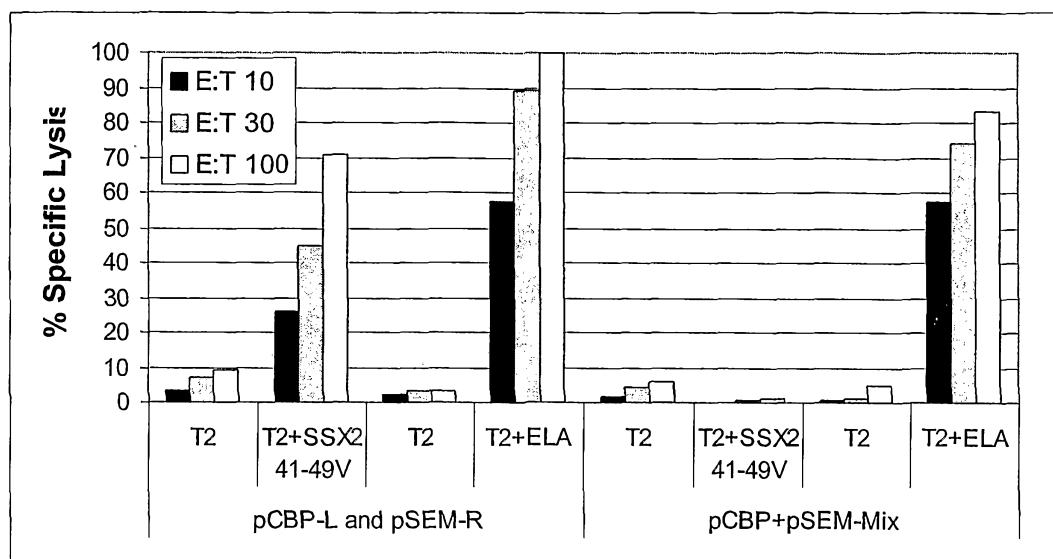
23. The composition of Claim 21, wherein said growth factor is VEGF-A.


2005321898 04 Jul 2012

24. The composition of Claim 21, wherein said signal transduction protein is PLK1.
25. The composition of Claim 17, further comprising a neovasculature or other stromal antigen, an extra-cellular factor antigen, or a non-target antigen, or means for inducing immunity to a factor that promotes the growth, survival, invasiveness, or metastasis of a tumor, inducing bystander help for the tumor-associated antigens, or causing inflammation in a tumor lesion.
26. The composition of claim 17, further comprising a NY-ESO-1 antigen.
27. The composition of any one of Claims 19-24, wherein the at least one other tumor-associated antigen is an antigen associated with a non-cancerous component of the tumor, or a cell.
28. The use of Claim 1, the immunogenic composition of Claim 17, or the method of Claim 3, substantially as hereinbefore described.

Figure 1. Schedule of immunization with plasmids (pCBP expressing SSX2 41-49; and pSEM expressing Melan A)

Schedule of immunization


Immunization Schedule:

Experimental Setup:

Group 1: Plasmids separately (pCBP, pSEM)
Group 2: Plasmids admixed (pCBP+pSEM)

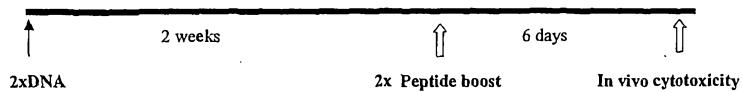

Figure 2. Co-administration of different vectors carrying distinct antigens results in establishment of a hierarchy in regard to immunogenicity. Vector segregation rescues the immunogenicity of the less dominant component, resulting in a multivalent response.

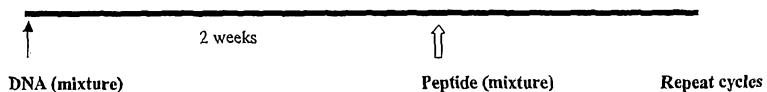
Figure 3. Addition of peptide boost steps to the immunization protocol described in Fig. 1.

Schedule of immunization

Immunization Schedule:

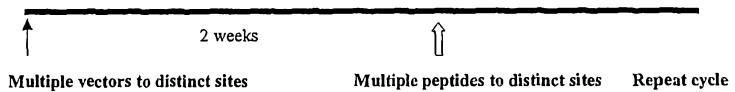
Experimental Setup:

- Group 1: Naïve controls
- Group 2: Mixture of plasmids followed by mixture of peptides
- Group 3: Plasmids and peptides into different lymph nodes
- Group 4: pSEM plasmid and melan A peptide only
- Group 5: pCBP plasmid and SSX2 peptide only


Figure 4. Peptide boost rescues the immunogenicity of a less dominant epitope even when the vectors and peptides respectively, are used as a mixture.

Animal #	Treatment	Spleen Specific Lysis (%)	
		SSX2	Melan A
#3505	Control	Control	Control
#3473	Control	6	4
#3481	Control	8	6
#3951	Control	Control	Control
#3474	Control	-4	-8
#3513	Control	-3	-4
		Mean	2
		SEM	4
#3125	pSEM + pCBP	71	95
#3075	pSEM + pCBP	26	93
#3088	pSEM + pCBP	10	94
#3081	pSEM + pCBP	22	100
#3078	pSEM + pCBP	44	100
#3102	pSEM + pCBP	9	100
		Mean	30
		SEM	11
#3076	L=pSEM, R=pCBP	16	37
#3112	L=pSEM, R=pCBP	15	88
#3068	L=pSEM, R=pCBP	7	93
#3051	L=pSEM, R=pCBP	46	100
#3146	L=pSEM, R=pCBP	4	100
#3103	L=pSEM, R=pCBP	13	100
		Mean	17
		SEM	11
#3111	pSEM	3	57
#3036	pSEM	6	94
#3052	pSEM	-1	95
#3067	pSEM		5
#3049	pSEM	1	100
#3039	pSEM		38
		Mean	2
		SEM	17
#3069	pCBP	26	-3
#3037	pCBP	15	3
#3042	pCBP	6	7
#3070	pCBP	11	11
#3046	pCBP	18	17
#3053	pCBP	33	15
		Mean	18
		SEM	4
			8
			3

Figure 5. Methodology to induce strong, multivalent responses: reduction to practice in clinic


A. Schedule of immunization

Immunization Schedule:

B. Schedule of immunization

Immunization Schedule:

23 Aug 2007
2005321898

MANNK 049A.TXT

SEQUENCE LISTING

<110> Chiang, Chih-Sheng
Simard, John J.L.
Diamond, David C.
Bot, Adrian Ion
Liu , Xiping

<120> COMBINATIONS OF TUMOR-ASSOCIATED
ANTIGENS IN COMPOSITIONS FOR VARIOUS TYPES OF CANCERS

<130> MANNK.049A

<150> 60/640,598
<151> 2004-12-29

<160> 26

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 529
<212> PRT
<213> Homo sapiens

<400> 1

Met Leu Leu Ala Val Leu Tyr Cys Leu Leu Trp Ser Phe Gln Thr Ser
1 5 10 15
Ala Gly His Phe Pro Arg Ala Cys Val Ser Ser Lys Asn Leu Met Glu
20 25 30
Lys Glu Cys Cys Pro Pro Trp Ser Gly Asp Arg Ser Pro Cys Gly Gln
35 40 45
Leu Ser Gly Arg Gly Ser Cys Gln Asn Ile Leu Leu Ser Asn Ala Pro
50 55 60
Leu Gly Pro Gln Phe Pro Phe Thr Gly Val Asp Asp Arg Glu Ser Trp
65 70 75 80
Pro Ser Val Phe Tyr Asn Arg Thr Cys Gln Cys Ser Gly Asn Phe Met
85 90 95
Gly Phe Asn Cys Gly Asn Cys Lys Phe Gly Phe Trp Gly Pro Asn Cys
100 105 110
Thr Glu Arg Arg Leu Leu Val Arg Arg Asn Ile Phe Asp Leu Ser Ala
115 120 125
Pro Glu Lys Asp Lys Phe Phe Ala Tyr Leu Thr Leu Ala Lys His Thr
130 135 140
Ile Ser Ser Asp Tyr Val Ile Pro Ile Gly Thr Tyr Gly Gln Met Lys
145 150 155 160
Asn Gly Ser Thr Pro Met Phe Asn Asp Ile Asn Ile Tyr Asp Leu Phe
165 170 175
Val Trp Met His Tyr Tyr Val Ser Met Asp Ala Leu Leu Gly Gly Ser
180 185 190
Glu Ile Trp Arg Asp Ile Asp Phe Ala His Glu Ala Pro Ala Phe Leu
195 200 205
Pro Trp His Arg Leu Phe Leu Leu Arg Trp Glu Gln Glu Ile Gln Lys
210 215 220
Leu Thr Gly Asp Glu Asn Phe Thr Ile Pro Tyr Trp Asp Trp Arg Asp
225 230 235 240
Ala Glu Lys Cys Asp Ile Cys Thr Asp Glu Tyr Met Gly Gly Gln His
245 250 255
Pro Thr Asn Pro Asn Leu Leu Ser Pro Ala Ser Phe Phe Ser Ser Trp
260 265 270
Gln Ile Val Cys Ser Arg Leu Glu Glu Tyr Asn Ser His Gln Ser Leu

2005321898 23 Aug 2007

MANNK 049A.TXT

275 280 285
Cys Asn Gly Thr Pro Glu Gly Pro Leu Arg Arg Asn Pro Gly Asn His
290 295 300
Asp Lys Ser Arg Thr Pro Arg Leu Pro Ser Ser Ala Asp Val Glu Phe
305 310 315 320
Cys Leu Ser Leu Thr Gln Tyr Glu Ser Gly Ser Met Asp Lys Ala Ala
325 330 335
Asn Phe Ser Phe Arg Asn Thr Leu Glu Gly Phe Ala Ser Pro Leu Thr
340 345 350
Gly Ile Ala Asp Ala Ser Gln Ser Ser Met His Asn Ala Leu His Ile
355 360 365
Tyr Met Asn Gly Thr Met Ser Gln Val Gln Gly Ser Ala Asn Asp Pro
370 375 380
Ile Phe Leu Leu His His Ala Phe Val Asp Ser Ile Phe Glu Gln Trp
385 390 395 400
Leu Arg Arg His Arg Pro Leu Gln Glu Val Tyr Pro Glu Ala Asn Ala
405 410 415
Pro Ile Gly His Asn Arg Glu Ser Tyr Met Val Pro Phe Ile Pro Leu
420 425 430
Tyr Arg Asn Gly Asp Phe Phe Ile Ser Ser Lys Asp Leu Gly Tyr Asp
435 440 445
Tyr Ser Tyr Leu Gln Asp Ser Asp Pro Asp Ser Phe Gln Asp Tyr Ile
450 455 460
Lys Ser Tyr Leu Glu Gln Ala Ser Arg Ile Trp Ser Trp Leu Leu Gly
465 470 475 480
Ala Ala Met Val Gly Ala Val Leu Thr Ala Leu Leu Ala Gly Leu Val
485 490 495
Ser Leu Leu Cys Arg His Lys Arg Lys Gln Leu Pro Glu Glu Lys Gln
500 505 510
Pro Leu Leu Met Glu Lys Glu Asp Tyr His Ser Leu Tyr Gln Ser His
515 520 525
Leu

<210> 2
<211> 118
<212> PRT
<213> Homo sapiens

<400> 2
Met Pro Arg Glu Asp Ala His Phe Ile Tyr Gly Tyr Pro Lys Lys Gly
1 5 10 15
His Gly His Ser Tyr Thr Thr Ala Glu Glu Ala Ala Gly Ile Gly Ile
20 25 30
Leu Thr Val Ile Leu Gly Val Leu Leu Leu Ile Gly Cys Trp Tyr Cys
35 40 45
Arg Arg Arg Asn Gly Tyr Arg Ala Leu Met Asp Lys Ser Leu His Val
50 55 60
Gly Thr Gln Cys Ala Leu Thr Arg Arg Cys Pro Gln Glu Gly Phe Asp
65 70 75 80
His Arg Asp Ser Lys Val Ser Leu Gln Glu Lys Asn Cys Glu Pro Val
85 90 95
Val Pro Asn Ala Pro Pro Ala Tyr Glu Lys Leu Ser Ala Glu Gln Ser
100 105 110
Pro Pro Pro Tyr Ser Pro
115

<210> 3
<211> 223
<212> PRT
<213> Homo sapiens

2005321898 23 Aug 2007

MANNK 049A.TXT

<400> 3
Met Asn Gly Asp Asp Ala Phe Ala Arg Arg Pro Thr Val Gly Ala Gln
1 5 10 15
Ile Pro Glu Lys Ile Gln Lys Ala Phe Asp Asp Ile Ala Lys Tyr Phe
20 25 30
Ser Lys Glu Glu Trp Glu Lys Met Lys Ala Ser Glu Lys Ile Phe Tyr
35 40 45
Val Tyr Met Lys Arg Lys Tyr Glu Ala Met Thr Lys Leu Gly Phe Lys
50 55 60
Ala Thr Leu Pro Pro Phe Met Cys Asn Lys Arg Ala Glu Asp Phe Gln
65 70 75 80
Gly Asn Asp Leu Asp Asn Asp Pro Asn Arg Gly Asn Gln Val Glu Arg
85 90 95
Pro Gln Met Thr Phe Gly Arg Leu Gln Gly Ile Ser Pro Lys Ile Met
100 105 110
Pro Lys Lys Pro Ala Glu Glu Gly Asn Asp Ser Glu Glu Val Pro Glu
115 120 125
Ala Ser Gly Pro Gln Asn Asp Gly Lys Glu Leu Cys Pro Pro Gly Lys
130 135 140
Pro Thr Thr Ser Glu Lys Ile His Glu Arg Ser Gly Asn Arg Glu Ala
145 150 155 160
Gln Glu Lys Glu Glu Arg Arg Gly Thr Ala His Arg Trp Ser Ser Gln
165 170 175
Asn Thr His Asn Ile Gly Arg Phe Ser Leu Ser Thr Ser Met Gly Ala
180 185 190
Val His Gly Thr Pro Lys Thr Ile Thr His Asn Arg Asp Pro Lys Gly
195 200 205
Gly Asn Met Pro Gly Pro Thr Asp Cys Val Arg Glu Asn Ser Trp
210 215 220

<210> 4
<211> 750
<212> PRT
<213> Homo sapiens

<400> 4
Met Trp Asn Leu Leu His Glu Thr Asp Ser Ala Val Ala Thr Ala Arg
1 5 10 15
Arg Pro Arg Trp Leu Cys Ala Gly Ala Leu Val Leu Ala Gly Phe
20 25 30
Phe Leu Leu Gly Phe Leu Phe Gly Trp Phe Ile Lys Ser Ser Asn Glu
35 40 45
Ala Thr Asn Ile Thr Pro Lys His Asn Met Lys Ala Phe Leu Asp Glu
50 55 60
Leu Lys Ala Glu Asn Ile Lys Lys Phe Leu Tyr Asn Phe Thr Gln Ile
65 70 75 80
Pro His Leu Ala Gly Thr Glu Gln Asn Phe Gln Leu Ala Lys Gln Ile
85 90 95
Gln Ser Gln Trp Lys Glu Phe Gly Leu Asp Ser Val Glu Leu Ala His
100 105 110
Tyr Asp Val Leu Leu Ser Tyr Pro Asn Lys Thr His Pro Asn Tyr Ile
115 120 125
Ser Ile Ile Asn Glu Asp Gly Asn Glu Ile Phe Asn Thr Ser Leu Phe
130 135 140
Glu Pro Pro Pro Pro Gly Tyr Glu Asn Val Ser Asp Ile Val Pro Pro
145 150 155 160
Phe Ser Ala Phe Ser Pro Gln Gly Met Pro Glu Gly Asp Leu Val Tyr
165 170 175
Val Asn Tyr Ala Arg Thr Glu Asp Phe Phe Lys Leu Glu Arg Asp Met
180 185 190
Lys Ile Asn Cys Ser Gly Lys Ile Val Ile Ala Arg Tyr Gly Lys Val

2005321898 23 Aug 2007

MANNK 049A.TXT

Phe Arg 195 Gly Asn Lys Val 200 Lys Asn Ala Gln Leu Ala Gly Ala Lys Gly
210 215 220
Val Ile Leu Tyr Ser Asp 225 230 235 240
Pro Ala Asp Tyr Phe Ala Pro Gly Val Lys
Ser Tyr Pro Asp Gly Trp Asn Leu Pro Gly Gly Val Gln Arg Gly
245 250 255
Asn Ile Leu Asn Leu Asn Gly Ala Gly Asp Pro Leu Thr Pro Gly Tyr
260 265 270
Pro Ala Asn Glu Tyr Ala Tyr Arg Arg Gly Ile Ala Glu Ala Val Gly
275 280 285
Leu Pro Ser Ile Pro Val His 290 295 300
Pro Ile Gly Tyr Tyr Asp Ala Gln Lys
Leu Leu Glu Lys Met Gly 305 310 315 320
Gly Ser Ala Pro Pro Asp Ser Ser Trp Arg
325 330 335
Phe Ser Thr Gln Lys Val Lys Met His 340 345 350
Ile His Ser Thr Asn Glu Val
Thr Arg Ile Tyr Asn Val Ile Gly 355 360 365
Thr Leu Arg Gly Ala Val Glu Pro
Asp Arg Tyr Val Ile Leu Gly 370 375 380
Gly His Arg Asp Ser Trp Val Phe Gly
Gly Ile Asp Pro Gln Ser Gly Ala Ala Val Val His Glu Ile Val Arg
385 390 395 400
Ser Phe Gly Thr Leu Lys Lys Glu Gly Trp Arg Pro Arg Arg Thr Ile
405 410 415
Leu Phe Ala Ser Trp Asp Ala Glu Glu Phe Gly Leu Leu Gly Ser Thr
420 425 430
Glu Trp Ala Glu Glu Asn Ser Arg Leu Leu Gln Glu Arg Gly Val Ala
435 440 445
Tyr Ile Asn Ala Asp Ser Ser Ile Glu Gly Asn Tyr Thr Leu Arg Val
450 455 460
Asp Cys Thr Pro Leu Met Tyr Ser Leu Val His Asn Leu Thr Lys Glu
465 470 475 480
Leu Lys Ser Pro Asp Glu Gly Phe Glu Gly Lys Ser Leu Tyr Glu Ser
485 490 495
Trp Thr Lys Ser Pro Ser Pro Glu Phe Ser Gly Met Pro Arg Ile
500 505 510
Ser Lys Leu Gly Ser Gly Asn Asp Phe Glu Val Phe Phe Gln Arg Leu
515 520 525
Gly Ile Ala Ser Gly Arg Ala Arg Tyr Thr Lys Asn Trp Glu Thr Asn
530 535 540
Lys Phe Ser Gly Tyr Pro Leu Tyr His Ser Val Tyr Glu Thr Tyr Glu
545 550 555 560
Leu Val Glu Lys Phe Tyr Asp Pro Met Phe Lys Tyr His Leu Thr Val
565 570 575
Ala Gln Val Arg Gly Gly Met Val Phe Glu Leu Ala Asn Ser Ile Val
580 585 590
Leu Pro Phe Asp Cys Arg Asp Tyr Ala Val Val Leu Arg Lys Tyr Ala
595 600 605
Asp Lys Ile Tyr Ser Ile Ser Met Lys His Pro Gln Glu Met Lys Thr
610 615 620
Tyr Ser Val Ser Phe Asp Ser Leu Phe Ser Ala Val Lys Asn Phe Thr
625 630 635 640
Glu Ile Ala Ser Lys Phe Ser Glu Arg Leu Gln Asp Phe Asp Lys Ser
645 650 655
Asn Pro Ile Val Leu Arg Met Met Asn Asp Gln Leu Met Phe Leu Glu
660 665 670
Arg Ala Phe Ile Asp Pro Leu Gly Leu Pro Asp Arg Pro Phe Tyr Arg
675 680 685
His Val Ile Tyr Ala Pro Ser Ser His Asn Lys Tyr Ala Gly Glu Ser
690 695 700

2005321898 23 Aug 2007

MANNK 049A.TXT
Phe Pro Gly Ile Tyr Asp Ala Leu Phe Asp Ile Glu Ser Lys Val Asp
705 710 715 720
Pro Ser Lys Ala Trp Gly Glu Val Lys Arg Gln Ile Tyr Val Ala Ala
725 730 735
Phe Thr Val Gln Ala Ala Ala Glu Thr Leu Ser Glu Val Ala
740 745 750

<210> 5
<211> 309
<212> PRT
<213> Homo sapiens

<400> 5
Met Ser Leu Glu Gln Arg Ser Leu His Cys Lys Pro Glu Glu Ala Leu
1 5 10 15
Glu Ala Gln Gln Glu Ala Leu Gly Leu Val Cys Val Gln Ala Ala Thr
20 25 30
Ser Ser Ser Pro Leu Val Leu Gly Thr Leu Glu Glu Val Pro Thr
35 40 45
Ala Gly Ser Thr Asp Pro Pro Gln Ser Pro Gln Gly Ala Ser Ala Phe
50 55 60
Pro Thr Thr Ile Asn Phe Thr Arg Gln Arg Gln Pro Ser Glu Gly Ser
65 70 75 80
Ser Ser Arg Glu Glu Glu Gly Pro Ser Thr Ser Cys Ile Leu Glu Ser
85 90 95
Leu Phe Arg Ala Val Ile Thr Lys Lys Val Ala Asp Leu Val Gly Phe
100 105 110
Leu Leu Leu Lys Tyr Arg Ala Arg Glu Pro Val Thr Lys Ala Glu Met
115 120 125
Leu Glu Ser Val Ile Lys Asn Tyr Lys His Cys Phe Pro Glu Ile Phe
130 135 140
Gly Lys Ala Ser Glu Ser Leu Gln Leu Val Phe Gly Ile Asp Val Lys
145 150 155 160
Glu Ala Asp Pro Thr Gly His Ser Tyr Val Leu Val Thr Cys Leu Gly
165 170 175
Leu Ser Tyr Asp Gly Leu Leu Gly Asp Asn Gln Ile Met Pro Lys Thr
180 185 190
Gly Phe Leu Ile Ile Val Leu Val Met Ile Ala Met Glu Gly Gly His
195 200 205
Ala Pro Glu Glu Glu Ile Trp Glu Glu Leu Ser Val Met Glu Val Tyr
210 215 220
Asp Gly Arg Glu His Ser Ala Tyr Gly Glu Pro Arg Lys Leu Leu Thr
225 230 235 240
Gln Asp Leu Val Gln Glu Lys Tyr Leu Glu Tyr Arg Gln Val Pro Asp
245 250 255
Ser Asp Pro Ala Arg Tyr Glu Phe Leu Trp Gly Pro Arg Ala Leu Ala
260 265 270
Glu Thr Ser Tyr Val Lys Val Leu Glu Tyr Val Ile Lys Val Ser Ala
275 280 285
Arg Val Arg Phe Phe Phe Pro Ser Leu Arg Glu Ala Ala Leu Arg Glu
290 295 300
Glu Glu Glu Gly Val
305

<210> 6
<211> 314
<212> PRT
<213> Homo sapiens

<400> 6
Met Pro Leu Glu Gln Arg Ser Gln His Cys Lys Pro Glu Glu Gly Leu

2005321898 23 Aug 2007

MANNK 049A.TXT

1 Glu Ala Arg Gly Glu Ala Leu Gly Leu Val Gly Ala Gln Ala Pro Ala
20 5 10 15
Thr Glu Glu Gln Glu Ala Ala Ser Ser Ser Ser Thr Leu Val Glu Val
35 25 30
Thr Leu Gly Glu Val Pro Ala Ala Glu Ser Pro Asp Pro Pro Gln Ser
50 55 60
Pro Gln Gly Ala Ser Ser Leu Pro Thr Thr Met Asn Tyr Pro Leu Trp
65 70 75 80
Ser Gln Ser Tyr Glu Asp Ser Ser Asn Gln Glu Glu Glu Gly Pro Ser
85 90 95
Thr Phe Pro Asp Leu Glu Ser Glu Phe Gln Ala Ala Leu Ser Arg Lys
100 105 110
Val Ala Glu Leu Val His Phe Leu Leu Leu Lys Tyr Arg Ala Arg Glu
115 120 125
Pro Val Thr Lys Ala Glu Met Leu Gly Ser Val Val Gly Asn Trp Gln
130 135 140
Tyr Phe Phe Pro Val Ile Phe Ser Lys Ala Ser Ser Ser Leu Gln Leu
145 150 155 160
Val Phe Gly Ile Glu Leu Met Glu Val Asp Pro Ile Gly His Leu Tyr
165 170 175
Ile Phe Ala Thr Cys Leu Gly Leu Ser Tyr Asp Gly Leu Leu Gly Asp
180 185 190
Asn Gln Ile Met Pro Lys Ala Gly Leu Leu Ile Ile Val Leu Ala Ile
195 200 205
Ile Ala Arg Glu Gly Asp Cys Ala Pro Glu Glu Lys Ile Trp Glu Glu
210 215 220
Leu Ser Val Leu Glu Val Phe Glu Gly Arg Glu Asp Ser Ile Leu Gly
225 230 235 240
Asp Pro Lys Lys Leu Leu Thr Gln His Phe Val Gln Glu Asn Tyr Leu
245 250 255
Glu Tyr Arg Gln Val Pro Gly Ser Asp Pro Ala Cys Tyr Glu Phe Leu
260 265 270
Trp Gly Pro Arg Ala Leu Val Glu Thr Ser Tyr Val Lys Val Leu His
275 280 285
His Met Val Lys Ile Ser Gly Gly Pro His Ile Ser Tyr Pro Pro Leu
290 295 300
His Glu Trp Val Leu Arg Glu Gly Glu Glu
305 310

<210> 7
<211> 180
<212> PRT
<213> Homo sapiens

<400> 7
Met Gln Ala Glu Gly Arg Gly Thr Gly Gly Ser Thr Gly Asp Ala Asp
1 5 10 15
Gly Pro Gly Gly Pro Gly Ile Pro Asp Gly Pro Gly Gly Asn Ala Gly
20 25 30
Gly Pro Gly Glu Ala Gly Ala Thr Gly Gly Arg Gly Pro Arg Gly Ala
35 40 45
Gly Ala Ala Arg Ala Ser Gly Pro Gly Gly Ala Pro Arg Gly Pro
50 55 60
His Gly Gly Ala Ala Ser Gly Leu Asn Gly Cys Cys Arg Cys Gly Ala
65 70 75 80
Arg Gly Pro Glu Ser Arg Leu Leu Glu Phe Tyr Leu Ala Met Pro Phe
85 90 95
Ala Thr Pro Met Glu Ala Glu Leu Ala Arg Arg Ser Leu Ala Gln Asp
100 105 110
Ala Pro Pro Leu Pro Val Pro Gly Val Leu Leu Lys Glu Phe Thr Val
115 120 125

23 Aug 2007

2005321898

MANNK 049A.TXT
Ser Gly Asn Ile Leu Thr Ile Arg Leu Thr Ala Ala Asp His Arg Gln
130 135 140
Leu Gln Leu Ser Ile Ser Ser Cys Leu Gln Gln Leu Ser Leu Leu Met
145 150 155 160
Trp Ile Thr Gln Cys Phe Leu Pro Val Phe Leu Ala Gln Pro Pro Ser
165 170 175
Gly Gln Arg Arg 180

<210> 8
<211> 509
<212> PRT
<213> Homo sapiens

<400> 8
Met Glu Arg Arg Arg Leu Trp Gly Ser Ile Gln Ser Arg Tyr Ile Ser
1 5 10 15
Met Ser Val Trp Thr Ser Pro Arg Arg Leu Val Glu Leu Ala Gly Gln
20 25 30
Ser Leu Leu Lys Asp Glu Ala Leu Ala Ile Ala Ala Leu Glu Leu Leu
35 40 45
Pro Arg Glu Leu Phe Pro Pro Leu Phe Met Ala Ala Phe Asp Gly Arg
50 55 60
His Ser Gln Thr Leu Lys Ala Met Val Gln Ala Trp Pro Phe Thr Cys
65 70 75 80
Leu Pro Leu Gly Val Leu Met Lys Gly Gln His Leu His Leu Glu Thr
85 90 95
Phe Lys Ala Val Leu Asp Gly Leu Asp Val Leu Leu Ala Gln Glu Val
100 105 110
Arg Pro Arg Arg Trp Lys Leu Gln Val Leu Asp Leu Arg Lys Asn Ser
115 120 125
His Gln Asp Phe Trp Thr Val Trp Ser Gly Asn Arg Ala Ser Leu Tyr
130 135 140
Ser Phe Pro Glu Pro Glu Ala Ala Gln Pro Met Thr Lys Lys Arg Lys
145 150 155 160
Val Asp Gly Leu Ser Thr Glu Ala Glu Gln Pro Phe Ile Pro Val Glu
165 170 175
Val Leu Val Asp Leu Phe Leu Lys Glu Gly Ala Cys Asp Glu Leu Phe
180 185 190
Ser Tyr Leu Ile Glu Lys Val Lys Arg Lys Lys Asn Val Leu Arg Leu
195 200 205
Cys Cys Lys Leu Lys Ile Phe Ala Met Pro Met Gln Asp Ile Lys
210 215 220
Met Ile Leu Lys Met Val Gln Leu Asp Ser Ile Glu Asp Leu Glu Val
225 230 235 240
Thr Cys Thr Trp Lys Leu Pro Thr Leu Ala Lys Phe Ser Pro Tyr Leu
245 250 255
Gly Gln Met Ile Asn Leu Arg Arg Leu Leu Ser His Ile His Ala
260 265 270
Ser Ser Tyr Ile Ser Pro Glu Lys Glu Glu Gln Tyr Ile Ala Gln Phe
275 280 285
Thr Ser Gln Phe Leu Ser Leu Gln Cys Leu Gln Ala Leu Tyr Val Asp
290 295 300
Ser Leu Phe Phe Leu Arg Gly Arg Leu Asp Gln Leu Leu Arg His Val
305 310 315 320
Met Asn Pro Leu Glu Thr Leu Ser Ile Thr Asn Cys Arg Leu Ser Glu
325 330 335
Gly Asp Val Met His Leu Ser Gln Ser Pro Ser Val Ser Gln Leu Ser
340 345 350
Val Leu Ser Leu Ser Gly Val Met Leu Thr Asp Val Ser Pro Glu Pro
355 360 365
Leu Gln Ala Leu Leu Glu Arg Ala Ser Ala Thr Leu Gln Asp Leu Val

2005321898 23 Aug 2007

MANNK 049A.TXT

370 375 380
Phe Asp Glu Cys Gly Ile Thr Asp Asp Gln Leu Leu Ala Leu Leu Pro
385 390 395 400
Ser Leu Ser His Cys Ser Gln Leu Thr Thr Leu Ser Phe Tyr Gly Asn
405 410 415
Ser Ile Ser Ile Ser Ala Leu Gln Ser Leu Leu Gln His Leu Ile Gly
420 425 430
Leu Ser Asn Leu Thr His Val Leu Tyr Pro Val Pro Leu Glu Ser Tyr
435 440 445
Glu Asp Ile His Gly Thr Leu His Leu Glu Arg Leu Ala Tyr Leu His
450 455 460
Ala Arg Leu Arg Glu Leu Leu Cys Glu Leu Gly Arg Pro Ser Met Val
465 470 475 480
Trp Leu Ser Ala Asn Pro Cys Pro His Cys Gly Asp Arg Thr Phe Tyr
485 490 495
Asp Pro Glu Pro Ile Leu Cys Pro Cys Phe Met Pro Asn
500 505

<210> 9
<211> 1255
<212> PRT
<213> Homo sapiens

<400> 9
Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Leu Ala Leu Leu
1 5 10 15
Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Met Lys
20 25 30
Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His
35 40 45
Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr
50 55 60
Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val
65 70 75 80
Gln Gly Tyr Val Leu Ile Ala His Asn Gln Val Arg Gln Val Pro Leu
85 90 95
Gln Arg Leu Arg Ile Val Arg Gly Thr Gln Leu Phe Glu Asp Asn Tyr
100 105 110
Ala Leu Ala Val Leu Asp Asn Gly Asp Pro Leu Asn Asn Thr Thr Pro
115 120 125
Val Thr Gly Ala Ser Pro Gly Gly Leu Arg Glu Leu Gln Leu Arg Ser
130 135 140
Leu Thr Glu Ile Leu Lys Gly Gly Val Leu Ile Gln Arg Asn Pro Gln
145 150 155 160
Leu Cys Tyr Gln Asp Thr Ile Leu Trp Lys Asp Ile Phe His Lys Asn
165 170 175
Asn Gln Leu Ala Leu Thr Leu Ile Asp Thr Asn Arg Ser Arg Ala Cys
180 185 190
His Pro Cys Ser Pro Met Cys Lys Gly Ser Arg Cys Trp Gly Glu Ser
195 200 205
Ser Glu Asp Cys Gln Ser Leu Thr Arg Thr Val Cys Ala Gly Gly Cys
210 215 220
Ala Arg Cys Lys Gly Pro Leu Pro Thr Asp Cys Cys His Glu Gln Cys
225 230 235 240
Ala Ala Gly Cys Thr Gly Pro Lys His Ser Asp Cys Leu Ala Cys Leu
245 250 255
His Phe Asn His Ser Gly Ile Cys Glu Leu His Cys Pro Ala Leu Val
260 265 270
Thr Tyr Asn Thr Asp Thr Phe Glu Ser Met Pro Asn Pro Glu Gly Arg
275 280 285
Tyr Thr Phe Gly Ala Ser Cys Val Thr Ala Cys Pro Tyr Asn Tyr Leu
290 295 300

2005321898 23 Aug 2007

MANNK 049A.TXT
Ser Thr Asp Val Gly Ser Cys Thr Leu Val Cys Pro Leu His Asn Gln
305 310 315 320
Glu Val Thr Ala Glu Asp Gly Thr Gln Arg Cys Glu Lys Cys Ser Lys
325 330 335
Pro Cys Ala Arg Val Cys Tyr Gly Leu Gly Met Glu His Leu Arg Glu
340 345 350
Val Arg Ala Val Thr Ser Ala Asn Ile Gln Glu Phe Ala Gly Cys Lys
355 360 365
Lys Ile Phe Gly Ser Leu Ala Phe Leu Pro Glu Ser Phe Asp Gly Asp
370 375 380
Pro Ala Ser Asn Thr Ala Pro Leu Gln Pro Glu Gln Leu Gln Val Phe
385 390 395 400
Glu Thr Leu Glu Glu Ile Thr Gly Tyr Leu Tyr Ile Ser Ala Trp Pro
405 410 415
Asp Ser Leu Pro Asp Leu Ser Val Phe Gln Asn Leu Gln Val Ile Arg
420 425 430
Gly Arg Ile Leu His Asn Gly Ala Tyr Ser Leu Thr Leu Gln Gly Leu
435 440 445
Gly Ile Ser Trp Leu Gly Leu Arg Ser Leu Arg Glu Leu Gly Ser Gly
450 455 460
Leu Ala Leu Ile His His Asn Thr His Leu Cys Phe Val His Thr Val
465 470 475 480
Pro Trp Asp Gln Leu Phe Arg Asn Pro His Gln Ala Leu Leu His Thr
485 490 495
Ala Asn Arg Pro Glu Asp Glu Cys Val Gly Glu Gly Leu Ala Cys His
500 505 510
Gln Leu Cys Ala Arg Gly His Cys Trp Gly Pro Gly Pro Thr Gln Cys
515 520 525
Val Asn Cys Ser Gln Phe Leu Arg Gly Gln Glu Cys Val Glu Glu Cys
530 535 540
Arg Val Leu Gln Gly Leu Pro Arg Glu Tyr Val Asn Ala Arg His Cys
545 550 555 560
Leu Pro Cys His Pro Glu Cys Gln Pro Gln Asn Gly Ser Val Thr Cys
565 570 575
Phe Gly Pro Glu Ala Asp Gln Cys Val Ala Cys Ala His Tyr Lys Asp
580 585 590
Pro Pro Phe Cys Val Ala Arg Cys Pro Ser Gly Val Lys Pro Asp Leu
595 600 605
Ser Tyr Met Pro Ile Trp Lys Phe Pro Asp Glu Glu Gly Ala Cys Gln
610 615 620
Pro Cys Pro Ile Asn Cys Thr His Ser Cys Val Asp Leu Asp Asp Lys
625 630 635 640
Gly Cys Pro Ala Glu Gln Arg Ala Ser Pro Leu Thr Ser Ile Ile Ser
645 650 655
Ala Val Val Gly Ile Leu Leu Val Val Val Leu Gly Val Val Phe Gly
660 665 670
Ile Leu Ile Lys Arg Arg Gln Gln Lys Ile Arg Lys Tyr Thr Met Arg
675 680 685
Arg Leu Leu Gln Glu Thr Glu Leu Val Glu Pro Leu Thr Pro Ser Gly
690 695 700
Ala Met Pro Asn Gln Ala Gln Met Arg Ile Leu Lys Glu Thr Glu Leu
705 710 715 720
Arg Lys Val Lys Val Leu Gly Ser Gly Ala Phe Gly Thr Val Tyr Lys
725 730 735
Gly Ile Trp Ile Pro Asp Gly Glu Asn Val Lys Ile Pro Val Ala Ile
740 745 750
Lys Val Leu Arg Glu Asn Thr Ser Pro Lys Ala Asn Lys Glu Ile Leu
755 760 765
Asp Glu Ala Tyr Val Met Ala Gly Val Gly Ser Pro Tyr Val Ser Arg
770 775 780
Leu Leu Gly Ile Cys Leu Thr Ser Thr Val Gln Leu Val Thr Gln Leu
785 790 795 800
Met Pro Tyr Gly Cys Leu Leu Asp His Val Arg Glu Asn Arg Gly Arg

2005321898 23 Aug 2007

MANNK 049A.TXT

Leu Gly Ser Gln Asp Leu Leu Asn Trp Cys Met Gln Ile Ala Lys Gly
805 810 815
820 825 830
Met Ser Tyr Leu Glu Asp Val Arg Leu Val His Arg Asp Leu Ala Ala
835 840 845
Arg Asn Val Leu Val Lys Ser Pro Asn His Val Lys Ile Thr Asp Phe
850 855 860
Gly Leu Ala Arg Leu Leu Asp Ile Asp Glu Thr Glu Tyr His Ala Asp
865 870 875 880
Gly Gly Lys Val Pro Ile Lys Trp Met Ala Leu Glu Ser Ile Leu Arg
885 890 895
Arg Arg Phe Thr His Gln Ser Asp Val Trp Ser Tyr Gly Val Thr Val
900 905 910
Trp Glu Leu Met Thr Phe Gly Ala Lys Pro Tyr Asp Gly Ile Pro Ala
915 920 925
Arg Glu Ile Pro Asp Leu Leu Glu Lys Gly Glu Arg Leu Pro Gln Pro
930 935 940
Pro Ile Cys Thr Ile Asp Val Tyr Met Ile Met Val Lys Cys Trp Met
945 950 955 960
Ile Asp Ser Glu Cys Arg Pro Arg Phe Arg Glu Leu Val Ser Glu Phe
965 970 975
Ser Arg Met Ala Arg Asp Pro Gln Arg Phe Val Val Ile Gln Asn Glu
980 985 990
Asp Leu Gly Pro Ala Ser Pro Leu Asp Ser Thr Phe Tyr Arg Ser Leu
995 1000 1005
Leu Glu Asp Asp Asp Met Gly Asp Leu Val Asp Ala Glu Glu Tyr Leu
1010 1015 1020
Val Pro Gln Gln Gly Phe Phe Cys Pro Asp Pro Ala Pro Gly Ala Gly
1025 1030 1035 1040
Gly Met Val His His Arg His Arg Ser Ser Ser Thr Arg Ser Gly Gly
1045 1050 1055
Gly Asp Leu Thr Leu Gly Leu Glu Pro Ser Glu Glu Ala Pro Arg
1060 1065 1070
Ser Pro Leu Ala Pro Ser Glu Gly Ala Gly Ser Asp Val Phe Asp Gly
1075 1080 1085
Asp Leu Gly Met Gly Ala Ala Lys Gly Leu Gln Ser Leu Pro Thr His
1090 1095 1100
Asp Pro Ser Pro Leu Gln Arg Tyr Ser Glu Asp Pro Thr Val Pro Leu
1105 1110 1115 1120
Pro Ser Glu Thr Asp Gly Tyr Val Ala Pro Leu Thr Cys Ser Pro Gln
1125 1130 1135
Pro Glu Tyr Val Asn Gln Pro Asp Val Arg Pro Gln Pro Pro Ser Pro
1140 1145 1150
Arg Glu Gly Pro Leu Pro Ala Ala Arg Pro Ala Gly Ala Thr Leu Glu
1155 1160 1165
Arg Pro Lys Thr Leu Ser Pro Gly Lys Asn Gly Val Val Lys Asp Val
1170 1175 1180
Phe Ala Phe Gly Gly Ala Val Glu Asn Pro Glu Tyr Leu Thr Pro Gln
1185 1190 1195 1200
Gly Gly Ala Ala Pro Gln Pro His Pro Pro Pro Ala Phe Ser Pro Ala
1205 1210 1215
Phe Asp Asn Leu Tyr Tyr Trp Asp Gln Asp Pro Pro Glu Arg Gly Ala
1220 1225 1230
Pro Pro Ser Thr Phe Lys Gly Thr Pro Thr Ala Glu Asn Pro Glu Tyr
1235 1240 1245
Leu Gly Leu Asp Val Pro Val
1250 1255

<210> 10
<211> 622
<212> PRT
<213> Homo sapiens

2005321898 23 Aug 2007

MANNK 049A.TXT

<400> 10
Met Ala Leu Pro Thr Ala Arg Pro Leu Leu Gly Ser Cys Gly Thr Pro
1 5 10 15
Ala Leu Gly Ser Leu Leu Phe Leu Leu Phe Ser Leu Gly Trp Val Gln
20 25 30
Pro Ser Arg Thr Leu Ala Gly Glu Thr Gly Gln Glu Ala Ala Pro Leu
35 40 45
Asp Gly Val Leu Ala Asn Pro Pro Asn Ile Ser Ser Leu Ser Pro Arg
50 55 60
Gln Leu Leu Gly Phe Pro Cys Ala Glu Val Ser Gly Leu Ser Thr Glu
65 70 75 80
Arg Val Arg Glu Leu Ala Val Ala Leu Ala Gln Lys Asn Val Lys Leu
85 90 95
Ser Thr Glu Gln Leu Arg Cys Leu Ala His Arg Leu Ser Glu Pro Pro
100 105 110
Glu Asp Leu Asp Ala Leu Pro Leu Asp Leu Leu Leu Phe Leu Asn Pro
115 120 125
Asp Ala Phe Ser Gly Pro Gln Ala Cys Thr Arg Phe Phe Ser Arg Ile
130 135 140
Thr Lys Ala Asn Val Asp Leu Leu Pro Arg Gly Ala Pro Glu Arg Gln
145 150 155 160
Arg Leu Leu Pro Ala Ala Leu Ala Cys Trp Gly Val Arg Gly Ser Leu
165 170 175
Leu Ser Glu Ala Asp Val Arg Ala Leu Gly Gly Leu Ala Cys Asp Leu
180 185 190
Pro Gly Arg Phe Val Ala Glu Ser Ala Glu Val Leu Leu Pro Arg Leu
195 200 205
Val Ser Cys Pro Gly Pro Leu Asp Gln Asp Gln Gln Glu Ala Ala Arg
210 215 220
Ala Ala Leu Gln Gly Gly Pro Pro Tyr Gly Pro Pro Ser Thr Trp
225 230 235 240
Ser Val Ser Thr Met Asp Ala Leu Arg Gly Leu Leu Pro Val Leu Gly
245 250 255
Gln Pro Ile Ile Arg Ser Ile Pro Gln Gly Ile Val Ala Ala Trp Arg
260 265 270
Gln Arg Ser Ser Arg Asp Pro Ser Trp Arg Gln Pro Glu Arg Thr Ile
275 280 285
Leu Arg Pro Arg Phe Arg Arg Glu Val Glu Lys Thr Ala Cys Pro Ser
290 295 300
Gly Lys Lys Ala Arg Glu Ile Asp Glu Ser Leu Ile Phe Tyr Lys Lys
305 310 315 320
Trp Glu Leu Glu Ala Cys Val Asp Ala Ala Leu Leu Ala Thr Gln Met
325 330 335
Asp Arg Val Asn Ala Ile Pro Phe Thr Tyr Glu Gln Leu Asp Val Leu
340 345 350
Lys His Lys Leu Asp Glu Leu Tyr Pro Gln Gly Tyr Pro Glu Ser Val
355 360 365
Ile Gln His Leu Gly Tyr Leu Phe Leu Lys Met Ser Pro Glu Asp Ile
370 375 380
Arg Lys Trp Asn Val Thr Ser Leu Glu Thr Leu Lys Ala Leu Leu Glu
385 390 395 400
Val Asn Lys Gly His Glu Met Ser Pro Gln Val Ala Thr Leu Ile Asp
405 410 415
Arg Phe Val Lys Gly Arg Gly Gln Leu Asp Lys Asp Thr Leu Asp Thr
420 425 430
Leu Thr Ala Phe Tyr Pro Gly Tyr Leu Cys Ser Leu Ser Pro Glu Glu
435 440 445
Leu Ser Ser Val Pro Pro Ser Ser Ile Trp Ala Val Arg Pro Gln Asp
450 455 460
Leu Asp Thr Cys Asp Pro Arg Gln Leu Asp Val Leu Tyr Pro Lys Ala
465 470 475 480
Arg Leu Ala Phe Gln Asn Met Asn Gly Ser Glu Tyr Phe Val Lys Ile

2005321898 23 Aug 2007

MANNK 049A.TXT

Gln	Ser	Phe	Leu	Gly	Gly	Ala	Pro	Thr	Glu	Asp	Leu	Lys	Ala	Leu	Ser	485	490	495
																500	505	510
Gln	Gln	Asn	Val	Ser	Met	Asp	Leu	Ala	Thr	Phe	Met	Lys	Leu	Arg	Thr	515	520	525
Asp	Ala	Val	Leu	Pro	Leu	Thr	Val	Ala	Glu	Val	Gln	Lys	Leu	Leu	Gly	530	535	540
Pro	His	Val	Glu	Gly	Leu	Lys	Ala	Glu	Glu	Arg	His	Arg	Pro	Val	Arg	545	550	555
Asp	Trp	Ile	Leu	Arg	Gln	Arg	Gln	Asp	Asp	Leu	Asp	Thr	Leu	Gly	Leu	565	570	575
Gly	Leu	Gln	Gly	Gly	Ile	Pro	Asn	Gly	Tyr	Leu	Val	Leu	Asp	Leu	Ser	580	585	590
Met	Gln	Glu	Ala	Leu	Ser	Gly	Thr	Pro	Cys	Leu	Leu	Gly	Pro	Gly	Pro	595	600	605
Val	Leu	Thr	Val	Leu	Ala	Leu	Leu	Leu	Ala	Ser	Thr	Leu	Ala			610	615	620

<210> 11
<211> 630
<212> PRT
<213> Homo sapiens

<400> 11																			
Met	Ala	Leu	Pro	Thr	Ala	Arg	Pro	Leu	Leu	Gly	Ser	Cys	Gly	Thr	Pro	1	5	10	15
Ala	Leu	Gly	Ser	Leu	Leu	Phe	Leu	Leu	Phe	Ser	Leu	Gly	Trp	Val	Gln	20	25	30	
Pro	Ser	Arg	Thr	Leu	Ala	Gly	Glu	Thr	Gly	Gln	Glu	Ala	Ala	Pro	Leu	35	40	45	
Asp	Gly	Val	Leu	Ala	Asn	Pro	Pro	Asn	Ile	Ser	Ser	Leu	Ser	Pro	Arg	50	55	60	
Gln	Leu	Leu	Gly	Phe	Pro	Cys	Ala	Glu	Val	Ser	Gly	Leu	Ser	Thr	Glu	65	70	75	80
Arg	Val	Arg	Glu	Leu	Ala	Val	Ala	Leu	Ala	Gln	Lys	Asn	Val	Lys	Leu	85	90	95	
Ser	Thr	Glu	Gln	Leu	Arg	Cys	Leu	Ala	His	Arg	Leu	Ser	Glu	Pro	Pro	100	105	110	
Glu	Asp	Leu	Asp	Ala	Leu	Pro	Leu	Asp	Leu	Leu	Phe	Leu	Asn	Pro		115	120	125	
Asp	Ala	Phe	Ser	Gly	Pro	Gln	Ala	Cys	Thr	Arg	Phe	Phe	Ser	Arg	Ile	130	135	140	
Thr	Lys	Ala	Asn	Val	Asp	Leu	Leu	Pro	Arg	Gly	Ala	Pro	Glu	Arg	Gln	145	150	155	160
Arg	Leu	Leu	Pro	Ala	Ala	Leu	Ala	Cys	Trp	Gly	Val	Arg	Gly	Ser	Leu	165	170	175	
Leu	Ser	Glu	Ala	Asp	Val	Arg	Ala	Leu	Gly	Gly	Leu	Ala	Cys	Asp	Leu	180	185	190	
Pro	Gly	Arg	Phe	Val	Ala	Glu	Ser	Ala	Glu	Val	Leu	Leu	Pro	Arg	Leu	195	200	205	
Val	Ser	Cys	Pro	Gly	Pro	Leu	Asp	Gln	Asp	Gln	Gln	Glu	Ala	Ala	Arg	210	215	220	
Ala	Ala	Leu	Gln	Gly	Gly	Pro	Pro	Tyr	Gly	Pro	Pro	Ser	Thr	Trp		225	230	235	240
Ser	Val	Ser	Thr	Met	Asp	Ala	Leu	Arg	Gly	Leu	Leu	Pro	Val	Leu	Gly	245	250	255	
Gln	Pro	Ile	Ile	Arg	Ser	Ile	Pro	Gln	Gly	Ile	Val	Ala	Ala	Trp	Arg	260	265	270	
Gln	Arg	Ser	Ser	Arg	Asp	Pro	Ser	Trp	Arg	Gln	Pro	Glu	Arg	Thr	Ile	275	280	285	
Leu	Arg	Pro	Arg	Phe	Arg	Arg	Glu	Val	Glu	Lys	Thr	Ala	Cys	Pro	Ser	290	295	300	

2005321898 23 Aug 2007

MANNK 049A.TXT
Gly Lys Lys Ala Arg Glu Ile Asp Glu Ser Leu Ile Phe Tyr Lys Lys
305 310 315 320
Trp Glu Leu Glu Ala Cys Val Asp Ala Ala Leu Leu Ala Thr Gln Met
325 330 335
Asp Arg Val Asn Ala Ile Pro Phe Thr Tyr Glu Gln Leu Asp Val Leu
340 345 350
Lys His Lys Leu Asp Glu Leu Tyr Pro Gln Gly Tyr Pro Glu Ser Val
355 360 365
Ile Gln His Leu Gly Tyr Leu Phe Leu Lys Met Ser Pro Glu Asp Ile
370 375 380
Arg Lys Trp Asn Val Thr Ser Leu Glu Thr Leu Lys Ala Leu Leu Glu
385 390 395 400
Val Asn Lys Gly His Glu Met Ser Pro Gln Ala Pro Arg Arg Pro Leu
405 410 415
Pro Gln Val Ala Thr Leu Ile Asp Arg Phe Val Lys Gly Arg Gly Gln
420 425 430
Leu Asp Lys Asp Thr Leu Asp Thr Leu Thr Ala Phe Tyr Pro Gly Tyr
435 440 445
Leu Cys Ser Leu Ser Pro Glu Glu Leu Ser Ser Val Pro Pro Ser Ser
450 455 460
Ile Trp Ala Val Arg Pro Gln Asp Leu Asp Thr Cys Asp Pro Arg Gln
465 470 475 480
Leu Asp Val Leu Tyr Pro Lys Ala Arg Leu Ala Phe Gln Asn Met Asn
485 490 495
Gly Ser Glu Tyr Phe Val Lys Ile Gln Ser Phe Leu Gly Gly Ala Pro
500 505 510
Thr Glu Asp Leu Lys Ala Leu Ser Gln Gln Asn Val Ser Met Asp Leu
515 520 525
Ala Thr Phe Met Lys Leu Arg Thr Asp Ala Val Leu Pro Leu Thr Val
530 535 540
Ala Glu Val Gln Lys Leu Leu Gly Pro His Val Glu Gly Leu Lys Ala
545 550 555 560
Glu Glu Arg His Arg Pro Val Arg Asp Trp Ile Leu Arg Gln Arg Gln
565 570 575
Asp Asp Leu Asp Thr Leu Gly Leu Gly Leu Gln Gly Gly Ile Pro Asn
580 585 590
Gly Tyr Leu Val Ile Asp Leu Ser Met Gln Glu Ala Leu Ser Gly Thr
595 600 605
Pro Cys Leu Leu Gly Pro Gly Pro Val Leu Thr Val Leu Ala Leu Leu
610 615 620
Leu Ala Ser Thr Ile Ala
625 630

<210> 12
<211> 232
<212> PRT
<213> Homo sapiens

<400> 12
Met Asn Phe Leu Ile Ser Trp Val His Trp Ser Leu Ala Leu Leu
1 5 10 15
Tyr Leu His His Ala Lys Trp Ser Gln Ala Ala Pro Met Ala Glu Gly
20 25 30
Gly Gly Gln Asn His His Glu Val Val Lys Phe Met Asp Val Tyr Gln
35 40 45
Arg Ser Tyr Cys His Pro Ile Glu Thr Leu Val Asp Ile Phe Gln Glu
50 55 60
Tyr Pro Asp Glu Ile Glu Tyr Ile Phe Lys Pro Ser Cys Val Pro Leu
65 70 75 80
Met Arg Cys Gly Gly Cys Cys Asn Asp Glu Gly Leu Glu Cys Val Pro
85 90 95
Thr Glu Glu Ser Asn Ile Thr Met Gln Ile Met Arg Ile Lys Pro His

2005321898 23 Aug 2007

MANNK 049A.TXT

Gln Gly Gln His Ile Gly Glu Met Ser Phe Leu Gln His Asn Lys Cys
100 105 110
115 120 125
Glu Cys Arg Pro Lys Lys Asp Arg Ala Arg Gln Glu Lys Lys Ser Val
130 135 140
Arg Gly Lys Gly Lys Gly Gln Lys Arg Lys Arg Lys Ser Arg Tyr
145 150 155 160
Lys Ser Trp Ser Val Tyr Val Gly Ala Arg Cys Cys Leu Met Pro Trp
165 170 175
Ser Leu Pro Gly Pro His Pro Cys Gly Pro Cys Ser Glu Arg Arg Lys
180 185 190
His Leu Phe Val Gln Asp Pro Gln Thr Cys Lys Cys Ser Cys Lys Asn
195 200 205
Thr Asp Ser Arg Cys Lys Ala Arg Gln Leu Glu Leu Asn Glu Arg Thr
210 215 220
Cys Arg Cys Asp Lys Pro Arg Arg
225 230

<210> 13
<211> 603
<212> PRT
<213> Homo sapiens

<400> 13
Met Ser Ala Ala Val Thr Ala Gly Lys Leu Ala Arg Ala Pro Ala Asp
1 5 10 15
Pro Gly Lys Ala Gly Val Pro Gly Val Ala Ala Pro Gly Ala Pro Ala
20 25 30
Ala Ala Pro Pro Ala Lys Glu Ile Pro Glu Val Leu Val Asp Pro Arg
35 40 45
Ser Arg Arg Arg Tyr Val Arg Gly Arg Phe Leu Gly Lys Gly Phe
50 55 60
Ala Lys Cys Phe Glu Ile Ser Asp Ala Asp Thr Lys Glu Val Phe Ala
65 70 75 80
Gly Lys Ile Val Pro Lys Ser Leu Leu Lys Pro His Gln Arg Glu
85 90 95
Lys Met Ser Met Glu Ile Ser Ile His Arg Ser Leu Ala His Gln His
100 105 110
Val Val Gly Phe His Gly Phe Glu Asp Asn Asp Phe Val Phe Val
115 120 125
Val Leu Glu Leu Cys Arg Arg Ser Leu Leu Glu Leu His Lys Arg
130 135 140
Arg Lys Ala Leu Thr Glu Pro Glu Ala Arg Tyr Tyr Leu Arg Gln Ile
145 150 155 160
Val Leu Gly Cys Gln Tyr Leu His Arg Asn Arg Val Ile His Arg Asp
165 170 175
Leu Lys Leu Gly Asn Leu Phe Leu Asn Glu Asp Leu Glu Val Lys Ile
180 185 190
Gly Asp Phe Gly Leu Ala Thr Lys Val Glu Tyr Asp Gly Glu Arg Lys
195 200 205
Lys Thr Leu Cys Gly Thr Pro Asn Tyr Ile Ala Pro Glu Val Leu Ser
210 215 220
Lys Lys Gly His Ser Phe Glu Val Asp Val Trp Ser Ile Gly Cys Ile
225 230 235 240
Met Tyr Thr Leu Leu Val Gly Lys Pro Pro Phe Glu Thr Ser Cys Leu
245 250 255
Lys Glu Thr Tyr Leu Arg Ile Lys Lys Asn Glu Tyr Ser Ile Pro Lys
260 265 270
His Ile Asn Pro Val Ala Ala Ser Leu Ile Gln Lys Met Leu Gln Thr
275 280 285
Asp Pro Thr Ala Arg Pro Thr Ile Asn Glu Leu Leu Asn Asp Glu Phe
290 295 300

2005321898 23 Aug 2007

MANNK 049A.TXT
Phe Thr Ser Gly Tyr Ile Pro Ala Arg Leu Pro Ile Thr Cys Leu Thr
305 310 315 320
Ile Pro Pro Arg Phe Ser Ile Ala Pro Ser Ser Leu Asp Pro Ser Asn
325 330 335
Arg Lys Pro Leu Thr Val Leu Asn Lys Gly Leu Glu Asn Pro Leu Pro
340 345 350
Glu Arg Pro Arg Glu Lys Glu Glu Pro Val Val Arg Glu Thr Gly Glu
355 360 365
Val Val Asp Cys His Leu Ser Asp Met Leu Gln Gln Leu His Ser Val
370 375 380
Asn Ala Ser Lys Pro Ser Glu Arg Gly Leu Val Arg Gln Glu Glu Ala
385 390 395 400
Glu Asp Pro Ala Cys Ile Pro Ile Phe Trp Val Ser Lys Trp Val Asp
405 410 415
Tyr Ser Asp Lys Tyr Gly Leu Gly Tyr Gln Leu Cys Asp Asn Ser Val
420 425 430
Gly Val Leu Phe Asn Asp Ser Thr Arg Leu Ile Leu Tyr Asn Asp Gly
435 440 445
Asp Ser Leu Gln Tyr Ile Glu Arg Asp Gly Thr Glu Ser Tyr Leu Thr
450 455 460
Val Ser Ser His Pro Asn Ser Leu Met Lys Lys Ile Thr Leu Leu Lys
465 470 475 480
Tyr Phe Arg Asn Tyr Met Ser Glu His Leu Leu Lys Ala Gly Ala Asn
485 490 495
Ile Thr Pro Arg Glu Gly Asp Glu Leu Ala Arg Leu Pro Tyr Leu Arg
500 505 510
Thr Trp Phe Arg Thr Arg Ser Ala Ile Ile Leu His Leu Ser Asn Gly
515 520 525
Ser Val Gln Ile Asn Phe Phe Gln Asp His Thr Lys Leu Ile Leu Cys
530 535 540
Pro Leu Met Ala Ala Val Thr Tyr Ile Asp Glu Lys Arg Asp Phe Arg
545 550 555 560
Thr Tyr Arg Leu Ser Leu Leu Glu Glu Tyr Gly Cys Cys Lys Glu Leu
565 570 575
Ala Ser Arg Leu Arg Tyr Ala Arg Thr Met Val Asp Lys Leu Leu Ser
580 585 590
Ser Arg Ser Ala Ser Asn Arg Leu Lys Ala Ser
595 600

<210> 14
<211> 2384
<212> DNA
<213> Homo sapiens

<400> 14
tattgagttc ttcaaacatt gtagcctctt tatggctct gagaataaac taccttaaac 60
ccataatctt taataacttcc taaacttct taataagaga agctcttattc ctgacactac 120
ctctcatttg caagggtcaaa tcattcatttag tttttagtc tattactgg gtttgcttag 180
gtcaggcatt attattacta accttattgt taatattcta accataagaa ttaaactatt 240
aatgggtaaat agagttttc actttaacat aggccatcc cactgggtggg atacgagcca 300
attcggaaaga aaagtctatc atgtgtttt cagaggatga aagcttaaga taaagactaa 360
aagtgtttga tgctggaggt gggagtgta ttatataggt ctcagccaag acatgtgata 420
atcactgttag tagtagctgg aaagagaaat ctgtgactcc aattagccag ttcctgcaga 480
ccttggtgagg actagaggaa gaatgtcctt ggctgttttg tactgcctgc tggaggtt 540
ccagacccctcc gctggccatt tcccttagagc ctgtgtctcc tctaagaacc tgatggagaa 600
ggaatgtgtt ccaccgtggg gcggggacag gatgtttctgt gcccacgtt caggcagagg 660
ttccctgtcag aatatcccttctc tgcattgc accacttggg cctcaatttc cttcacagg 720
ggtggtatgac cgggagtcgt ggcctccgt cttttataat aggacctgccc agtgctctgg 780
caacttcattg ggattcaact gtggaaactg caagttggc ttttggggac caaactgcac 840
agagagacga ctcttgggtga gaagaaacat cttcgatttg aatgcggccag agaaggacaa 900
attttttgcc tacctcattt tagcaagca taccatcagc tcagactatg tcatccccat 960
agggacctat ggccaaatgaa aaaatggatc aacacccatg tttaacgaca tcaatattta 1020

2005321898 23 Aug 2007

MANNK 049A.TXT

tgaccttt	gtctggatgc	attattatgt	gtcaatggat	gcactgcttg	ggggatctga	1080
aatctggaga	gacattgtatt	ttgcccattga	agcaccagct	tttctgcctt	ggcatagact	1140
cttcttgtt	cggtggaaac	aagaatcca	gaagctgaca	ggagatgaaa	acttcaactat	1200
tccatattgg	gactggcggg	atgcagaaaa	gtgtgacatt	tgcacagatg	agtacatggg	1260
aggtcagcac	cccaaaaaatc	ctaacttact	cagcccgaga	tcattttctt	cctttggca	1320
gattgtctgt	agccgattgg	aggagataaa	cagccatcag	tctttatgca	atggAACGCC	1380
cgagggacct	ttacggcgta	atcctggaaa	ccatgacaaa	tccagaacccc	caaggctccc	1440
ctcttcagct	gatgttgaat	tttgcttag	tttgacccaa	tatgaatctg	gttccatgg	1500
taaagctgcc	aatttcagct	tttagaaatac	actggaaggg	tttgcttagtc	cacttactgg	1560
gatagcggat	gcctctcaaa	gcagcatgca	caatgcctt	cacatctata	tgaatggaa	1620
aatgtcccag	gtacagggat	ctgccaacga	tcctatcttc	cttcttcacc	atgcatttg	1680
tgacagtatt	tttgagcagt	ggctccgaag	gcaccgtcc	cttcaagaag	tttatccaga	1740
agccaatgca	cccatggac	ataacggga	atcctacatg	gttcccttta	taccactgt	1800
cagaaatggt	gatttttttta	tttcatccaa	agatctgggc	tatgactata	gttatctaca	1860
agattcagac	ccagactctt	ttcaagacta	cattaagtcc	tatggaaac	aagcgagtc	1920
gatctggta	tggctcttgg	gggcggcgat	ggttagggggc	gtcctca	ccctgctgg	1980
ayggcttgc	agcttgcgt	gtcgtcaca	gagaaagcg	cttccatgaa	aaaaggcagcc	2040
actcctcatg	gagaaagagg	attaccacag	tttgtatcag	agccatttat	aaaaggctt	2100
ggcaatagag	tagggccaaa	aagcctgacc	tcactctaa	tcaaagtaat	gtccaggttc	2160
ccagagaata	tctgttggta	tttttctgt	aagaccattt	gcaaaattgt	aacctaata	2220
aaagtgtac	cttcttccaa	ctcagtaga	acacacctgt	ctttgtctt	ctgttttac	2280
tcagccctt	taacattttc	ccctaagccc	atatgtctaa	ggaaaggatg	ctatttggta	2340
atgaggaact	gttatttgta	tgtgaattaa	agtgtcttta	tttt		2384

<210> 15
<211> 1524
<212> DNA
<213> Homo sapiens

<400> 15

agcagacaga	ggactctcat	taaggaaggt	gtcctgtgcc	ctgaccctac	aagatgcca	60
gagaagatgc	tcacttcatc	tatggttacc	ccaagaagg	gcacggccac	tcttacacca	120
cygctgaaga	ggccgttgg	atccggatcc	tgacagtgt	cctggagtc	ttactgctca	180
tcggcttgtt	gtatttgtaa	agacaaaatg	gatacagac	tttgatggat	aaaagtctt	240
atgttggc	tcaatgttgc	ttaacaaagaa	gatgcccaca	agaagggtt	gatcatcg	300
acagcaaagt	gtcttctcaa	gagaaaaact	gtgaaacctgt	ggttccaaat	gttccacctg	360
cttatgagaa	actctctgca	gaacagtca	caccaccaa	ttcaccttaa	gagccagcga	420
gacacctgag	acatgctgaa	attatttctc	tcacactttt	gcttgaattt	aatacagaca	480
tctaattgttc	tccttggaa	tggtaggaa	aaaatgca	ccatctctaa	taataagtca	540
gtgtttaaaat	tttagtaggt	ccgcttagc	tactaatcat	gtgaggaaat	gtgaggaaat	600
attaaattgg	gaaaactcca	tcaataatg	ttgcaatgc	tgatactatc	tgtccagag	660
gtaatgttag	taaatccatg	gtgttatttt	ctgagagaca	gaattcaatg	gggtattctg	720
gggcccattca	atttctttt	acttggaaatt	tggctataaa	caaactagtc	aggttttcga	780
accttgcacg	acatgaaactg	tacacagaat	tgttccagta	ctatggatg	ctcacaaagg	840
atacttttac	aggtttagac	aaagggttga	ctggccat	tatctgtatc	agaacatgt	900
aycaatgtct	cttgcgtc	taaatctta	tataactaca	ataatattat	gttccatgt	960
tatagcttt	ttttttttgt	atggagttt	gtttttgtt	cccaggctgg	agtcaatgg	1020
cycgatctt	gctcaccata	acctccgc	cccagggttca	agcaattctc	ctgccttag	1080
ctcctgatgt	gctgggattt	caggcgtgc	ccactatg	tgactaattt	tgtgtttt	1140
gttagagacgg	ggtttttccaa	tgttggtc	gttggctca	aactctgtac	ctcagggtat	1200
ctggccgcct	caggcctccaa	aagtgttgg	attacaggcg	tgagccacca	cgccctggct	1260
gatccttatat	cttaggtttag	acatataacg	cagtctaatt	acatttcact	tcaaggctca	1320
atgctattct	aactaatgac	aagtattttc	tactaaacca	gaaatggta	gaaggattt	1380
aataagtaaa	agctactatg	tactgcctt	gtgtgtatgc	ctgtgtactg	ccttaatgt	1440
acctatggca	atttagctct	cttgggttcc	caaattccctc	tcacaagaat	gtgcagaaga	1500
aatcataaaag	gatcagagat	tctg				1524

<210> 16
<211> 1466
<212> DNA
<213> Homo sapiens

<400> 16

2005321898 23 Aug 2007

MANNK 049A.TXT

gcatgtctg	actttctctc	tcttcgatt	cttccatact	cagagtacgc	acggtctgal	60
tttcttttg	gattttcca	aaatcagat	cagactgctc	ccgggtccat	gaacggagac	120
gacgccttg	caaggagacc	cacgggttgt	gctcaaatac	cagagaagat	ccaaaaggcc	180
ttcgatata	ttgccaataa	tttctctaag	gaagagtggg	aaaagatgaa	agcctcggaq	240
aaaatttct	atgttataat	gaagagaaag	tatgaggcta	tgactaaact	aggttcaag	300
gccaccctcc	cacctttcat	gtgtataaaa	cggggccgaag	acttccaggg	gaatgattt	360
gataatgacc	ctaacccgtgg	gaatcaggtt	gaacgtcctc	agatgacttt	ccgcaggctc	420
cagggaaatct	ccccgaagat	catgccaag	aagccagcag	aggaaggaaa	tgattcggag	480
gaagtgcac	aagcatctgg	cccacaaaat	gatgggaaag	agctgtgccc	cccgggaaaaa	540
ccaaacct	ctgagaagat	tcacgagaga	tctggaaata	gggaggcccc	agaaaaggaa	600
gagagacgcg	gaacagctca	tcgggtggagc	agtcagaaca	cacacaacat	ttgtcgattc	660
agtttgtcaa	cttctatggg	tgcagttcat	ggtaccccca	aaacaattac	acacaacagg	720
gacccaaaag	gggggaacat	gcctggaccc	acagactgctg	tgagagaaaa	cagctggta	780
tttatgaaga	gatcagcgcac	cctgaggaag	atgacgagta	actccctca	gggatacgcac	840
acatccccat	gatgagaagac	agaacgttgtt	gacccctcac	gaacatgggc	atggctgcgg	900
acccctcgtc	atcaggtgca	tagcaagtga	aagcaagtgt	tcacaacatg	gaaaagttga	960
gcgtcatttt	tcttagtgtt	ccaagagttc	gatgttagcg	tttacgttgt	attttcttac	1020
actgtgtcat	tctgttagat	actaacattt	tcattgtga	gcaagacata	cttaatgcat	1080
attttggttt	gtgtatccat	gcacctacct	tagaaaacaa	gtattgtcg	ttacctctgc	1140
arggaacagc	attaccctcc	tctctccca	gatgtgacta	ctgagggcag	ttctgagttt	1200
ttaatttcag	attttttcct	ctgcatttac	acacacacgc	acacaaacca	caccacacac	1260
acacacacac	acacacacac	acacacacac	acacaccaag	taccagtata	agcatctgcc	1320
atctgtttt	cccattgcca	tgcgttctgg	tcaagctccc	ctcaactctgt	ttcctggta	1380
gcattgtactc	ccctcatccg	attccctgt	agcagtcact	gacagttaat	aaacctttgc	1440
aaacgttcaa	aaaaaaaaaa	aaaaaaa				1466

<210> 17
<211> 2653
<212> DNA
<213> Homo sapiens

<400> 17

cacaaaagg	gccggatttc	cttctcttgg	aggcagatgt	tgcctctctc	tctcgctcgg	60
attgggttcag	tgcactcttag	aaacactgtc	gtgggtggaga	aactggaccc	caggtcttgc	120
gcgaatttca	gcctgcagg	ctgataagcg	aggcattgt	gagattgaga	gagactttac	180
cccgcgtgg	tgggtgggg	gcgcgcagta	gagcagcgc	acaggcgcgg	gtcccgggag	240
gcgggtctg	ctcgccyccg	gatgtggat	ctcccttcac	aaaccgactc	ggctgtggcc	300
accgcgcgc	gccccgcgt	gctgtgcgt	ggggcgttgg	tgctggcggg	tggcttctt	360
ctccctggct	tcctcttgcg	gtggtttata	aaatccctca	atgaagctac	taacattact	420
ccaaagcata	atatgaaagc	atttttggat	gaatttggaa	ctgagaacat	caagaagttc	480
ttatataatt	ttacacagat	accacattt	gcaggaacag	aacaaaactt	ttagcttgc	540
aagcaattt	aatcccttgt	gaaagaattt	gcccgttgc	ctgttgcgt	agcacattat	600
gatgtcttgt	tgtcttaccc	aaataagact	catcccaact	acatctcaat	attaatgaa	660
gatggaaatg	agattttcaa	cacatcatta	tttgaaccac	ctccctccagg	atatgaaaat	720
gtttcgata	ttgttaccacc	tttcaatgt	ttctcttcctc	aaggaatgcc	agagggcgt	780
ctagtgat	tttactatgc	acgactgtaa	gacttcttta	aatttggaaac	ggacatgaaa	840
atcaatttgt	ctggggaaaat	tgttaatggcc	agatatggga	aatttttcag	agggaaaataa	900
gttaaaaatg	cccagctgg	agggggcaaa	ggagtcattt	tctactccga	ccctgctgac	960
tacttgctc	ctgggggtgaa	gtcctatcca	gatgtttgg	atcttcttgg	aggtgggttc	1020
cagcgtggaa	atatccctaa	tctgaatgg	gcaggagacc	ctctcacacc	aggttaccca	1080
gcaaaatgaa	atgttataat	gcgttgcatt	gcagaggctg	ttggcttcc	aagtattctt	1140
gttcatccaa	ttggataacta	tgatgcacag	aactctctag	aaaaaaatggg	tggctcaga	1200
ccaccagata	gcagctggag	aggaagtctc	aaagtgcctt	acaatgttgg	acctggctt	1260
actggaaact	tttcttacaca	aaaagtcaag	atgcacatcc	actctaccaa	tgaagtgaca	1320
agaatttaca	atgtgtatgg	tactctcaga	ggagcgttgt	aaccagacag	atatgtcatt	1380
ctggggagtc	accggggactc	atgggtgttt	ggtgttattt	acccttcag	tggagcgt	1440
gttgttcatg	aaatttgtgag	gagctttgg	acactgttgg	aggaagggtt	gagacctttaga	1500
agaacaattt	tttttgcag	ctgggtatgc	gaagaatttg	gttttcttgg	ttctactgt	1560
tgggcagagg	agaatttcaag	actccctcaa	gagcgtggcc	tggcttataat	taatgtcgt	1620
tcatctatag	aaggaaaacta	cactctgaga	gttattgtt	caccgtctgt	gtacagctt	1680
gtacacaacc	taacaaaaga	gctgaaaagc	cctgtatgaag	gttttgaagg	caaattctt	1740
tatgaaagtt	ggactaaaaaa	aagtccctcc	ccagagttca	gtggcatgcc	caggataagc	1800
aaatttggat	ctggaaatga	ttttgagggt	ttcttccaaac	gacttggaaat	tgcttcaggc	1860

2005321898 23 Aug 2007

MANNK 049A.TXT

agagcacgg	atactaaaaa	ttggaaaca	aacaattc	gcggctatcc	actgtatcac	1920
agtgtctat	aaacatatga	gttgggaa	aagtttatg	atccaatgtt	taaatatcac	1980
ctcactgtgg	cccaggttc	aggaggatg	gtgttgagc	tagccaattc	catagtgtc	2040
cctttgtatt	gtcgagatta	tgctgtatgtt	ttaagaaagt	atgctgacaa	aatctacagt	2100
atttctatg	aacatccaca	gaaatgaag	acatacagt	tatcattga	ttcactttt	2160
tctgcagtaa	agaattttac	agaaattgtc	tccaagttca	gtgagagact	ccaggactt	2220
gacaaaagca	acccaatagt	attaagaatg	atgaatgatc	aactcatgtt	tctyggaaaga	2280
gcatttattg	atccatttagg	gttaccagac	aggcctttt	ataggcatgt	catctatgt	2340
ccaagcagcc	acaacaagta	tgcagggag	tcattccag	gaatttatga	tgctctgtt	2400
gatattgaaa	gcaaagtgg	cccttccaag	gcctggggag	aagtgaagag	acagatttat	2460
gttgca	tcacagtgc	ggcagctgc	gagactttga	gtgaagttag	ctaagaggat	2520
tcttagaga	atccgtattt	aatttgtgt	gtatgtcact	cagaagaat	cgtatgggt	2580
atattgataa	atttaaaat	ttgtatattt	gaaataaagt	tgaatattat	atataaaaaaa	2640
aaaaaaaaaa	aaa					2653

<210> 18
<211> 2420
<212> DNA
<213> Homo sapiens

<400> 18

ggatccaggc	cctggagg	aaaatataag	ggccctgcgt	gagaacagag	ggggtcatcc	60
actgcatgag	agtggggatg	tcacagagtc	cagccaccc	tcctgttagc	actgagaage	120
cagggtgt	cttgcgtct	gcacctgag	ggccctgtgg	ttccttcc	tggagctcca	180
ggaaccaggc	agtgggcct	tggctgaga	cagtatccct	aggtcacaga	gcagaggatg	240
cacagggtgt	gccagcagtg	aatgttgcc	ctgaatgcac	accaaggccc	ccacctgcca	300
caggacat	agactccac	agagttggc	ctcacccccc	tactgtcagt	cctgtagaat	360
cgaccttgc	tggccggct	tacccctgag	accctctcac	ttccttcc	aggttttcag	420
gggacaggcc	aaccaggagg	acaggattcc	ctggaggcca	cagaggagca	ccaaggagaa	480
gatctgtaa	taggccttt	ttagagtctc	caaggttcag	ttctcagctg	aggcctctca	540
cacactccct	ctctccccag	gcctgtgggt	ttcattgccc	cagctctgc	ccacactcct	600
gcctgtgtcc	ctgacyagaa	tcatcatgtc	tcttgagcag	aggagtctgc	actycaagcc	660
tgaggaagcc	cttgaggccc	aacaagaggc	cctgggcctg	gtgtgtgtc	aggctgccac	720
cicctccctcc	tccctctgg	tcctgggcac	cctggaggag	gtgcccactg	ctyygtcaac	780
agatccccc	cagagtccctc	agggagccctc	cgccttcc	actaccatca	acttcactcg	840
acagaggcaa	cccaiygagg	gttccagcag	ccgtaaagag	gaggggccaa	gcaccccttg	900
tatctggag	tcccttgtcc	gagcgtat	actaagaag	gtggctgatt	tgggtgggtt	960
tctgtccctc	aaatatcgaa	ccaggaggcc	agtcaaaag	gcagaaatgc	tggagagtgt	1020
cataaaaat	tacaagcact	gttttctgaa	gatctcggc	aaagcctctg	agtccctgca	1080
gctggcttt	ggcatttgac	tgaaggaagc	agaccccacc	ggccactcct	atgtccctgt	1140
cacctgccta	ggtcctccct	atgatggct	gtctgggtat	aatcagatca	tgcccagac	1200
aggctccctg	ataattgtcc	tggtcatgat	tgcaatggag	ggcgccatg	ctccctgagga	1260
ggaaatctgg	gaggagctga	gtgtgatgga	ggtgtatgat	gggaggggagc	acagtgccta	1320
tggggagccc	aggaagctgc	tcacccaaga	tttggtgca	gaaaagtacc	tggagtaccg	1380
gcagggtgccc	gacagtgtatc	ccgcacgcta	tgagttccctg	tgggtccaa	ggccctctgc	1440
tyuaaccacy	tatgtjaaag	tccttgatg	tgtatcaag	gtcagtgc	gagttcgctt	1500
tccctccca	tccctgcgt	aagcagctt	gagagaggag	gaagaggggag	tctgagcatg	1560
agttgcagcc	aaggccagtg	gggggggac	tggccagtg	cacccatcc	gcggcgctcc	1620
agcagcttc	cctgcctcg	gtgacatgag	gcccattctt	cactctga	agagcggtca	1680
gtgttctcg	tagtaggttt	ctgttctatt	gggtgacttt	gagatttac	tttgcctct	1740
tttggaaattg	ttcaaatgtt	tttttttaag	ggatgggtga	atgaacttca	gcattccaagt	1800
ttatgaatga	cagcagtcac	acagttctgt	gtatatagtt	taaggtaag	agtctgtgt	1860
tttattcaga	ttggaaatc	cattcttattt	tgtgaatttg	gataataaca	gcagtggaaat	1920
aagtacttag	aaatgtgaaa	aatgagcagt	aaaatagat	agataaagaa	ctaaagaaaat	1980
taagagatag	tcaattcttg	ccttatacct	cagtcttattc	tgtaaaattt	ttaagatata	2040
atgcatacct	ggattttcc	ggcttcttt	agaatgtaa	agaaattaaa	tctgaataaaa	2100
gaatttttcc	tgttca	ctcttttctt	ctccatgc	tgagcatgt	ctttttggaa	2160
ggccctgggt	tagtagtgg	gatgctaagg	taagccagac	tcataccac	ccatagggt	2220
gtagagtcta	ggagctgcag	tcacgtatc	gagggtggca	gatgtccct	aaagatgtag	2280
ggaaaagtga	gagagggggt	agggtgtgg	gctccgggt	agagttgtgg	agtgtcaatg	2340
ccctgagctg	gggcattttt	ggcttggga	aactgcagtt	ccttcgggg	gagctgattt	2400
taatgatctt	gggtggatcc					2420

2005321898 23 Aug 2007

MANNK 049A.TXT

<210> 19
<211> 4204
<212> DNA
<213> Homo sapiens

<400> 19
acgcaggcag tcatgtcacc cagaccacac cccttcccc aatgcactt caggggtac 60
tcagagttag agacttggtc tgaggggagc agaagcaatc tgcagaggat ggcggccat 120
gctcaggccat gcatcaactt caggaccctg aaggatgacc gaaggccccg cccaccac 180
cccaactccc ccgaccacac caggatctac agcctcagga ccccccgtccc aatccttacc 240
ccttgcacca tcaccatctt catgcttacc tccacccca tccgatcccc atccaggcag 300
aatccagttc caccctgtcc cggaaacccag ggttagtaccg ttgccaggat gtgacgccc 360
tgacttgcgc attggaggtc agaagaccgc gagattctcg ccctgagcaa cgagcgcacgg 420
cctgacgtcg gcggagggaa gcccggccag gctcggttag gagggcaggt aagacgctga 480
gggaggactg aggccggccat caccctcagac agagggccctc aaataatcca gtgctgcctc 540
tgctggccgg cctggggccac cccgcgggg aagacttcc ggctgggtcg ccactactc 600
acccggccga ccccccggccg tttagccacg gggactctg gggacacagac ttaatgtggc 660
caggcaggg ctggtagaa gaggtcaggg cccacgcgtg ggcagaatac aaggtcagga 720
ccccgagagg gaactgaggg cagccctaacc accaccctca ccaccattcc cgtcccccaa 780
caccctaaacc cacccttccat ccccttccat atccccacc ccacccttat cctggcagaa 840
tccgggcttt gcccctggta tcaagtcaacg gaagctccgg gaatggcggc caggcacgtg 900
agtccctgagg ttcaatctca cggctaaggg agggaaagggg ttccgtatcg cgagtatggc 960
cggtgggagg cagcgaaagg gcccaggcct cctggaaagac agtggagttc tgaggggacc 1020
cagcatgcca ggacaggggg cccactgtac ccctgtctca aaccgaggca cctttcati 1080
cggtacggg aatccatggg atgcagaccc acttcagcag ggggtgggg cccagccctg 1140
cgaggagt tggggaggaa gaagagggg gactggggg accttggagt ccagatcgt 1200
ggcaacattt ggctggggccat tgctggccac agtggccaaa tgtgcctgt gctcattgc 1260
ccctcagggt gaccaggagat ttgaggggctg tggctctgaag agtggactt caggtcagca 1320
gagggaggaa tcccaggatc tgcaaggccc aagggttacc cccaaaggggc ccctatgtgg 1380
tggacagatc cagtggcttcc aggttctgc aagcatccag gtgaagagac tgagggagga 1440
tttggggatc ccctgggaca gaatgcggac tggggggccc ataaaaatct gccctgtcc 1500
tgcgttacc tcagagagcc tggcaggggc tgcagctga ggtccctcca ttatcctagg 1560
atcaactgtatc tcagggaaagg ggaaggcttgc gtctgagggg gctgcactca gggcagtaga 1620
ggggaggctct cagaccctac taggagtggta ggtgaggacc aagcagtctc ctcaccagg 1680
gtacatggac ttcaataaaat ttggacatct ctcgttgc tttccggag gacctggggaa 1740
tgtatggca gatgtgggtc ccctcatgtt ttctgttacc atatcaggtt tttgagttct 1800
tgacatgaga gattttcagg ccagcagaag ggaggggattt ggcctataaa ggagaaagg 1860
gagggccctg agtgcacca gagggtatc tccacccca tagagtgggg acctcacaga 1920
gtctggccaa ccctccgtac atttctggta atccgtggct gcgttgc tctgcacatt 1980
ggggggccctg ggatccctct cccagaatac aggagctcca ggaacaaggc agtggggact 2040
tggcttgagg cagtgtccctc aggtcacaca gtagaggggg ctcagatagt gccaacgggt 2100
aagggttgc ttggatttcaa accaaggggc ccacccgtccc cagaacacat gactccaga 2160
gcgcctggcc tcaccctcaaa tactttcagt ctcgtccgc cagcatgcgc tggccggatg 2220
tacccttgagg tgccctctca cttccctccctt caggttctga ggggacaggc tgacctggag 2280
gaccagaggc ccccccgggaa gcactgaagg agaagatctg taagtaagcc ttgtttagag 2340
ccctccaaagg tccatttcaacttactcactgatc ggtctctcactatgccttccctc tctccctcagg 2400
ccatgggtc tccatttgcac agtccctgcac cactactcccg cctgttgc tggccggatg 2460
catcatgcct cttgatcaga ggatcagca ctgcacgcctt gaaagaaggcc ttgaggcccc 2520
aggagaggcc ctggggctgg tgggtgcgc ggcctctgc actggggaggc aggaggctgc 2580
ctccctcttc ttacttcttag ttgaagtcaacttactccactgatc gtcgttgc tccgttcc 2640
agatccccc cagatgcctc agggaggcctc cggccctccc actaccatga actaccctct 2700
ctggagccaa tcctatgggg actccagca ccaagaagag gggggccaa gcacccccc 2760
tgcgttggag tccgagttcc aagcagcact cagtaggaag gtggccgatg tggccatctt 2820
tctgccttc aatgtatcgatc ccaggaggcc ggtcacaatcg cgcacatgc tggggagggt 2880
cgtcggaaat tggcgttattt tctttctgtt gatcttcagc aaagcttcca gttccctgc 2940
gctggctttt ggcacgtggc tcatgttggat gggccatccatc ggccacttgc acatcttgc 3000
caccctggcc tggccctctccatc acgtggccct gctgggtgc aatcagatca tggccaaaggc 3060
aggccctctg ataatcgatc tggccataatcg cgcacatgc ggcacgttgc cccctggag 3120
gaaaatctgg gaggagctga gtgtttaga ggtgttttag gggggggaaac acatgtatctt 3180
gggggatccc aagaagctgc tcacccaaata tttcgatc gaaaactacc tggagttaccg 3240
gcaggcccccc ggcacgttgc tgcacatgc tggccatctt gggggccaa gggccctcg 3300
tgcgttggatc tttcgatc tgcacatgc tttcgatc gggggggaaac acatgtatctt 3360
ttccatccca cccctgtcatc agtgggtttt gaggagggg gaaagatgttgc tctgacatgc 3420

2005321898 23 Aug 2007

MANNK 049A.TXT
agttgcagcc agggccagtg ggagggggtc tggccagtg cacctccgg gccgcacatcc 3480
cttagttcc actgcctcct gtgacgtgag gcccattctt cactcttga agcgagcagt 3540
cagcattctt agtagtgggt ttctgttctg ttggatgact ttgagattat tctttgttcc 3600
ctgttggagt tttcaaatg ttccctttaa cggatggttg aatgagcgtc agcattcagg 3660
tttatgaatg acatgtgtc cacatgtc ttttatata gtttaggatg aagagtcttg 3720
tttttactc aatttggaa atccattcca ttttgtgaat tttgacataa taatagcagt 3780
ggtaaaatg tttgtctaaa attgtgagcg aatttagaat aacatatacg agataactca 3840
agaaatcaaa agatagttga ttcttgccct gtacctcaat ctattctgtat aattaaaca 3900
aatatgcaaa ccaggatttc cttgacttct ttgagaatgc aagcggaaatt aatctgaat 3960
aaataattct tcctcttac tggctgtt ctttccgtt cactcagcat ctgctctgtg 4020
ggaggccctg gtttagttagt gggatgcta aggttaagcca gactcacgccc taccatagg 4080
gctgttaggc ctaggacctg cagtcataata attaagggtgg tgagaagtcc tgtaagatgt 4140
agagggaaatg taagagaggg gtgaggggtgt ggcgcctccgg gtgagagtag tggagtgtca 4200
gtgc 4204

<210> 20
<211> 752
<212> DNA
<213> Homo sapiens

<400> 20
atccctgtgg gcccgtacct tctctctgag agccgggcag aggctccggaa gccatgcagg 60
ccgaaggccg gggcacaggg gttcgacgg gcgatgctga tggcccgagga gcccctggca 120
ttccctgtgg cccagggggc aatgttggcg gcccaggaga ggcgggtgcc acggggcggca 180
gagggtccccg gggcgccagg gcagcaagg gcctggggcc gggaggaggc gccccggcggg 240
gtcccgatgg cggcgccggct tcagggctga atggatgctg cagatgcggg gccagggggc 300
cgagagccg cctgttttgc ttctaccctcg ccatgcctt cgcgcacaccc atggaaagcag 360
agctggcccg caggagccgt gcccaggatg cccacccgt tccctgtcca ggggtgttcc 420
tgaaggagtt cactgtgtcc ggcaacatac tgactatccg actgactgtc gcagaccacc 480
gccaactgca gctctccatc agctctgtc tccagcagct ttccctgttg atgtggatca 540
cgcaatgtct tctggccgtg ttttggctc agcctccctc agggcagagg cgctaagccc 600
ayccctggcgc cccttcttag gtcatgcctc ctccccctagg gaatggtccc agcacgatg 660
gcccaggatcat tggggggcc tgatttttg tgcgtggagg aggacggctt acatgtttgt 720
ttctgttagaa aataaaactg agctacgaaa aa 752

<210> 21
<211> 2148
<212> DNA
<213> Homo sapiens

<400> 21
gcttcagggt acagctcccc cgcagccaga agccgggcct gcagcgcctc agcaccgctc 60
cgggacaccc caccgccttc ccaggcgtga cctgtcaaca gcaacttcgc ggtgtggta 120
actctctgag gaaaaaccat ttgattatt actctcagac gtgcgtggca acaagtgact 180
gagacttaga aatccaaagcg ttggaggtcc tgaggccagc ctaagtgcgt tcaaaatgga 240
acgaaggcgt ttgtgggggt ccattccagag cgcatacatc agcatgatgt tggacaag 300
cccacggaga cttgtggagc tggcaggccgca ggcctgtgc aaggatgagg ccctggccat 360
tgcccccctg gagtttgcgc cagggagct cttcccgcca ctcttcatgg cagcctttga 420
cgggagacac agccagaccc tgaaggcaat ggtcaggccc tggcccttca cctgcctccc 480
tctggggatgt ctgtatgaaagg gacaacatct tcacctggag accttcaaag ctgtgttgc 540
tggacttcatgt gtgccttttgc cccaggaggt tcgcccagg aggtggaaac ttcaagtgt 600
ggatttacgg aagaactctc atcaggactt ctggactgtt tggtctggaa acagggccag 660
tctgtactca tttccagagc cagaaggcgc tcagcccatg acaaagaagc gaaaagttaga 720
tggtttgagc acagaggcag agcaggccctt cattccagta gaggtgtctg tagacctgt 780
cctcaaggaa ggtgcctgt atgaattgtt ctccctaccc attgagaaag tgaagcgaaa 840
gaaaaatgtt ctacgcctgt gctgtaaagaa gctgaagatt ttgcataatgc ccatgcagg 900
tatcaagatg atccctgaaaaa tggtgacgtt gactcttatttgg aagtgtacttg 960
tacctggaaatgttccatccatc tggcggaaatt ttctccatc tggggccaga tgattatct 1020
gcgttagactc ctccctccccc acatccatgc atcttccatc atttcccccgg aagaggaaaga 1080
gcagtagatatc gcccaggatca cctctcgtt cctcgttgc cagtcgttgc aggctctcta 1140
tggactctt ttagaggccg cttggatcgtt tgcgttgcaggc acgtgtatgaa 1200
cccctggaa accctctcaa taactaactg ccggcttccg gaagggatg tggatgtatc 1260
gtccccagatg cccaggcgtca gtcagctaaatgttgcgttgcaggc acgtgtatc 1320

2005321898 23 Aug 2007

MANNK 049A.TXT

cgtatgtaaat	cccgagcccc	tccaaagctct	gctggagaga	gcctctgcca	ccctccagga	1380
cctggcttt	gatgagtgtg	ggatcacgga	tgatcagctc	cttgcctc	tgccctccct	1440
gagccactgc	tcccagctta	caacccttaag	cttctacggg	aattccatct	ccatatctgc	1500
cttgcagagt	ctccctgcagc	acctcatcg	gctgagcaat	ctgaccacg	tgctgtatcc	1560
tgtccccctg	gagagtat	aggacatcca	tggtaccctc	cacctggaga	gccttgcc	1620
tctgcatgcc	aggcttaggg	agttgtgtg	tgagttgggg	cggcccgagca	tggtctggct	1680
tagtccaaac	ccctgtccctc	actgtgggg	cagaaccttc	tatgacc	agcccatcct	1740
gtgcccctgt	ttcatgccta	actagctggg	tgcacatatt	aatgcttca	ttctgcatac	1800
ttggacacta	aagccaggat	gtgcatgcat	tttgaagcaa	caaagcagcc	acagtttcag	1860
acaaatgttc	agtgtgagtg	aggaaaacat	gttcagttag	aaaaaaacat	ttagacaaat	1920
gttcagttag	aaaaaaaagg	ggaagttggg	gataggcaga	tgttgaattt	aggagttat	1980
gtgatcttg	gggagataca	tcttatagag	ttagaaatag	aatctgaatt	tctaaaggga	2040
gattctggct	tgggaagtac	atgttaggat	taatccctgt	gttagactgtt	gtaaagaaac	2100
tgttggaaat	aaagagaagc	aatgtgaagc	aaaaaaaaaa	aaaaaaaaaa		2148
<210>	22					
<211>	4530					
<212>	DNA					
<213>	Homo sapiens					
<400>	22					
aattctcgag	ctcgtcgacc	ggtcgacgag	ctcgagggtc	gacgagctcg	agggcgccg	60
cccggccccc	acccctcgca	gcaccccg	cccccgcccc	tcccagccgg	gtccagccgg	120
agccatgggg	ccggagccgc	agtgagcacc	atggagctgg	cgcccttgc	ccgctgggg	180
ctcctctcg	ccctcttgc	ccccggagcc	gcgagcaccc	aagtgtgcac	ccgcacagac	240
atgaagctgc	ggctccctgc	caytcccgag	accacac	acatgtccg	ccacccctac	300
cagggtgc	aggtgtgc	ggggaaac	gaactcacct	acatggcc	caatgccc	360
ctgtccttc	tgcaggat	ccaggagg	tgcaggctac	tgctcatc	tcacaaccaa	420
gtgaggcagg	tcccactgca	gaggctgc	attgtgc	gcacccag	ctttgaggac	480
aactatgccc	tgcccg	agacaatgg	gaccgc	acaatacc	ccctgtcaca	540
ggggccccc	caggaggcc	gcgggagct	cagtc	gcctcacaga	gatctgaaa	600
ggagggtct	tgttccagcg	gaaccc	ctctgc	aggacac	tttgcgaa	660
gacatcttc	acaagaacaa	ccagctgg	ctcacact	tagacac	ccgcttc	720
gcctgccacc	cctgttctcc	gatgtt	ggctcc	gctggg	gagttctg	780
gattgtcaga	gcctgacgc	cactgt	gcccgtgg	gtgccc	caaggg	840
ctgcccactg	actgttgc	tgagc	gtgc	gcacgg	caagcact	900
gactgttgc	cctgttcc	cttcaacc	atggc	gtgatgt	ctggcc	960
ctggtcac	acaacac	cacgtt	tccat	atccc	ccgg	1020
tgcacccctg	tctgcccc	gcacaac	gagg	gatgg	tttctac	1080
tgtgagaagt	gcagcaagcc	ctgt	gtgt	gtct	ggag	1140
cgagaggta	gggcagttac	cagt	atcc	ggcat	ggactt	1200
tttggagcc	tggcatttct	gccggag	ttt	gttgc	caagaagat	1260
ccgctccagc	cagagc	cca	ttt	acc	caacact	1320
tacatctcg	catggccg	cagcc	ttt	ctt	cttca	1380
atccggggac	gaatttgc	caat	ttt	cc	tttca	1440
agctggctgg	ggctgc	act	ttt	gttgc	tttcc	1500
aacaccacc	tctgttctcg	ggc	ttt	ggc	tttcc	1560
caagctctgc	tccacactgc	caac	ttt	ggc	tttcc	1620
tgcacc	tgtgc	agg	ttt	ggc	tttcc	1680
tgcacc	tgc	act	ttt	ggc	tttcc	1740
tgcacc	tgc	ggg	ttt	ggc	tttcc	1800
cccagg	atgt	ggg	ttt	ggc	tttcc	1860
aatggctcg	tgc	ggg	ttt	ggc	tttcc	1920
aaggacc	tgc	ggg	ttt	ggc	tttcc	1980
atgccc	tgc	ggg	ttt	ggc	tttcc	2040
acccact	tgc	ggg	ttt	ggc	tttcc	2100
ctgac	tgc	ggg	ttt	ggc	tttcc	2160
tttggatcc	tca	ggg	ttt	ggc	tttcc	2220
ctgcagg	ggg	ttt	ggc	tttcc	2280	
cagatgc	ttc	ggg	ttt	ggc	tttcc	2340
tttggac	tct	ggg	ttt	ggc	tttcc	2400
ccatcaa	tgc	ggg	ttt	ggc	tttcc	2460
gcatacgt	tgc	ggg	ttt	ggc	tttcc	2520

2005321898 23 Aug 2007

MANNK 049A.TXT

acatccacgg	tgcagcttgt	gacacagctt	atgccctatg	gctgcccttt	agaccatgtc	2580
cggaaaaacc	gcggacgcct	gggctccag	gacctgctga	actgggttat	gcagattgcc	2640
aaggggatga	gctaccttgg	ggatgtgcgg	ctcgacaca	gggacttggc	cgctcggaac	2700
gtgctggtca	agagtcccaa	ccatgtcaaa	attacagact	tcgggctggc	tcggctgtctg	2760
gacattgacg	agacagagta	ccatgcagat	gggggcaagg	tgcccataa	gtggatggcg	2820
ctggagttca	ttctccgcgg	gcggttcacc	caccagatgt	atgtgtggag	ttatgggtgt	2880
actgtgtggg	agctgtatgac	ttttggggcc	aaaccttacg	atgggatccc	agcccgggag	2940
atccctgacc	tgcggaaaaa	ggggggcggg	ctgcccacgc	cccccatctg	caccattgtat	3000
gtctacatga	tcatgttcaa	atgttggatg	attgactctg	aatgtcgccc	aagattccgg	3060
gagttgtgt	ctgaattctc	ccgcatggcc	agggaccccc	agcgttttgt	ggtcatccag	3120
aatgaggact	tgggcccagc	cagtcccttg	gacagcacct	tctaccgctc	actgtctggag	3180
gacgatgaca	tgggggacct	ggtggatgct	gaggagatgc	ttgttacccca	gcagggcttc	3240
ttctgtccag	accctgcccc	gggcgctggg	ggcatggtcc	accacaggca	ccgcagctca	3300
tctaccagga	gtggcgggtgg	ggacctgaca	ctagggctgg	agccctctga	agaggaggcc	3360
cccaggtctc	cactggcacc	ctccgaaggg	gctggctccg	atgtatttga	ttgtgaccty	3420
ggaatggggg	cagccaaagg	gctgcaaagc	ctccccacac	atgacccacag	ccctctacag	3480
cggtacagt	aggacccccac	agtacccctg	ccctctgaga	ctgatggcta	cgttgcccc	3540
ctgacccgtca	gccccccagcc	tgaatatgtg	aaccagccag	atgttcggcc	ccagccccct	3600
tcgccccgg	aggggccctct	gcctgtgtcc	cgacctgtcg	gtgcccactt	ggaaggggcc	3660
aagactctt	ccccagggaa	gaatggggtc	gtcaaagacy	tttttgcctt	ttgggggtgc	3720
gtggagaacc	ccggatctt	gacacccctg	ggaggagctg	cccctcagcc	ccacccctcc	3780
cttgtcctca	gcccagcctt	cgacaacctc	tattactggg	accaggaccc	accagagccg	3840
ggggctccac	ccagcacctt	caaagggaca	cctacggcag	agaacccaga	gtacctgggt	3900
ctggacgtgc	cagtgtgtac	cagaaggcca	agtccgcaga	agccctgtatg	tgtcctcagg	3960
gagcaggggaa	ggcgtgtactt	ctgctggcat	caagaggtgg	gagggccctc	cgaccacttc	4020
caggggaacc	tgccatgtcca	ggaacctgtc	ctaaggaaacc	ttccttctgt	cttgagttcc	4080
cagatggctg	gaaggggtcc	agccctgttg	gaagagggaaac	agcaactgggg	agtctttgtg	4140
gattctgagg	ccctgcctaa	tgagactcta	gggtccagtg	gtgccacag	cccagcttgg	4200
ccctttctt	ccgacatctg	ggtaactgaaa	gccttaggg	agctggcttg	agaggggaag	4260
cyggccctaag	ggagtgtcta	agaacaaaag	cgacccattc	agagactgtc	cctgaacact	4320
agtactgtcc	cccatgagga	aggaacacga	atggtgcgtag	tatccaggct	tttacacagag	4380
tgcttttctg	tttagtttt	acttttttgc	tttttttttt	ttaaaagacga	aataaaagacc	4440
cagggggagaa	tgggtgttgt	atggggagggc	aagtgtgggg	ggtccttctc	cacacccact	4500
ttgtccattt	qcaaataat	tttggaaaaac				4530

<210> 23
<211> 2388
<212> DNA
<213> *Homo sapiens*

<400> 23	ggaaaaccgag	gcagaggagg	ctcaggtgt	gccaatcacc	ctgcacatca	gagttaccct	60
gggcaggggcc	cactgagacc	tgggagggggc	cactcgggac	ctggaggggct	gggggctgc	120	
cyggcgttag	gggtaaagct	ccctacccaa	ctgcgcagaa	ggcctcagag	gcctggggcc	180	
tgggcttccc	cttcacatc	gccccttaga	ggcccacgtg	tggcattgg	cccgatct	240	
gaaaggggct	gtctgttcc	tcatgggcgc	tgccagcgcc	acgcactcct	cttctgcct	300	
gyccggccac	tcccgtctgc	tgtgacgcgc	ggacagagag	ctaccggtgg	acccacggtg	360	
cctccctccc	tggatctac	acagaccatg	gccttgccaa	cggctcgacc	cctgttgggg	420	
tccctgtggg	cccccyccct	cggcagggctc	ctgttctgc	tcttcagct	cggatgggg	480	
cagccctcga	ggacccttggc	tggagagaca	gggcaggagg	ctgcgcct	ggacggagtc	540	
ctggccaacc	caccatacat	ttccagggctc	tcccctcgcc	aactccttgg	cttccctgtt	600	
gcggagggtgt	ccggccttag	cacggagcgt	gtccggggagc	tggctgtggc	cttggcacag	660	
aagaatgtca	agctctcaac	agagcagctg	cgtgtctgg	ctcaccggct	ctctgagccc	720	
cccgaggacc	tggacgcct	cccatggac	ctgctgctat	tcctcaacc	agatgcgttc	780	
tcggggcccc	aggcctgac	ccgtttcttc	tcccgcata	cgaaggccaa	tgtggacctg	840	
ctcccggaggg	gggctcccg	gacgacagcg	ctgctgcctg	cggctctggc	ctgctgggg	900	
gtgcgggggt	ctctgttag	cgaggctgtat	gtgcggggctc	tgggaggcct	ggcttgcac	960	
ctgcccgggc	gctttagtggc	cgagtcggcc	gaagtgtctg	taccccggt	ggtgagctgc	1020	
ccggggcccc	tggaccagg	ccagcaggag	gacgcccagg	cggctctgca	gggcggggga	1080	
ccccccctacg	gcccccttcgtc	gacatgggtct	gtctccac	tggacgctct	gccccggctg	1140	
ctggccgtgc	tggccagcc	catcatccgc	agacatccgc	agggcatcgt	ggccgcgtgg	1200	
cggaacacgt	ccttcggga	cccatccctgg	cgccagcgt	aacggaccat	cctccggccg	1260	
cggttccggc	ggaaagtgg	gaagacagcc	tgtcttcag	gcaagaaggc	cccgagata	1320	

2005321898 23 Aug 2007

MANNK 049A.TXT

gacgagagcc	tcatcttcta	caagaagtgg	gagctggaag	cctgcgtgga	tgcggccctg	1380
ctggccaccc	agatggaccg	cgtgaacgcc	atccccttca	cctacagaca	gctggacgac	1440
ctaaagcata	aactggatga	gctctaccca	caaggttacc	ccgagtcgt	gatccagcac	1500
ctggctacc	tcttcctcaa	gatgagccct	gaggacattc	gcaagtggaa	tgtgacgtcc	1560
ctggagaccc	tgaaggcttt	gcttgaagtc	aacaaagggc	acgaaatgag	tcctcaggtg	1620
gcccacccctga	tcgaccgctt	tgtgaagggaa	agggggccagc	tagacaaaga	caccctagac	1680
accctgaccg	ccttctaccc	tgggtacctg	tgctccctca	gccccgagga	gctgagctcc	1740
gtgcccccca	gcagcatctg	ggcggtcagg	ccccaggacc	tggacacgtg	tgacccaagg	1800
cagctggacg	tcctctatcc	caagggccgc	cttgcatttc	agaacatgaa	cgggtccgaa	1860
tacttcgtga	agatccagtc	cttcctgggt	ggggccccca	cgaggattt	gaaggcgctc	1920
agtcaagcaga	atgtgagcat	ggacttggcc	acgttcatga	agctgcggac	gatgcgggt	1980
ctggccgttga	ctgtggctga	ggtgcagaaa	cttctggac	cccacgtgga	gggcctgaag	2040
ggggaggagc	ggcaccgccc	ggtgccggac	tggatctac	ggcagcggca	ggacgaccctg	2100
gacacgctgg	ggctgggggt	acagggcggc	atccccaaacg	gctacctgtt	cctagacacct	2160
aycatcaag	aggccctctc	ggggacgccc	tggctcttag	gacctggacc	tgttctcacc	2220
gtccctggcac	tgctccctagc	ctccacccct	gcctgagggc	cccactccct	tgctggccccc	2280
agccctgctg	gggatccccc	cctggccagg	agcaggcacg	ggtggccccc	gttccacccc	2340
aagagaactc	gcgctcagta	aacggaaaca	tgccccctgc	agacacgt		2388

<210> 24
<211> 2412
<212> DNA
<213> Homo sapiens

<400> 24						
ggaaaccggag	gcagaggagg	ctcagggtgt	gccaatcacc	ctgcacatca	gagttaccc	60
gggcagggcc	cactgagacc	tggagggggc	cactcgggac	ctggagggct	gggggctgcc	120
ggggcggttag	gggttaagct	ccctacccaa	ctgcgcagaa	ggcctcagag	gcctgggggc	180
tgggtttccc	ctttcacatc	gccctttaga	ggcccacgtg	tggcattgg	cccgcgatct	240
gaaaggggct	gtccgttcc	tcatgggcgc	tgccagcggc	acgactcct	tttctgct	300
ggccggccac	tcccgtctgc	tgtacgcgc	ggacagagag	ctaccgtgg	acccacggtg	360
cctccctccc	tggatctac	acagaccatg	gccttgc当地	cggtctcgacc	cctgttgggg	420
tcctgtggga	ccccggccct	cggtggccct	ctgttctgtc	tcttcagcc	cgatgggtg	480
cagccctcgta	ggacccttggc	tggagagaca	gggcaggagg	ctgcgccc	gacggagt	540
ctggccaacc	cacctaatac	ttccacccct	ccccctcgcc	aactccttgg	tttcccgtgt	600
ggggagggtt	ccggcccttag	cacggacgt	gtccggggac	tggctgtgg	tttggcagac	660
aaataatgtca	agatctcaac	agagcagctg	cgctgttgc	ctcaccggct	ctctgagccc	720
cccggaggacc	tggacgcct	cccatggac	ctgctgtat	tcctcaaccc	agatgcgtt	780
tcggggccccc	aggccctgac	cggttcttc	ccccgc当地	cgaaggccaa	tgtggaccct	840
ctcccgaggg	gggcctcccg	gcgacagcgg	ctgctgc当地	cggtcttggc	ctgcttgggg	900
gtgcgggggt	ctctgttgc	cgaggctgt	gtgcgggctc	tggaggcc	gcttgc当地	960
ctgcctgggc	gttttgtggc	cgagtggcc	gaagtgtgc	tacccggct	gttgagctg	1020
ccgggacccc	tggaccaggaa	ccagcaggag	gcagccagg	cggtcttgc	gggcgggggg	1080
ccccccctacg	gccccccctgc	gacatgtct	gtctccacga	tggacgtct	gcggggccct	1140
ctggccgtgc	tggggccaggc	catcatccgc	agcatccgc	agggatctgt	ggccgcgtgg	1200
cygcaacgt	ccttcctggg	ccccatctgg	cgccggccct	aacggaccat	cctccggccg	1260
cggtttccggc	gggaagtggg	gaagacagcc	tgccttc当地	gcaagaaggc	cccgcgagata	1320
gacgagagcc	tcatcttcta	caagaagtgg	gagctggaag	cctgcgtgga	tgcggccct	1380
ctggccaccc	agatggaccg	cgtgaacgcc	atccccttca	cctacagaca	gctggacgtc	1440
ctaaagcata	aactggatga	gctctaccca	caaggttacc	ccgagtcgt	gatccagcac	1500
ctgggttacc	tcttcctcaa	gatgagccct	gaggacattc	gcaagtggaa	tgtgacgtcc	1560
ctggagaccc	tgaaggcttt	gcttgaagtc	aacaaagggc	acgaaatgag	tcctcaggt	1620
cctcggccggc	ccctccctaca	ggtggccacc	ctgatcgacc	gctttgtgaa	gggaaggggc	1680
cagctagaca	aagacaccct	agacaccctg	accgccttct	accctgggt	cctgtgtctt	1740
ctcagccccc	aggagctgag	ctccgtgccc	cccgccggc	tctggccgt	caggccccag	1800
gacctggaca	cgtgtgacc	aaggcagctg	gacgtccct	atccccaggc	ccgccttgc	1860
tcccaagaaca	tgaacgggtc	cgaatactt	gtgaagatcc	agtcccttct	gggtggggcc	1920
ccccacgggg	atttgaaggc	gctcgtcag	cagaatgtg	gcatggactt	ggccacgtt	1980
atgaagctgc	ggacggatgc	ggtgtgtcc	ttgactgtgg	ctgagggtg	aaaacttctg	2040
ggacccacg	tggagggct	gaaggcggag	gagcggcacc	gcccgtg	gactggatc	2100
ctacggcagc	ggcaggacga	cctggacacg	ctggggctgg	ggctacaggg	cgccatcccc	2160
aacggctacc	tggtccat	cctcagcatg	caagaggccc	tctcggggac	gcccgtcc	2220
ctaggacatc	gaccgttct	caccgtcctg	gcactgttcc	tagcccccac	cctggccctg	2280

2005321898 23 Aug 2007

2005321898

MANNK 049A.TXT

```
ggggccccact ccccttctgg cccccagccct gctggggatc cccgccttggc caggagcagg 2340
cactgggttgt ccccggttcca ccccaagaga actcgcgctc agtaaacggg aacatgcccc 2400
ctgcagacac gt 2412
```

<210> 25
<211> 3665
<212> DNA
<213> Homo

Line Number	Sequence 1	Sequence 2	Sequence 3	Sequence 4	Sequence 5	Sequence 6	Sequence 7	Sequence 8	Sequence 9	Sequence 10	Sequence 11	Sequence 12	Sequence 13	Sequence 14	Sequence 15	Sequence 16	Sequence 17	Sequence 18	Sequence 19	Sequence 20	Sequence 21	Sequence 22	Sequence 23	Sequence 24	Sequence 25	Sequence 26	Sequence 27	Sequence 28	Sequence 29	Sequence 30	Sequence 31	Sequence 32	Sequence 33	Sequence 34	Sequence 35	Sequence 36	Sequence 37	Sequence 38	Sequence 39	Sequence 40	Sequence 41	Sequence 42	Sequence 43	Sequence 44	Sequence 45	Sequence 46	Sequence 47	Sequence 48	Sequence 49	Sequence 50	Sequence 51	Sequence 52	Sequence 53	Sequence 54	Sequence 55	Sequence 56	Sequence 57	Sequence 58	Sequence 59	Sequence 60
1	ggcttggggc	agccgggttag	ctcgagggtc	gtggcgctgg	gggctagcac	cagcgctctg	60																																																					
2	tcgggaggcg	cagcggttag	gtggaccgg	cagcgactc	accggccagg	gcgctcggtg	120																																																					
3	cttgaatttg	atatttatttgc	atccgggtt	tatcccttctt	cttttttctt	aaacattttt	180																																																					
4	ttttaaaact	gtattytttc	tcgttttaat	ttattttgc	ttgccattcc	ccacttgaat	240																																																					
5	cgggccgacg	gcttggggag	attgctctac	ttccccaat	cactgtggat	tttggaaacc	300																																																					
6	agcagaaaaga	gaaagagggt	agcaagagct	ccagagagaa	gtcgaggaag	agagagacgg	360																																																					
7	ggtcagagag	agcgcgcggg	cgtgcgacga	gcaaagcga	caggggcaaa	gtgagtgacc	420																																																					
8	tgcttttggg	ggtgaccggc	ggagcggcgc	gtgagccctc	cccccttggg	tcccgacgt	480																																																					
9	gaccagtgc	gctgacggac	agacagacag	acaccgcccc	cagccccagc	taccacccctc	540																																																					
10	tccccggccg	gcccgggaca	gtggacgcgg	cgcgagccg	cgggaggggg	ccggagcccy	600																																																					
11	cgccccggagg	cggggtggag	ggggtcgggg	ctcgccggcgt	cgcactgaaa	cttttcgtcc	660																																																					
12	aacttctggg	ctgttctcgc	ttcgaggag	ccgtggtccg	cgcgggggaa	gccgagccg	720																																																					
13	gcggagccgc	gagaagtgtct	agctcggg	gggaggagcc	gcagccggag	gagggggagg	780																																																					
14	aggaagaaga	gaaggaagag	gagagggggc	cgcagtggcg	actcggcgct	cggaagccgg	840																																																					
15	gctcatggac	gggtgaggcg	gcggtgtgcg	cagacagtgc	tccagccg	cgcgtcccc	900																																																					
16	aggccctggc	ccgggcctcg	ggccggggag	gaagagtagc	tcgcccggc	gccgaggaga	960																																																					
17	gcggggccgc	ccacagcccc	agccggagag	ggagcgcgag	ccgcgcggc	ccccgttggg	1020																																																					
18	cctccgaaac	catgaactt	ctgctgtctt	gggtgcatttgc	gagcccttgc	ttgctgtct	1080																																																					
19	acccctcccca	tgccaaatgtgg	tcccaggctg	caccatggc	agaaggagga	gggcagaatc	1140																																																					
20	atcacgaagt	ggtaaggttc	atggatgtct	atcagcgcag	ctactccat	ccaatcgaga	1200																																																					
21	cccttggtgg	cattttccag	gagtaccctg	atagagatcga	gtacatcttc	aagccatctt	1260																																																					
22	gtgtgcccct	gatgcgtatgc	gggggctgtct	gcaatgcacg	gggcctggag	tgtgtgccc	1320																																																					
23	ctgaggagtc	caacatcacc	atgcagat	tgcggatcaa	acccatccaa	ggccagcaca	1380																																																					
24	taggagagat	gagcttccct	cagcacaaca	aatgtgaatg	cagaccaaag	aaagatagag	1440																																																					
25	caagacaaga	aaaaaaatca	gttcgaggaa	aggaaaggg	gcaaaaacga	aagcgcaga	1500																																																					
26	aatcccggt	taagtctctgg	agcgtgtacg	ttgtgtcccg	ctgctgtcta	atgcccgttgg	1560																																																					
27	gcctccctgg	ccccccatccc	tgtgggcctt	gctcagagcgc	gagaacat	ttgtttgtac	1620																																																					
28	aagatccgc	gacgtttaaa	tgttccctca	aaaacacaga	ctcgctgtc	aaggcggagg	1680																																																					
29	agcttgcgtt	aaacgcgtacgt	acttgcagat	gtgacaagcgc	gaggcgggtga	gccccggagg	1740																																																					
30	aggaaggagc	ctcccccagg	gtttcgggaa	ccagatctct	caccaggaaa	gactgtataca	1800																																																					
31	gaacgatcga	tacagaaacc	acgctccgc	caccacacca	tcaccatcga	cagaacagtc	1860																																																					
32	cttaatccag	aaacccgtaaa	tgaaggaaga	ggagactctg	cgcagagcac	tttgggtccg	1920																																																					
33	gagggcgaga	ctccggcggg	agcattcccg	gggggtgtac	ccagcacgtt	ccctcttgg	1980																																																					
34	attggattcg	ccattttattt	tttcttgcgt	ctaaatcacc	gagccggaa	gattagagag	2040																																																					
35	ttttatttct	gggatccctgt	tagacacacc	caccacata	catacatttta	tatataatata	2100																																																					
36	tattatata	ataaaaaat	aaatatctt	attttatata	tataaaat	atatattctt	2160																																																					
37	tttttaaatt	aaacgtgtct	atgttatttg	tgtcttctact	ggatgtattt	gactgtgtg	2220																																																					
38	gacttgagt	gggagggggaa	tgttcccact	cagatcttgc	cagggaagag	gaggagatag	2280																																																					
39	gagactctgg	catatctttt	tttttgcctt	acttggtgggg	ggccagggttc	tctcccttgc	2340																																																					
40	ccaggaatgt	gcaaggccag	ggcatggggg	caaatatgc	ccagtttgg	gaacaccgac	2400																																																					
41	aaaccccgac	ctggcgttgc	gcctcttctac	cccaggttc	acggacagaaa	agacagatca	2460																																																					
42	cggttacagg	gatgaggaca	ccggctctga	ccaggagttt	ggggagcttc	aggacatttc	2520																																																					
43	tytgctttgg	ggattccctc	cacatgtgc	acgcgcata	cgccccccagg	ggcactgcct	2580																																																					
44	ggaagattca	ggagccttggg	cgcccttcgc	ttactctcac	ctgcttctga	gttgccttgg	2640																																																					
45	agaccactgg	cagatgttccc	ggcgaagaga	agagacacat	tgttggaaaga	agcagcccat	2700																																																					
46	gacagctccc	cttccctgggg	ctcgccctca	tcctcttctt	gctcccttcc	ctgggggtgc	2760																																																					
47	gcctaaaagg	acctatgtcc	tcacaccatt	gaaaccacta	gttctgtccc	cccaggagac	2820																																																					
48	ctgggttgt	gtgtgttgt	ggttgcattt	cctccatccc	ctggcttcc	ccttcccttgc	2880																																																					
49	ccgaggcaca	gagagacagg	cgaggatcca	cgtgcccatt	gtggaggcag	agaaaaagaga	2940																																																					
50	aagtgtttt	tatacgttac	ttatctaata	tcccttttttta	attagaat	aaaacagttt	3000																																																					
51	atthaattaa	agagttaggtt	tttttttcag	tatttttgcgtt	taatattttaa	tttcaactat	3060																																																					
52	ttatgagat	tatcttttgc	tctcttgc	tcttttattt	gtaccggttt	ttgtatataa	3120																																																					
53	aattcatgtt	tccaaatctt	ctctccctga	tcggtgacag	tcactagctt	atcttgcaca	3180																																																					

2005321898 23 Aug 2007

MANNK 049A.TXT
gatatttaat tttgcataaca ctcaagctctg ccctccccga tccccctggct ccccagcaca 3240
cattccttg aaataaagggt tcaatataca tctacatact atatatatat ttggcaactt 3300
gtatttgtt gtatataatat atatataatgt ttagtataat atgtgattct gataaaatag 3360
acattgtat tctgtttttt atatgtaaaaa acaaaaacaag aaaaaataga gaattctaca 3420
tactaaatct ctctccctttt ttaattttaa tatttgttat catttattta ttgggtctac 3480
tgtttattccg tataaattgt gggaaaaaga tattaacatc acgtcttgcg ctctagtgca 3540
gttttcgag atattccgta gtacatattt atttttaaac aacgacaaag aaatacagat 3600
atatctaaa aaaaaaaaaaag catttgtat taaagaattt aattctgatc taaaaaaaaa 3660
aaaaaa 3665

<210> 26
<211> 2204
<212> DNA
<213> Homo sapiens

<400> 26
gagcgggtcg gaggcctctgc tcggatcgag gtctgcagcg cagcttcggg agcatgagg 60
ctgcagtgc tgcaggaaag ctggcacggg caccggccga ccctggaaa gccggggcc 120
ccggagttgc agctccccga gctccggcg cggctccacc ggcgaaagag atccccggagg 180
tccttagtggc cccacycagc cggcggcgct atgtgcgggg ccgccttttggcagggc 240
gctttccaa gtgcttcgag atctcggacg cggacaccaa ggaggtgttc gcgggcaaga 300
ttgtgcctaa gtctctgctg ctcaagccgc accagaggga gaagatgtcc atggaaatat 360
ccattcaccg cagcctcgcc caccagcacg tcgttaggatt ccacgcttt ttgcaggaca 420
acgacttcgt gttcgtgggt ttggagctct gcccggggag gtcttcctg gagctgcaca 480
agaggaggaa agccctgact gaggcctgagg cccgatacta cctacggcaa attgtgctt 540
gtgcgcgat cctgcaccga aaccgaggat ttcatcgaga cctcaagctg ggcacaccc 600
tcctgaatga agatctggag gtgaaaatag gggattttg actggcaacc aaagtcaat 660
atgacggggaa gaggagaagaag accctgtgtg ggactcttaa ttacatagct cccgagggt 720
tgagcaagaa agggcacagt ttgcagggtgg atgtgtggc cattgggtgt atcatgtata 780
ccttggtagt gggcaaaacc a cttttgaga cttttgcctt aaaagagacc tacctccgg 840
tcaagaagaa tgaatacagt attcccaagc acatcaaccc cgtggccgcc tccctcatcc 900
agaagatgct tcagacagat cccactgccc gcccacccat taacgagctg ctaatgacg 960
agttcttac ttctggctat atccctgccc gtctccccat cacctgcctg accattccac 1020
caagggtttc gattgtctcc agcaggctgg acccccagcaa ccggaaagccc ctcacagtcc 1080
tcaataaagg cttggagaac cccctgcctg agcgtccccg ggaaaaaagaa gaaccagtgg 1140
ttcgagagac aggtgggggt gtcgactgac acctcgtga catgtgcag cagctgcaca 1200
gtgtcaatgc cttcaagccc ttggagctgg gctgggtcg gcaagaggag gctgaggat 1260
ctgcctgcatt ccccatcttc tgggtcagca a gttgggtggaa ctattccggac aagtacggcc 1320
ttgggtatca gctctgtat aacagcgtgg ggggtctt caatgactca acacgcctca 1380
tcctctacaa tggatgggtac agcctgcagt acatagagcg tgacggact gaggcttacc 1440
tcaccgttag ttcccatccc aactccttga tgaagaagat caccctcctt aaatattcc 1500
gcaattacat gagcggacac ttgctgaagg cagggtccaa catcacgccc cgcgaagg 1560
atgagctgc cccgcgtcccc tacctacggc cctgggttccg caccggcagc gccatcatcc 1620
tgcacccatcg caacggcgcgc gtgcagatca acttcttcca ggatcacacc aagctcatcc 1680
tgtgcccact gatggcagcc gtgacctaca tgcacggaaa gcccggacttc cgcacatacc 1740
gcctgagttt ccttggggggat tacggctyct gcaaggaggt ggcggccgg ctccgctacy 1800
cccgccatcat ggtggacaag ctgctgagct cacgcgtggc cagcaaccgt ctcaggcct 1860
cctaaatgct gcccctccccct ccggactggt gcccctctca ctcccacccatg catctggggc 1920
ccataactggt tggctccccgc ggtgcctatgt ctgcagttgtg ccccccaccc cccgggtggctg 1980
ggcagagctg catcatccctt gcagggtgggg gttgtgtgt aagtattttt tttatcatgtt 2040
cggtgtgggg ttctacagcc ttgtccccctt cccctcaac cccaccatata gaattgtaca 2100
gaatattttt attgaatttg gaactgtccct ttccctggct ttatgcacat taaacagatg 2160
tgaatattca aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaa 2204