
(12) United States Patent
Xiaocheng et al.

USOO8397241 B2

US 8,397.241 B2
Mar. 12, 2013

(10) Patent No.:
(45) Date of Patent:

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(60)

(51)

(52)

(58)

LANGUAGE LEVEL SUPPORT FOR SHARED
VIRTUAL MEMORY

Inventors: Zhou Xiaocheng, Beijing (CN);
Shoumeng Yan, Beijing (CN); Ying
Gao, Beijing (CN); Hu Chen, Beijing
(CN); Peinan Zhang, Beijing (CN);
Mohan Rajagopalan, Mountain View,
CA (US): Avi Mendelson, Haifa (IL);
Bratin Saha, Santa Clara, CA (US)

Assignee: Intel Corporation, Santa Clara, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1106 days.

Appl. No.: 12/317,854

Filed: Dec. 30, 2008

Prior Publication Data

US 2010/0122264 A1 May 13, 2010

Related U.S. Application Data
Provisional application No. 61/199,095, filed on Nov.
13, 2008.

Int. C.
G06F 9/44 (2006.01)
G06F 3/4 (2006.01)
G06F I3/00 (2006.01)
U.S. C. 719/312; 719/328; 71.9/330; 34.5/520;

711/147
Field of Classification Search 71.9/310,

71.9/312,328,330; 34.5/520; 711/147
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,075,541 B2 * 7/2006 Diard 345,505
7,231,632 B2 * 6/2007 Harper ... T17/109
7,248,265 B2* 7/2007 Zimmer 345,530
7,489,318 B1* 2/2009 Wilt 345,582
7.598953 B2 * 10/2009 Tarditi et al. 345,440
7,769,979 B1* 8/2010 Glasco et al. .. T11 203
8,077, 181 B2* 12/2011 Diard 345,505
8,095,735 B2* 1/2012 Brewer et al. .. 711/127

1/2012 Fowler et al. 345,419 8, 102,391 B2*
2/2012 Wallach et al. T12/34 8,122.229 B2*

2005/0231521 A1* 10/2005 Harper 345,582
2006/0098022 A1* 5/2006 Andrews et al. 345/557
2006, O164425 A1* 7, 2006 Parke 345,565
2008.003051.0 A1* 2, 2008 Wan et al. 345,505
2008, OO74430 A1* 3, 2008 Jiao et al. 345,506
2008.01097.95 A1 5/2008 Bucket al. 717/137

* cited by examiner

Primary Examiner — Van Nguyen
(74) Attorney, Agent, or Firm — Trop, Pruner & Hu, P.C.

(57)
Embodiments of the invention provide language Support for
CPU-GPU platforms. In one embodiment, code can be flex
ibly executed on both the CPU and GPU. CPU code can
offload a kernel to the GPU. That kernel may in turn call
preexisting libraries on the CPU, or make other calls into CPU
functions. This allows an application to be built without
requiring the entire call chain to be recompiled. Additionally,
in one embodiment data may be shared seamlessly between
CPU and GPU. This includes sharing objects that may have
virtual functions. Embodiments thus ensure the right virtual
function gets invoked on the CPU or the GPU if a virtual
function is called by either the CPU or GPU.

ABSTRACT

17 Claims, 7 Drawing Sheets

410 -
Adding a call to a runtime API that

registers function addresses
dynamically

420

Calling the initiation function in
each file when the binary gets

loaded
430 -

The compiler creates an initialization
function for each file that invokes
all the different registration calls

440 - Populating dynamically the jump
table in the shared address space

400

US 8,397.241 B2 Sheet 1 of 7

ÕTT ?OedS (ndo

Mar. 12, 2013 U.S. Patent

?Ž? ?OedS ndº)

Z "SOIH

US 8,397.241 B2 U.S. Patent

9. "SDI

US 8,397.241 B2 U.S. Patent

— 0Øº — 0| 9

US 8,397.241 B2 Sheet 4 of 7 Mar. 12, 2013 U.S. Patent

— 09:47 — 0 || 7

US 8,397.241 B2

00/

U.S. Patent

— 07/ — 09/

US 8,397.241 B2
1.

LANGUAGE LEVEL SUPPORT FOR SHARED
VIRTUAL MEMORY

RELATED APPLICATION

This application claims the benefit of provisional patent
application No. 61/199,095, filed on Nov. 13, 2008, entitled
“Shared Virtual Memory.” This application is also related to
U.S. patent application Ser. No. 12/317,853, filed on Dec. 30,
2008, entitled “Shared Virtual Memory.”

BACKGROUND

This relates generally to shared virtual memory implemen
tations and in particular to fine-grain partitioning between a
CPU and a GPU.
The computing industry is moving towards a heteroge

neous platform architecture consisting of a general purpose
CPU along with programmable GPUs attached both as a
discrete or integrated device. These GPUs are connected over
both coherent and non-coherent interconnects, have different
industry standard architectures (ISAS) and may use their own
operating systems.

Computing platforms composed of a combination of a
general purpose processor (CPU) and a graphics processor
(GPU) have become ubiquitous, especially in the client com
puting space. Today, almost all desktop and notebook plat
forms ship with one or more CPUs along with an integrated or
a discrete GPU. For example, some platforms have a proces
Sor paired with an integrated graphics chipset, while the
remaining use a discrete graphics processor connected over
an interface. Such as PCI-Express. Some platforms ship as a
combination of a CPU and a GPU. For example, some of these
include a more integrated CPU-GPU platform while others
include a discrete graphics processor to complement inte
grated GPU offerings.

These CPU-GPU platforms may provide significant per
formance boost on non-graphics workloads in image process
ing, medical imaging, data mining, and other domains. The
massively data parallel GPU may be used for getting high
throughput on the highly parallel portions of the code.

Existing language mechanisms for executing applications
on a CPU-GPU platform tend to only support an offload
model in which a kernel (function) is offloaded to the GPU.
The arguments to the function are copied to the device. If the
arguments include pointer-containing data structures, then
the arguments are marshaled and passed to the GPU. Simi
larly the return value is copied back to the CPU.

These existing models (also referred hereafter as the device
models) have a number of disadvantages: 1) they prevent a
natural partitioning of an application between the CPU and
GPU. An application usually has some throughput oriented
parts and some scalar parts. For example a game application
will have rendering that is suited for the GPU, but will also
have physics and AI that is suited for the CPU. Current mod
els tend to force most of the computation to be offloaded to the
GPU.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a depiction of a CPU-GPU memory model in
accordance with one embodiment.

FIG. 2 is a flow chart for one embodiment of language
COnStructS.

FIG. 3 is a flow chart for another embodiment of language
COnStructS.

10

15

25

30

35

40

45

50

55

60

65

2
FIG. 4 is a flow chart of an embodiment for implementing

remote calls.
FIG. 5 is a flow chart of an embodiment of a translation

scheme.
FIG. 6 is a flow chart of another embodiment of a transla

tion scheme.
FIG. 7 is a flow chart of an embodiment for function pointer

invocations.

DETAILED DESCRIPTION

Embodiments of the invention provide language Support
for CPU-GPU platforms. In one embodiment, code can be
flexibly executed on both the CPU and GPU. CPU code can
offload a kernel to the GPU. That kernel may in turn call
preexisting libraries on the CPU, or make other calls into CPU
functions. This allows an application to be built without
requiring the entire call chain to be recompiled. Additionally,
in one embodiment data may be shared seamlessly between
CPU and GPU. This includes sharing objects that may have
virtual functions. Embodiments thus ensure the right function
gets invoked on the CPU or the GPU if a virtual function is
called on a shared object by either the CPU or GPU.
The GPGPU environment may be made more versatile by

sharing memory between the CPU and GPU and seamless
execution of code on a CPU-GPU platform as described
herein. For purposes of explanation, we will assume the exist
ence of a keyword “shared that may be used to denote
variables that are shared between the CPU and GPU i.e.
have the same virtual address in both CPU and GPU.

In particular, embodiments of the invention provide a uni
form programming model for both integrated and discrete
devices. The model also works uniformly for multiple GPU
cards and hybrid GPU systems (discrete and integrated). This
allows software vendors to write a single application stack
and target it to all the different platforms. Additionally,
embodiments of the invention provide a shared memory
model between the CPU and GPU. Instead of sharing the
entire virtual address space, only a part of the virtual address
space needs to be shared. This allows efficient implementa
tion in both discrete and integrated settings. Furthermore,
language annotations may be used to demarcate code that
must run on the GPU, and also CPU code that can be invoked
from the GPU. Language Support may be extended to include
features Such as function pointers.

Embodiments of the shared memory model provide a novel
programming paradigm. In particular, data structures may be
seamlessly shared between the CPU and GPU, and pointers
may be passed from one side to the other without requiring
any marshalling. For example, in one embodiment a game
engine may includes physics, artificial intelligence (AI), and
rendering. The physics and AI code may be best executed on
the CPU, while the rendering may be best executed on the
GPU. Data structures may need to be shared, such as the scene
graph, between the CPU & GPU. Such an execution model
may not be possible in some current programming environ
ments since the scene graph would have to be serialized (or
marshaled) back and forth. However, in embodiments of the
shared memory model, the scene graph may simply reside in
shared memory and be accessed both by the CPU and GPU.

In one embodiment, the full programming environment,
including the language and runtime Support, is implemented.
A number of highly parallel non-graphics workloads may be
ported to this environment. The implementation may work on
heterogeneous operating systems, i.e. with different operat

US 8,397.241 B2
3

ing systems running on the CPU and GPU. Moreover, user
level communication may be allowed between the CPU and
GPU. This may make the application stack more efficient
since the overhead of the OS driver Stack in CPU-GPU com
munication may be eliminated. The programming environ
ment may be ported to two different heterogeneous CPU
GPU platform simulators—one simulates the GPU attached
as a discrete device to the CPU, while the other simulates an
integrated CPU-GPU platform.

In Summary, embodiments of the programming model for
CPU-GPU platforms may:

Provide a uniform programming model for discrete, inte
grated, multi-GPU cards and hybrid GPU configura
tions.

Provide shared memory semantics between the CPU and
GPU allowing pointers to be passed and data structures
to be shared freely between the CPU and GPU

Be implemented in a heterogeneous CPU-GPU platform
with different ISAs and different operating systems on
the CPU and GPU.

Enable user-level communication between the CPU and
GPU thus making the application stack much more effi
cient.

Memory Model
FIG. 1 is a depiction of a GPU-CPU memory model in

accordance with one embodiment. In one embodiment, the
memory model 100 provides a window of shared virtual
addresses 130 between the CPU 110 and GPU 120, such as in
partitioned global address space (PGAS) languages. Any data
Structure that is shared between the CPU 110 and GPU 120
typically must be allocated by the programmer in this space
130. The system may provide a special malloc function that
allocates data in this space 130. Static variables may be anno
tated with a type quantifier to have them allocated in the
shared window 130. However, unlike PGAS languages there
is no notion of affinity in the shared window. This is because
data in the shared space 130 migrates between the CPU and
GPU caches as it gets used by each processor. Also unlike
PGAS implementations, the representation of pointers does
not change between the shared and private spaces. The
remaining virtual address space is private to the CPU 110 and
GPU 120. By default data gets allocated in this space, and is
not visible to the other side. This partitioned address space
approach may cut down on the amount of memory that needs
to be kept coherent and enables a more efficient implemen
tation for discrete devices.

The embodiment of the memory model may be extended to
multi-GPU and hybrid configurations. In particular, the win
dow of shared virtual addresses may be extended across all
the devices. Any data structures allocated in this shared
address window 130 may be visible to all agents and pointers
in this space may be freely exchanged. In addition, every
agent has its own private memory.
Language Constructs

In one embodiment, to address platform heterogeneity,
constructs may be added to C/C++ that allow the programmer
to specify whether a particular data item should be shared or
private, and to specify whether aparticular code chunk should
be run on the CPU or GPU.

The first construct may be a shared type qualifier which
specifies a variable that is shared between the CPU & GPU.
The qualifier may also be associated with pointer types to
imply that the target of the pointer is in shared space. In one
embodiment, this may be implemented as:

10

15

25

30

35

40

45

50

55

60

65

shared int varl: if int is in shared
Space

int var2:
shared space

shared int' ptr1;
shared location

int ptr2:
private space

shared int *shared ptr1;
is shared

if int is not in

if ptr1 points to a

if ptr2 points to

if ptr1 points to shared and

In one embodiment, the programmer tags all data that is
shared between the CPU and GPU with the shared keyword.
The compiler allocates global shared variables in the shared
memory space, while the system provides a special malloc
function to allocate data in the shared memory. The actual
virtual address range in each space may be decided by the
system and may be transparent to the user. Variables with
automatic storage (e.g. stack allocated variables) are not
allowed to be marked with the keyword shared.

FIG. 2 is a flow chart for one embodiment of language
constructs. A sequence 200 may be implemented in firmware,
software, or hardware. Software embodiments may be stored
on a computer-readable medium such as an optical disk, a
magnetic disk, or a semiconductor memory. An attribute,
such as attribute (GPU), may be used to annotate functions
that should be executed on the GPU (block 210). For such
functions, the compiler generates GPU-specific code (block
220). When a non-annotated function calls a GPU annotated
function, it implies a call from the CPU to GPU. The compiler
checks that all pointer arguments have shared type and
invokes a runtime API for the remote call (block 230).

Function pointer types are also annotated with the attribute
notation implying that they point to functions that are
executed on GPU. Nonannotated function pointer types point
to functions that execute on the CPU. The compiler checks
type equivalence during an assignment—for example, a func
tion pointer with the GPU attribute may be assigned the
address of a GPU annotated function.

FIG.3 is a flow chart for another embodiment of language
constructs. A sequence 300 may be implemented in firmware,
Software, or hardware. A construct denotes functions that
execute on the CPU but may be called from the GPU (block
310). These functions may be denoted using (attribute
(wrapper)). When a GPU function calls a wrapper function,
the compiler may invoke a runtime API for the remote call
from the GPU to the CPU (block 320). Making the GPU to
CPU calls explicit may have the advantage that the compiler
checks that any pointer arguments have the shared type.
Moreover, this may be also important to deal with OS hetero
geneity.

Data Annotation Rules
In one embodiment, data annotation rules may be as fol

lows:
1. Shared may be used to qualify the type of variables with

global storage. Shared may not be used to qualify a variable
with automatic storage unless it qualifies a pointer's refer
enced type.

2. Pointer in private space may point to any space. Pointer
in shared space may only point to shared space but not to
private space.
The following rules may be applied to pointer manipula

tions:
1. Binary operator (+,-, = , =, >, <, >= <= . . .) is only

allowed between two pointers pointing to same space.

US 8,397.241 B2
5

When an integer type expression is added to or Sub
tracted from a pointer, the result has the same type as the
pointer.

2. Assignment/casting from pointer-to-shared to pointer
to-private is allowed. If a type is not annotated assume
that it denotes a private object. This makes it difficult to
pass shared objects to legacy functions since their sig
nature requires private objects. The cast allows avoiding
copying between private and shared spaces when pass
ing shared data to a legacy function.

3. Assignment/casting from pointer-to-private to pointer
to-shared is allowed only through a dynamic cast. The
dynamic cast checks at runtime that the pointer-to
shared actually points to shared space. If the check fails,
an error is thrown and the user has to explicitly copy the
data from private space to shared space. With this capa
bility, code may efficiently get return value from legacy
functions.

Embodiments of the language allow casting between the
two spaces, with possibly a dynamic check, since the data
representation remains the same regardless of whether the
data is in shared or private space. Even pointers may have the
same representation regardless of whether they are pointing
to private or shared space. Given any virtual address V in the
shared address window, both CPU and GPU have their own
local physical address corresponding to this virtual address.
Pointers on CPU and GPU read from this local copy of the
address, and the local copies get synced up as required by the
memory model. This ability to cast pointers has been critical
to porting workloads to the system since it allows easy
interoperability with legacy code.

Not qualifying single member of aggregate type:
Shared may not be used to qualify a single member of a

structure or union unless it qualifies a pointer's referenced
type. A structure or union type may have the shared qualifier
which then requires all fields to have the shared qualifier as
well.
Implementation

In one embodiment, two pragmas may be used to annotate
function declarations:

#pragma GPU may be used to annotate functions that can
be executed on the GPU. The compiler generates GPU
code for all such functions that are then loaded on the
GPU.

#pragma wrapper may be used to annotate functions that
are executed on the CPU, but may be called from the
GPU.

One embodiment of a compilation scheme may include as
follows:

Ailpragma GPU function called from a non-GPU function
(ie non annotated function) results in a call into GPU to
execute the function. The compiler inserts the appropri
ate runtime API call.

A #pragma GPU function is not allowed to call a non
annotated function

A #pragma GPU function calling into a #pragma wrapper
function results in a call from the GPU to the CPU. The
compiler inserts the appropriate runtime API call.

A #pragma wrapper function is not allowed to call into a
#pragma GPU function.

Any pointer parameter to a GPU or wrapper function has
the shared type annotation.

The pragma declarations are part of the type of a function
and hence also accompany the type declaration for a function
pointer. The compiler checks at every function pointerassign
ment that the type of the rvalue is the same as the type of the
lvalue (after factoring in the pragma declarations).

10

15

25

30

35

40

45

50

55

60

65

6
Embodiments of the invention may support calling preex

isting binaries (from GPU) in the following way. Suppose the
user wants to call the precompiled library Foo(int arg) from a
GPU function. The user simply needs to write a wrapper (say
#pragma wrapper FooWrapper (shared int arg1)). Within this
wrapper function it calls the original function Foo and passes
it the argument arg1. The compiler will copy the argument
into the shared area, and make a call from the GPU to the
CPU)

#pragma GPU imageKernel(...) {
x = strlen(chars); if Suppose we want to

use a preexisting string library function in new GPU code

The user writes:
#pragma wrapper int strlenWrapper(shared char str);
#pragma GPU imageKernel(...) {

arg = copyToShared(s): if copies from private
to shared space

x = strlenWrapper(arg); if compiler typechecks
and inserts the runtime API call for CPU code

if This code is part of the application running on
the CPU

#pragma wrapper int strlenWrapper(shared char's) {
return (strlen(s));

The main difficulty in implementing the above is that the
GPU and CPU have different address spaces and different
linker and loader. The application code may be loaded at
different addresses in the CPU and GPU address domains.
Hence when there is a function call from the CPU to GPU,
unlike an ordinary function call, the compiled code on the
CPU does not know the address of the target. For example, on
a GPU function call from a non annotated function (i.e. call
ing a GPU function from a CPU function), the compiler/
linker/loader on the CPU side does not know the address of
the target on the GPUside. Hence it may be impossible for the
compiler to generate the proper call address.

Embodiments of the invention address this by creating a fat
binary that contains both the GPU code and the CPU code.
The binary is then loaded into both the CPU and GPU spaces.
As mentioned before, the functions may beat different offsets
in the two binaries since they may end up being loaded at
different addresses. Further when a GPU or wrapper function
is compiled, the name of the function is stored at a fixed offset
from the beginning of the function (for example just before
the code for the function).

Both on the GPU and the CPU side a table of function
names and addresses is maintained. When a remote call is
made from one side to the other, instead of generating an
address to call, the compiler sends the name of the function to
call and a search is performed in the jump table. When the
application is loaded, the table is populated. For each
#pragma wrapper function, the compiler generates a call into
a registration function on the CPU side. For each #pragma
GPU function, the compiler generates a call into the registra
tion function on the GPU side. These registration functions
take the runtime address of the corresponding function and
populate the table with the name and the address.
At a remote call, the name in the table is accessed, the

corresponding address obtained and the dispatch performed.
In some embodiments, the above method may not work for

function pointers since the compiler can not associate a name
with the function pointer call. All it has is a dynamic address.
At runtime this address may be used to lookup the name of the
function (since the name is stored at a fixed offset). The name

US 8,397.241 B2
7

can then be sent as part of the remote call, the table lookup
performed (as in the direct function call) and then dispatched
to the function in question.
One embodiment of the pseudo code for the mechanism is

shown below:

Step 1: registration functions with <funcName,
funcPointers

For each #pragma GPU function
registerGPUFunct funcName, funcPointer) {

if GPU:
addToJumpTable(funcName, funcPointer);

else fistore in fixed offset, e.g.
before the func code

storeFuncNameByFuncPointer(funcName,
funcPointer);

For each #pragma wrapper function:
registerWrapperFunct funcName, funcPointer) {

if CPU:
addToJumpTable(funcName, funcPointer);
else fistore in fixed offset, e.g. before the

func code
storeFuncNameByFuncPointer(funcName,

funcPointer);

Step 2: transform remote call:
For each GPU function call in CPU side and

wrapper function call in GPUside:
remoteCallByName(funcName, funcParas) {

sendFuncNameToRemote(funcName, funcParas);

For each GPU function pointer call in CPUside and
wrapper function pointer call on GPU:

remoteCallByPointer(funPointer, funcParas) {
funcName =

getFuncNameByFuncPointer(funcPointer);
sendFuncNameToRemote(funcName, funcParas);

Step 3: Call the function when receiving a remote
call request:

executeRemoteCall (funcName, funcParas) {
funcPointer = lookup JumpTable(funcName);
dispatchFunc(funcPointer, funcParas);

Implementing Remote Calls
In one embodiment, a remote call from the CPU to GPU, or

GPU to CPU may be complicated by the fact that the two
processors have different operating systems and different
loaders. The two binaries are also loaded separately and asyn
chronously. Suppose that the CPU code makes some calls into
the GPU. When the CPUbinary is loaded, the GPUbinary has
still not been loaded and hence the addresses for GPU func
tions are still not known. Therefore, the OS loader may not
patch up the references to GPU functions in the CPU binary.
Similarly, when the GPU binary is being loaded, the GPU
loader does not know the addresses of any CPU functions
being called from GPU code and hence may not patch those
addresses.

FIG. 4 is a flow chart of an embodiment for implementing
remote calls. A sequence 400 may be implemented in firm
ware, Software, or hardware. In one embodiment, remote calls
may be implemented by using a combination of compiler and
runtime techniques. The language rules ensure that any func
tion involved in remote calls (GPU or wrapper attribute func
tions) is annotated by the user. When compiling Such func
tions, the compiler adds a call to a runtime API that registers
function addresses dynamically (block 410). The compiler
creates an initialization function for each file that invokes all
the different registration calls (block 420). When the binary
gets loaded, the initialization function in each file gets called

5

10

15

25

30

35

40

45

50

55

60

65

8
(block 430). The shared address space contains a jump table
that is populated dynamically by the registration function
(block 440). The table contains one slot for every annotated
function. The format of every slot is <funcName, funcAddred
where funcName is a literal string of the function name and
funcaddr is the runtime address of the function.

FIGS. 5 and 6 are flow charts of embodiments of a trans
lation scheme. Sequences 500 and 600 may be implemented
in firmware, software, or hardware. In accordance with one
embodiment, the translation scheme may work as follows.

1. If a GPU (CPU) function is being called within a GPU
(CPU) function (block510), the compiler generated code will
do the call as is (block 520).

2. If a GPU function is being called within a CPU function
(block 610), the compiler generated code will do a remote call
to GPU:

2.1. The compiler generated code will look up the jump
table with the function name and obtain the function
address (block 620).

2.2. The generated code will pack the arguments into an
argument buffer in shared space (block 630). It will then
call a dispatch routine on the GPU side passing in the
function address and the argument buffer address (block
640).

There is similar process for a wrapper function except that
it is a remote call to CPU if a wrapper function is called in a
GPU function.

FIG. 7 is a flow chart of an embodiment for function pointer
invocations. A sequence 700 may be implemented in firm
ware, software, or hardware. For function pointer invoca
tions, the translation scheme may work as follows. When a
function pointer with GPU annotation is assigned (block
710), the compiler generated code will look up the jump table
with the function name and assign the function pointer with
obtained function address (block 720). Although the lookup
may be optimized out when GPU annotated function pointer
is assigned within GPU code, the optimization may be for
saken to use a single strategy for all function pointer assign
ments. If a GPU function pointer is being called within a GPU
function (block 730), the compiler generated code will do the
call as is (block 740). If a GPU function pointer is being called
within a CPU function (block 730), the compiler generated
code will do a remote call to GPU side (block 750). The
process is similar for a wrapper function pointer except that
there is a remote call to CPU side if wrapper function pointer
is called in a GPU function.
The CPU-GPU signaling happens with task queues in the

PCI aperture space. Daemon threads on both sides poll their
respective task queues and when they find an entry in the task
queue, they spawn a new thread to invoke the corresponding
function. In one embodiment, the API for remote invocations
is described below.

f* remote calls. The function type and arg types
encapsulate the function pointer and arguments. */

RPCHandler callRemote(myoFunctionType, MyoRPCArgType);
intresultReady(MyoRPCHandler);
MyoType getResult(MyoRPCHandler)

Code Example
This section illustrates one embodiment of the proposed

programming model through a code example that illustrates a
simple, vector addition (addTwoVectors) that may be accel
erated through the GPU.

US 8,397.241 B2

int addTwoVectors(int a, int' b, int' c)
{

for (i = 1 to 64) {
ci = a i + bi)

int some App(...)

int *a = malloc (...); int b = malloc (...); int c
= malloc (...);

for (i = 1 to 64) {ai} = ; bi = ; ci) = ; /
initialize

addTwoVectors(a, b, c):

In the embodiment of the programming model, this
would be written as:

attribute(GPU) int addTwoVectors(shared inta,
shared int' b, shared int' c)

{
for (i = 1 to 64) {

ci = a i + bi;

int some App(...)
{

shared inta = shared Malloc (...); allocate in
shared region

shared int' b = shared Malloc (...); //allocate in
shared region

shared int c = shared Malloc (...); allocate in
shared region

for (i = 1 to 64) {ai} = ; bi = ; ci) = ; /
initialize

addTwoVectors(a, b, c):
into remote call

if compiler converts

In the above implementation, arrays a, b, c are allocated in
shared space by calling the special malloc function. The
remote call (addTwoVectors) acts as the release/acquire point
and causes the memory region to be synced up between CPU
& GPU.
One embodiment of a corresponding CUDA code snippet

is presented below. Note that the user has to explicitly allocate
the CPU and GPU memory spaces and copy the data from one
side to the other. Note also that if these were more complex
pointer containing data structures, a simple memcpy would
not be sufficient to transfer the data from one side to the other.
Instead, explicit marshalling would be needed.

int some App(...)
{

int a = malloc (...); // allocate in CPU memory
int' b = malloc (...); // allocate in CPU memory
int c = malloc (...); // allocate in CPU memory
int *aD, *bD, *cD; // arrays for the GPU devices
for (i = 1 to 64) {ai} = ; bi) = ; ci) = ; /

initialize
cudaMalloc(aD); // allocate space on GPU
cudaMalloc(bD); // allocate space on GPU
cudaMalloc(cD); // allocate space on GPU
cudaMemcpy (a D, a.,..., cudaMemcpy HostToDevice); if

copy a
cudaMemcpy(bD, b, ..., cudaMemcpyHostToDevice); //

copy b
addTwoVectors << ...

computation
cudaMemcpy (c, cD, ..., cudeMemcpyDeviceToHost); if

>> (...) I do the GPU

copy c

10

15

25

30

35

40

45

50

55

60

65

10
Embodiments of the invention may be implemented in a

processor-based system that may include a general-purpose
processor coupled to a chipset in one embodiment. The
chipset may be coupled to a system memory and a graphics
processor. The graphics processor may be coupled to a frame
buffer, in turn coupled to a display. In one embodiment, the
embodiments of the invention shown in FIGS. 1-7 may be
implemented as Software stored in a computer-readable
medium, Such as the system memory. However, embodiments
of the present invention may be also implemented inhardware
or firmware.

CONCLUSION

Embodiments of the programming model provide a shared
memory model including language constructs for CPU-GPU
platforms which enables fine-grain concurrency between the
CPU and GPU. The uniform programming model may be
implemented for both discrete and integrated configurations
as well as for multi-GPU and hybrid configurations. User
annotations may be used to demarcate code for CPU and GPU
execution. User level communication may be provided
between the CPU and GPU thus eliminating the overhead of
OS driver calls. A full software stack may be implemented for
the programming model including compiler and runtime Sup
port.

References throughout this specification to “one embodi
ment” or “an embodiment’ mean that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one implementation
encompassed within the present invention. Thus, appearances
of the phrase "one embodiment” or “in an embodiment” are
not necessarily referring to the same embodiment. Further
more, the particular features, structures, or characteristics
may be instituted in other suitable forms other than the par
ticular embodiment illustrated and all such forms may be
encompassed within the claims of the present application.

While the present invention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and variations
therefrom. It is intended that the appended claims cover all
such modifications and variations as fall within the true spirit
and scope of this present invention.
The invention claimed is:
1. A method providing:
shared memory semantics between a central processing

unit (CPU) and a graphics processing unit (GPU) includ
ing allowing pointers to be passed and data structures to
be shared as is between the CPU and GPU;

sharing only a portion of virtual address space between the
CPU and the GPU;

if a GPU function is being called within a GPU function,
performing the call as is:

if a GPU function is being called within a CPU function,
performing a remote call to the GPU;

if a CPU function is being called within a CPU function,
performing the call as is; and

if a CPU function is being called within a GPU function,
performing a remote call to the CPU.

2. The method claimed in claim 1, wherein code can be
flexibly executed on both the CPU and GPU.

3. The method claimed in claim 2, further comprising:
offloading a kernel to the GPU using CPU code; and
using the kernel to call preexisting libraries on the CPU, or

make other calls into CPU functions.
4. The method claimed in claim 1, including sharing

objects having virtual functions such that a correct virtual

US 8,397.241 B2
11

function is invoked on the CPU or the GPU in response to a
virtual function being called on a shared object by either the
CPU or GPU.

5. The method claimed in claim 1, further comprising:
identifying data that is shared between the CPU and GPU

with a shared keyword;
allocating global shared variables in a shared memory

space; and
providing a function to allocate data in the shared memory.
6. The method claimed in claim 1, further comprising using

an attribute to indicate functions that should be executed on
the CPU or GPU.

7. The method claimed in claim 1, further comprising:
adding a call to a runtime application program interface

(API) that registers function addresses dynamically;
creating an initialization function for each file that invokes

different registration calls;
when a binary gets loaded, calling the initialization func

tion in each file; and
populating dynamically a jump table in the shared address

space to contain function addresses.
8. The method claimed in claim 1, further comprising:
looking up a jump table with a function name and obtaining

a function address associated with the function name:
packing in arguments into a buffer in a shared memory

space; and
calling a dispatch routine on the GPU side passing in the

function address and the argument buffer address.
9. The method claimed in claim 1, further comprising:
when a function pointer with GPU annotation is assigned,

looking up a jump table with a function name and assign
ing the function pointer with an obtained function
address.

10. The method claimed in claim 9, wherein if a GPU
function pointer is being called within a GPU function, com
piler generated code will perform the call as is.

11. The method claimed in claim 10, wherein if a GPU
function pointer is being called within a CPU function, the
compiler generated code will do a remote call to GPU side.

10

15

25

30

35

12
12. A non-transitory computer readable medium storing

instructions that, if executed, enable a processor-based sys
ten to:

share memory semantics between a CPU and a GPU
including allowing pointers to be passed and data struc
tures to be shared as is between the CPU and GPU;

add a call to a runtime API that registers function addresses
dynamically

create an initialization function for each file that invokes
different registration calls;

when a binary gets loaded, call the initialization function in
each file; and

populate dynamically a jump table in the shared address
space to contain function addresses.

13. The computer readable medium claimed in claim 12,
further storing instructions to:

execute code on both the CPU and GPU.
14. The non-transitory computer readable medium claimed

in 12, further storing instructions to:
offload a kernel to the GPU using CPU code; and
use the kernel to call preexisting libraries on the CPU, or

make other calls into CPU functions.
15. The non-transitory computer readable medium claimed

in claim 12, further storing instructions to:
share objects that have virtual functions such that the cor

rect virtual function is invoked on the CPU or the GPU in
response to a virtual function being called on a shared
object by either the CPU or GPU.

16. The non-transitory computer readable medium claimed
in claim 12, further storing instructions to:

identify data that is shared between the CPU and GPU with
a shared keyword;

allocate global shared variables in a shared memory space;
and

provide a function to allocate data in the shared memory.
17. The non-transitory computer readable medium claimed

in claim 12, further storing instructions to:
use an attribute to indicate functions that should be

executed on the CPU or GPU.

k k k k k

