
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2007/0061347 A1

Burnley et al.

US 20070061347A1

(43) Pub. Date: Mar. 15, 2007

(54)

(75)

(73)

(21)

(22)

SYSTEMAND METHOD FOR STORING AND
AGGREGATING DATA

Inventors: Christopher Burnley, Daly City, CA
(US); Brian Gerhold, Los Gatos, CA
(US); Wei Zheng, El Cerrito, CA (US);
Pamela Day, San Francisco, CA (US);
Mike Sherman, Redwood City, CA
(US)

Correspondence Address:
RAYMOND R. MOSER JR., ESQ.
MOSER PLAW GROUP
1040 BROAD STREET
2ND FLOOR
SHREWSBURY, NJ 07702 (US)

Assignee: BLAZENT, INC., San Mateo, CA (US)

Appl. No.: 11/554,632

Filed: Oct. 31, 2006

Software Software
Resource Resources M

Scheduler

Browser Software
Tracket Utilization

Tracker

OSTracker

Related U.S. Application Data

(60) Division of application No. 10/136,177, filed on May
1, 2002, which is a continuation of application No.
10/135,864, filed on Apr. 29, 2002, now Pat. No.
6,782,350.

(60) Provisional application No. 60/286,814, filed on Apr.
27, 2001.

Publication Classification

(51) Int. Cl.
G06F 7700 (2006.01)

(52) U.S. Cl. .. 707/100

(57) ABSTRACT

Some embodiments of the invention provide a method for
tracking the use of Software resources of a computer. This
method identifies an instance when a particular software
resource is used. It then measures and records a time period
relating to the detected utilization of the software resource.
In some embodiments, this time period is an estimated
duration of the utilization of the software resource.

Hardware
Resource 1

Software Hardware Hardware
Inventory Utilization Inventory
Tracker Tracker Tracker

255

Data Aggregator

Messenger
60

US 2007/0061347 A1 Patent Application Publication Mar. 15, 2007 Sheet 1 of 28

I omnÃ¡?

Z 0.1m31,

9

US 2007/0061347 A1 Patent Application Publication Mar. 15, 2007 Sheet 2 of 28

Patent Application Publication Mar. 15, 2007 Sheet 3 of 28

Identify removed files, and delete
reference to these file from the inventory cache

For each new file, extract license Script, if any;
execute the script to obtain license data;

incorporate license data in data item for the file

Primary Secondary
Identifier O O O 410

O
415

Primary Secondary
Identifier Identifier

Figure 4

330

Primary
Identifier

US 2007/0061347 A1

325

405

Secondary
Identifier

420

Secondary
Identifier Identifier

Patent Application Publication Mar. 15, 2007 Sheet 4 of 28 US 2007/0061347 A1

Yes

525

Generate modify
data item identifier

match?

Generate add
data item

Generate modify
data item

Figure 5

US 2007/0061347 A1 Patent Application Publication Mar. 15, 2007 Sheet 5 of 28

0I 0,1m81,

II ou mãi.{ LII:II ejeq dois 00? I000 I

9 0.4m31,

006

6 ou mãi.{
CII onbrun,

Patent Application Publication Mar. 15, 2007 Sheet 6 of 28 US 2007/0061347 A1

Identify each new process and add to internal process
list; for each new process, get SID, generated unique

ID, identify start time, and store these attributes
710

705

Increment process running duration for all processes on the
list, except the ones that were just added at 705

715

Any
process in
focus?

725

Increment its focus
duration. focused process

Identify each terminated process; for each
identified process, identify the stop time and

total duration, and store these attributes

Patent Application Publication Mar. 15, 2007 Sheet 7 of 28 US 2007/0061347 A1

805

Select a process
from internal process list

If cache stores start data for the selected
process, then generate a start data item

Generate update data item for incremental process
running duration; reinitialize process duration

820 cache stores focus and/or active
for the selected process, add focus
and/or active data to the generated

data item; reinitialize added duration

825
Ya If cache stores stop data for the selected

process, then generate a stop data item

If cache stores stop data for the selected process,
remove the selected process from process list

830

840

Specify the tracking-interval
start and stop times

Figure 8

ZI 0,1m81, 9I 9.1m814?I 0,1m81,

CII onbrun?

US 2007/0061347 A1

00|LIuI3II eqeq dois

ZI 0,1m3,

CII SS3ooid-pºsnoog is, I ssaoouq

Patent Application Publication Mar. 15, 2007 Sheet 8 of 28

Patent Application Publication Mar. 15, 2007 Sheet 9 of 28 US 2007/0061347 A1

1302

any prior URL
event?

1340

Received
URL event identical
to Current URL

event?

Current URL = received URL.

Create new unique id, identify
browser, identify start time, and

store these attributes. Add received
event to URL-event List

Increment running duration

1320

1345

Identify stop time for
Current URL, and

store these attributes

Browser in
focus?

1335
1325 A.

Increment URL event's
focused duration

Browser
active?

Increment URL event's
focus and active duration Figure 13

Patent Application Publication Mar. 15, 2007 Sheet 10 of 28 US 2007/0061347 A1

Select a URL event
from URL event list

If cache stores start data for the selected
event, then generate a start data item

1405

Generate update data item for incremental process
running duration; reinitialize event duration

focache Stores focus and/or active
for the selected URL event, add focus
and/or active data to the generated

data item; reinitialize added duration

If cache stores stop data for the selected
event, then generate a stop data item

- 4

If cache stores stop data for the selected event,
remove the selected event from event list

1430

25

All events
examined?

1435
Yes

Specify the tracking-interval
start and stop times F gure I 4

Patent Application Publication Mar. 15, 2007 Sheet 11 of 28 US 2007/0061347 A1

1805

Create an inventory cache or load
previously created cache

/ 810
Generate list of hardware

resources installed on client computer
1815

A.
Select resource from list

and generate HID

Does cache
specify selected

resource?

No

Add resource ID to cache and
generate add date item

1830

Yes

Last
resource? No

Yes

1835 1845
A.

Yes

1840
A.

Select an unexamined resource,
generate data item specifying

its removal and remove from cache

Figure 18

All resources
specified by cache

examined?

US 2007/0061347 A1 Patent Application Publication Mar. 15, 2007 Sheet 12 of 28

ÞZ 0.1m81,

0Z 0.1m81, OZZ

6I 0,1m81,

Patent Application Publication Mar. 15, 2007 Sheet 13 of 28 US 2007/0061347 A1

Start

2105

Obtain data regarding the total use and per application
use of a hardware resource at a particular time

2110
A. Store total-use data and per-application use

data, increment summation data regarding
total use and per-applicaiton use

21 60
2120 A.

Increment counter.
If applicable,

increment duration

Is this the
first data for this

interval?

Perform averaging, min, and
max operations

2150
Increment counter.

If applicable,
increment
duration

Perform averaging,
min, and max
operations

Select
application

2145

Figure 21

Patent Application Publication Mar. 15, 2007 Sheet 14 of 28 US 2007/0061347 A1

2105

Obtain data regarding the total use
of a hardware resource at a particular time

20 Store total-use data; increment
summation data regarding total

USC

Is this the
first data for this

interval?

2125

Perform averaging, min, and
max operations

Increment counter.
If applicable,
increment
duration

Patent Application Publication Mar. 15, 2007 Sheet 15 of 28 US 2007/0061347 A1

2305

2310

overall use threshold

Yes

Generate data item for total use

Identify exception level

Populate exception level data

Store any
unexamined data
for any app whose
use exceeded its

Retrieve data, and
generate data item for

selected app use

Figure 23

US 2007/0061347 A1 Patent Application Publication Mar. 15, 2007 Sheet 16 of 28

--

?o
i Co
Q on

e

çZ 0.4m31,

Patent Application Publication Mar. 15, 2007 Sheet 17 of 28 US 2007/0061347 A1

Select a rule for the data item

Does rule
require

modification?

Modify
data item

Does rule
squire deletion

Mark data item for
deletion

Yes

Have filtering engine delete all
items marked for deletion

Figure 26

US 2007/0061347 A1

08 LZ-3SnoqºJeAA
eyeOI

SOLZ

Patent Application Publication Mar. 15, 2007 Sheet 18 of 28

6Z 0.1m81,

US 2007/0061347 A1

996Z

3.IBAJOS

Patent Application Publication Mar. 15, 2007 Sheet 20 of 28

Patent Application Publication Mar. 15, 2007 Sheet 21 of 28 US 2007/0061347 A1

3005
Extract resource ID
and session ID 3050

Is there an
association for

user?
operation an

Has
resource been
inventoried

Extract all inventory
data from received data item

3025

is there an
association for

user?
Is

operation a
odify

Retrieve previous
record; generate data
item to add records to
the assettables and
add and modify
records in the

Asset Personnel Table

Generate data item to
add record to the

Asset Personnel Table
Generate data item to add

records to the asset tables and
Asset Personnel table

Generate data item to
modify record in the

Asset Personnel Table

Have the data item filtered,
and store any remaining

3030 data in the collection database

Return notification

Figure 30

Patent Application Publication Mar. 15, 2007 Sheet 22 of 28 US 2007/0061347 A1

Extract resource ID
and session ID

operation an

3050

Is there an
association for

user?

Has
resource been
inventoried?

Is there an
association for

user?

Ye

Generate data item to
add record to the

Asset Personnel Table

Extract all inventory
data from received data item

3025
Generate data item to add A.

records to the assettables and
Asset Personnel table

Generate data item to
modify record in the

Asset Personnel Table

Have the data item filtered,
and store any remaining

data in the collection database

Return notification

Figure 31

Patent Application Publication Mar. 15, 2007 Sheet 23 of 28 US 2007/0061347 A1

3205

Extract session ID,
resource D, and Unique ID

3210

Resource
inventoried?

Specify Process ID

3230

Generate data item for
completing the process'
record in the process

utilization table

Generate data item for
adding new process
utilization record.

Stop data item?

Durations
valid?

Return
failure

Generate data item for updating one or more
records in the process utilization tables

Have the data item filtered, and store any
remaining data in the collection database

Return notification

Figure 32

Patent Application Publication Mar. 15, 2007 Sheet 24 of 28 US 2007/0061347 A1

Start

3205

Extract session ID,
resource D, and Unique ID 3305

3210 Extract inventory
information and

generate data item
to add it to the
Asset tables

Resource
inventoried?

Yes 3225

3. Start
3250 data item? Specify Process ID

3230

Generate data item for
completing the process'
record in the process

utilization table

Generate data item for
adding new process
utilization record.

Stop data item?

3215

Durations
valid?

Return
failure

Generate data item for updating one or more
records in the process utilization tables

Have the data item filtered, and store any
remaining data in the collection database

Return notification

Patent Application Publication Mar. 15, 2007 Sheet 25 of 28 US 2007/0061347 A1

Rule for
ategorizing2

Select a first
categorization criteria

based on rule

3415

3420

elected first criteria, doe
data item specify a value that
matches one of the stored

values for this
criteria?

Select another
categorization criteria

he data item specify a
value for the selected criteria

that matches a value in the set of
values stored for the set of

criteria selected
thus far?

uncategorized

3430

3440

Categorize based on
all selected criteria

No except the last one

Categorize based on all
selected criteria

Figure 34

Patent Application Publication Mar. 15, 2007 Sheet 26 of 28 US 2007/0061347 A1

Rule for
categorizing? based on rule

3520

uncategorized
Recognize

manufacturer?

Does
path information contain
common path ID's for the

manufacturer?

Categorize based on
manufacturer

Is executable
name in the bin for the
identified common

path ID?

Categorize based on
manufacturer and
matching path ID

Categorize based on
Is version manufacturer,

in the bin for the identified matching path D,
executable name? and matching

executable name

Categorize based on
manufacturer, and
matching path ID,
executable name,

version, and app name

Categorize based
on manufacturer,
and matching path
ID, executable

name, and version

Is application
name in the bin for the
identified version?

Figure 35

069€.
------------| uo?deox?TAAGI

US 2007/0061347 A1

------ unabo
Y

p?TSS300IJ?

Patent Application Publication Mar. 15, 2007 Sheet 27 of 28

Patent Application Publication Mar. 15, 2007 Sheet 28 of 28 US 2007/0061347 A1

f
VO
N
er i S

3
S 2.3

E as O As

O
r
N
er

3
E. er

S)
N

d l is S S S SJ SU to > S9

-

3 d
ta

() N.
U car

9
A

Sh
is S G CM

/S

US 2007/0061347 A1

SYSTEMAND METHOD FOR STORING AND
AGGREGATING DATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a divisional application of appli
cation Ser. No. 10/136,177, entitled “System for Managing
Resources’, which is a continuation of application Ser. No.
10/135,864, entitled “Method and Apparatus for Managing
Resources', filed Apr. 29, 2002, now U.S. Pat. No. 6,782,
350, which issued Aug. 24, 2004, and which claims the
benefit of provisional Application No. 60/286,814, entitled
“Digital Asset/Digital Resource Management and Reporting
System”, filed Apr. 27, 2001, the disclosures of which are
incorporated herein by reference in their entirety.

BACKGROUND

0002) 1. Field of the Invention
0003 Embodiments of the present invention are directed
to method and apparatus for managing resources and in
particular to a system and method for storing and aggregat
ing data for later retrieval.
0004 2. Description of Related Art
0005. In the last few years, there has been a dramatic
increase in the number of computers that are used in
business and residential environments. The use of comput
ers, however, is not well understood. This is because cur
rently there are few mechanisms for gathering data relating
to the hardware and software resources of computers and to
the usage of these resources. There are even fewer mecha
nisms for analyzing any such data. Therefore, there is a need
in the art for a system that gathers data relating to the
hardware and Software resources of one or more computer
and gathers data relating to the usage of these resources. In
addition, there is a need for a system that filters and analyzes
Such data, in order to provide a better understanding of the
resources employed by the computers and the usage of these
SOUCS.

SUMMARY

0006. Some embodiments of the invention provide a
method for tracking the use of software resources of a
computer. This method identifies an instance when a par
ticular software resource is used. It then measures and
records a time period relating to the detected utilization of
the Software resource. In some embodiments, this time
period is an estimated duration of the utilization of the
Software resource.

BRIEF DESCRIPTION OF THE DRAWINGS

0007 FIG. 1 presents a block diagram that conceptually
illustrates one embodiment of the invention.

0008 FIG. 2 illustrates the software architecture of a
client application of Some embodiment of the invention.
0009 FIG. 3 illustrates several operations that a software
inventory tracker of Some embodiments performs.
0010 FIG. 4 illustrates one example of a cache used by
the software inventory tracker.

Mar. 15, 2007

0011 FIG. 5 illustrates several operations that the soft
ware inventory tracker performs.
0012 FIG. 6 presents a conceptual illustration of a soft
ware utilization tracker of some embodiments.

0013 FIG. 7 illustrates several operations that a data
gathering engine of the Software utilization tracker per
forms.

0014 FIG. 8 illustrates several operations that a data
exporting engine of the Software utilization tracker per
forms.

0.015 FIGS. 9-11 illustrates the attributes of start, update,
and stop software-utilization data items in some embodi
ments of the invention.

0016 FIG. 12 presents a conceptual illustration of a
browser tracker.

0017 FIG. 13 illustrates several operations that a data
gathering engine of the browser tracker performs.
0018 FIG. 14 illustrates several operations that a data
exporting engine of the browser tracker performs.
0.019 FIGS. 15-17 illustrates the attributes of start,
update, and stop browser data item in some embodiments of
the invention.

0020 FIG. 18 illustrates several operations that a hard
ware inventory tracker.
0021 FIG. 19 illustrates an example of an add inventory
data item for a CPU.

0022 FIG. 20 illustrates a hardware utilization tracker of
Some embodiments of the invention.

0023 FIG. 21 illustrates a set of operations that a data
gathering engine of the hardware utilization tracker per
forms.

0024 FIG. 22 illustrates a set of operations that the
data-gathering engine of the hardware utilization tracker
performs for the storage utilization.
0025 FIG. 23 illustrates several operations that a data
exporting engine of the hardware utilization tracker per
forms.

0026 FIG. 24 illustrates the attributes of a hardware
utilization data item III some embodiments.

0027 FIG. 25 illustrates the software architecture of a
data filter of some embodiments of the invention.

0028 FIG. 26 illustrates a flow of operations of the data
filter.

0029 FIG. 27 illustrates the architecture of the server
side software of some embodiments of the invention.

0030 FIG. 28 illustrates the schema of a collection
database of some embodiments of the invention.

0031 FIG. 29 illustrates the architecture of the applica
tion server in some embodiments of the invention.

0032 FIG. 30 illustrates several operations that a soft
ware inventory handler of some embodiments performs.
0033 FIG. 31 illustrates several operations that a hard
ware inventory handler of some embodiments performs.

US 2007/0061347 A1

0034 FIG. 32 illustrates several operations that a soft
ware utilization handler of some embodiments performs.
0035 FIG.33 illustrates several operations that a browser
handler of some embodiments performs.
0.036 FIG. 34 presents a conceptual illustration of the
categorization operation of a server data filter.
0037 FIG. 35 presents a more detailed example of the
categorization operations that the server data filter performs
in Some embodiments.

0038 FIG. 36 illustrates the schema for a data ware
house.

0.039 FIG. 37 illustrates a conceptual block diagram of a
computer.

DETAILED DESCRIPTION

0040. In the following description, numerous details are
set forth for purpose of explanation. However, one of
ordinary skill in the art will realize that the invention may be
practiced without the use of these specific details. In other
instances, well-known structures and devices are shown in
block diagram form in order not to obscure the description
of the invention with unnecessary detail.
I. SYSTEMARCHITECTURE

0041 FIG. 1 presents a block diagram that conceptually
illustrates one embodiment of the invention. This embodi
ment is a resource measurement system (RMS) 100 that is
designed to provide visibility and insight into utilization of
computer resources. The RMS 100 uses a client-server
architecture. Hence, it includes a server 105, a network 110,
and several client computers 115. It also includes a data
storage 125.
0042 Each client computer is a computing device, such
as a server computer, a desktop computer, a laptop computer,
a personal digital assistant ("PDA), a network device, etc.
In the embodiment illustrated in FIG. 1, each client com
puter includes a client application 120 that gathers certain
information regarding the resources of its client computer
and the usage of these resources. In some embodiments,
each client application 120 is automatically loaded onto its
client computer from the server 105 when its client com
puter is first introduced in the client-server environment.
One example of a client application 120 is further described
below in Section II.

0043. The client applications 120 relay the data that they
gather to the server 105 through the network 110. This
network can be a local area network (“LAN”), a wide area
network (“WAN”), or a network of networks (such as the
Internet). The server 105 processes the data that it receives
from the client applications. For instance, it might filter,
combine, and/or categorize the received data. It then stores
the data in a data storage 125. The server then analyzes the
data in the data storage and generates reports based on this
data. The analysis and reporting can be done in an automated
fashion. Alternatively, the analysis and/or reporting might be
done by an administrator or at the direction of the admin
istrator.

0044) In some embodiments, one computer forms the
server 105 and its data storage 125. Alternatively, in other
embodiments, several computers form the server and/or its

Mar. 15, 2007

data storage. For instance, in some embodiments, one or
more server computers are used to gather data from the
client applications, one or more data storage computer
systems are used as the data storage, and one or more server
computers are used to analyze and generate reports based on
the data stored in the data storage. The server 105 and its
data storage are further described below in Section III for
Some embodiments of the invention.

II. CLIENT APPLICATION

0045 A. ARCHITECTURE
0046 FIG. 2 illustrates the software architecture of the
client application 120 of some embodiment of the invention.
As shown in this figure, the client application 120 includes
a browser tracker 205, a software utilization tracker 210, a
software inventory tracker 215, a hardware utilization
tracker 220, a hardware inventory tracker 225, an operating
system (“OS ’) tracker 230, an activity tracker 235, a
scheduler 240, a data filter 245, a data aggregator 250, an
event trigger 255, and a messenger 260.
0047 As further shown in this figure, the client computer
115 typically includes one or more browsers 265, several
software resources 270, and several hardware resources 275.
Not illustrated in FIG. 2 is the operating system that controls
the usage of the hardware resources and serves as the
foundation of the software applications of the client com
puter 115. Different embodiments of the invention use
different operating systems for the client computer. The
embodiments described below use one of the Windows.(R)
operating systems offered by Microsoft Corporation.

0048. The client application’s software and hardware
inventory trackers 215 and 225 respectively inventory the
various software and hardware resources 270 and 275 of the
client computer 115. The software resources inventoried by
the software inventory tracker 215 include application and
non-application files that are stored in the client computers
storage (e.g., its hard drive or removable storage). Examples
of Such files are .exe, Sys, .com, bat, .dll, .doc, XS1 files.
0049. The hardware resources inventoried by the hard
ware inventory tracker 225 can include any hardware or
hardware setting of the client computer 115. Examples of
these resources are memory, disk storage, CPU(s), network
card(s), Sound card, Video card, virtual memory settings, etc.
0050. The client application's browser tracker 205 moni
tors the use of the client computer's browsers. The browser
tracker tracks different browser events in different embodi
ments. In the embodiments described below, the browser
tracker tracks one or more time periods for each URL event
of the browsers. Different embodiments define a URL event
differently. In the embodiments described below, a URL
event is detected upon a Successful download of the content
that resides at a particular URL. In other embodiments, a
URL event occurs when a browser requests certain content
that resides at a particular URL. The content residing at a
particular URL will be referred to below as the particular
URLs content.

0051. In the embodiments described below, the time
periods that the browser tracker maintains for each URL
event are run time, focus time, and active time. A URL
event's run time represents the duration of time that a
browser presents the URLs content at the client computer

US 2007/0061347 A1

(e.g., displays in a window or frame). Focus time represents
the duration of time that the browser's presentation of a
URL's content is in focus. Different embodiment can have
different definitions for an application that is in focus. In the
embodiments described below, an application is in focus
when it is an application that takes input from the keyboard
and the mouse button. Active time represents the duration of
time that a user at the client computer is actively engaged
with the browser's presentation of a URLs content.

0.052 The software utilization tracker 210 monitors the
use of the client computer's software resources 270. This
tracker tracks different usage metrics in different embodi
ments of the invention. In some embodiment, this tracker
records three time periods each time a software application
is opened on the client computer. These three time periods
are: (1) run time, which represents the duration of time that
the application is open, (2) focus time, which represents the
duration of time that the application is in focus, and (3)
active time, which represents the duration of time that the
user is actively engaged with the application. The client
applications hardware utilization tracker 220 monitors the
use of certain hardware resources 275 of the client computer
115. In some embodiments, this tracker records certain
performance characteristics of certain hardware resources
over time. For instance, in Some embodiments, this tracker
records the utilization of the computer's CPU(s), memory,
disk storage, and network adapter(s) over time.

0053) The hardware utilization tracker 220, the browser
tracker 205, and the software utilization tracker 210 interact
with the scheduler 240 in order to synchronize their data
collection with the universal clock of the computer system
100 of FIG. 1. Specifically, each of these trackers includes
a local cache in which it stores data that it sporadically
receives and/or generates. The data in each tracker's local
cache is periodically stored to the storage of the client
computer. This allows the data to be recovered by the server,
in the event of an unexpected shutdown (e.g., a crash) of the
client computer or in the event that the client application
does not get a chance to send all its data to the server before
it has to logoff. In such events, the server can receive the data
the next time that the client application starts on the client
computer. Based on a notification from the scheduler, each
tracker reads out the content of its local cache and generates
data items relating to data that it generated and/or collected
during a particular time interval. In some embodiments, the
server configures each of the three trackers 205, 210, and
220 to ask the scheduler to send it notifications according to
a particular schedule for the tracker. The scheduler maintains
a time that is synchronized with the clock of the server 105,
and this in turn allows the scheduler to send its notifications
according to the server clock.

0054 These notifications, in turn, allow the three trackers
205, 210, and 220 to gather their data according to the
system clock.

0055. In the embodiment illustrated in FIG. 2, the soft
ware and hardware inventory trackers 215 and 225 do not
use the scheduler to schedule their inventory operations.
This is because the design of the client application 120 does
not require precise temporal data with the inventory data.
Therefore, it allows the inventory trackers to control the start
of their inventory operations based on timers that they keep
internally. One of ordinary skill, however, will understand

Mar. 15, 2007

that other embodiments might require the inventory trackers
to gather their inventory data at precise system times iden
tified through the scheduler or some other mechanism.
Alternatively, one of ordinary skill will also appreciate that
Some embodiments might not require Software inventory
tracker 205, software utilization tracker 210, and/or hard
ware utilization tracker 220 to use the scheduler or to operate
based on the system clock.

0056. The browser and software utilization trackers 205
and 210 also interact with the OS tracker 230 and the activity
tracker 235, as illustrated in FIG. 2. The OS tracker 230
periodically provides the browser and software utilization
trackers with the identity of (1) the software application that
is currently in focus, and (2) the list of the applications that
are currently open. In some embodiments that are imple
mented in the MS Windows.(R) environment, the OS tracker
identifies the focused application and obtains the current
process list from the OS by using commonly used processes
that are generally referred to as Enum Procs for the different
Windows OSs.

0057 The activity tracker 235 provides the browser and
software utilization trackers with an activity variable that
specifies whether the application that is in focus is active or
not (i.e., whether the computer user is actively engaging the
application that is currently in focus). In some embodiments,
the activity tracker determines whether the focused appli
cation is active based on keyboard and mouse events. For
instance, in some embodiments, the activity tracker uses a
timer to check periodically for the keyboard and mouse
events. Specifically, each time the timer expires, the activity
tracker in these embodiments uses GetASynch KeyState and
GetCursorPos APIs to obtain the content of the keyboard
and mouse buffers. When the retrieved content of either of
these buffers has changed from the last time that the activity
tracker retrieved their contents, the activity tracker sets its
activity variable to active if this variable was previously
inactive. On the other hand, when the content of neither
buffer has changed from the last time that the activity tracker
checked these buffers, the activity tracker sets the activity
variable to inactive if this variable was previously active.
After retrieving the contents of the keyboard and mouse
buffers and possibly changing the state of the activity
variable, the activity tracker resets its timer and waits for the
next time that it has to examine these buffers.

0058. The data filter 245 receives the data items gener
ated by the browser, software, and hardware trackers 205
225. This filter discards some of the collected data that is not
particularly relevant for the resource manager. In some
embodiments, the server 105 performs additional filtering
operations. Accordingly, in these embodiments, the filtering
operation of the data filter 245 is meant only as a first order
filtering operation that discards only some of the irrelevant
data.

0059) The data filter 245 stores the filtered data (i.e., the
data that remains after the filtering) in the data aggregator
250. The event trigger 255 checks the data items stored in
the data aggregator 250, in order to determine whether a
triggering event has occurred for transmitting some or all of
the data items in the aggregator to the server 105. In some
embodiments, the triggering events can relate to the amount
of data stored in the aggregator, the number of data items
stored in the aggregator, the attributes of one or more data

US 2007/0061347 A1

items, etc. Also, in some embodiments, one or more of the
triggering events might not be related to the data items. For
instance, in Some embodiments, a trigger event might be a
timer event that periodically occurs every fixed time interval
(e.g., every 30 minutes). To simplify the illustration of the
client applications architecture, FIG. 2 illustrates one data
aggregator 250 and one event trigger 255 for the browser,
software, and hardware trackers 205-225. However, some
embodiments specify one data aggregator and one event
trigger for each of these trackers. Whenever the event trigger
detects the occurrence of an event for transmitting some or
all of the data items in the aggregator, the event trigger
notifies the aggregator to pass the data items to the messen
ger 260 for transmission to the server 105 through the
network 110.

0060. The messenger 260 is a typical transport module
for a client/server environment. It is a bidirectional transport
module that receives and transmits data to the server 105. In
Some embodiments, this messenger employs a fail-safe
mechanism that caches the data items when the messenger
does not detect a network connection or when the messenger
fails to transmit successfully the data to the server (e.g.,
when the messenger does not receive a confirmation from
the server that it has received the data items, in the embodi
ments where the server is required to send an acknowledg
ment reply).
0061 This messenger also employs a back-off algorithm
that does not immediately try to resend data to the server
after a transmission failure.

0062) The messenger transmits each data packet with a
session identifier (“session ID'). The session ID is a unique
identifier that the server 105 assigns to the client application
each time the application starts. Each session ID uniquely
identifies each execution of the client application. Each
session ID includes the ID of the user that is logged on to the
client computer during the session. It also includes the ID of
the computer that is used during that session. In some
embodiments, the data items that are transmitted between
the client application and the server are embedded in XML
documents.

0063 FIG. 2 illustrates the client application architecture
for only some embodiments of the invention. One of ordi
nary skill will realize that other embodiments might employ
other architectures and/or other modules. For instance, some
embodiments might include modules to track the usage of
specific Software resources.
0064 B. SOFTWARE INVENTORY TRACKER
0065. The software inventory tracker 215 inventories the
software files of the client computer 115. The inventoried
Software resources include application and non-application
files, such as .exe files, .sys files, .com files, bat files, dll
files, doc files, Xsl files, etc. In some embodiments, the
software inventory tracker 215 periodically scans the client
computer's disk storage to inventory the software files that
it needs to examine. This tracker maintains a cache that
identifies all the inventoried software files.

0.066 Each time that this tracker identifies a software file
that has been added, removed, or modified, it generates a
data item that identifies the added, removed, or modified
data file. The tracker passes such data items to the data filter,
which then filters them and passes the filtered data to the

Mar. 15, 2007

aggregator for eventual transmission to the system server
105. At the system server, the inventoried data can be
analyzed for a variety of purposes. For instance, the data can
be analyzed in order to identity the software resources
employed on different client computers 115, to categorize
these software resources, to detect unauthorized additions,
removals, and/or modifications of software files, to detect
unlicensed software, etc. The inventoried data is also used to
facilitate the software utilization analysis that is performed
based on the data collected by the software utilization
tracker 210.

0067 FIG. 3 illustrates several operations that the soft
ware inventory tracker 215 performs periodically to create
and maintain its cache of inventoried files and to identify
added, removed, and modified files. The tracker 215 starts
these operations at the expiration of a timer that it maintains.
As shown in FIG. 3, the tracker 215 initially identifies (at
305) the list of files that it needs to scan. In some embodi
ments, the tracker 215 identifies at 305 only some of the files
that it needs to inventory periodically. This is because
instead of Scanning the entire storage of the client computer
in a single repetitive inventory operation, the tracker 215 in
Some embodiments divides its inventory operation into
several Sub operations, with each Sub operations inventory
ing a different set of files. This reduces the duration of each
inventory operation and thereby makes the inventory pro
cess less noticeable to the user.

0068 Next, at 310, the tracker 215 (1) creates an inven
tory cache when this is the first time that it is performing the
operations of FIG. 3 for the current session, or (2) loads the
previously created inventory cache when this iteration is not
the first iteration of the operations of FIG. 3.

0069. As mentioned above, the inventory cache identifies
all the inventoried software files. FIG. 4 illustrates one
example of Such a cache. As shown in this figure, the cache
405 includes one entry 410 for each software file that the
tracker 215 inventories. Each inventory entry 410 includes
a primary identifier 415 and a secondary identifier 420. In
the embodiments described below, the primary identifier is
a software inventory identification (“SIID), which is a
unique identification of a file that is produced based on the
content of the file. Some embodiments generate the SIID for
a file by hashing some or all of the file's content (e.g.,
hashing the first 10 MB of the file). Some of these embodi
ments use standard hashing techniques, such as a standard
128 bit hashing technique. The secondary identifier is based
on computer system attributes of the file. These attributes are
referred to below as secondary-identifier attributes. For
instance, in the embodiments described below, the second
ary identifier attributes includes the name, the storage loca
tion (e.g., the file path), modified date, and size of the file.
The secondary identifier attributes can include other
attributes, such as manufacturer (if applicable).

0070). As further described below, the tracker 215 uses
two identifiers for each inventoried file so that it can identify
previously inventoried files that have had only their content
modified or their system attributes modified. It should be
noted that a change to a file’s content would change its SIID.
Also, the tracker 215 treats a file as one that has not
previously been inventoried when the file's content, name,
and storage location are all modified after the file is inven
toried.

US 2007/0061347 A1

0071. After creating or loading the cache at 310, the
tracker 215 scans (at 315) each file in the list generated at
305. For each scanned file, the tracker 215 performs (at 315)
several operations illustrated in FIG. 5. These operations (1)
generate an SIID for the file, and (2) possibly generate a data
item for the file if it has not yet been inventoried or if it has
been modified after the last time that it was inventoried.

0072 Specifically, as shown in FIG. 5, the tracker 215
generates (at 505) an SIID for the file. It then determines (at
510) whether the inventory cache includes an entry with an
SIID that matches the SIID of the file. If not, the tracker 215
then determines (at 515) whether the inventory cache
includes an entry that specifies secondary-identifier
attributes that match the file’s secondary-identifier
attributes. If not, the tracker 215 adds (at 520) a data entry
410 in the inventory cache for the file, where the data entry
specifies the file's SIID and secondary-identifier attributes.
At 520, the tracker 215 generates a new data item (called an
“add data item) that is for directing the server 105 to add
the newly inventoried file to the list of files that the server
maintains for the client computer. In some embodiments,
this generated data item specifies the SIID, name, path,
application name (if applicable), version (if applicable),
size, modification date (if applicable), manufacturer (if
applicable). If applicable, this data item also specifies
license information Such as number, type, registered user,
description, and expiration date.

0073) If the tracker 215 identifies (at 515) a cache entry
that specifies secondary-identifier attributes that match the
secondary-identifier attributes of the file, the tracker 215
identifies the file as one that was previously inventoried but
has its content changed since the last time that it was
inventoried. Hence, at 525, it changes the SIID of the cache
entry identified at 515 to the SIID generated at 505. It also
generates a data item (called a “modify data item') that
specifies the new SIID for the file. In some embodiments, the
modify data item provides the old and new SlID's for the
modified file, as well as any other attribute of the file that has
changed since it was last inventoried.

0074) If the tracker 215 identifies (at 510) a cache entry
with an SIID that matches the SIID generated at 505 for the
file, the tracker determines (at 530) whether the entry with
the matching SIID specifies secondary-identifier attributes
that match the secondary-identifier attributes of the file. If
so, the tracker 215 ends the operations of FIG. 5 without
generating any data item, as it has identified a data entry with
an SIID, file name, and storage location that match the SIID,
file name, and storage location of the file. Such identification
means that the tracker has previously inventoried the
scanned file and that this file’s content, name, and storage
location have not been modified since it was last inventoried.

0075. On the other hand, in some cases, the tracker 215
determines (at 530) that the entry with the matching SIID
does not specify secondary-identifier attributes that match
the secondary-identifier attributes of the file. This occurs
when the file's secondary-identifier attributes are modified
after it has been inventoried but its content remains the
same. For these situations, the tracker 215 makes (at 535) the
secondary-identifier attributes specified by the cache entry
identified at 510 identical to the secondary-identifier
attributes of the file. It also generates (at 535) a modify data
item that specifies the modification to the secondary-iden

Mar. 15, 2007

tifier attributes of the file. In some embodiments, the modify
data item provides the old and new file secondary-identifier
attributes that have changed since the file was last invento
ried. After 315, the tracker 215 identifies (at 320) the files
that have been removed since the last time it inventoried the
group of files identified at 305. The tracker identifies the
removed files by scanning the inventory cache and identi
fying any data entry (1) which relates to the list of filed
generated at 305 and (2) which was not identified (at 315) as
a data entry with a primary identifier or a secondary iden
tifier that matched the primary or secondary identifier of a
file on the list. For each data entry that the tracker 215
identifies at 320, it generates a data item that specifies that
the file associated with the entry's SIID has been removed,
and then removes the entry from the inventory cache.
0076) Next, the tracker determines (at 325) whether any
file that it identified at 315 as a newly added file (as the file
did not have primary and secondary identifiers that matched
the primary and secondary identifiers of any cache data
entry) has a license Script associated with it. If so, the tracker
215 uses a script manager to extract the license data for each
newly added file that has an associated license Script, and
then adds the license data to the data item that the process
generated for the file. After 325, the tracker resets (at 330)
its internal timer that notifies it of when to repeat the
operations illustrated in FIG. 3. After 330, the operations
illustrated in FIG. 3 terminate. The tracker 215 eventually
sends all the data items that it generated at 315 and 320 to
the data filter.

0077. The software inventory tracker 215 also works in
conjunction with the software utilization tracker 210. Spe
cifically, each time the utilization tracker 210 encounters a
new running process, it provides the inventory tracker with
the secondary-identifier attributes of the file associated with
the newly encountered process, and asks the inventory
tracker 215 for the SIID of this file. The inventory tracker
then performs the operations illustrated in FIG.5 for this file.
Specifically, the tracker 215 generates (at 505) for the file an
SI ID, which it then supplies to the utilization tracker. It also
(1) at 520, adds a new data entry in the inventory cache and
generates an add data item when it identifies the file as one
that has not been previously inventoried, or (2) at 525 or
530, modifies a data entry in the inventory cache and
generates a modify data item when it identifies the file as one
that has been modified since the last time that it was
inventoried. The execution of the operations of FIG. 5 in
response to an SlID-request by the software utilization
tracker provides the software inventory tracker with a capa
bility to perform on-demand inventory management.
C. Software Utilization Tracker

0078. The software utilization tracker 210 monitors the
use of the client computer's software resources 270. In the
embodiments described below, this tracker monitors the use
of .exe application files. One of ordinary skill will realize
that other embodiments can also monitor the use of other
software files, such as .dll files, .doc files, Xsl files, etc.
0079 FIG. 6 presents a conceptual illustration of the
Software utilization tracker. As shown in this figure, the
Software utilization tracker includes a data-gathering engine
605, a cache 610, and a data-exporting engine 615. The
data-gathering engine 605 receives the output of the OS
tracker 230 and the activity tracker 235. Based on these

US 2007/0061347 A1

outputs, the data-gathering engine 605 gathers data each
time a software application is opened on the client computer.
For each opened application, the gathered data relates to: (1)
the applications run time, which is the duration of time that
the application is open, (2) the applications focus time,
which is the duration of time that the application is in focus,
and (3) the application’s active time, which is the duration
of time that the user is actively engaged with the application.
The data-gathering engine stores the gathered data in the
cache 610. The data-exporting engine 615 reads out the
content of the cache 610 (i.e., generates data items) each
time it receives a notification from the scheduler 240. The
data-gathering engine is first described below by reference
to FIG. 7. The data-exporting engine 615 is then described
by reference to FIGS. 8-11.
0080 Each time an application is opened, the OS defines
a new process and a new OS process ID that specifies this
new process. At any given time, the OS maintains a list of
all currently active processes. In other words, this list (called
a “process list) enumerates the process ID's of all processes
running at a given time. The OS tracker periodically obtains
from the OS this process list. When the client application
120 starts (e.g., at boot up), the data-gathering engine
registers to periodically receive the list of applications that
are open (i.e., the process list) from the OS tracker.
0081. Each time that the data-gathering engine 605
receives a process list from the OS tracker 230, the data
gathering engine performs several operations illustrated in
FIG. 7. As shown in this figure, the engine 605 starts by
updating (at 705) an internal process list that it maintains.
This internal process list enumerates the OS process ID's of
all processes for which the cache 610 currently stores values.
0082 To update the internal process at 705, the engine
605 determines (at 705) whether each particular process ID
on the received process list is on its internal process list.
Whenever a particular process ID on the received list is not
on its internal list, the engine 605 adds (at 705) the particular
process ID to the internal list. Also, each time the engine 605
adds (at 705) a particular process ID to its internal list, the
engine performs the following six operations. First, it iden
tifies the secondary-identifier attributes of the application
associated with the added process ID, and asks the inventory
tracker 215 for the SIID of the associated application.
0.083 Second, it generates a unique ill that in conjunction
with the session ill uniquely identifies this execution of the
application. Third, it specifies the current time as the start
time for this execution of the application. Fourth, it instan
tiates a data object in the cache for storing several attributes
relating to this execution of the application. Fifth, it stores
the received OS process ill, the generated SIID, the identi
fied unique ill, and the start time for this execution of the
application in the instantiated data object. Sixth, it initializes
several other attributes of the instantiated data object. These
attributes include (1) an end time for specifying the time
when this execution of the application terminates, (2) an
incremental process duration for specifying an incremental
duration of this execution, (3) a focus duration for specifying
the time that this execution was in focus, (4) an active time
for specifying the time that this execution was actively
engaged by the user.
0084. These six operations do not have to be performed
in sequence. After 705, the data-gathering engine 605 incre

Mar. 15, 2007

ments (at 710) the incremental process duration of each
process on the data-gathering engine's process list except
the processes that were just added at 705. The engine
increments each process duration by the amount of time
since the last instance when the OS tracker provided its list
of running applications to the data-gathering engine.

0085) Next, the engine determines (at 715) whether a
process is currently in focus. Each time the focus changes
from one process to another, the OS tracker notifies the
engine 605 of the identity of the new process that is in focus.
This engine then increments the focus-duration attribute of
the previously focused process data object in the cache 610,
and sets an internal variable that identifies the newly focused
process. Different embodiments increment the focus-dura
tion attribute of the previously focused process differently.
Some embodiments increment this attribute by a fixed time
interval. Others increment this attribute by the amount of
time that has elapsed since the last time that this attribute
was incremented. For the later approach, the data-gathering
engine 605 needs to maintain a timer to measure the elapsed
time.

0086. At 715, the data-gathering engine examines the
value of its internal variable to determine whether a process
is currently in focus, and if so, the identity of the focused
process. If this engine determines (at 715) that no process is
in focus, it transitions to 735, which is further described
below.

0087. On the other hand, if a process is in focus, the
data-gathering engine determines (at 720) whether the
focused process is also active. This engine makes this
determination based on the activity variable that it receives
from the activity tracker 235. The activity tracker periodi
cally supplies an activity variable that specifies whether the
user is currently engaging a focused application.

0088. When the activity variable specifies an active sta
tus, the data-gathering engine transitions from 720 to 730. At
730, this engine increments the focus-duration and active
duration attributes of the focused process data object in the
cache 610. In some embodiments, the engine 605 increments
these attributes by a time interval between receiving the
current process list and the previous process list. When the
activity variable specifies an inactive status, the data-gath
ering engine transitions from 720 to 725. At 725, this engine
increments just the focus-duration attribute of the focused
process data object in the cache 610. Again, in some
embodiments, the engine increments the focus-duration
attribute by the time interval between receiving the current
process list and the previous process list.

0089. From 725 or 730, the data-gathering engine tran
sitions to 735. At 735, this engine identifies any process
specified on its internal process list that is not specified on
the received process list (i.e., identifies any process that is no
longer running). For each process that this engine identifies
at 735, this engine (1) specifies the current time as the stop
time of the process, and (2) sets the process stop time in the
data object for the process in the cache 610. After 735, the
flow illustrated in FIG. 7 terminates.

0090. As mentioned above, the data-exporting engine
615 reads out the data that the data-gathering engine 605
stores in the cache 610. The data-exporting engine reads out
this data each time it receives a trigger event from the

US 2007/0061347 A1

scheduler. FIG. 8 illustrates several operations that the
data-exporting engine 615 performs each time it receives a
trigger event from the scheduler. As shown in this figure, the
data-exporting engine 615 initially selects (at 805) a process
from the internal process list that the data-gathering engine
605 periodically updates at 705. The data-exporting engine
615 then examines (at 810) the cache to determine whether
it specifies a start time for the selected process. If so, this
engine generates (at 810) a start data item for the selected
process. FIG. 9 illustrates the attributes of a start data item
900 in some embodiments of the invention. The start data
item 900 specifies the start time, the SIID, and the unique ill
of the selected process.
0.091 After 810, the data-exporting engine 615 generates
(at 815) an update data item for the selected process. FIG. 10
illustrates the attributes of an update data item 1000 in some
embodiments of the invention. The update data item 1000
specifies the SIID, the unique ill, the incremental process
running duration, the focus duration, and the active duration
of the selected process. At 815, the data-exporting engine
615 sets the SIID, unique ill, and incremental process
running duration of the update data item to the correspond
ing values of these attributes that are stored in the cache 610.
At 815, the engine 615 also re-initializes the selected pro
cess process-running duration in the cache.

0092. After 815, the engine 615 examines (at 820) the
cache to determine whether it specifies a non-default focus
duration and/or active duration for the selected process. If
so, the engine adds (at 820) the incremental focus and/or
active durations to the update data item generated at 815. At
820, the engine 615 also re-initializes the selected process
focus and active durations.

0093. Next, the data-exporting engine 615 examines (at
825) the cache to determine whether it specifies termination
data for the selected process. If so, this engine generates (at
825) a stop data item for the selected process. FIG. 11
illustrates the attributes of a stop data item 1100 in some
embodiments of the invention. The stop data item 1100
specifies the SIID, the unique ill, and the stop time of the
selected process. When the cache includes termination data
for the selected process, the data-exporting engine not only
generates the stop data, but also removes (at 825) the
selected process ill from the internal process list.
0094. After 830, the data-exporting engine determines (at
835) whether it has examined all the processes specified on
the internal process list. If not, the engine returns to 805 to
select another process specified by this list, and then to
repeat 810-830 for this newly selected process. When this
engine determines (at 835) that it has examined all the
processes specified by the internal process list, it specifies (at
840) the start and stop times of the tracking interval. The
tracking interval is the interval between the current and last
times that the exporting engine 615 performed the opera
tions of FIG. 8 (i.e., between the current and last times that
the exporting engine 615 received trigger events from the
scheduler). It specifies the tracking-interval start and stop
times for all the data items that it generated in the current
iteration of operations 805-835. It can specify the start and
stop times by incorporating these times in each generated
data item, or it can have one copy of the start and stop times
for all the data items stored in the aggregator. After 840, the
engine 615 terminates the flow illustrated in FIG. 8.

Mar. 15, 2007

D. Browser Tracker

0.095 The browser tracker 205 monitors the use of the
client computer's browsers. The browser tracker tracks
different browser events in different embodiments. In the
embodiments described below, the browser tracker tracks
one or more time periods for each URL event of the
browsers.

0096. In the embodiments described below, a URL event
occurs when the client computer downloads the content that
resides at a particular URL. The content residing at a
particular URL will be referred to below as the particular
URLs content.

0097 FIG. 12 presents a conceptual illustration of the
browser tracker. As shown in this figure, the browser tracker
includes a data-gathering engine 1205, a cache 1210, and a
data-exporting engine 1215. The data-gathering engine 605
receives data from the OS tracker 230 and the activity
tracker 235. Specifically, when the client application 120
starts (e.g., at boot up), the data-gathering engine registers to
receive periodically the process list and focused-process ID
from the OS tracker, and registers to received the activity
signal from the activity tracker.

0098. This engine also receives URL echo events through
one of two mechanisms illustrated in FIG. 12. In some
embodiments, the data-gathering engine 1205 receives URL
echo events through a browser tracker agent 1235 that is
loaded with the browser 1230. In some of these embodi
ments, the browser tracker agent 1235 is used in conjunction
with the Internet Explorer (“IE) browser. In these embodi
ments, this agent is a .dll that is loaded when the IE browser
is loaded. When loaded, this agent 1235 registers as a client
for receiving IE events from the IE browser. Each time IE
downloads certain content that resides at a particular URL,
it publishes an IE event to all registered recipients of IE
events. A published IE event specifies the downloaded URL,
some HTTP header info as well as some frame information.
Whenever the browser tracker agent 1235 receives an IE
event, it forwards it to the data-gathering engine 1205 of the
browser tracker 205.

0099. In other embodiments, the data-gathering engine
1205 receives these events through the dynamic data
exchange (“DDE) 1220 of the OS. Specifically, the browser
1230 registers with the OS as a DDE server when the
browser loads. Each time the browser tracker's data-gath
ering engine 1205 identifies (on the process list received
from the OS tracker) a new instance of a browser that is
running, this engine registers with the OS as a DDE client
that should receive browser events relating to the newly
identified browser instance. From thereon, whenever the
browser downloads certain content that resides at a particu
lar URL through the newly identified browser instance, the
browser publishes its URL event to each module (including
engine 1205) that registered as a DDE client for the newly
identified browser instance. Each URL event that is pub
lished in this manner provides the URL plus some ancillary
frame information. In some embodiments, the data-gather
ing engine 1205 uses the DDE-mechanism for non-IE
browsers, such as the Netscape navigator.

0.100 Based on the data that it receives, the data-gather
ing engine 1205 stores data in the cache 1210 each time it
receives a URL event. For each URL event, the gathered

US 2007/0061347 A1

data relates to: (1) the URLs incremental run time, which
represents an incremental duration of time that the browser
presents the URLs content at the client computer (e.g.,
displays in a window or frame), (2) the
0101 URL's focus time, which represents the duration of
time that the browser's presentation of a URLs content is in
focus, and (3) the URL's active time, which is the duration
of time that a user at the client computer is actively engaged
with the browser's presentation of a URLs content.
0102) The data-exporting engine 1215 reads out the con
tent of the cache 1210 (i.e., generates data items) each time
it receives a notification from the scheduler 240. The data
gathering engine is first described below by reference to
FIG. 13. The data-exporting engine 1215 is then described
by reference to FIGS. 14-17.
0103). Each time that the data-gathering engine 1205
receives a URL event for a particular instance of a running
browser, the data-gathering engine performs several opera
tions illustrated in FIG. 13. As shown in this figure, the
engine 1205 initially generates (at 1302) a URL ID. In some
embodiments, the generated URL ID is an MD5 hash of the
domain and path data of the URL. Next, the engine 1205
determines (at 1305) whether it had previously received
another URL event for the particular browser instance at
issue (i.e., the browser instance of the received URL event).
If not (i.e., if the received URL is the first URL event that the
engine has received in the current session for the particular
browser instance at issue), the engine sets (at 1310) a
variable Current URL to the URL of the received event. This
variable identifies the current URL of the particular browser
instance at issue.

0104. The engine 1205 then specifies (at 1315) a unique
ID for the received URL event, and adds this unique ID and
the generated URL Id to a URL event list that the engine
maintains. The unique ID in conjunction with the session ID
uniquely identifies the received URL event. At 1315, the
engine also specifies the current time as the start time for the
received URL. Also, it records the browser for the received
URL event.

0105. At 1315, the engine then (1) instantiates a data
object in the cache 1235 for the received URL event, and (2)
stores the URL, URL ID, unique ID, start time, and browser
of the received URL event in this instantiated data object. In
the embodiments that use the browser tracker agent 1235,
the engine also stores (at 1315) in the cache data object the
header information that it receives as part of the URL event
supplied by the agent 1235. Also, at 1315, the engine
initializes several other attributes of the instantiated data
object. These attributes include (1) an end time for speci
fying the time when the URL event terminates, (2) a
incremental run duration for specifying an incremental dura
tion of time that the browser presents the URL's content at
the client computer, (3) a focus duration for specifying the
time that the URL event is in focus, and (4) an active time
for specifying the time that the URL event is actively
engaged by the user.
0106 After 1315, the data-gathering engine 1205 incre
ments (at 1317) the incremental run duration of the received
URL event. The engine increments this duration by the
amount of time since the last instance when this engine
received a URL event for the particular browser instance at

Mar. 15, 2007

issue. After 1317, the engine determines (at 1320) whether
the particular browser instance at issue is currently in focus.
Each time the focus changes from one process to another, the
OS tracker notifies the engine 1205 of the identity of the new
process that is in focus. If the previously focused process is
the particular browser instance at issue, this engine then
increments the focus-duration attribute of the cache data
object of the previously focused URL event for the particular
browser instance, and then sets an internal variable that
identifies the newly focused process. Different embodiments
increment the focus-duration attribute of a previously
focused

0107 URL event differently. Some embodiments incre
ment this attribute by a fixed time interval.
0.108 Others increment this attribute by the amount of
time that has elapsed since the last time that this attribute
was incremented. For the latter approach, the data-gathering
engine 1205 needs to maintain a timer to measure the
elapsed time.
0.109 At 1320. At 1320, the data-gathering engine exam
ines the value of its internal variable to determine whether
a process is currently in focus, and if so, the identity of the
focused process. If this engine determines (at 1320) that the
particular browser instance at issue is not in focus, it ends the
operations illustrated in FIG. 13. On the other hand, if the
particular browser instance at issue is in focus, the data
gathering engine determines (at 1325) whether the focused
browser instance at issue is also active. This engine makes
this determination based on the activity variable that it
receives from the activity tracker 235. The activity tracker
periodically Supplies an activity variable that specifies
whether the user is currently engaging a focused application.
0110. When the activity variable specifies an active sta
tus, the data-gathering engine transitions from 1325 to 1330.
At 1330, this engine increments the focus-duration and
active-duration attributes of the cache data object for the
active, focused URL event. In some embodiments, the
engine 1205 increments these attributes by a time duration
that corresponds to the time interval between receiving the
current and previous events for the particular browser
instance at issue.

0.111 When the activity variable specifies an inactive
status, the data-gathering engine transitions from 1325 to
1335. At 1325, this engine increments just the focus-dura
tion attribute of the cache data object of the focused URL
event. Again, in Some embodiments, the engine increments
the focus-duration attribute by the time duration that corre
sponds to the time interval between receiving the current and
previous events for the particular browser instance at issue.
After 1330 or 1335, the operations illustrated in FIG. 13
terminate. If the engine determines at 1305 that it has
received a prior URL event for the particular browser
instance at issue (i. e., if the received URL is not the first
URL event that the engine has received in the current session
for the particular browser instance at issue), the engine
determines (at 1340) whether the URL of the received event
is identical to the Current URL for the particular browser
instance at issue. If so, the engine transitions to 1317, which
was described above. If not, it transitions to 1345. At 1345,
the engine specifies the current time as the stop time of the
Current URL's event, and sets this URL events stop time
in its data object in the cache 1210. From 1345, the engine
transitions to 1310, which was described above.

US 2007/0061347 A1

0112 The data-gathering engine 1205 also sets the stop
time of the Current URL of a particular browser instance,
when this engine determines that the particular browser
instance is no longer running. Specifically, as mentioned
above, this engine receives the process list from the OS
tracker periodically. Whenever it receives such a list, one of
the tasks that it performs is to identify any browser instance
that was on the previous process list (i.e., the process list that
it received immediately before the current process list) but
not the current process list. If it identifies any such recently
terminated browser instance, the engine (1) identifies the
object in the cache 1210 for storing data relating to this
browser instance's Current URL, and (2) sets the stop time
specified by this object to the current time.

0113 As mentioned above, the data-exporting engine
1215 reads out the data that the data-gathering engine 1205
stores in the cache 1210. The data-exporting engine reads
out this data each time it receives a trigger event from the
scheduler. FIG. 14 illustrates several operations that the
data-exporting engine 1215 performs each time it receives a
notification from the scheduler.

0114. As shown in this figure, the data-exporting engine
1215 initially selects (at 1405) a URL event from the
URL-event list that the data-gathering engine 1205 keeps.
The data-exporting engine 1215 then examines (at 1410) the
cache 1210 to determine whether it specifies a start time for
the selected URL event. If so, this engine generates (at 1410)
a start data item for the selected URL event. FIG. 15
illustrates the attributes of a start data item 1500 in some
embodiments of the invention. The start data item 1500
specifies the URL ill, the browser ID, the start time, the
URL, the unique ill, and the header information (if any) of
the selected URL event.

0115. After 1410, the data-exporting engine 1215 gener
ates (at 1412) an update data item for the selected URL
event. FIG. 16 illustrates the attributes of an update data item
1600 in some embodiments of the invention. The update
data item 1600 specifies the URL ID, the unique ID, the
focus duration, the active duration, and the incremental
running duration of the selected URL event. At 1412, the
data-exporting engine 615 sets the unique ID and incremen
tal running duration of the update data item to the corre
sponding values of these attributes that are stored in the
cache 1210. At 1412, the engine 1215 also re-initializes the
selected URLs running duration in the cache.

0116. After 1412, the engine 1215 examines (at 1415) the
cache to determine whether it specifies a non-default focus
duration and/or active duration for the selected URL event.
If so, this engine adds (at 1415) the incremental focus and/or
active durations to the update data item generated at 1412.
At 1415, the engine 1215 also re-initializes the selected URL
events focus and active durations.

0117 Next, the data-exporting engine 1215 examines (at
1420) the cache to determine whether it specifies termina
tion data for the selected URL event. If so, this engine
generates (at 1420) a stop data item for the selected URL
event. FIG. 17 illustrates the attributes of a stop data item
1700 in some embodiments of the invention. The stop data
item 1700 specifies the URL ill, the unique Id and the stop
time of the selected URL event. When the cache includes
termination data for the selected URL event, the data

Mar. 15, 2007

exporting engine not only generates the stop data, but also
removes (at 1425) the selected URL event ill from the URL
event list.

0118. After 1425, the data-exporting engine determines
(at 1430) whether it has examined all URL events specified
on the URL-event list. If not, the engine returns to 1405 to
select another URL event specified by this list, and then to
repeat 1410–1425 for this newly selected URL event. When
this engine determines (at 1430) that it has examined all
events specified by the URL event list, it specifies (at 1435)
the start and stop times of the tracking interval. The tracking
interval is the interval between the current and last times that
the exporting engine 1215 performed the operations of FIG.
14 (i.e., between the current and last times that the exporting
engine 1215 received trigger events from the scheduler). It
specifies the tracking-interval start and stop times for all the
data items that it generated in the current iteration of
operations 1405-1430. It can specify the start and stop times
by incorporating these times in each generated data item, or
it can have one copy of the start and stop times for all the
data items stored in the aggregator. After 1430, the engine
1215 terminates the flow illustrated in FIG. 14.

E. Hardware Inventory Tracker
0119) The hardware inventory tracker 225 inventories the
hardware resources of the client computer 115. The hard
ware resources inventoried by the hardware inventory
tracker 220 can include any hardware or hardware setting of
the client computer 115. Examples of these resources are
memory, disk storage, CPU(s), network card(s), Sound card,
Video card, virtual memory settings, etc.
0.120. In some embodiments, the hardware inventory
tracker 225 periodically inventories the hardware resources
and maintains an inventory cache that identifies all the
inventoried resources.

0.121. Each time that this tracker identifies a hardware
resource that has been added or removed, it generates a data
item that identifies the added or removed resource. The
tracker passes such data items to the data filter, which then
filters them and passes the filtered data to the aggregator for
eventual transmission to the system server 105.
0.122 At the system server, the inventoried data can be
analyzed for a variety of purposes. For instance, the data can
be analyzed in order to identity the hardware resources
employed on different client computers 115, to categorize
these hardware resources, to detect unauthorized additions
and/or removals of hardware resources, etc. The inventoried
data can also be used to facilitate the hardware utilization
analysis that is performed based on the data collected by the
hardware utilization tracker 210.

0123 Figure 18 illustrates several operations that the
hardware inventory tracker 225 performs periodically to
create and maintain its cache of inventoried resources. The
tracker 225 starts these operations at the expiration of a timer
that it maintains. As shown in FIG. 18, the tracker 225
initially (at 1805) (1) creates an inventory cache when this
is the first time that it is performing the operations of FIG.
18 for the current session, or (2) loads the previously created
inventory cache after the first iteration of the operations of
FIG. 18. As mentioned above, the inventory cache identifies
each inventoried hardware resource by a hardware identifier
that is generated from the hash of the attributes of the
hardware resource.

US 2007/0061347 A1

0.124. After creating or loading the cache at 1805, the
tracker 225 identifies (at 1810) a list of hardware resources
installed on the client computer. In some embodiments, the
tracker obtains this list from the OS through a WMI (Win
dows Management Instrumentation) call that asks the OS for
all hardware resources of the client computer.

0.125. After 1810, the tracker 225 selects (at 1815) a
resource specified by the list identified at 1810. At 1815, the
tracker 225 generates a hardware identifier (a hardware
inventory ID, or HIID) for the resource selected at 1815,
based on the hash of the attributes of the selected resource.
Next, the tracker uses (at 1820) the generated hardware
identifier to determine whether the inventory cache specifies
the resource selected at 1815. If so, the tracker transitions to
1830, which is described below. If not, the tracker (at 1820)
(1) adds a data entry in the inventory cache for the resource,
where the data entry specifies the resource's HIID, and (2)
generates a new data item (called an "add data item') that is
for directing the server 105 to add the newly inventoried
resource to the list of resources that the server maintains for
the client computer. In some embodiments, the generated
add data item specifies the HIID, class, category, descrip
tion, friendly name, manufacturer, driver version, driver file
size, driver file date, value, and units.

0126 FIG. 19 illustrates an example of an add data item
for a CPU. As illustrated in this figure, not all the data
attributes of an add data item need to be used for a particular
SOUC.

0127. After 1825, the tracker 225 transitions to 1830. At
1830, the tracker determines whether it has examined all the
resources specified by the list generated at 1810. If not, it
returns to 1815 to select another resource from the list, and
to perform the Subsequent operations on the newly selected
resource. Otherwise, it determines (at 1835) whether each
resource that the cache originally specified at 1805 was
identified at 1820 as matching one of the resources specified
by the list generated at 1810.

0128) If not, the tracker 225 selects (at 1840) a resource
that was originally specified by the cache but was not
examined at 1820. At 1840, the tracker removes the data
entry in the cache for the selected unexamined resource, and
then generates a remove data item for this resource. After
1840, the tracker returns to 1835 to determine whether it has
now examined at 1820 or 1840 each resource that the cache
originally specified at 1805. If not, the tracker transitions to
1840 again to select another unexamined resource, remove
its data entry from the inventory cache, and generate its
remove data item. Otherwise, when the tracker determines
that it has examined each resource originally specified by the
cache, the tracker resets (at 1845) the timer that it uses to
trigger its inventory operations, and then ends this inventory
iteration. The tracker 225 eventually sends all the data items
that it generates at 1825 and 1840 to the data filter.
F. Hardware Utilization Tracker

0129. The hardware utilization tracker 220 monitors the
use of certain hardware resources 275 of the client computer
115. In some embodiments, this tracker records certain
performance characteristics of certain hardware resources
over time. For instance, in Some embodiments, this tracker
records the utilization of the computer's CPU, memory, disk
storage, and network adapter over time. Also, in some

Mar. 15, 2007

embodiments, this tracker records the use of the CPU,
memory, and network adapter by each individual process.
0130. As illustrated in FIG. 20, the hardware utilization
tracker includes a data-gathering engine 2005, a cache 2010,
and a data-exporting engine 2015, like the browser and
software utilization trackers. For some embodiments of the
invention, FIG. 21 illustrates the set of operations that the
data-gathering engine 2005 performs to collect usage data
for a particular hardware resource. Specifically, in some
embodiments, this engine performs these operations to
gather information about CPU, memory, or network utiliza
tion. Each iteration through the operations illustrated in FIG.
21 gathers information about one particular hardware
resource (i.e., gathers information about the CPU, memory,
or network card). As further described below, the engine
2005 performs a simpler set of operations for gathering
usage data about the client computer's storage.
0131 The set of operations illustrated in FIG. 21 start
each time a timer that the gathering engine 2005 maintains
expires. As shown in FIG. 21, the hardware utilization
tracker initially obtains (at 2105) data regarding the overall
use and the per-application use of a particular hardware
resource (e.g., the CPU) at a particular time. In some
embodiments, the tracker obtains this data from the OS
through a WMI (Windows Management Instrumentation)
call that asks the OS for data for the particular hardware
SOUC.

0132) For each use that the gathering engine monitors, it
specifies a set of attributes in the cache 2005. This set of
attributes includes tracking-interval start and end times, a
usage value, a min value, and a max value. At 2110, the
engine 2005 adds the total-use data obtained at 2105 to a
total-use summation value that it stores in the cache 2010. It
also adds (at 2110) each particular per application use
obtained at 2105 to a summation value that it stores in the
cache for the particular per application use. At 2110, the
engine 2005 also ensures that each utilization that it obtained
at 2105 is specified on a list that it maintains of the
utilizations in the current tracking interval.
0133) Next, the engine 2005 determines (at 2120)
whether the data obtained at 2105 is the first data obtained
for the particular hardware resource during the current
tracking interval. If so, the tracker transitions to 2165, which
will be further described below. Otherwise, the tracker
performs several calculations at 2125. It averages the total
use that it obtained for the particular hardware in the current
iteration through the operations of FIG. 21, with the total use
that it obtained in the iteration that immediately preceded the
current one. This engine also determines whether the total
use obtained at 2105 is either less than the min or greater
than the max recorded for the particular hardware in the
cache. If the received total use is less than the recorded min,
this engine sets the recorded minto the received total use. If
the received total use is greater than the recorded max, this
engine sets the recorded max to the received total use.
0.134) Next, at 2130, the data-gathering engine 2005
determines whether the average computed at 2125 exceeds
a configurable threshold value. One of ordinary skill will
appreciate that in some embodiments the threshold deter
mination at 2130 might determine whether a computed
average is less than a threshold value.
0135) If the engine determines (at 2130) that the thresh
old is exceeded, it increments (at 2135) by one a counter that

US 2007/0061347 A1

it maintains for the total use. The client application initial
izes this counter when the client application starts, and the
hardware utilization tracker re-initialized this counter at the
end of each tracking interval.

0136. If the engine had also detected that the threshold
was exceeded during the last iteration through the operations
of FIG. 21 for the hardware resource at issue, the engine
2005 also increments (at 2135) a total duration attribute that
it stores for the overall use of the hardware resource at issue.
It increments this duration by the amount of time since the
last instance when this engine performed the operations
illustrated in FIG. 21 for the hardware resource at issue. The
client application initializes this total duration when the
client application starts, and the hardware utilization tracker
re-initialized this counter at the end of each tracking interval.
From 2135, the engine 2005 transitions to 2140.
0137) The engine also transitions to 2140 from 2130,
when it determines that the computed average does not
exceed the threshold. At 2140, the engine determines
whether it has examined all the received per-application uses
of the particular hardware. If not, it selects (at 2145) a
received per-application usage. It then averages (at 2150) the
per-application use that it obtained for the particular hard
ware in the current iteration through the operations of FIG.
21, with the per-application use that it obtained in the
iteration that immediately preceded the current one.

0138. This engine also determines (at 2150) whether the
selected per-application use is either less than the min or
greater than the max recorded for the selected per-applica
tion use of the particular hardware in the cache. If the
received total use is less than the recorded min, this engine
sets (at 2150) the recorded minto the received total use. If
the received total use is greater than the recorded max, this
engine sets (at 2150) the recorded max to the received total
SC.

0139 From 2150, the engine transitions to 2155, where it
determines whether the average computed at 2150 exceeds
a threshold value for the selected per-application use. If so,
it increments (at 2160) by one a counter that it maintains for
the selected per-application use. Like the total-use counter,
the client application initializes each per-application use
counter when the client application start, and the hardware
utilization tracker re-initialized each Such counter at the end
of each tracking interval. If the engine had also detected that
the threshold was exceeded during the last iteration through
the operations of FIG. 21 for the hardware resource at issue,
the engine 2005 also increments (at 2160) a per-application
duration attribute that it stores for the selected applications
use of the hardware resource at issue. It increments this
duration by the amount of time since the last instance when
this engine performed the operations illustrated in FIG. 21
for the hardware resource at issue. The client application
initializes this per-application duration when the client
application starts, and the hardware utilization tracker re
initialized this duration at the end of each tracking interval.
0140 From 2160, the engine 2005 transitions to 2140.
The engine also transitions to 2140 from 2155, when it
determines that the threshold has not been exceeded.

0141 When the engine determines (at 2140) that all the
received per-application usages have been examined, it
transitions to 2165. At 2165, the engine resets the timer that

Mar. 15, 2007

it uses for performing the tracking operations illustrated in
FIG. 21 for the particular hardware resource. It then ends the
current iteration of these operations.
0.142 FIG. 22 illustrates the set of operations that the
engine 2005 performs for the storage utilization. This set is
simpler than the set of operations illustrated in FIG. 21. In
Some embodiments, the data-gathering engine 2005 does not
track per-application uses of the storage.

0.143 Hence, it does not obtain any per-application data
at 2105, and does not store or increment any per-application
data at 2110. Also, its set of operations for storage-utilization
tracking does not include operations 2140-2160. Accord
ingly, the engine transitions to 2165 from 2135 and from
2130 (when the threshold is not exceeded). The remaining
operations illustrated in FIG. 22 are similar to those simi
larly numbered in FIG. 21, and therefore will not be further
described in order not to obscure the description with
unnecessary detail.

0144. The data-exporting engine 2015 reads out the data
that the data-gathering engine 2005 stores in the cache 2010.
The data-exporting engine reads out this data each time it
receives a trigger event from the scheduler. FIG. 23 illus
trates several operations that the data-exporting engine 2015
performs each time it receives a notification from the
scheduler for a particular hardware device (e.g., for the
CPU). Specifically, in some embodiments, this engine per
forms these operations to export data about CPU, memory,
or network utilization. Each iteration through the operations
illustrated in FIG. 23 gathers information about one particu
lar hardware resource (i.e., gathers information about the
CPU, memory, or network card). As further described below,
the engine 2015 performs a simpler set of operations for
exporting data about the client computer's storage.
0145 As shown in this figure, the data-exporting engine
2015 initially determines (at 2305) whether the utilization of
the hardware resource at issue exceeds a threshold at least
once during the tracking interval that just ended. If not, the
engine 2015 terminates its operation. Otherwise, it deter
mines (at 2310) whether the overall utilization of the hard
ware resource exceeds the overall threshold at least once. If
not, the engine transitions to 2330, which is described
further below.

0146). Otherwise, when the engine 2015 determines that
the overall utilization exceeded the overall threshold at least
once, it generates (at 2315) a hardware-utilization data item
that stores the overall use of the hardware resource that is at
issue (e.g., the overall use of the CPU, when this iteration of
the operations of FIG. 23 is for exporting collected CPU
data).
0147 FIG. 24 illustrates the attributes of a hardware
utilization data item in Some embodiments. As shown in this
figure, the hardware-utilization data item includes (1) the
tracking interval start and stop times, (2) a resource-utiliza
tion type (e.g., CPU, or CPU by application), (3) a name for
the utilization, (4) the duration, and (5) the average, mini
mum, and maximum utilization. The engine 2015 retrieves
the duration as well as the minimum, and maximum utili
zation data from the cache 2010. It computes the value of the
average attribute by (1) taking the total-use Summation value
that was created and probably repeatedly incremented at
2110 and (2) dividing it by the duration of the tracking

US 2007/0061347 A1

interval. It can also retrieve the tracking interval start and
stop times and the resource-utilization name and type from
the cache, or it can maintain a record of these parameters
itself.

0148. As shown in FIG. 24, the hardware-utilization data
item also includes an SIID attribute. When the data item
relates to per-application use of a particular hardware
resource, the SIID specifies the application that is using the
hardware resource. The hardware-utilization data item also
specifies exception attributes. The exception attributes
include two values, which are: (1) an exception level, and (2)
a count value that specifies the number of times that the use
exceeded a configured threshold value. Some embodiments
might also include the configured threshold value as an
exception attribute of the hardware-utilization data item.
0149 engine 2015 specifies the exception attributes at
2320. Specifically, at 2320, the engine retrieves attributes
relating to the exception level from the cache 2010. These
attributes are the count and duration that were computed at
2135 by the data-gathering engine. Based on the retrieved
count and duration data, the engine specifies an exception
level. For instance, some embodiments might specify five
exception levels for CPU usage, where each level requires
that the CPU utilization exceed its threshold usage a par
ticular number of times for a particular duration.
0150. After identifying the appropriate exception level at
2320, the engine populates (at 2325) the exception attributes
(e.g., the exception level and its related count) in the
generated data item. It then transitions to 2330. At 2330, it
determines whether the cache stores data for any application
whose use of the particular hardware resource exceeded the
applications threshold use at least once in the last tracking
interval (i.e., the tracking interval that just ended).
0151. If so, it generates (at 2335) a hardware-utilization
data item that stores the selected applications use of the
hardware resource that is at issue (e.g., the word processor's
use of the CPU, when this iteration of the operations of FIG.
23 is for exporting collected CPU data).
0152 This generated data item is similar to the one
generated at 2315, which was described above and illus
trated in FIG. 24. One difference is that the data item
generated at 2335 includes the SIID of the application
selected at 2335. Another difference is that the average
attribute specified by the data item generated at 2335 is the
average hardware utilization by the selected application.
0153. Accordingly, the data-exporting engine computes
this value by taking the Summation value that was created
and possibly incremented at 2110 for the selected applica
tion, and dividing it by the duration of the tracking interval.
Also, the data-exporting engine computes the exception
level of data item generated at 2335 based on the count and
duration that the data-gathering engine computed at 2160 for
the selected application. The data-exporting engine then
records the computed exception level and its related count
value in the data item that it generates (at 2335) for the
selected application.
0154) From 2335, the engine transitions to 2320 and then

to 2325, in order to compute the exception level and then
populate the exception attribute in the data item generated at
2335. When the engine 2015 determines that it has examined
the utilization data of each application whose use exceeded

Mar. 15, 2007

its threshold value, it terminates the operations illustrated in
FIG. 23. The data exporting engine's operation for exporting
storage data items is much simpler.
0.155 Essentially, as the storage usage does not include
per application usage, the engine 2015 only performs the
operations 2305,2315, 2320, and 2325. For the storage data,
the engine terminates its operations (1) when it determines
at 2305 that the threshold value was not exceeded once, or
(2) when it completes its operation at 2325.
0.156. One of ordinary skill will understand that other
embodiments might specify exceptions for hardware utili
Zation differently. For instance, some embodiments might
measure a duration for each contiguous period that a hard
ware resource is being used above a threshold value. These
embodiments might then specify the exception level not
only based on the number of times that the threshold is
exceed but also based on the duration of each contiguous
time period that the use exceeds the threshold value.
G. Data Filter

O157 FIG. 25 illustrates the software architecture of the
data filter 245 in some embodiments of the invention. As
shown in this figure, the data filter 245 includes a filtering
engine 2505, five rule sets 2510-2530, an XML parser 2535,
and five XML rule documents 2540-2560. Embedded in
each XML rule document is one set of rules. Specifically,
XML rule document 2540 includes filtering rules for
browser utilization data items, XML rule document 25.45
includes filtering rules for software utilization data items,
XML rule document 2550 includes filtering rules for soft
ware inventory data items, XML rule document 2555
includes filtering rules for hardware utilization data items,
and XML rule document 2560 includes filtering rules for
hardware inventory data items.
0158. The XML parser generates a rule set for each rule
document. In some embodiments, it parses out each rule in
a rule document and generates a data object that specifies the
parsed-out rule. The rule set corresponding to a rule docu
ment is the collection of the rule data objects generated from
the rule document. The data filter illustrated FIG. 25 embeds
the filtering rules in XML documents in order to allow the
client application 120 to easily modify its filtering rules.
0159. The client application 120 can seamlessly receive
XML rule documents, which can be easily parsed out into
new filtering rule sets. The filtering engine 2505 uses the rule
sets 2510-2530 to filter the data items that the data filter
receives from the browser, software, and hardware trackers
205-225, and then passes the filter data items to the aggre
gator. This engine uses the rule set 2510 to filter browser
utilization data items, uses the rule set 2515 to filter software
utilization data items, uses the rule set 2520 to filter software
inventory data items, uses the rule set 2525 to filter hardware
utilization data items, and uses the rule set 2530 to filter
hardware inventory data items.
0.160) As mentioned above, each rule set includes a
number of rules relating to the filtering of the data items for
the rule set. In some embodiments, the rules of a rule set can
specify the elimination of a data item or the modification of
some or all attributes of a data item. The rules might also
specify that the filtering engine 2505 needs to pass a data
item through to the aggregator without any modifications. In
some embodiments, the filtering engine 2505 receives a data

US 2007/0061347 A1

item, identifies the appropriate rule set for the data item,
sequentially invokes the rules in the identified rule set, and
passes the data item to each invoked rule. Each invoked rule
then makes no modification to the data item or commands
the data item to modify some or all of its attributes, or to
mark itself for deletion by the filtering engine. FIG. 26
illustrates one such flow of operations of the data filter.
0161 Examples of filtering operation suggested by a rule
include (1) eliminating software utilization and inventory
data items that relate to certain SIIDs (e.g., filtering out
inventory data items relating to back up programs or OS
level executables), (2) eliminating hardware inventory data
items that relate to unused hardware resources (e.g., unused
network adapters), (3) eliminating hardware utilization data
items that do not relate to certain monitored metrics (e.g.,
eliminating data relating to CPU utilization that is less than
20 percent), and (4) modifying browser utilization data
items that specify query strings (e.g., replacing a long query
string with a shorter one).

0162 Although FIG. 25 illustrates five rule sets that are
generated from five rule documents, one of ordinary skill
will realize that other embodiments might use fewer or
greater number of rule sets and rule documents. For
instance, some embodiments use three rule sets that are
generated from three rule documents, where one of the rule
documents is for browser utilization, one is for software
inventory and utilization, and one is for hardware inventory
and utilization.

III. Server

0163 A. Architecture
0164. Figure 27 illustrates the architecture of the server
side software 105 of some embodiments of the invention. In
these embodiments, the server 105 includes an application
server 2705, a collection data storage 2710, a data trans
former 2715, a data warehouse 2720, a reporting engine
2725, and a re-categorizing module 2730. These compo
nents of the server can be implemented on one or more
computers.

0165. As shown in FIG. 27, the application server 2705
communicates with one or more client applications 120. The
application server performs various session services, such as
authenticating users that log on at the client computers 115,
providing each authenticated client computer with a session
ID, maintaining a universal system time, etc. The application
server also receives inventory and usage data from the client
applications, filters this data, aggregates Some or all of the
filtered data, and stores the data in the collection data storage
2720. The data transformer 2715 transforms the data stored
in the collection data storage into a format that is optimized
for efficient querying, analysis, and reporting. The data
transformer stores the transformed data in the data ware
house 2720.

0166 The data warehouse includes a category table,
which, as further described below, specifies categories that
the application server uses to categorize the collected data.
A system administrator 2735 can modify the category table's
categories that are used during the categorization. The
re-categorizing engine 2730 periodically examines the cat
egory table, and further modifies the records in this table
based on the system administrator's modifications.

Mar. 15, 2007

0.167 The reporting engine 2725 queries the data in the
data warehouse 2720, and generates reports based on the
queries. In some embodiments, the reporting engine is a
commercially available third-party tool. Such as the report
ing tool of Microstrategy Corporations. In some embodi
ments, the reporting engine presents its reports through a
web browser, such as Internet Explorer. Also, the reporting
engine has different querying and reporting options. For
instance, it can perform queries and distribute the results of
its queries in an automated fashion (e.g., perform queries at
pre-determined time intervals and transmit the result via
e-mail). Alternatively, the reporting engine can perform
queries in response to a direct user request, and can have the
user manually direct its delivery of the query results.

B. Collection Data Storage

0.168. The collection data storage is a database in some
embodiments. FIG. 28 illustrates the schema of this database
in Some embodiments of the invention. As shown in this
figure, this database includes inventory tables, utilization
tables, and personnel tables. The inventory tables store
inventory data that the client applications gather relating to
the hardware, software, and browser resources (i.e., the
hardware, Software, and browser assets) of their computers.
The inventory tables include a primary asset table 2805 that
stores attributes used for queries that are applicable across
all asset types. Examples of such attributes are an attribute’s
type, name, category, category ill, and parent category ill.
These tables also include three secondary asset tables 2810,
one for Software assets, one for hardware assets, and one for
browser assets. Each secondary table stores attributes that
are unique to its asset type (i.e., the secondary Software,
hardware, and browser tables store attributes that are unique
respectively for software, hardware, and browser assets).
Each record in a secondary assets table is associated with a
record in the primary asset table through an Assets ID,
which is the identifier for an inventoried asset. In some
embodiments, the Assets ID for a software item is its SI ID,
for a hardware item is its HIID, and for a browser item is its
URL ID.

0169. As shown in FIG. 28, the utilization tables include
four hardware tables 2815, 2820, 2825, and 2827 and three
process tables 2830-2840. The three process tables are used
to store data relating to software utilization and browser
events. The three process tables include the primary process
table 2830, and the secondary process tables 2835 and 2840.
The primary process table 2830 can store numerous records,
where each record corresponds to a browser event or soft
ware utilization that the system 100 tracks. Each record
specifies a Process ID, a Unique ID, an Assets ID, start
and end times, a duration, and a session ID. The Assets ID
is the SIID of the software application or URL ill of the URL
event, and it associates the usage data with records in the
inventory tables. The Process ID is an ill that the appli
cation server assigns to each new instance of a software
utilization or URL event (i.e., assigns each time it receives
a start data item from the software or browser tracker of a
client). In this manner, the Process ID uniquely identifies
an instance of software utilization or URL event.

0170 The Unique ID of each record in the process table
2830 is the client’s Unique ID for the software utilization
or the URL event. Also, the start and end times of each
record in the process table are the start and end times that the

US 2007/0061347 A1

client application reports in the start and stop data items for
the software and URL event of the record. The duration
specified by each record in the primary process table 2830
is the total duration of the software utilization or browser
event corresponding to the record. The session ID of a record
in the process table 2830 is the session ID that the server 105
assigned to the client application 120 that gathered the data
stored in the record.

0171 As shown in FIG. 28, the primary process table
also includes an attribute that provides the Browser ID. This
application server uses this attribute only for browser event.
Specifically, when it receives a start data item from the
browser tracker of a client application, it extracts the
browser ID in the received data item. It then uses the
extracted ID to populate the Browser ID attribute of the
record in the process table 2830 that it creates for the
received browser event.

0172. The secondary process tables 2835 and 2840 can
respectively store data regarding the focus and active dura
tions of a software utilization or browser event that is
recorded in the primary process table 2730. Each record in
a secondary process table is associated with a record in the
primary process table 2830 through the Process ID
assigned by the application server.
0173 Also, the application server might create multiple
records in the secondary process tables 2835 and 2840 for
the same software utilization or browser event. Specifically,
each time the application server receives an update data item
that includes a focus or active duration, the application
server creates a new record in the secondary table 2835 or
2840 to store the received focus or active duration. For each
Such record, the secondary table records the start and stop
times of the tracking interval during which the focus or
active data was captured. As mentioned above, the client
applications report the start and stop times of a tracking
interval with the data items that it generates at the termina
tion of the tracking interval.
0174 The hardware table 2820 can store numerous
records relating to hardware utilization that the system 100
tracks. Each record specifies a Hardware ID, Resources
Type ID, Assets ID, start time, end time, duration, aver
age, mm, max. Exception ID, session ID, and SIID. The
Hardware, ID is an ID that the application server assigns
each time it receives a data item from a hardware utilization
tracker of a client application. In this manner, the Hard
ware ID uniquely identifies an instance of a hardware
utilization. A record's session ill is the session ill that the
server 105 assigned to the client application 120 that gath
ered the data stored in the record. The start and end times of
each record in the hardware table are the start and end times
that the client application reports in the start and stop data
items for the hardware utilization of the record. A records
duration in the hardware table 2820 is the duration of the
records corresponding hardware utilization (i.e., the dura
tion reported in the received hardware utilization data item).
A records Assets ID in the hardware table 2820 is the ID
of the computer that contains the records corresponding
hardware resource. This ID is generated by the application
server, and it is the parent category ID that is stored in the
primary asset table 2805 for the corresponding hardware
resource. In this manner, this asset ID associates the hard
ware utilization data with records of hardware resources in
the inventory tables.

Mar. 15, 2007

0.175. A hardware utilization tracker of a client applica
tion typically generates multiple data items for a particular
hardware item during a session. Several data items would
relate to the overall use of the particular hardware item
during different tracking intervals in a particular session.
Other data items would relate to the per-application use of
the particular hardware item in the particular session. Each
time the application server receives a data item from a
hardware utilization tracker, the application server creates a
new record in the hardware table 2820. If the data item is one
that relates to a particular software application's use of a
particular hardware device, the application server records
the particular software application's SIID in the hardware
table record that it creates for the received start data item.
The average, min, and max attributes of a record in the
hardware table 2820 are the average, min, and max attributes
that are reported in the received data item.
0176) The Resource Type ID of each record in the
hardware table 2820 specifies a particular resource type. The
name and usage metric (e.g., time, bytes, etc.) of each
resource type are specified in the Resource Type table
2815. Accordingly, the Resource Type ID indexes a
record in the Resource Type table 2815 that specifies the
name and usage metric (e.g., time, bytes, etc.) for its
particular resource type.
0177. The Exception ID of each record in the hardware
table 2820 indexes a record in the Resource Exception
table 2827, which provides a Resource Threshold ID, an
Exceptions Level, and an Exception Count for the Excep
tion ID. The Exception Count provides the number of
times that the threshold was exceeded during the hardware
utilization specified in the corresponding hardware-table
record. The Exceptions Level and the Exception Count
are provided by the received data item, in some embodi
ments. In other embodiments, the exception levels are
computed at the server, based on exception attributes col
lected by the client applications.
0.178 The Resource Threshold ID of an exception
record in the exception table 2827 specifies a record in the
Resource Threshold table 2825. The record that this ID
indexes provides the configurable threshold parameters for
the ID's exception. In some embodiments, these parameters
include a size operator (e.g., greater than, or less than), a
threshold value (e.g., 10%), and the number of times that the
threshold value needs to be crossed before specifying an
exception.

0179 The personnel tables include the Tracked Person
nel table 2845, a Global Personnel table 2850, one or more
ERP Tables 2855, and an Asset Personnel table 2860.
The Tracked Personnel table 2845 stores a record for each
individual that the system tracks. Each record in this table
specifies the domain, user logon, session ID, and possibly
other system-administration attributes for the records cor
responding individual. In some embodiments, the session ID
includes the user ID of the individual.

0180. The Global Personnel table 2850 stores a record
for each individual of an entity that is employing the
resource-management system 100. Some of these individu
als might not have their resources tracked by the system 100.
Also, each individuals record is specified in the Global
Personnel table by a unique user ID. In addition, each
individual’s record in the Global Personnel table is associ

US 2007/0061347 A1

ated to one or more records in one or more ERP tables. The
ERP tables are typically provided by commercially available
ERP tools that allow an entity to store its organizational
information. In some embodiments, the ERP table or tables
provide the department, location, and job-title for each
individual identified in the Global Personnel table 2850.
0181. The Asset Personnel table 2860 associates the
records of each tracked individual with the records of the
assets tracked for the individual. Specifically, for each asset
that the individual uses at Some point, the Assets Personnel
table stores a record that identifies the individual and the
used asset. Each Such record specifies the status of the
individuals association with the asset. In some embodi
ments, the status attribute has two values, which are “cur
rent and “removed.” The records in the Tracked Person
nel, Global Personnel, ERP, and Asset Personnel tables are
associated through the user ID's.
C. Application Server

0182 FIG. 29 illustrates the architecture of the applica
tion server 2705 in some embodiments of the invention. In
these embodiments, the application server includes a mes
senger 2905, a data1-item identifier 2910, a session manager
2915, a synchronizer 2920, several data handlers
2925 12945, a data filter 2950, and a database interface 2955.
0183 The messenger is a typical transport module for a
client/server environment. It is a bi-directional module that
receives and transmits data to and from the client applica
tions 120. When a user first logs on to the system, the
messenger has the session manager 2915 authenticate the
user and generate a session ill for the client application on
the user's computer. The messenger then relays the gener
ated session ID to the client application.

0184 From thereon, the client application forwards mes
sage lists to the messenger, where each message list includes
a session ID and one or more messages containing one or
more data items. The messenger then uses the data-item
identifier 2910 to identify the type of each data item in the
received message list. After identifying a data items type,
the messenger has the appropriate handler for the data item
process the data item.
0185. As illustrated in FIG. 29, the application server has
five data handlers, which are: the browser handler 2925, the
software utilization handler 2930, the software inventory
handler 2935, the hardware inventory handler 2940, and the
hardware utilization handler 2945. These handlers respec
tively process data items for browser utilization, software
utilization, Software inventory, hardware inventory, and
hardware utilization. The use of different data handlers for
different data types allows the architecture of the application
to be extensible. Each time the system 100 has to track a new
data type, a new data handler is added to the application
server to process the new data items. The five handlers
illustrated in FIG. 29 are further described below. In pro
cessing a data item, each handler might generate a new data
item and direct the data filter 2950 to filter the new data item.
If any portion of the data item remains after the filtering, the
data filter or the handler directs the filtered data item to the
database interface 2955. This interface then stores the fil
tered data item in the collection database 2710. Once a data
item has been Successfully processed (i.e., it has been
processed, filtered, and perhaps stored), the handler that

Mar. 15, 2007

processed the data item returns a confirmation to the mes
senger 2905, which, in turn, returns this confirmation to the
client application that forwarded the data item. In some
embodiments, the messenger collects in a message list
several confirmations for the same client application, so that
it can forward several confirmations in one message packet.
If the application server has a problem processing a particu
lar data item (e.g., problems in the handling, filtering, or
storing of a data item), the application server notifies the
client application of its failure, and the reason for its failure,
in a message list that it forward to the client application. The
client application can then re-transmit its data until it is
Successfully processed, or until a particular number of
attempts are made.

0186. As illustrated FIG. 29, the application server also
includes the synchronizer 2920. This synchronizer maintains
the system clock. The schedulers of the client application
periodically synchronize their clocks with the system clock.
This synchronization can be initiated by the synchronizer or
the schedulers. FIG. 29 illustrates the architecture of the
application server for only some embodiments of the inven
tion. One of ordinary skill will realize that other embodi
ments might employ other architectures and/or other mod
ules. For instance, in some embodiments, the application
server also includes a configuration module that communi
cates with the messenger 2905. This module receives new
configuration and filter files from an administrator, and uses
these files to configure the modules (e.g., the filter and
tracker modules) of the client applications.
0187. 1. Software and Hardware Inventory Handlers
0188 Figure 30 illustrates several operations that the
software inventory handler 2935 performs when it receives
a data item from the messenger 2905. As illustrated in this
figure, the inventory handler 2935 initially extracts (at 3005)
the resource ID (i.e., the SIID) and session ID from the
received data item. From the extracted the session ID, the
handler can obtain the user ID. The handler then determines
(at 3010) whether the received data item specifies an add
operation. If so, the handler determines (at 3015) whether it
has previously inventoried the resource identified at 3005.
0189 If the handler has not previously inventoried the
identified resource, it extracts (at 3020) all inventory data
that is contained in the received message about the resource.
It then generates (at 3025) a data item that specifies that the
database interface 2955 needs to add records to the primary
asset table 2805 and the secondary software asset table 2810
for the resource identified at 3005. The generated data item
provides the resource attributes extracted at 3020, so that the
database interface can populate the added records in the
asset tables 2805 and 2810. The generated data item also
specifies that a record needs to be added to the Assets
Personnel table 2860 to establish an association between the
identified-user's records (i.e., the record of the user that was
identified at 3005) in the personnel tables 2845-55 and the
identified-resource's records

0.190 (i.e., the records of the resource that was identified
at 3005) in the asset tables 2805 and 2810.
0191 Next, at 3030, the handler has the data item gen
erated at 3025 filtered by the data filter 2950. If any portion
of the generated data item remains after the filtering, the
handler or data filter forwards (at 3030) the generated,

US 2007/0061347 A1

filtered data item to the database interface 2955. After 3030,
the handler returns (at 3035) a notification to the messenger.
This notification might indicate a successful or unsuccessful
processing of the received data item. An unsuccessful
processing notification is returned when the database inter
face 2955 fails to store the filtered data item in the collection
database. The handler 2935 also generates an unsuccessful
processing notification when any of the other operations
illustrated in FIG. 30 fail. After 3035, the handler terminates
its operation.

0192) If the handler determines (at 3015) that it has
previously inventoried the resource identified at 3005, it
determines (at 3040) whether the Assets Personnel table
2860 includes a record that associates the identified user and
resource (i.e., the user and resource that were identified at
3005). If so, the handler transitions to 3035 to return a
notification regarding its processing of the received data
item.

0193 If the handler determines (at 3040) that the Asset
Personnel table does not include a record that associates the
identified user and resource, the handler generates a data
item at 3045. This data item specifies that the database
interface 2955 needs to add a record to the Asset Personnel
table 2860 to establish an association between the identified
user's records in the personnel tables 2845-55 and the
identified-resource's records in the asset tables 2805 and
2810. The handler then transitions to 3030, which was
described above.

0194 If the handler determines at 3010 that the operation
is not an add operation, it determines (at 3050) whether the
Assets Personnel table 2860 includes a record that associ
ates the user and resource identified at 3005. If not, the
handler transitions to 3035 to return a notification regarding
its processing of the received data item. Otherwise, the
handler determines (at 3055) whether the received data
specifies a modify operation. When the received data speci
fies a remove operation, the handler transitions to 3060 from
3055. At 3060, the handler generates a data item that
specifies that the database interface 2955 needs to modify
the record (for the identified user and resource) in the
Asset Personnel table 2860 to reflect the removal of the
identified resource. Specifically, this data item would direct
the database interface to modify the status attribute in this
record to “removed.” From 3060, the handler transitions to
3030, which was described above. When the handler deter
mines (at 3055) that the operation is a modify, it directs (at
3065) the database interface to retrieve the records in the
asset tables 2805 and 2810 that correspond to the resources
previous SIID, which is supplied by the update data item. At
3065, the handler then merges the modifications received in
the update data item with the retrieved records, and then
generates a new data item that directs the database interface
to add new records to the primary and secondary asset table
2805 and 2810 for the resource identified at 3005. The
generated data item provides the resource attributes that
remain after the merging of the received data and retrieved
records, so that the database interface can populate the added
records in the asset tables 2805 and 2810. The generated data
item also specifies that a record needs to be added to the
Asset Personnel table 2860 to establish an association
between the identified-user's records in the personnel tables
2845-55 and the newly added resource records in the asset
tables 2805 and 2810. The generated data item further

Mar. 15, 2007

specifies that the database interface 2955 needs to modify
the status attribute of the previous record (for the identified
user and resource) in the Asset Personnel table 2860 to
reflect the removal of the identified resource (i.e., to modify
the status attribute in this record to removed). From 3065,
the handler transitions to 3030, which was described above.
0.195 FIG. 31 illustrates several operations that the hard
ware inventory handler 2940 performs when it receives a
hardware-inventory data item from the messenger 2905.
This set of operations is similar to the set of operations
illustrated in FIG. 30 for the software inventory handler
2935. There are two differences between the two sets of
operations. First, the hardware inventory handler 2940 per
forms its operations for data items relating to the hardware
inventory.
0196. Accordingly, the hardware inventory handler cre
ates records in the secondary hardware asset table 2810, and
the Assets ID's of these records are the HID's and not
SIID's. Second, the hardware inventory handler 2940 does
not perform the operations 3055 and 3065, as the hardware
inventory trackers do not generate data items that specify
modifications to the previously inventoried hardware.
Hence, if the hardware inventory handler determines (at
3050) that there is an association in the Assets Personnel
table between the user and the hardware resource identified
at 3005, the handler transitions to 3060, which was
described above. The remaining operations illustrated in
FIG. 31 are similar to those similarly numbered in FIG. 30.
and therefore will not be further described in order not to
obscure the description with unnecessary detail.
0197) 2. Software and Browser Utilization Handlers
0198 FIG. 32 illustrates several operations that the soft
ware utilization handler 2930 performs when it receives a
data item from the messenger 2905. With the received data
item, the handler 2930 receives the tracking-interval start
and stop times from the messenger. As illustrated in FIG. 32.
the utilization handler 2930 initially extracts (at 3205) from
the received data item (1) the session ID, (2) the resource ID
(i.e., SIID), and (3) the Unique ID. Next, the handler
determines (at 3210) whether it has inventoried the software
resource specified by the extracted SIID (i.e., whether the
asset tables include one or more records with an Assets ID
that matches the extracted SIID). If not, the handler returns
(an 3215) an error to the client application through the
messenger 2905, and then terminates its operation.
0199. Otherwise, the handler determines (at 3220)
whether the received data item is a start data item that
specifies the start of the utilization of a particular software
resource. If so, the handler specifies (at 3225) a Process ID
that it will use to keep track of this reported utilization
instance of the particular software resource. Next, the han
dler generates (at 3230) a data item that directs the database
interface 2955 to add a new record to the primary process
utilization table 2830. The generated data item specifies that
this records (1) Process ID is the ID specified at 3225, (2)
Assets ID, session ID, and unique ID are respectively the
SIID, session ID, and unique ID extracted at 3205, and (3)
start time is the start time specified in the received data item.
The generated data item also directs the database interface to
initialize the duration field of the new record in the primary
process utilization table.
0200 Next, at 3235, the handler has the data item gen
erated at 3230 filtered by the data filter 2950. If any portion

US 2007/0061347 A1

of the generated data item remains after the filtering, the
handler or data filter forwards (at 3235) the generated,
filtered data item to the database interface 2955. After 3235,
the handler returns (at 3040) a notification to the messenger.
This notification might indicate a successful or unsuccessful
processing of the received data item. An unsuccessful
processing notification is returned when the database inter
face 2955 fails to store the filtered data item in the collection
database; otherwise, a successfull-processing notification is
returned. After 3240, the handler 2930 terminates its opera
tion.

0201 If the handler determines (at 3220) that the data
item is not a start data item, it determines (at 3245) whether
this data item is a stop data item. If the received data item
is not a stop data item, it must be an update data item. An
update data item always specifies a process duration and
Sometimes specifies a focus duration and/or an active dura
tion.

0202) Accordingly, when the handler determines (at
3240) that the received data item is not a stop data item, it
performs a duration validity check operation at 3255. This
checking operation is to ensure that the duration of any
active or focused period reported by the received update data
item is valid. In some embodiments, this checking operation
ensures that the following three conditions are met. First, the
focus duration has to be less than the tracking duration,
where the tracking duration is the difference between the
tracking-interval stop and start times received from the
messenger. Second, the active duration has to be less than
the tracking duration. Third, the focus duration cannot be
less than the active duration. If all three conditions are met,
the handler determines (at 3255) that the reported focus
and/or active durations are valid, and transitions to 3260,
which is further described below.

0203 However, if either of the first two conditions is not
met, the checking operation specifies that the received
update data item does not specify valid active and/or focus
durations. In this situation, the handler returns (an 3215) an
error to the client application through the messenger 2905,
and then terminates its operation. On the other hand, when
both of first two conditions are met, but the third one is not,
the handler (at 3255) sets the active duration equal to the
focus duration, and then specifies that the reported focus and
active durations are valid. It then transitions to 3260.

0204 At 3260, the handler generates a data item that
directs the database interface 2955 to modify one or more
records in the process utilization table for the received data
items process.
0205 Specifically, the generated data item specifies the
Unique ID and session ID that were extracted at 3205. The
data interface 2955 can use these two ID's to identify the
record in the process utilization table 2830 for the received
data item's Software process. The generated data item directs
the database interface to add the process duration specified
by the received data item to the duration attribute of the
identified record in the primary process utilization table
283O.

0206 When the received data item specifies a focus
duration, the data item generated at 3260 will also direct the
database interface (1) to create a new record in the focus
process table 2835, (2) to store the received focus duration

Mar. 15, 2007

and the received tracking-interval start and stop times in this
record, and (3) to store the Process ID (i.e., the ID of the
record in the primary process table 2830 that specifies
session and unique ID's that match the session and unique
ID's in the received data item) in this record. Similarly,
when the received data item specifies an active duration, the
generated data item will also direct the database interface (1)
to create a new record in the active process table 2840, (2)
to store the received active duration and the received track
ing-interval start and stop times in this record, and (3) to
store the Process ID in this record. After 3260, the handler
transitions to 3235, which was described above.

0207) If the handler determines (at 3245) that the
received data item is a stop data item, it generates (at 3250)
a data item that directs the database interface 2955 to modify
the record in the primary process utilization table 2830 for
the received data items software process. Specifically, the
generated data item specifies the Unique ID and session ID
that were extracted at 3205, in order to allow the database
interface to identify the record in the process utilization table
2830 for the received data item's software utilization. The
generated data item directs the database interface to set the
end time specified by the received data item as the end time
of the identified record in the primary process table 2830.
After 3250, the handler transitions to 3235, which was
described above.

0208. When the browser handler 2925 receives a browser
data item from the messenger 2905, the handler performs a
set of operations that is illustrated in FIG. 33. This set is
similar to those illustrated in FIG. 32. There are only a few
differences between the two sets of operations. For instance,
the resource ID that the browser handler extracts at 3205 is
the URL ID.

0209 Also, when the browser handler determines (at
3210) that it has not inventoried the resource identified by
the extracted URL ID, it transitions to 3305 instead of 3215.
At 3305, the browser handler extracts the inventory data in
the received data item. This inventory data includes the
Browser ID, URL, and possibly header information. The
engine then (at 3305) generates a data item that directs the
database to create records to the primary and secondary asset
tables 2805 and 2810, and populate these records with the
extracted URL and header information.

0210. After this data item is generated, the browser
handler transitions to 3225 from 3305, since the received
data item must be a start data item. As mentioned above, the
browser handler specifies (at 3225) a Process ID for the
newly received URL event, and then generates (at 3230) a
data item that directs the database interface to add a record
to the process table 2830 for the newly received URL event.
The data item generated at 3230 also directs the interface to
populate the Browser ID attribute of this record with the
browser ID extracted at 3305. From 3230, the browser
handler transitions to 3235 to filter both the data items
generated at 3305 and 3230. The remaining operations
illustrated in FIG.33 are similar to those similarly numbered
in FIG. 32, and therefore will not be further described in
order not to obscure the description with unnecessary detail.

0211) 3. Hardware Utilization Handler
0212. Each time the hardware utilization handler receives
a data item from the messenger, it creates a record in the

US 2007/0061347 A1

hardware-utilization table 2820 and a record in the exception
table 2827. It then populates each of these records with the
data that it extracts from the received data item. It also
populates these tables with the appropriate indices to the
other tables. The attributes of these tables and how they
relate to the attributes of the received data item were
described above in Section III.B. After populating these
records, the hardware utilization handler returns a notifica
tion to the messenger regarding the completion of its task.

0213 4. Data Filter
0214) The server data filter 2950 has an identical archi
tecture to the architecture of the client data filter 245. In
other words, FIG. 25 illustrates not only the architecture of
the client data filter 245 but also illustrates the architecture
of the server data filter 2950. The only difference between
the two architectures is that while the data from the filtering
engine 2505 goes to the aggregator 250 in case of the client
data filter 245, the data from the filtering engine 2505 goes
either to the database interface 2955 or to the data-source
handler in case of the server data filter 2950.

0215. Also, like the client data filter 245, the server data
filter 2950 performs the filtering operations illustrated in
FIG. 26. Specifically, for each data item that the filter 2950
receives from a particular handler, the filter identifies the
appropriate rule set for the particular handler, sequentially
invokes the rules in the identified rule set, and passes the
data item to each invoked rule. Each invoked rule then either
(1) makes no modification to the data item, or (2) commands
the data item to modify some or all of its attributes or to
mark itself for deletion. There are several reasons for
performing filtering at both the client and server environ
ments. For instance, in some embodiments, the client filters
discard data that should not be collected; the server can then
be adaptively configured to choose selectively the collected
data that is to be discarded. Also, the filtering at the server
can often be immediately modified, whereas filtering at the
client might not be immediately modifiable due to delays in
deployment of the client filter documents 2540-2560.
0216) In addition to its filtering operation, the server data

filter 2950 performs a categorization Operation. The server
data filter 2950 performs the categorization operation each
time it receives an inventory add data item for a new
software resource or a start data item for a URL event. This
operation identifies the category attribute that is stored in the
primary asset table 2805 for a software resource or for a
URL event.

0217 FIG. 34 presents a conceptual illustration of the
categorization operation of the server data filter 2950. The
filter performs these operations when an inventory handler
Supplies to it a data item regarding a newly inventoried
software resource, or when the browser handler supplies to
it a data item for a new URL event. The operations illustrated
in FIG.34 are embedded in the XML filter documents for the
inventory and browser handlers. Accordingly, in the embodi
ments, the server data filter 2950 performs the operations
illustrated in FIG. 34 as part of its filtering engine's invo
cation of the rules in the rule set of the appropriate handler.
0218. As illustrated in FIG.34, the server data filter 2950

initially determines (at 3405) whether the rule set has a rule
that specifies a category attribute for the inventoried
resource or URL event. If so, the filter sets (at 3410) the

Mar. 15, 2007

category of the inventory or URL add data item to the
attribute specified by the rule. Otherwise, the filter selects a
first categorization criteria at 3415. It then determines (at
3420) whether the receive data item specifies a value for the
selected first criteria that matches a value that the data filter
stores for the first selected criteria. If not, the filter sets (at
3425) the category attribute of the created Assets Table
record to “uncategorized.”

0219. On the other hand, when the data filter 2950
determines (at 3420) that the received data Item specifies a
matching value for the selected first criteria, the data filter
selects another categorization criteria at 3430. Next, at 3435,
the filter determines whether the data item specifies a value
for the criteria selected at 3430 that matches a value in a set
of values that the data filter stores for the set of criteria
selected thus far. If not, the filter sets (at 3440) the category
attribute of the created Asset Table record based on all
selected criteria except the one that was selected last at 3430.
After 3440, the filter 2950 terminates its categorization
operation.

0220) If the filter identifies a matching value at 3435, the
filter determines (at 3445) whether it has examined all the
categorization criteria. If not, it transitions back to 3430 to
select another categorization criteria. When the filter deter
mines (at 3445) that it has examined all the categorization
criteria, the filter sets the category attribute (at 3450) of the
created at Assets Table record based on all selected criteria.
The filter then terminates its categorization operation.
0221 FIG. 35 presents a more detailed example of the
categorization operations that the filter 2950 performs in
Some embodiments when it receives an add inventory data
item for a new software resource. As shown in this figure,
the data filter initially determines (at 3505) whether the
software inventory handler's rule set has a rule that specifies
a value for the category attribute of the record that is created
in the primary asset table for the received add data item. If
so, the filter sets (at 3510) the category attribute to the value
specified by the rule.

0222. Otherwise, the filter determines (at 3515) whether
the start data item specifies a manufacturer identity that
matches a manufacturer identity that the filter stores. If not,
the filter sets (at 3520) the category attribute of the created
Asset Table record to “uncategorized.”

0223). Otherwise, the filter determines (at 3525) whether
the received data item specifies path-information that
matches any path data in the set of common path data that
the filter Stores for the manufacturer identified at 3515. If
not, the filter specifies the category attribute of the primary
asset-table record according to the manufacturer identified at
3515. For instance, if Microsoft is the identified matching
manufacturer, the filter might set the category attribute to “a
Microsoft product.”

0224 On the other hand, when the filter identifies match
ing path data at 3525, it determines (at 3535) whether the
received data item specifies an executable name that
matches a name in the set of executable names that the filter
stores for the manufacturer identified at 3515 and the path
data identified at 3525. If not, the filter specifies (at 3540) the
category attribute of the primary-as set-table record accord
ing to the matching manufacturer and path data. For
instance, the filter might set the category attribute to

US 2007/0061347 A1

“Microsoft office' when the identified manufacturer and
path information are Microsoft and programs/MSoffice.

0225. If the filter identifies a matching executable name
at 3535, it determines (at 3545) whether the received data
item specifies a version that matches one of the versions
specified in the filters storage for the manufacturer identified
at 3515, the path data identified at 3525, and the executable
name identified at 3535. If not, the filter specifies (3550) the
category attribute of the primary-asset-table record accord
ing to the matching manufacturer, path data, and executable
name. For instance, the filter might set the category attribute
to "Microsoft officef.Xsl” when the identified manufacturer,
path information, and executable name are Microsoft, pro
grams/MS office, Xsl.

0226 the filter identifies a matching version at 3545, it
determines (at 3555) whether the received data item iden
tifies an application name that matches one of the names
specified in the filter storage for the manufacturer identified
at 3515, the path data identified at 3525, the executable name
identified at 3535, and the version identified at 3545. If not,
the filter specifies (at 3560) the category attribute of the
primary-asset-table record according to the matching manu
facturer, path data, executable name, and version. For
instance, the filter might set the category attribute to
“Microsoft officef.X.sl/v. 5.0 when the identified manufac
turer, path information, executable name, and version are
Microsoft, programs/MS office, Xsl, and version 5.0.

0227. On the other hand, if the filter identifies a matching
application name at 3555, the filter specifies (at 3565) the
category attribute of the primary-as set-table record accord
ing to the matching manufacturer, path data, executable
name, version, and application name. For instance, the filter
might set the category attribute to “Microsoft Excel, version
5.0 when the identified manufacturer, path information,
executable name, version, and application name are
Microsoft, programs/MS office, Xsl, version 5.0, and Excel.
0228. In some embodiments, the set of operations that the

filter 2950 performs to categorize a new URL event is
similar to the flow illustrated in FIG. 35. In these embodi
ments, however, one difference between the two sets of
operations is that the URL categorization examines the URL
(that is specified in the received start URL data item) in order
to identify the manufacturer, path data, executable name,
version ID, and application name. Another difference is that
the URL categorization determines before 3515 whether the
URL is an internal or external URL. If the URL is an
external one, the filter examines the received external URL
in view of one or more categorization criteria (that are not
illustrated in FIG. 35) in order to specify a category for the
received URL. If the URL is an internal one, the filter
performs a set of operations similar to 3515-3565.
D. DATAWAREHOUSE

0229. The collection database stores inventory and utili
Zation records that can be analyzed along different temporal
and organizational dimensions. However, these records are
not optimally organized for efficient querying and analysis.
Accordingly, as mentioned above, the data transformer 2715
(1) transforms the data stored in the collection database 2710
into a format that is optimized for efficient reporting and
analysis, and (2) stores the transformed data in the data
warehouse 2720.

Mar. 15, 2007

0230. In some embodiments, the data warehouse employs
a star schema that has several fact tables that store several
types of data that are useful for querying and analyzing
along different dimensions. FIG. 36 illustrates one such
schema, which includes five fact tables for five types of data.
The five types are inventoried assets, software and browser
utilization, hardware utilization, time periods, and usage
durations.

0231. The five fact tables are (1) the DW, Asset table
3605 for storing inventory data, (2) the DW Process table
3610 for storing software and browser usage data, (3) the
DW Hardware table 3615 for storing hardware usage data,
(4) DW Times table 3620 for storing temporal data regard
ing software, browser, and hardware usage, and (5) DWs
Duration table 3625 for storing duration data regarding
Software, browser, and hardware usage.
0232 Each record in the assettable 3605 has an Asset ID.
Each record also includes several asset attributes (such as
name, etc.) like the asset tables 2805 and 2810 of the
collection database.

0233. Also, each record in the process and hardware
tables 3610 and 3615 has an Assets ID index that associates
the record with a record in the asset table 3605. The records
in the data warehouse asset, process, and hardware tables
3605-3615 have indices that associate these tables with four
tables that store organization dimension attributes. These
four tables are (1) the DWUser table 3630 for identifying
all tracked personnel of an organization, (2) the DWs Jobs
Title table 3635 for specifying different job titles in the
organization, (3) the DW Department table 3640 for speci
fying different departments in the organization, and (4) the
DW Location table 3645 for specifying different locations
(e.g., addresses) of the organization. The data transformer
2715 populates these four tables and the associated indices
in the asset, process, and hardware tables based on organi
Zation dimension attributes from the ERP table 2855.

0234 Each record in the process table 3610 also includes
a Browser ID index. This index associates each URL-event
record that is specified in the process table 3610 with a
record in a browser table 3697, which provides information
about the browser that was used for the particular URL
event.

0235. Each record in the asset and process tables 3605
and 3610 includes a Category ID index that associates the
record with a record in a DW. As set Category table 3650.
Each record in the category table 3650 specifies a category
by having a field for the Category ID and a field for the
category name. Some embodiments use a hierarchical cat
egory scheme, which allows each category to belong to one
or more parent and grandparent categories. Accordingly, for
these embodiments, each record in the category table also
specifies the Category ID of each parent category of the
category specified by the record. This allows the inventory
and usage data in tables 3605 and 3610 to the queried at
different levels in the categorization hierarchy. Some
embodiments allow an administrator to modify the catego
rization hierarchy. For these embodiments, the server-side
architecture illustrated in FIG. 27 includes a categorizing
module 2730 that periodically examines the records in the
category table 3650 and corrects any parent Category ID
that needs to be modified to reflect modifications to the
categorization hierarchy that were made by the administra
tOr.

US 2007/0061347 A1

0236 Each record in the process and hardware tables
3610 and 3615 includes a Duration ID index that associ
ates the record with a record in the DW Duration table
3625. The DW Duration table associates each Duration
ID with a duration value and a type. The duration type can
be total, focus, or active. Accordingly, the duration type
specifies whether the duration data specified for a record in
the process or hardware table 3610 or 3615 relates to a
measured total duration, a measured focus duration, or a
measured active duration. In some embodiments, the data
transformer 2715 creates one record in the process table to
record the total duration of a process. It also creates one
record in the process table for each active or focus duration
record in the collection database tables 2835 and 2840. In
these embodiments, the data transformer also creates one
record in the hardware table for each record in the collection
database table 2820.

0237) The DW Duration table also associates each
Duration ID with a Time, ID index into the DW, Times
table 3620. Each record in the process and hardware tables
3610 and 3615 also includes a Time ID index that asso
ciates the record with a record in the DW Times table
3620.

0238. The DW Times table associates each Time ID
with a timestamp that specifies the start time of the corre
sponding process or hardware utilization. This table also
associates each Times ID with month, year, day, hour,
quarter, and day-in-weak IDs. These six IDs associate each
Time ID with six tables that store temporal dimension
attributes. These six tables are (1) the DW, hour table 3655
for specifying all hours a day, (2) the DW Month table
3660 for specifying all months in a year, (3) the DW
Quarter table 3665 for specifying all quarters in a year, (4)
the DWI Year table 3670 for specifying several years, (5)
the DW DIW table 3675 for specifying a number for a day
in a week, and (6) the DW Day table 3680 for specifying
all days in a week.
0239). Each record in the hardware table 3615 also
includes an SIID, an average, a min, and a max. These
attributes are similar to the similar attributes in the hardware
table 2870 in the collection database. The hardware table
3615 also includes (1) a Resource Type ID index into a
DW Resource Type table 3685, which lists the difference
resource types, and (2) an Exception ID index into a DWs
Exception table 3690, which includes a record for each
different exception type. The tables 3685 and 3690 are
similar to the above-described tables 2815 and 2827.

0240. As mentioned above, the reporting engine 2725
queries the data in the data warehouse 2720, and generates
reports based on the queries. In some embodiments, the
reporting engine is a commercially available third-party
tool. Such as the reporting tool of Microstrategy Corpora
tions.

0241. A typical query is a search for data along one or
more dimensions. Accordingly, the reporting engine typi
cally performs a query by first identifying the appropriate
ID's in the dimension tables, and then using the identified
ID's to identify the records in the fact tables that store the
desired factual data. The records that are identified in some
fact tables might require the reporting engine to query data
in other fact tables. The data in the fact tables can then be
manipulated (e.g., Summed) to generate some or all of the
data in the reports.

20
Mar. 15, 2007

0242 For example, assume that the query is for active use
of Microsoft word in July 2001 by the finance department.
Accordingly, the reporting engine's query string will first
identify (1) the month and year IDs for July and 2002 from
the month and year tables 3660 and 3670, and (2) the
department ID from the department table 3640. The identi
fied department ID is used to search for each record in the
asset table 3605 that has that department ID, and has as the
asset name Microsoft Word. Each such record will have a
particular asset ID. Next, the month and year ID are used to
identify time IDs. The identified time and asset IDs are
then used to identify one or more records in the process table
3610.

0243 Each identified record in the process table 3610 has
a duration ID, which identifies a duration record in the
duration table 3625. Accordingly, the records in the duration
table that specify an active duration, and that correspond to
the identified records in the process table can then be
identified. The duration of these records (in the duration
table) can then be aggregated to provide an aggregate value
for the active use of Microsoft word in July 2002 by the
finance department. Of course, this data does not need to be
aggregated, or might be aggregated in Smaller pieces. For
instance, if the query required that the active use be illus
trated on a daily basis, the collected data for each day could
be aggregated and displayed.

0244 As mentioned above, in some embodiments, the
reporting engine presents its reports through a web browser,
Such as Internet Explorer. Also, the reporting engine has
different querying and reporting options. For instance, it can
perform queries and distribute the results of its queries in an
automated fashion (e.g., perform queries at pre-determined
time intervals and transmit the result via e-mail). Alterna
tively, the reporting engine can perform queries in response
to a direct user request, and can have the user manually
direct its delivery of the query results.

IV. Computer Architecture

0245 FIG. 37 conceptually illustrates the basic compo
nents of a computer that can serve as a server or client
computer of the resource management system 100. This
computer 3700 includes a bus 3705, a processor 3710, a
system memory 3715, a read-only memory 3720, a perma
nent storage device 3725, input devices 3730, and output
devices 3735.

0246 The bus 3705 collectively represents all system,
peripheral, and chipset buses that communicatively connect
the numerous internal devices of the computer system 3700.
For instance, the bus 3705 communicatively connects the
processor 3710 with the read-only memory 3720, the system
memory 3715, and the permanent storage device 3725.

0247 From these various memory units, the processor
3710 retrieves instructions to execute and data to process in
order to execute the processes of the invention. The read
only-memory (ROM) 3720 stores static data and instructions
that are needed by the processor 3710 and other modules of
the computer system. The permanent storage device 3725,
on the other hand, is read-and-write memory device. This
device is a non-volatile memory unit that stores instruction

US 2007/0061347 A1

and data even when the computer system 3700 is off. Some
embodiments of the invention use a mass-storage device
(such as a magnetic or optical disk and its corresponding
disk drive) as the permanent storage device 3725. Other
embodiments use a removable storage device (Such as a
floppy disk or Zip(Rdisk, and its corresponding disk drive) as
the permanent storage device.

0248. Like the permanent storage device 3725, the sys
tem memory 3715 is a read-and-write memory device.
However, unlike storage device 3725, the system memory is
a volatile read-and-write memory, Such as a random access
memory. The system memory stores some of the instructions
and data that the processor needs at runtime. In some
embodiments, the invention's processes are stored in the
system memory 3715, the permanent storage device 3725,
and/or the read-only memory 3720.

0249. The bus 105 also connects to the input and output
devices 3730 and 3735. The input devices enable the user to
communicate information and select commands to the com
puter system. The input devices 3730 include alphanumeric
keyboards and cursor-controllers.

0250) The output devices 3735 display images generated
by the computer system. For instance, these devices display
IC design layouts. The output devices include printers and
display devices, such as cathode ray tubes (CRT) or liquid
crystal displays (LCD).

0251 Finally, as shown in FIG. 37, bus 3705 also couples
computer 3700 to a network 3765 through a network adapter
(not shown). In this manner, the computer can be a part of
a network of computers (such as a local area network
(“LAN”), a wide area network (“WAN”), or an Intranet) or
a network of networks (such as the Internet).

0252) Any or all of the components of computer system
3700 may be used in conjunction with the invention. How
ever, one of ordinary skill in the art would appreciate that
any other system configuration may also be used in con
junction with the present invention.

0253) While the invention has been described with ref
erence to numerous specific details, one of ordinary skill in
the art will recognize that the invention can be embodied in
other specific forms without departing from the spirit of the
invention. For instance, the client applications in some
embodiments might communicate with the application
server through e-mails. Also, some embodiments might not
associate the usage data with the user data. For example,
these embodiments might only track the usage data by itself.
Also, other embodiments might aggregate the duration data
differently than the embodiments described above. Thus,
one of ordinary skill in the art would understand that the
invention is not to be limited by the foregoing illustrative
details, but rather is to be defined by the appended claims.

Mar. 15, 2007

We claim:
1. A system for tracking utilization of resources of com

puters, the system comprising:
a plurality of client computers, wherein each computer

has one or more resources that the system tracks;
a client application for each client computer, each client

application for collecting utilization duration data relat
ing to the utilization of the resources of the applica
tion’s corresponding client computer;

an application server for receiving the utilization duration
data collected by the client applications and for storing
the received data in a storage structure;

a second storage structure; and
a data transformer for transforming the duration data

stored in the first storage structure into a format that is
optimized for querying, wherein the data transformer
stores the transformed data in the second storage struc
ture.

2. The system of claim 1, wherein the second storage
structure uses a star Schema.

3. The system of claim 1 further comprising:
a reporting engine for querying the second storage struc

ture and generating reports based on the results of the
query.

4. The system of claim3, wherein the duration data stored
in the second storage structure is associated with a number
of searchable criteria; and

wherein for each query, the reporting engine specifies a
set of search criteria and parameters for the criteria and
then retrieves from the second storage structure dura
tion data that satisfies the set of search criteria.

5. The system of claim 4, wherein at least for some of the
queries, the reporting engine aggregates at least some of the
duration data that the reporting engine retrieves from the
second storage structure.

6. The system of claim 4, wherein the searchable criteria
include temporal data relating to the duration data.

7. The system of claim 4, wherein the searchable criteria
include organizational data relating to the duration data.

8. The system of claim 4, wherein the application server,
first storage structure, second storage structure, and report
ing engine operate on one computer.

9. The system of claim 4, wherein the application server,
first storage structure, second storage structure, and report
ing engine operate on more than one computers.

10. The system of claim 1, wherein at least the client
applications, application server, or data transformer aggre
gate Some of the collected duration data.

11. The system of claim 2, wherein the star schema has
several fact tables for storing several types of data

12. The system of claim 11, wherein the types of data are
selected from the group consisting of inventoried assets,
software utilization, browser utilization, hardware utiliza
tion, time periods, and usage durations.

k k k k k

