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(57) 
Embodiments of the invention provide language Support for 
CPU-GPU platforms. In one embodiment, code can be flex 
ibly executed on both the CPU and GPU. CPU code can 
offload a kernel to the GPU. That kernel may in turn call 
preexisting libraries on the CPU, or make other calls into CPU 
functions. This allows an application to be built without 
requiring the entire call chain to be recompiled. Additionally, 
in one embodiment data may be shared seamlessly between 
CPU and GPU. This includes sharing objects that may have 
virtual functions. Embodiments thus ensure the right virtual 
function gets invoked on the CPU or the GPU if a virtual 
function is called by either the CPU or GPU. 

ABSTRACT 

17 Claims, 7 Drawing Sheets 
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LANGUAGE LEVEL SUPPORT FOR SHARED 
VIRTUAL MEMORY 

RELATED APPLICATION 

This application claims the benefit of provisional patent 
application No. 61/199,095, filed on Nov. 13, 2008, entitled 
“Shared Virtual Memory.” This application is also related to 
U.S. patent application Ser. No. 12/317,853, filed on Dec. 30, 
2008, entitled “Shared Virtual Memory.” 

BACKGROUND 

This relates generally to shared virtual memory implemen 
tations and in particular to fine-grain partitioning between a 
CPU and a GPU. 
The computing industry is moving towards a heteroge 

neous platform architecture consisting of a general purpose 
CPU along with programmable GPUs attached both as a 
discrete or integrated device. These GPUs are connected over 
both coherent and non-coherent interconnects, have different 
industry standard architectures (ISAS) and may use their own 
operating systems. 

Computing platforms composed of a combination of a 
general purpose processor (CPU) and a graphics processor 
(GPU) have become ubiquitous, especially in the client com 
puting space. Today, almost all desktop and notebook plat 
forms ship with one or more CPUs along with an integrated or 
a discrete GPU. For example, some platforms have a proces 
Sor paired with an integrated graphics chipset, while the 
remaining use a discrete graphics processor connected over 
an interface. Such as PCI-Express. Some platforms ship as a 
combination of a CPU and a GPU. For example, some of these 
include a more integrated CPU-GPU platform while others 
include a discrete graphics processor to complement inte 
grated GPU offerings. 

These CPU-GPU platforms may provide significant per 
formance boost on non-graphics workloads in image process 
ing, medical imaging, data mining, and other domains. The 
massively data parallel GPU may be used for getting high 
throughput on the highly parallel portions of the code. 

Existing language mechanisms for executing applications 
on a CPU-GPU platform tend to only support an offload 
model in which a kernel (function) is offloaded to the GPU. 
The arguments to the function are copied to the device. If the 
arguments include pointer-containing data structures, then 
the arguments are marshaled and passed to the GPU. Simi 
larly the return value is copied back to the CPU. 

These existing models (also referred hereafter as the device 
models) have a number of disadvantages: 1) they prevent a 
natural partitioning of an application between the CPU and 
GPU. An application usually has some throughput oriented 
parts and some scalar parts. For example a game application 
will have rendering that is suited for the GPU, but will also 
have physics and AI that is suited for the CPU. Current mod 
els tend to force most of the computation to be offloaded to the 
GPU. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a depiction of a CPU-GPU memory model in 
accordance with one embodiment. 

FIG. 2 is a flow chart for one embodiment of language 
COnStructS. 

FIG. 3 is a flow chart for another embodiment of language 
COnStructS. 
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2 
FIG. 4 is a flow chart of an embodiment for implementing 

remote calls. 
FIG. 5 is a flow chart of an embodiment of a translation 

scheme. 
FIG. 6 is a flow chart of another embodiment of a transla 

tion scheme. 
FIG. 7 is a flow chart of an embodiment for function pointer 

invocations. 

DETAILED DESCRIPTION 

Embodiments of the invention provide language Support 
for CPU-GPU platforms. In one embodiment, code can be 
flexibly executed on both the CPU and GPU. CPU code can 
offload a kernel to the GPU. That kernel may in turn call 
preexisting libraries on the CPU, or make other calls into CPU 
functions. This allows an application to be built without 
requiring the entire call chain to be recompiled. Additionally, 
in one embodiment data may be shared seamlessly between 
CPU and GPU. This includes sharing objects that may have 
virtual functions. Embodiments thus ensure the right function 
gets invoked on the CPU or the GPU if a virtual function is 
called on a shared object by either the CPU or GPU. 
The GPGPU environment may be made more versatile by 

sharing memory between the CPU and GPU and seamless 
execution of code on a CPU-GPU platform as described 
herein. For purposes of explanation, we will assume the exist 
ence of a keyword “shared that may be used to denote 
variables that are shared between the CPU and GPU i.e. 
have the same virtual address in both CPU and GPU. 

In particular, embodiments of the invention provide a uni 
form programming model for both integrated and discrete 
devices. The model also works uniformly for multiple GPU 
cards and hybrid GPU systems (discrete and integrated). This 
allows software vendors to write a single application stack 
and target it to all the different platforms. Additionally, 
embodiments of the invention provide a shared memory 
model between the CPU and GPU. Instead of sharing the 
entire virtual address space, only a part of the virtual address 
space needs to be shared. This allows efficient implementa 
tion in both discrete and integrated settings. Furthermore, 
language annotations may be used to demarcate code that 
must run on the GPU, and also CPU code that can be invoked 
from the GPU. Language Support may be extended to include 
features Such as function pointers. 

Embodiments of the shared memory model provide a novel 
programming paradigm. In particular, data structures may be 
seamlessly shared between the CPU and GPU, and pointers 
may be passed from one side to the other without requiring 
any marshalling. For example, in one embodiment a game 
engine may includes physics, artificial intelligence (AI), and 
rendering. The physics and AI code may be best executed on 
the CPU, while the rendering may be best executed on the 
GPU. Data structures may need to be shared, such as the scene 
graph, between the CPU & GPU. Such an execution model 
may not be possible in some current programming environ 
ments since the scene graph would have to be serialized (or 
marshaled) back and forth. However, in embodiments of the 
shared memory model, the scene graph may simply reside in 
shared memory and be accessed both by the CPU and GPU. 

In one embodiment, the full programming environment, 
including the language and runtime Support, is implemented. 
A number of highly parallel non-graphics workloads may be 
ported to this environment. The implementation may work on 
heterogeneous operating systems, i.e. with different operat 
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ing systems running on the CPU and GPU. Moreover, user 
level communication may be allowed between the CPU and 
GPU. This may make the application stack more efficient 
since the overhead of the OS driver Stack in CPU-GPU com 
munication may be eliminated. The programming environ 
ment may be ported to two different heterogeneous CPU 
GPU platform simulators—one simulates the GPU attached 
as a discrete device to the CPU, while the other simulates an 
integrated CPU-GPU platform. 

In Summary, embodiments of the programming model for 
CPU-GPU platforms may: 

Provide a uniform programming model for discrete, inte 
grated, multi-GPU cards and hybrid GPU configura 
tions. 

Provide shared memory semantics between the CPU and 
GPU allowing pointers to be passed and data structures 
to be shared freely between the CPU and GPU 

Be implemented in a heterogeneous CPU-GPU platform 
with different ISAs and different operating systems on 
the CPU and GPU. 

Enable user-level communication between the CPU and 
GPU thus making the application stack much more effi 
cient. 

Memory Model 
FIG. 1 is a depiction of a GPU-CPU memory model in 

accordance with one embodiment. In one embodiment, the 
memory model 100 provides a window of shared virtual 
addresses 130 between the CPU 110 and GPU 120, such as in 
partitioned global address space (PGAS) languages. Any data 
Structure that is shared between the CPU 110 and GPU 120 
typically must be allocated by the programmer in this space 
130. The system may provide a special malloc function that 
allocates data in this space 130. Static variables may be anno 
tated with a type quantifier to have them allocated in the 
shared window 130. However, unlike PGAS languages there 
is no notion of affinity in the shared window. This is because 
data in the shared space 130 migrates between the CPU and 
GPU caches as it gets used by each processor. Also unlike 
PGAS implementations, the representation of pointers does 
not change between the shared and private spaces. The 
remaining virtual address space is private to the CPU 110 and 
GPU 120. By default data gets allocated in this space, and is 
not visible to the other side. This partitioned address space 
approach may cut down on the amount of memory that needs 
to be kept coherent and enables a more efficient implemen 
tation for discrete devices. 

The embodiment of the memory model may be extended to 
multi-GPU and hybrid configurations. In particular, the win 
dow of shared virtual addresses may be extended across all 
the devices. Any data structures allocated in this shared 
address window 130 may be visible to all agents and pointers 
in this space may be freely exchanged. In addition, every 
agent has its own private memory. 
Language Constructs 

In one embodiment, to address platform heterogeneity, 
constructs may be added to C/C++ that allow the programmer 
to specify whether a particular data item should be shared or 
private, and to specify whether aparticular code chunk should 
be run on the CPU or GPU. 

The first construct may be a shared type qualifier which 
specifies a variable that is shared between the CPU & GPU. 
The qualifier may also be associated with pointer types to 
imply that the target of the pointer is in shared space. In one 
embodiment, this may be implemented as: 
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shared int varl: if int is in shared 
Space 

int var2: 
shared space 

shared int' ptr1; 
shared location 

int ptr2: 
private space 

shared int *shared ptr1; 
is shared 

if int is not in 

if ptr1 points to a 

if ptr2 points to 

if ptr1 points to shared and 

In one embodiment, the programmer tags all data that is 
shared between the CPU and GPU with the shared keyword. 
The compiler allocates global shared variables in the shared 
memory space, while the system provides a special malloc 
function to allocate data in the shared memory. The actual 
virtual address range in each space may be decided by the 
system and may be transparent to the user. Variables with 
automatic storage (e.g. stack allocated variables) are not 
allowed to be marked with the keyword shared. 

FIG. 2 is a flow chart for one embodiment of language 
constructs. A sequence 200 may be implemented in firmware, 
software, or hardware. Software embodiments may be stored 
on a computer-readable medium such as an optical disk, a 
magnetic disk, or a semiconductor memory. An attribute, 
such as attribute (GPU), may be used to annotate functions 
that should be executed on the GPU (block 210). For such 
functions, the compiler generates GPU-specific code (block 
220). When a non-annotated function calls a GPU annotated 
function, it implies a call from the CPU to GPU. The compiler 
checks that all pointer arguments have shared type and 
invokes a runtime API for the remote call (block 230). 

Function pointer types are also annotated with the attribute 
notation implying that they point to functions that are 
executed on GPU. Nonannotated function pointer types point 
to functions that execute on the CPU. The compiler checks 
type equivalence during an assignment—for example, a func 
tion pointer with the GPU attribute may be assigned the 
address of a GPU annotated function. 

FIG.3 is a flow chart for another embodiment of language 
constructs. A sequence 300 may be implemented in firmware, 
Software, or hardware. A construct denotes functions that 
execute on the CPU but may be called from the GPU (block 
310). These functions may be denoted using ( attribute 
(wrapper)). When a GPU function calls a wrapper function, 
the compiler may invoke a runtime API for the remote call 
from the GPU to the CPU (block 320). Making the GPU to 
CPU calls explicit may have the advantage that the compiler 
checks that any pointer arguments have the shared type. 
Moreover, this may be also important to deal with OS hetero 
geneity. 

Data Annotation Rules 
In one embodiment, data annotation rules may be as fol 

lows: 
1. Shared may be used to qualify the type of variables with 

global storage. Shared may not be used to qualify a variable 
with automatic storage unless it qualifies a pointer's refer 
enced type. 

2. Pointer in private space may point to any space. Pointer 
in shared space may only point to shared space but not to 
private space. 
The following rules may be applied to pointer manipula 

tions: 
1. Binary operator (+,-, = , =, >, <, >= <= . . . ) is only 

allowed between two pointers pointing to same space. 
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When an integer type expression is added to or Sub 
tracted from a pointer, the result has the same type as the 
pointer. 

2. Assignment/casting from pointer-to-shared to pointer 
to-private is allowed. If a type is not annotated assume 
that it denotes a private object. This makes it difficult to 
pass shared objects to legacy functions since their sig 
nature requires private objects. The cast allows avoiding 
copying between private and shared spaces when pass 
ing shared data to a legacy function. 

3. Assignment/casting from pointer-to-private to pointer 
to-shared is allowed only through a dynamic cast. The 
dynamic cast checks at runtime that the pointer-to 
shared actually points to shared space. If the check fails, 
an error is thrown and the user has to explicitly copy the 
data from private space to shared space. With this capa 
bility, code may efficiently get return value from legacy 
functions. 

Embodiments of the language allow casting between the 
two spaces, with possibly a dynamic check, since the data 
representation remains the same regardless of whether the 
data is in shared or private space. Even pointers may have the 
same representation regardless of whether they are pointing 
to private or shared space. Given any virtual address V in the 
shared address window, both CPU and GPU have their own 
local physical address corresponding to this virtual address. 
Pointers on CPU and GPU read from this local copy of the 
address, and the local copies get synced up as required by the 
memory model. This ability to cast pointers has been critical 
to porting workloads to the system since it allows easy 
interoperability with legacy code. 

Not qualifying single member of aggregate type: 
Shared may not be used to qualify a single member of a 

structure or union unless it qualifies a pointer's referenced 
type. A structure or union type may have the shared qualifier 
which then requires all fields to have the shared qualifier as 
well. 
Implementation 

In one embodiment, two pragmas may be used to annotate 
function declarations: 

#pragma GPU may be used to annotate functions that can 
be executed on the GPU. The compiler generates GPU 
code for all such functions that are then loaded on the 
GPU. 

#pragma wrapper may be used to annotate functions that 
are executed on the CPU, but may be called from the 
GPU. 

One embodiment of a compilation scheme may include as 
follows: 

Ailpragma GPU function called from a non-GPU function 
(ie non annotated function) results in a call into GPU to 
execute the function. The compiler inserts the appropri 
ate runtime API call. 

A #pragma GPU function is not allowed to call a non 
annotated function 

A #pragma GPU function calling into a #pragma wrapper 
function results in a call from the GPU to the CPU. The 
compiler inserts the appropriate runtime API call. 

A #pragma wrapper function is not allowed to call into a 
#pragma GPU function. 

Any pointer parameter to a GPU or wrapper function has 
the shared type annotation. 

The pragma declarations are part of the type of a function 
and hence also accompany the type declaration for a function 
pointer. The compiler checks at every function pointerassign 
ment that the type of the rvalue is the same as the type of the 
lvalue (after factoring in the pragma declarations). 
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6 
Embodiments of the invention may support calling preex 

isting binaries (from GPU) in the following way. Suppose the 
user wants to call the precompiled library Foo(int arg) from a 
GPU function. The user simply needs to write a wrapper (say 
#pragma wrapper FooWrapper (shared int arg1)). Within this 
wrapper function it calls the original function Foo and passes 
it the argument arg1. The compiler will copy the argument 
into the shared area, and make a call from the GPU to the 
CPU) 

#pragma GPU imageKernel(...) { 
x = strlen(chars); if Suppose we want to 

use a preexisting string library function in new GPU code 

The user writes: 
#pragma wrapper int strlenWrapper(shared char str); 
#pragma GPU imageKernel(...) { 

arg = copyToShared(s): if copies from private 
to shared space 

x = strlenWrapper(arg); if compiler typechecks 
and inserts the runtime API call for CPU code 

if This code is part of the application running on 
the CPU 

#pragma wrapper int strlenWrapper(shared char's) { 
return (strlen(s)); 

The main difficulty in implementing the above is that the 
GPU and CPU have different address spaces and different 
linker and loader. The application code may be loaded at 
different addresses in the CPU and GPU address domains. 
Hence when there is a function call from the CPU to GPU, 
unlike an ordinary function call, the compiled code on the 
CPU does not know the address of the target. For example, on 
a GPU function call from a non annotated function (i.e. call 
ing a GPU function from a CPU function), the compiler/ 
linker/loader on the CPU side does not know the address of 
the target on the GPUside. Hence it may be impossible for the 
compiler to generate the proper call address. 

Embodiments of the invention address this by creating a fat 
binary that contains both the GPU code and the CPU code. 
The binary is then loaded into both the CPU and GPU spaces. 
As mentioned before, the functions may beat different offsets 
in the two binaries since they may end up being loaded at 
different addresses. Further when a GPU or wrapper function 
is compiled, the name of the function is stored at a fixed offset 
from the beginning of the function (for example just before 
the code for the function). 

Both on the GPU and the CPU side a table of function 
names and addresses is maintained. When a remote call is 
made from one side to the other, instead of generating an 
address to call, the compiler sends the name of the function to 
call and a search is performed in the jump table. When the 
application is loaded, the table is populated. For each 
#pragma wrapper function, the compiler generates a call into 
a registration function on the CPU side. For each #pragma 
GPU function, the compiler generates a call into the registra 
tion function on the GPU side. These registration functions 
take the runtime address of the corresponding function and 
populate the table with the name and the address. 
At a remote call, the name in the table is accessed, the 

corresponding address obtained and the dispatch performed. 
In some embodiments, the above method may not work for 

function pointers since the compiler can not associate a name 
with the function pointer call. All it has is a dynamic address. 
At runtime this address may be used to lookup the name of the 
function (since the name is stored at a fixed offset). The name 
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can then be sent as part of the remote call, the table lookup 
performed (as in the direct function call) and then dispatched 
to the function in question. 
One embodiment of the pseudo code for the mechanism is 

shown below: 

Step 1: registration functions with <funcName, 
funcPointers 

For each #pragma GPU function 
registerGPUFunct funcName, funcPointer) { 

if GPU: 
addToJumpTable(funcName, funcPointer); 

else fistore in fixed offset, e.g. 
before the func code 

storeFuncNameByFuncPointer(funcName, 
funcPointer); 

For each #pragma wrapper function: 
registerWrapperFunct funcName, funcPointer) { 

if CPU: 
addToJumpTable(funcName, funcPointer); 
else fistore in fixed offset, e.g. before the 

func code 
storeFuncNameByFuncPointer(funcName, 

funcPointer); 

Step 2: transform remote call: 
For each GPU function call in CPU side and 

wrapper function call in GPUside: 
remoteCallByName(funcName, funcParas) { 

sendFuncNameToRemote(funcName, funcParas); 

For each GPU function pointer call in CPUside and 
wrapper function pointer call on GPU: 

remoteCallByPointer(funPointer, funcParas) { 
funcName = 

getFuncNameByFuncPointer(funcPointer); 
sendFuncNameToRemote(funcName, funcParas); 

Step 3: Call the function when receiving a remote 
call request: 

executeRemoteCall (funcName, funcParas) { 
funcPointer = lookup JumpTable(funcName); 
dispatchFunc(funcPointer, funcParas); 

Implementing Remote Calls 
In one embodiment, a remote call from the CPU to GPU, or 

GPU to CPU may be complicated by the fact that the two 
processors have different operating systems and different 
loaders. The two binaries are also loaded separately and asyn 
chronously. Suppose that the CPU code makes some calls into 
the GPU. When the CPUbinary is loaded, the GPUbinary has 
still not been loaded and hence the addresses for GPU func 
tions are still not known. Therefore, the OS loader may not 
patch up the references to GPU functions in the CPU binary. 
Similarly, when the GPU binary is being loaded, the GPU 
loader does not know the addresses of any CPU functions 
being called from GPU code and hence may not patch those 
addresses. 

FIG. 4 is a flow chart of an embodiment for implementing 
remote calls. A sequence 400 may be implemented in firm 
ware, Software, or hardware. In one embodiment, remote calls 
may be implemented by using a combination of compiler and 
runtime techniques. The language rules ensure that any func 
tion involved in remote calls (GPU or wrapper attribute func 
tions) is annotated by the user. When compiling Such func 
tions, the compiler adds a call to a runtime API that registers 
function addresses dynamically (block 410). The compiler 
creates an initialization function for each file that invokes all 
the different registration calls (block 420). When the binary 
gets loaded, the initialization function in each file gets called 
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8 
(block 430). The shared address space contains a jump table 
that is populated dynamically by the registration function 
(block 440). The table contains one slot for every annotated 
function. The format of every slot is <funcName, funcAddred 
where funcName is a literal string of the function name and 
funcaddr is the runtime address of the function. 

FIGS. 5 and 6 are flow charts of embodiments of a trans 
lation scheme. Sequences 500 and 600 may be implemented 
in firmware, software, or hardware. In accordance with one 
embodiment, the translation scheme may work as follows. 

1. If a GPU (CPU) function is being called within a GPU 
(CPU) function (block510), the compiler generated code will 
do the call as is (block 520). 

2. If a GPU function is being called within a CPU function 
(block 610), the compiler generated code will do a remote call 
to GPU: 

2.1. The compiler generated code will look up the jump 
table with the function name and obtain the function 
address (block 620). 

2.2. The generated code will pack the arguments into an 
argument buffer in shared space (block 630). It will then 
call a dispatch routine on the GPU side passing in the 
function address and the argument buffer address (block 
640). 

There is similar process for a wrapper function except that 
it is a remote call to CPU if a wrapper function is called in a 
GPU function. 

FIG. 7 is a flow chart of an embodiment for function pointer 
invocations. A sequence 700 may be implemented in firm 
ware, software, or hardware. For function pointer invoca 
tions, the translation scheme may work as follows. When a 
function pointer with GPU annotation is assigned (block 
710), the compiler generated code will look up the jump table 
with the function name and assign the function pointer with 
obtained function address (block 720). Although the lookup 
may be optimized out when GPU annotated function pointer 
is assigned within GPU code, the optimization may be for 
saken to use a single strategy for all function pointer assign 
ments. If a GPU function pointer is being called within a GPU 
function (block 730), the compiler generated code will do the 
call as is (block 740). If a GPU function pointer is being called 
within a CPU function (block 730), the compiler generated 
code will do a remote call to GPU side (block 750). The 
process is similar for a wrapper function pointer except that 
there is a remote call to CPU side if wrapper function pointer 
is called in a GPU function. 
The CPU-GPU signaling happens with task queues in the 

PCI aperture space. Daemon threads on both sides poll their 
respective task queues and when they find an entry in the task 
queue, they spawn a new thread to invoke the corresponding 
function. In one embodiment, the API for remote invocations 
is described below. 

f* remote calls. The function type and arg types 
encapsulate the function pointer and arguments. */ 

RPCHandler callRemote(myoFunctionType, MyoRPCArgType); 
intresultReady(MyoRPCHandler); 
MyoType getResult(MyoRPCHandler) 

Code Example 
This section illustrates one embodiment of the proposed 

programming model through a code example that illustrates a 
simple, vector addition (addTwoVectors) that may be accel 
erated through the GPU. 
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int addTwoVectors(int a, int' b, int' c) 
{ 

for (i = 1 to 64) { 
ci = a i + bi) 

int some App(...) 

int *a = malloc (...); int b = malloc (...); int c 
= malloc (...); 

for (i = 1 to 64) {ai} = ; bi = ; ci) = ; / 
initialize 

addTwoVectors(a, b, c): 

In the embodiment of the programming model, this 
would be written as: 

attribute(GPU) int addTwoVectors(shared inta, 
shared int' b, shared int' c) 

{ 
for (i = 1 to 64) { 

ci = a i + bi; 

int some App(...) 
{ 

shared inta = shared Malloc (...); allocate in 
shared region 

shared int' b = shared Malloc (...); //allocate in 
shared region 

shared int c = shared Malloc (...); allocate in 
shared region 

for (i = 1 to 64) {ai} = ; bi = ; ci) = ; / 
initialize 

addTwoVectors(a, b, c): 
into remote call 

if compiler converts 

In the above implementation, arrays a, b, c are allocated in 
shared space by calling the special malloc function. The 
remote call (addTwoVectors) acts as the release/acquire point 
and causes the memory region to be synced up between CPU 
& GPU. 
One embodiment of a corresponding CUDA code snippet 

is presented below. Note that the user has to explicitly allocate 
the CPU and GPU memory spaces and copy the data from one 
side to the other. Note also that if these were more complex 
pointer containing data structures, a simple memcpy would 
not be sufficient to transfer the data from one side to the other. 
Instead, explicit marshalling would be needed. 

int some App(...) 
{ 

int a = malloc (...); // allocate in CPU memory 
int' b = malloc (...); // allocate in CPU memory 
int c = malloc (...); // allocate in CPU memory 
int *aD, *bD, *cD; // arrays for the GPU devices 
for (i = 1 to 64) {ai} = ; bi) = ; ci) = ; / 

initialize 
cudaMalloc(aD); // allocate space on GPU 
cudaMalloc(bD); // allocate space on GPU 
cudaMalloc(cD); // allocate space on GPU 
cudaMemcpy (a D, a.,..., cudaMemcpy HostToDevice); if 

copy a 
cudaMemcpy(bD, b, ..., cudaMemcpyHostToDevice); // 

copy b 
addTwoVectors << ... 

computation 
cudaMemcpy (c, cD, ..., cudeMemcpyDeviceToHost); if 

>> (...) I do the GPU 

copy c 
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10 
Embodiments of the invention may be implemented in a 

processor-based system that may include a general-purpose 
processor coupled to a chipset in one embodiment. The 
chipset may be coupled to a system memory and a graphics 
processor. The graphics processor may be coupled to a frame 
buffer, in turn coupled to a display. In one embodiment, the 
embodiments of the invention shown in FIGS. 1-7 may be 
implemented as Software stored in a computer-readable 
medium, Such as the system memory. However, embodiments 
of the present invention may be also implemented inhardware 
or firmware. 

CONCLUSION 

Embodiments of the programming model provide a shared 
memory model including language constructs for CPU-GPU 
platforms which enables fine-grain concurrency between the 
CPU and GPU. The uniform programming model may be 
implemented for both discrete and integrated configurations 
as well as for multi-GPU and hybrid configurations. User 
annotations may be used to demarcate code for CPU and GPU 
execution. User level communication may be provided 
between the CPU and GPU thus eliminating the overhead of 
OS driver calls. A full software stack may be implemented for 
the programming model including compiler and runtime Sup 
port. 

References throughout this specification to “one embodi 
ment” or “an embodiment’ mean that a particular feature, 
structure, or characteristic described in connection with the 
embodiment is included in at least one implementation 
encompassed within the present invention. Thus, appearances 
of the phrase "one embodiment” or “in an embodiment” are 
not necessarily referring to the same embodiment. Further 
more, the particular features, structures, or characteristics 
may be instituted in other suitable forms other than the par 
ticular embodiment illustrated and all such forms may be 
encompassed within the claims of the present application. 

While the present invention has been described with 
respect to a limited number of embodiments, those skilled in 
the art will appreciate numerous modifications and variations 
therefrom. It is intended that the appended claims cover all 
such modifications and variations as fall within the true spirit 
and scope of this present invention. 
The invention claimed is: 
1. A method providing: 
shared memory semantics between a central processing 

unit (CPU) and a graphics processing unit (GPU) includ 
ing allowing pointers to be passed and data structures to 
be shared as is between the CPU and GPU; 

sharing only a portion of virtual address space between the 
CPU and the GPU; 

if a GPU function is being called within a GPU function, 
performing the call as is: 

if a GPU function is being called within a CPU function, 
performing a remote call to the GPU; 

if a CPU function is being called within a CPU function, 
performing the call as is; and 

if a CPU function is being called within a GPU function, 
performing a remote call to the CPU. 

2. The method claimed in claim 1, wherein code can be 
flexibly executed on both the CPU and GPU. 

3. The method claimed in claim 2, further comprising: 
offloading a kernel to the GPU using CPU code; and 
using the kernel to call preexisting libraries on the CPU, or 

make other calls into CPU functions. 
4. The method claimed in claim 1, including sharing 

objects having virtual functions such that a correct virtual 
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function is invoked on the CPU or the GPU in response to a 
virtual function being called on a shared object by either the 
CPU or GPU. 

5. The method claimed in claim 1, further comprising: 
identifying data that is shared between the CPU and GPU 

with a shared keyword; 
allocating global shared variables in a shared memory 

space; and 
providing a function to allocate data in the shared memory. 
6. The method claimed in claim 1, further comprising using 

an attribute to indicate functions that should be executed on 
the CPU or GPU. 

7. The method claimed in claim 1, further comprising: 
adding a call to a runtime application program interface 

(API) that registers function addresses dynamically; 
creating an initialization function for each file that invokes 

different registration calls; 
when a binary gets loaded, calling the initialization func 

tion in each file; and 
populating dynamically a jump table in the shared address 

space to contain function addresses. 
8. The method claimed in claim 1, further comprising: 
looking up a jump table with a function name and obtaining 

a function address associated with the function name: 
packing in arguments into a buffer in a shared memory 

space; and 
calling a dispatch routine on the GPU side passing in the 

function address and the argument buffer address. 
9. The method claimed in claim 1, further comprising: 
when a function pointer with GPU annotation is assigned, 

looking up a jump table with a function name and assign 
ing the function pointer with an obtained function 
address. 

10. The method claimed in claim 9, wherein if a GPU 
function pointer is being called within a GPU function, com 
piler generated code will perform the call as is. 

11. The method claimed in claim 10, wherein if a GPU 
function pointer is being called within a CPU function, the 
compiler generated code will do a remote call to GPU side. 
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12. A non-transitory computer readable medium storing 

instructions that, if executed, enable a processor-based sys 
ten to: 

share memory semantics between a CPU and a GPU 
including allowing pointers to be passed and data struc 
tures to be shared as is between the CPU and GPU; 

add a call to a runtime API that registers function addresses 
dynamically 

create an initialization function for each file that invokes 
different registration calls; 

when a binary gets loaded, call the initialization function in 
each file; and 

populate dynamically a jump table in the shared address 
space to contain function addresses. 

13. The computer readable medium claimed in claim 12, 
further storing instructions to: 

execute code on both the CPU and GPU. 
14. The non-transitory computer readable medium claimed 

in 12, further storing instructions to: 
offload a kernel to the GPU using CPU code; and 
use the kernel to call preexisting libraries on the CPU, or 

make other calls into CPU functions. 
15. The non-transitory computer readable medium claimed 

in claim 12, further storing instructions to: 
share objects that have virtual functions such that the cor 

rect virtual function is invoked on the CPU or the GPU in 
response to a virtual function being called on a shared 
object by either the CPU or GPU. 

16. The non-transitory computer readable medium claimed 
in claim 12, further storing instructions to: 

identify data that is shared between the CPU and GPU with 
a shared keyword; 

allocate global shared variables in a shared memory space; 
and 

provide a function to allocate data in the shared memory. 
17. The non-transitory computer readable medium claimed 

in claim 12, further storing instructions to: 
use an attribute to indicate functions that should be 

executed on the CPU or GPU. 

k k k k k 


