wo 2017/142641 A1 [N I A0 00 OO0 O OO

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2017/142641 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

24 August 2017 (24.08.2017) WIPOIPCT
International Patent Classification:
GO6T 15/00 (2011.01)
International Application Number:
PCT/US2017/012734

International Filing Date:
9 January 2017 (09.01.2017)

Filing Language: English
Publication Language: English
Priority Data:

15/047,472 18 February 2016 (18.02.2016) US

Applicant: QUALCOMM INCORPORATED [US/US];
ATTN: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

Inventors: CEYLAN, Usame; 5775 Morehouse Drive,
San Diego, California 92121-1714 (US). GOEL, Vineet;
5775 Morehouse Drive, San Diego, California 92121-1714
(US). OBERT, Juraj; 2408 Fabry Circle, Orlando, Florida
32817 (US). LI, Liang; 5775 Morehouse Drive, San
Diego, California 92121-1714 (US).

Agent: NAYATE, Ambar P.; Shumaker & Sieffert, P.A.,
1625 Radio Drive, Suite 300, Woodbury, Minnesota 55125

(US).
Designated States (unless otherwise indicated, for every

kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

(84)

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN,
KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA,
MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG,
NI NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,
RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,
TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

(54) Title: MULTI-STEP TEXTURE PROCESSING WITH FEEDBACK IN TEXTURE UNIT

-1
INSTRUCTION INPUT UNIT CACHE || FORMATTING
> 40 42 UNIT
E 42 Lo 4
Lo
A
52
SHADER -
PROCESSOR J
36 A 4 YYVYY
|
TEXEL DATA OUTPUT UNIT COLOR FORMAT | [\ 1eR UNIT
- UNIT
50 [46
48
[
TEXTURE UNIT
34
FIG. 3

(57) Abstract: Techniques are described for using a texture unit to perform operations of a shader processor. Some operations of a
shader processor are repeatedly executed until a condition is satisfied, and in each execution iteration, the shader processor accesses
the texture unit. Techniques are described for the texture unit to perform such operations until the condition is satisfied.

WO 2017/142641 PCT/US2017/012734

MULTL-STEP TEXTURE PROCESSING
WITH FEEDBACK IN TEXTURE UNIT

TECHNICAL FIELD
{8601} This disclosure relates to graphics processing systems, and more particularly, to

graphics processing systems that utilize a texture unit.

ACKGROUND
[8602] Computing devices ofien utilize a graphics processing unit (GPU) to accelerate
the rendering of graphics data for display. Such computing devices may include, ¢ g,
computer workstations, mobile phones such as so-called smartphones, embedded
systems, personal computers, tablet computers, and video game consoles. GPUs
tvpically execute a graphics processing pipeline that includes a plurahity of processing
stages which operate together to execute graphics processing commands. A host central
processing unit (CPU) may control the operation of the GPU by issuing one or more

graphics processing commands to the GPU.

SUMMARY

80603} This disclosure s directed to using a texture umit to implement operations of a
shader processor of a graphics processing umit (GPU) to limit calls to the texture unit.
Operations that include multiple calls to the texture unit that a shader processor is to
perform are instead performed by the texture unit. Each of these operations that the
shader processor is to perform may mstead be performed by hardware components
within the texture wnit. In this way, the GPU leverages the hardware of the texture unit
to perform operations that the shader processor is to perform and limits calls to the
texture unit.

19604} In one example, the disclosure desoribes an example method of processing data,
the method comprising receiving, with a texture unit, an instruction mstructing the
texture unit to repeatedly execute operations based on a condition defined in the
nstruction being satisfied, repeatedly executing, with the texture unit, the operations
based on the condition defined in the instruction being satisfied or not being satisfied,
and outputting, with the texture unit and to a graphics processing vnit (GPU), data

resulting from the repeated execution of the operations.

WO 2017/142641 PCT/US2017/012734

18603} In one example, the disclosure deseribes an example device for processing data,
the device comprising a graphics processing unit (GPU) comprising a shader processor,
and a texture unit configured to recetve, from the shader processor of the GPU, an
instruction instructing the texture unit to repeatedly execute operations based on a
condition defined in the instruction being satisfied, repeatedly exccute the operations
based on the condition defined in the instruction being satisfied or not being satisfied,
and output, to the GPU, data resulting from the repeated execution of the operations.
18606] In one example, the disclosure describes an example device for processing data,
the device comprising means for recetving an instruction instructing a texture unit to
repeatedly execute operations based on a condition detined m the nstruction being
satisfied, means for repeatedly exeouting the operations based on the condition defined
in the instruction being satisfied or not being satisfied, and means for culputting, to a
graphics processing unit (GPU), data resulting from the repeated excention of the
operations.

18687] In one example, the disclosure describes an example non-transitory computer-
readable storage medium storing instructions that when executed cause one or more
processors of a device for processing data to receive an mstruction instructing a texture
umii to repeatedly execute operations based on a condition defined in the instruction
being satisfied, repeatedly execute the operations based on the condition defined in the
nstruction being satisfied or not being satisfied, and output, to a graphics processing
unit {GPU), data resulting from the repeated execution of the operations.

18688} The details of one or more examples of the disclosure are set forth in the
accompanying drawings and the description below. Other features, objects, and
advantages of the disclosure will be apparent trom the description and drawings, and

from the claims.

BRIEF DESCRIPTION OF DRAWINGS
(8609} FIG. 1 1s a block diagram ilhustrating an example computing device that may be
used to implement the techniques of this disclosure.
(8616 FIG. 2 15 a block diagram illustrating the CPU, the GPU and the memory of the

computing device of FIG. 1 in further detail.

WO 2017/142641 PCT/US2017/012734

(7S]

16611} FIG. 3 15 a block diagram illustrating an exarple of a texture unit of FIG. 2
further detail.
18612} FIG. 4 1s a flowchart illustrating an example method of processing datain

accordance with one or more example techniques described in this disclosure.

DETAILED DESCRIPTION

{8613 This disclosure is directed to leveraging a texture unit to perform operations that
otherwise would require a shader processor of a graphics processing unit (GPU) {o 1ssue
multiple calls to the texture unit to perform the operations. For various graphics
processing algorithms, the shader processor outputs multiple requests for the texture
unit to retricve texture data, process texture data, and output the processed texture data
{c.g., texels) to the shader processor.

(8614} One common factor in the vartous graphics processing algorithms that
repeatedlv causes the shader processor to access the texture unit is a structure of the
wnstructions that execute on the shader processor. For example, the structure of the
mstructions generally includes a loop with a termination condition, logic to
advance/modify texture coordimates, and logic to calculate a result of operations defined
1n the mstructions.

[6613] In the technigues described in this disclosure, rather than having the shader
processor execute these instructions that inclede the repeated calls to the textire unit,
the instructions may be mapped to be performed by hardware components of the texture
untt. For example, the texture unit may inchude a feedback path where an output of the
textare wnit feeds back into a component of the texture umt that receives the mput. With
the feedback, the texture unit may be configured to implement the iterations of the loop,
without requiring repeated calls to the texture unit from another unit such as a shader
processor. In this way, the shader processor may execute one instruction that causes the
shader processor to cutput a set of data (e.g., the data on which the shader processor was
going to perform operations} to the texture unit, and the texture vnit then performs the
tterations of the instructions in the loop using the internal feedback path, and outputs a
result once with the final data (texels} to the shader processor. Accordingly, the shader
processor may need to output once to the texture unit, rather than output multiple times

with intermediate data, and reccive data once from the texture unit, rather than having

WO 2017/142641 PCT/US2017/012734

the shader processor access the texture unit moltiple times {¢.g., rather than recerving
mtermediate output multiple times from the texture unit and mvoking the texture vt
with multiple calls).

18616} In some examples, the GPU and texture unit may reside in the same integrated
circuit or may reside in different integrated circuits. The texture unit may be configured
to receive, from a shader processor of the GPU, an mstruction instructing the texture
unit to repeatedly execute operations (¢ g, looped-instructions) based on an occurrence
of a condition defined 1n the instruction {e.g., the termination condition). In response,
the texture unit may repeatedly execute the operations until the condition defined 1o the
instruction is satistied or not satisfied, and output to the GPU data resulting from the
repeated exccution of the operations.

[8617] FIG. 1 1s a block diagram illustrating an example computing device 2 that may
be used to implement techniques of this disclosure. Computing device 2 may comprise
a personal computer, a deskiop computer, a laptop computer, a computer workstation, a
video game platform or console, a wirgless communication device (such as, eg., a
mobile telephone, a cellular telephone, a satellite telephone, and/or a mobile telephone
handset), a landhine telephone, an Internet telephone, a handheld device such asa
portable video game device or a personal digital assistant (PDA}Y, a personal music
plaver, a video player, a display device, a television, a television set-top box, a server,
an intermediate network device, a mainframe computer or any other tvpe of device that
processes and/or displavs graphical data.

108618] Asillustrated in the example of FIG. 1, computing device 2 includes a user input
interface 4, a CPU 6, a memory controller 8, a svstem memory 10, a graphics processing
anit (GPU) 12, alocal memory 14, a display interface 16, a display 18 and bus 20. User
nput interface 4, CPU 6, memory controller 8, GPU 12 and display mterface 16 may
communicate with each other using bus 20, Bus 20 may be any of & variety of bus
structures, such as a third generation bus {¢.g., a HyperTranspoit bus or an InfiniBand
bus}, a second generation bus {e.g., an Advanced Graphics Port bus, a Peripheral
Component Interconnect (PCHy Express bus, or an Advanced eXentisibie Interface
{AX1) bus) or another type of bus or device interconnect. It should be noted that the
specific configuration of buses and communication interfaces between the different

components shown in FIG. 1 1s merely exemplary, and other configurations of

WO 2017/142641 PCT/US2017/012734

Y

computing devices and/or other graphics processing systems with the same or different
components may be used to implement the techniques of this disclosure.

(8619} CPU 6 may comprise a gencral-purpose or a special-purpose processor that
controls operation of computing device 2. A user may provide mput to computing
device 2 to cause CPU 6 1o execute one or more software applications. The software
applications that execute on CPU 6 may include, for example, an operating system, a
word processor application, an email application, a spread sheet application, a media
plaver application, a video game application, a graphical user interface application or
another program. The user may provide input to computing device 2 via one or more
input devices (not shown) such as a kevboard, a mouse, a microphone, a touch pad or
another input device that is coupled to computing device 2 via user input inderface 4.
16620} The software applications that exccute on CPU 6 may include one or more
graphics rendering mstructions that mstruct CPU 6 1o cause the rendening of graphics
data to display 1. In some examples, the software instructions may conform to a
graphics application programming nterface (AP, such as, ¢.g.. an Open Graphics
Library (OpenGL™) API, an Open Graphics Library Embedded Systens (OpenGL ES)
API, a Direct3D APL an X3D AP, a RenderMan API, a WebGL AP, or any other
public or proprictary standard graphics APL In order to process the graphics rendering
instructions, CPU 6 may issue one or more graphics rendering commands to GPU 12 to
cause GPU 12 to perform some or all of the rendering of the graphucs data. In some
examples, the graphics data to be rendered may include a list of graphics primitives,
¢.g.. points, lines, tnangles, quadralaterals, triangle strips, ¢tc.

16621} Memory controller 8 facilitates the transfer of data gomg into and out of system
memory 10, For example, memory controller 8 may receive memory read and write
commands, and service such commands with respect to memory 10 in order to provide
memory services for the components in computing device 2. Memory controller 8 is
communicatively coupled to system memory 0. Although memory controller 8 s
illustrated 10 the example computing device 2 of FIG. 1 as bemg a processing module
that is separate from both CPU 6 and system memory 10, in other examples, some or all
of the functionality of memory controlicr § may be implemented on one or both of CPU

6 and system memory 10.

WO 2017/142641 PCT/US2017/012734

16622} System memory 10 may store program modules and/or instructions that are
accessible for execution by CPU 6 and/or data for usc by the programs exccuting on
CPU 6. Forexample, syvstem memory 10 may store user applications and graphics data
associated with the applications. System memory 10 may additionally store information
for use bv and/or generated by other components of computing device 2. For example,
system memory [0 may act as a device memory for GPU 12 and may store data to be
operated on by GPU 12 as well as data resulting from operations performed by GPU 12,
For example, system memory 10 may store any combination of texture buffers, depth
buffers, stencil buffers, vertex buffers, frame buffers, or the like. In addition, system
memory 10 may store command streams for processing by GPU 12, System memory
10 may include one or more volatile or non-volatile memories or storage devices, such
as, for example, random access memory {RAM), static RAM (SRAM), dynamic RAM
(DRAM), read-only memory (ROM), erasable programmable ROM (EPROM),
electrically erasable programmable ROM (EEPROM]}, flash memory, a magnetic data
media or an optical storage media.

166231 GPU 12 may be configured to perform graphics operations to render one or more
graphics primitives to display 18. Thus, when one of the software applications
executing on CPU 6 requires graphics processing, CPU 6 may provide graphics
commands and graphics data to GPU 12 for rendering to display 18. The graphics
commands may include, e.g., drawing commands such as a draw call, GPU state
programming commands, memory transfer commands, gencral-purpose computing
commands, kernel execution commands, ctc. In some examples, CPU 6 may provide
the commands and grapbics data to GPU 12 by writing the commands and graphics data
to memory 10, which may be accessed by GPU 12, In some examples, GPU 12 may be
further configured to perform general-purpose computing for applications executing on
CPU 6.

[8624] GPU 12 may, in some instances, be built with a highly-parallel structure that
provides more efficient processing of vector operations than CPU 6. For example, GPU
12 may inchide a plurality of processing clements that are configured to operate on
multiple vertices or pixels in a parallel manner. The highlv paraliel nature of GPU 12
may, in some mstances, allow GPU 12 to draw graphics images {e.g., GUls and

two-dimensional (21 and/or three-dimensional {31} graphics scenes) onto display 13

WO 2017/142641 PCT/US2017/012734

more quickly than drawing the scenes directly to display 18 using CPU 6. In addition,
the highly paralicl nature of GPU 12 may allow GPU 12 to process certain types of
vector and matrix operations for general-purpose computing applications more quickly
than CPU 6.

[6625] GPU 12 may, in some instances, be integrated mto a motherboard of computing
device 2. In other instances, GPU 12 may be present on a graphics card that is mstalled
in a port in the motherboard of computing device 2 or may be otherwise incorporated
within a peripheral device configured to interoperate with computing device 2. In
further instances, GPU 12 may be located on the same microchip as CPU 6 forming a
system on a chip (50C). GPU 12 and CPU 6 may include one or more processors, such
as ong or more microprocessors, application specific integrated circuits {ASICg), field
progranumnable gate arravs (FPGAs), digital signal processors (D5Ps), or other
equivalent integrated or discrete logic civcuitry.

[8626] GPU 12 may be directly coupled to local memory 14, Thus, GPU 12 may read
data from and write data to local memory 14 without necessarily using bus 20. In other
words, GPU 12 may process data locally using a local storage, mstead of off-chip
memory. This allows GPU 12 to operate in a more efficient manner by elinunating the
need of GPU 12 to read and write data via bus 20, which may experience heavy bus
traffic. in some instances, however, GPU 12 may not include a separate cache, but
nstead utilize svstem memory 10 via bus 20, Local memory 14 may include one or
more volatile or non-volatile memories or storage devices, such as, e.g., random access
memory {RAM]}, static RAM (SRAM), dynamic RAM {BRAM), crasable
programmable ROM (EPROM), clectrically crasable programmable ROM (EEPROM),
flash memory, a magnetic data media or an optical storage media.

(8627} CPU 6 and/or GPU 12 may store rendered image data in a frame buffer that is
allocated within gystem memory 10, Display interface 16 may retrieve the data from the
frame buffer and configure display 18 to display the image represented by the rendered
image data. In some examples, display mterface 16 may include a digital-to-analog
converter {DAC) that is configured to convert the digital values retrieved from the frame
buffer into an analog signal consumable by display 18, In other examples, display
interface 16 may pass the digital values directly to display (8 for processing. Display

18 may include a monitor, a television, a projection device, a hiquid crystal display

WO 2017/142641 PCT/US2017/012734

(LCD), a plasma display panel, a light emitting diede (LED) array, a cathode ray tube
(CRT) display, clectronic paper, a surface-conduction clectron-cmitied display (SED), a
laser television display, a nanocrystal display or ancther type of display anit. Display
18 may be integrated within computing device 2. For instance, display 18 may bea
screen of a mobile telephone handset or a tablet computer. Alternatively, display 18
may be a stand-alone device coupled to computing device 2 via a wired or wireless
commuunications link. For instance, display 18 may be a computer monitor or flat panel
display connected 1o a personal computer via a cable or wireless hink,

106628} As described, CPU 6 may offload graphics processing to GPU 12. GPU 12 may
in tum perform varnous graphics processing algorithms to render graphics data.
Examples of graphics processing algorithms include parallax occlusion mapping
(POM), screen space rav tracing (SSRTY, depth of field (DoF) processing, volume
rendenng, or water or terrain rendering with dyvnamic height fields. Additional graphics
processing algorithms also exist, and the above are merely provided as a few examples.
16629] Part of the graphics processing in example graphics processing algorithms
mcludes texturing. Texturing involves a texiure unit that retrieves a bitioap from a
texture buffer and overlays the bitmap over graphical objects. In some examples, GPU
12 mchides the texture unit; however, the texture unit may be exiernal to GPU 12, In
some examples, the textare vnit, GPU 12, and CPU 6 may be all part of the same
wntegrated circuit (IC) or microcontroller. In this disclosure, the texture unit 18 described
as being internal to GPU 12.

16638} To perform graphics processing, a shader processor of GPU 12 may execute
operations of a shader program. Part of the execution of the operations of the shader
program may include repeated access to the texture unit. For example, the graphics
processing algorithm implemented by the shader processor may include operations that
form the following structure: a loop with an upper bound on the iteration count, 3
termunation condition in the loop, simple logic to advance/modiy texture coordinates,
and simple logic to calculate the result of the operations.

19631} In performing the operations, for each teration of the loop, the shader processor
may output a request to the texture unit to retricve data, perform processing on the data,
and output the data back to the shader processor. This results in multiple requests to the

texture unit, which consumes power, clock cycles, and bandwidth of connection lines

WO 2017/142641 PCT/US2017/012734

o

with GPU 12 or bandwidth of bus 20 1n examples where the texture unit is external to
GPU 12,

(8632} In the technigues described in this disclosure, operations that are to be executed
by the shader processor of GPU 12 are instead executed by the texture unit. For
instance, the operations that the shader processor of GPU 12 was to exccute include the
operations that are to be repeatedly executed until a condition 1s satisfied {e.g., a loop of
operations with an upper bound on the #eration count). The texture umit may nstead
repeatedly execute these mstructions until the condition is satistied or not satisfied,
without the need for repeated requests by the shader processor. For instance, the
condition may be to repeat until an upper bound is reached (¢ .g., repeat as long as A <
B}, In this case, the texture unit repeatedly executes as long as the condition is satisfied.
The condition may be to repeat unti the condition is no longer met (¢.g., repeat until A
> B}, In this case, the texture unit repeatedly executes as long as the condition 1s not
satisfied.

19633} For example, a texture unit {¢.g., one within GPU 12 or external to GPU 12)
may receive an instruction mstructing the texture unit to repeatedly execute operations
based on an occurrence of a condition defined mn the mstruction (¢.g., such as reaching
the upper bound of an iteration count). The texture unit may repeatedly execute the
operations votil the condition defined in the tostruction 1 satisfied or not satisfied, and
may output data resulting from the repeated execution of the operations.

[834] As an example, the texture unit may read a texel value (e.g., from a texture
buffer) during a first iferation of execution of the operations. The texture unit may
determine whether the condition 1s satisfied or not satisfied based on a comparison of
the texel value with a vanable defined 1 the nstruction, and deternune whether a
second iteration of execution of the operations 1s needed based on the determination of
whether the condition defined in the instruction is satisfied or not satisfied.

[8635] The repeated executing of the operations includes the texture unit outpuiting an
output of the texture unif as a feedback signal to an input of the texture unit based on the
determination that the second iteration of execution of the operation is needed. The
texture unit may output to the GPU the data resulting from the repeated execution ot the
operations based on the determination that the second iteration of execution of the

operations 18 not needed.

WO 2017/142641 PCT/US2017/012734

10

19636] In this way, the workload of the shader processor may be reduced, as compared
to examples where the shader processor has to execute the operations in the loop,
because the shader processor may be able to 1ssue one matruction to the texture unit and
have the texture unit repeatedly exccute the operations. This may also result in less
shader code to be stored in an mstruction cache of GPU 12 since all of the operations
that formed the loop could be represented as a single instruction to the texture unit.
{8837} There may be reduction in power usage and increase in processing efficiency as
well, Becauose the shader processor executes fewer operations, the shader processor
may consume fess power. The processing hardware units of the texture unit {e.g.,
artthmetic logic units {ALUs}) may be more power efficient as compared to the shader
processor, and therefore, by shifting the execution of the operations to the texture unit,
there may be an overall reduction in power. The processing hardware units of the
texture unit may also provide higher throughput than the shader processor, resulting in
faster processing of the operations than in cases where the texture anit repeatedly
executes the operations {¢.g., the texture unit is not idle waiting on instructions from the
shader processor and does not need to waste clock cycles repeatedly outputting to the
shader processor).

18038} The size of a general parpose register (GPR) of the shader processor may also be
reduced as compared to examples where the shader processor repeatedly executes the
operations of the loop unti] the condition of the loop 1s satisfied. The GPR is a register
that the shader processor uses to temporanly store data resulting from execution of an
operation. If the shader processor were to repeatedly execute the operations, the shader
processor would store resulting data for cach operation in the GPR and require a
relatively large GPR to store data resulting from each tieration of exccution. With the
example techniques deseribed in this disclosure, the texture unit would store any
intermediate data resulting from an iteration of execution, allowing the GPR of the
shader processor to be used for other purposes or for the size of the GPR to be reduced.
[8839] FIG. 2 18 a block diagram iHastrating CPU 6, GPU 12 and memory 10 of
computing device 2 of FIG. 1 i further detatl. As shown in FIG. 2, CPU 6 1s
communicatively coupled to GPU 12 and memory 10, and GPU 17 1s communicatively
coupled to CPU 6 and memory 10, GPU 12 may, in some examples, be mtegrated onto

a motherboard with CPU 6. In additional examples, GPU 12 may be mmplemented on a

WO 2017/142641 PCT/US2017/012734

11

graphics card that is installed 10 a port of a motherboard that includes CPU 6. In further
exaraples, GPU 12 may be incorporated within a peripheral device that is configured to
nteroperate with CPU 6. In additional examples, GPU 12 may be located on the same
integrated circuit or microprocessor as UPU 6 forming a system on a ¢hip (50C). CPU
6 is configured to execute software application (App) 24, a graphics API 26, a GPU
driver 28 and an operating system 30,

[8840] GPU 12 includes a controller 32, texture unit 34, shader processor 36, one or
more fixed function units 38, and local memory 14. in FIG. 2, local memory 14 and
texture unit 34 are illustrated as being internal to GPU 12, but focal memory 14 and
texture unit 34 may be external to GPU 12 as well.

18641} Software application 24 may each include at least one of ong or more
instructions that cause graphic content to be displayed or one or more instructions that
cause a non-graphics task {¢.g., a general-purpose computing task} to be performed on
GPU 12, Software application 24 may issue instructions to graphics API 26, Graphics
API 26 may be a runtime service that translates the instructions received from software
application 24 into a format that is consumable by GPU driver 28,

[8642] GPU driver 28 receives the mstructions from software application 24 via
graphics API 26, and controls the operation of GPU 12 to service the matructions. For
example, GPU driver 28 may formulate one or more command streams, place the
command streams into memory 10, and instruct GPU 12 o execute command streams.
GPU driver 28 mayv place the command streams into memory 10 and communicate with
GPU 12 via operating system 30, e.g., via onc or more system calls.

16643} Controller 32 may be hardware of GPU 12, may be software or firmware
executing on GPYU 12, or a combination of both. Controlier 32 may control the
operations of the various components of GPU 12. For example, controller 32 may
control when instructions and data are provided to the components, control the reception
of instructions and data, and conirol the output of data from GPU 12.

[844] Shader processor 36 and fixed function units 38 together provide graphics
processing stages that form a graphics processing pipeline via which GPU 12 performs
graphics processing. Shader processor 36 may be configured to provide progranumnable
flexibility. For instance, shader processor 36 may be configured o execute one or more

shader programs that are downloaded onto GPU 12 via CPU 6. A shader program, in

WO 2017/142641 PCT/US2017/012734

some examples, may be a compiled version of a program written in a igh-level shading
language, such as, ¢.g., an OpenGL Shading Language (GLSL), a High Level Shading
Language (HLSL), a C for Graphics (Cg} shading language, ctc.

18645} In some examples, shader processor 36 mchudes a plorality of processing units
that are configured to operate in parallel, ¢.g., as a single istruction multiple data
{(SIMD) pipeline. Shader processor 36 may have a program memory that stores shader
program instructions, a general purpose register (GPR) that stores data that is to be
processed and the resulting data, and an execution state register, .g., a program counter
register that mmdicates the current instruction in the program memory being executed or
the next instruction to be tetched. Examples ot shader programs that execuie on shader
processor 36 include, for example, a vertex shader, a pixel shader, a geometry shader, a
hull shader, a domain shader, a compute shader, and/or a unified shader.

[8346] One or more fixed function units 38 may include hardware that 1s hard-wired {o
perform certain functions. Although the fixed function hardware may be configurable,
via one o1 more control signals for example, to perform different functions, the fixed
function hardware of one or more fixed function units 38 typically does not include a
program memory that is capable of receiving user-compiled programs. In some
examples, one or more fixed function voits 38 include, for example, processing units
that perform raster operations, such ag, ¢.g., depth testing, scissors testing, alpha
blending, etc.

[8347] GPU 12 also includes texture unit 34, which is a hardware unit of GPU 12 and is
used i texturing algorithms. Texturing may include retrieving a bitmap from a texture
buffer, which may be part of system memory 10, processing the bitmap, and placing this
processed bitmap over a graphical object. The bitmap may be considered as a two-
dimensional image that texture unit 34 processes so that shader processor 36 or one or
more fixed fuoction units 38 can place over a graphical object. The pixels of the bitmap
may be referred to as texels, and the data that texture unit 34 generates for output to
shader processor 36 may be referred to as texel data.

164048} As a sumple example, the bitmap may be a flattened two-dimensional image of
the world map. Texture unit 34 may process this two-dimensional tnage of the world
map and GPU 12 (c.g., via shader processor 36 and/or fixed function units 38) may

place this image over a spherical graphical object forming a graphical globe.

WO 2017/142641 PCT/US2017/012734

19649] Although using texturing to form a graphical globe is one example, there may be
various other examples of texturing. Some examples of texturing algonthms mclude
parallax occlusion mapping (POM)}, screen space ray tracing (SSRT), depth of ficld
{DoF), volume rendering, and water/terrain rendering with dynamic height fields. The
examples described in this disclosure are applicable to these texturing algonthms, a
subset of these texturing algorithms, texturing algorithmas in addition to these examples,
or any combination of the foregoing.

16658} To perform textuning, application 24 may issue instractions to graphics AP 26,
and in tum to GPU driver 28, GPU driver 28 may issue instructions to shader processor
36 to execuie operations that include calls 1o texture unit 34 instructing fexture unit 34
to perform processing of data. In some examples, to perform texturing, shader
processor 36 may execute a looped function (¢.3., such as a “while” loop or a “for”
loop) that has a condition to be satisfied (e.g., the loop continues until a bound on the
tteration count of the loop is satisfied). During each iteration, shader processor 36 may
cutput the call to texture umit 34 and receive data back frony texture wnit 34,

[8651] As an cxample, the structure of the looped function may be:

mitialize

while {condition)

3
tex(fsets
loopBody
sample texture
¥

[6652] To further lustrate the looped function, the following 1s an exampie of
operations that shader processor 36 executes for POM rendering,
float height = read imagef{heightMap, tex).x;
float prevHeight = height;
while {carrentLayerHeight > height)
¢
texOffset += dlex;
prevHeight = height;

height = read imageftheightMap, tex + texOffset) x;

WO 2017/142641 PCT/US2017/012734

14

currentlayerHeight -= layerHeight,
¥
[8653] In the above example, the shader program that shader processor 36 executes
causes shader processor 36 o cxecuite an operation via the “read _imagef” function. The
“read _imagef” function is used to sample heightmap texture at location tex_texUffsct,
and the texOffset += dTex modifies texture coordinates. As can be seen, shader
processor 36 repeatedly executes the “read imagef” function until the condition that
currentlayerHeight becomes equal to height is satisfied. During cach execution, a texel
value 18 read (¢.g., heightmap value) and assigned to a variable {c.g.. height). Whether
the condition is satisfied is based on a comparison of the texel value with a variable
{c.g., height is compared to currentbayerHeight to determine whether
currentLayerHeight is greater than height).
[88354] To perform the operations for the POM rendering, shader processor 36 may
output a request to texiure unit 34 {¢.g., instruct texture unit 34 to execute the operation
of read imagef) and in return receive texel data for storage in a GPR. Shader processor
36 may perform the additional operations in the above code, and determine whether the
condition 1s satisfied. If the condition 1s still satisfied, shader processor 36 may repeat
the request to texture unit 34 and in tam receive texel data for storage m the GPR, and
keep repeating these steps based on whether the condition is satisfied.
[B055] In some examples, shader processor 36 may loop through the operations until a
condition a satisfied {¢.g., loop untid an upper bound 1s reached) or may loop through the
operations as long as a condition is satisfied {e.g., as long is a first value is less than a
second value). Inthese examples, shader processor 36 may loop through the operations
based on a condition being satisfied (¢.2., as long as a condifion is satisfied) or not being
satisfied (e.g., until a condition is satisfied).
[8656] The condition being satisfied may be part of a “while loop,” whereas the
condition not being satisfied may be part of a “do loop.” For instance, the condition
may be while A < B perform a set of operations. In this case, texture unit 34 may
repeatedly execute the operations based on the condition being satisfied {e.g., if Ais less
than B, texture unit 34 will execute another ieration of the operations}. As another
cxample, the condition may be to repeat until A > B, In this case, texture unit 34 may

repeatedly execute the operations based on the condition not being satisfied {e.g., if A s

WO 2017/142641 PCT/US2017/012734

15

not equal to or greater than B, texture urat 34 will execute ancther iteration of the
operations). The technigues described in this disclosure are applicable to both cases
{c.g., repeatedly executing based on the condition being satistied and based on the
condition not be satisfied, which is a function of how the loop is defined). Forease, the
description may refer to the case where fexture unit 34 repeatedly executes based on the
condition being satisfied, but such description should not be read to mean that the
technigues are not applicable to the case where texture unit 34 repeatedly executes
based on the condition not being satisfied.

16657} The repeated calls by shader processor 36 to texture unit 34 may increase the
workload of shader processor 36, require shader processor 36 1o include a relatively
large GPR that is unavailable for other purposes while the loop is being executed, as
well as use a larger instruction cache in local memory 14 1o store all of the operations of
the loop. In the techniques described in thas disclosure, rather than shader processor 36
repeatedly executing the operations that mvolve access to textare unit 34, texture unit 34
may be configured to repeatedly execuic operations in response o an access from
shader processor 36 so that shader processor 36 does not need to repeatedly access
texture unit 34,

{6658} For example, texture anit 34 may be configured to repeatedly execute a plurality
of operations in response to a single access by shader processor 36, At least some of
such operations conventionally would be performed in response to each of a plurality of
multiple accesses by shader processor 36, ¢.g., onc operation i response {0 on¢ access.
In contrast, in accordance with varous examples of this disclosure, texture unit 34 may
execute multiple operations in response to a given access 1o texture unit 34 by shader
processor 36.

{8659} By reducing the number of accesses to texture unit 34 by shader processor 36 to
accomplish a set of operations, the workicad of shader processor 36 may be reduced.
Furthermore, in some cases, texiure unit 34 may be capable of performing condition
festing {¢.g., condition check), mathematical operations in the loop, and other such
functions with higher throughput and wtilizing less power than shader proccessor 36.
[8668] For instance, example shader code {e.2., operations of a shader program) of the
POM rendering may be one single instruction that shader processor 36 ocutputs to

texture unit 34 {g.g., one mstance of shader processor 36 accessing texture unit 34). As

WO 2017/142641 PCT/US2017/012734

an example, the mstruction that shader processor 36 may output (o texture unit 34 may

be:

floatd result = texturelooptheightMap, tex, dTex, layerHeight, condition ..),

[B361] In the mnstruction that shader processor 36 outputs to texture unit 34, shader
processor 36 meludes variables of the operations that texture unit 34 is to perform (¢ g,
heightMap, tex, dTex, laverHeight) as well as a definition of the condition. In tam,
texture unit 34 may repeatedly execute the operations based on the condition defined in
the mstruction received from shader processor 36 being satisfied.
18662} For texture unit 34 to repeatedly execute the operations, texture unit 34 may
need to be configured to recognize that a single function call instructs texturc unit 34 to
perform a particular set of operations. For imstance, during the design of texture unit 34,
texture unit 34 may be designed such that if texture unit 34 receives a function having a
particular name or recgives a function having a particular set of variables or order of
variables, then texture unit 34 is to repeatedly execuie a particular set of operations. As
an example, if texture unit 34 receives an struction ncluding the textureLoop
function, then texture unit 34 may determine that texture unit 34 is to repeatedly exccute
operations such as those described above as being execoted by shader processor 36, If
texture unit 34 receives an instruction including a different function {e.g., one for
SSRT), then texture unit 34 may determine that texture unit 34 s to repeatedly execute
operations that would have otherwise been executed by shader processor 36.
16663} Texture unit 34 may be pre-configured to repeatedly exccute operations for
different types of texturing, and as more texturing algorithms are developed, texture unit
34 may be configured to repeatedly execute operations for these texturing algorithms as
ell. More generally, although the examples are described as being for texturing
algorithms, the technigues described in this disclosure are not so imited. For instance,
the techniques described m this disclosure may be extended to other cases where loop
operations arc used that require access to texture unit 34, even if the loop operations are
not being used for texturing purposes. in this way, texture unit 34 may be configured in
a manner that may be more closely comparable to a programmable texture processimg

unit.

WO 2017/142641 PCT/US2017/012734

17

16064} The developer guide for GPU 12 may include information mdicating which
looped-operations texture unit 34 is configured to perform and the instruction for the
function call to have texture unit 34 perform the operations. Puring development of the
shader program used to modify texture coordimates, the developer may melude the
instruction for the function call rather than Jooped-operations in the code of the shader
program.

[8365] As another example, rather than relving on the developer to exploit the abibity of
texture wnit 34 to execute the looped-operations, a compiler, executing on CPU 6, that
compiles the shader program may compile the looped-operation into a single struction
that mcludes the particular function call to texture unit 34, Altematively or in addition,
GPU driver 28 or a wrapper for GPU driver 28 may be configured to read the high-level
language of the code of the shader program and deternuine places in the code that
wnclude particular looped-operations that texture unit 34 1s configured to execute. GPU
driver 28 or the wrapper for GPU driver 28 may modify the code of the shader program
to nclade the single mstruction with the particelar function call to have texture umt 34
execute the looped-operations.

[8666] Accordingly, texture unit 34 may be configured (o receive an instruction
outputted by shader processor 36 mstructing texture unit 34 to repeatedly executs
operations based on a condition defined in the instruction being satisfied {(or not being
satisfied). The operations may be operations of a shader program and mclude
operations to modify texture coordinates.

19667] Texture unit 34 may repeatedly execute the operations based on the condition
defined in the instruction being satisficd or not being satisfied {c.g., as long as the
condition 1s satisfied or until the condition is satisfied) and repeatedly execute without
recetving any additional instructions to execute the operations from shader processor 36.
In this way, the workload of shader processor 36 and the frequency of interaction
between shader processor 36 and texture unit 34 may be reduced.

[8868] Texpure unit 34 may output data resulting from the repeated exccution of the
operations. For example, texture unit 34 may output the data to shader processor 36
ondy atter all ierations of the repeated execution of the operations arc complete. In
other words, texture unit 34 may not output the data resulting from the repeated

execution until after the loop are complete. Accordingly, the nomber of times texture

WO 2017/142641 PCT/US2017/012734

18

unit 34 nceds to ovtput to shader processor 36 may also be limited. However, in some
cxamples, texture unit 34 may periodically or at the conclusion of one tteration, output
data resulting from the execution to shader processor 36. Therefore, the examples of the
output of data resulting from the repeated execution meludes the final data after all
tterations are complete or perodically during the repeated execution.

[B8369] FIG. 3 15 a block diagram illustrating an example of a texture unit of FIG. 2 m
further detail. In FIG 3, shader processor 36 may cutpot one mstruction to texture unit
34 instructing toxture unit 34 to repeatedly execute operations based on a condition
defined in the instruction being satisfied or not satisfied. For instance, the instraction
that shader processor 36 outputs to texture unit 34 includes the variables on which
texture unit 34 operates and the condition that defines when the looped operations are
complete.

[B676] As illustrated, texture unit 34 includes input unit 40, cache 42 (which may be a
local cache of texture anit 34 or part of local memory 14}, formatting unit 44, filter unit
46, color format unit 48, and output unit 50, In the example texture unit 34, output unit
50 and 1oput unit 40 are connected to one another via foedback signal 52, As described
in more detal, feedback signal 52 provides the mechanism to determine whether the
condition is satisfied or not satisfied.

18671} The units of texture vwiut 34 dlustrated in FIG 3 are illustrated to ease with
understanding. Different types of texture unit 34 may include more, fewer, or ditferent
units than those illustrated, and the interconnection between the components need not
necessarily be as illostrated. The techniques descrbed in this disclosure are also
applicable to such examples of texture unit 34,

(6672} In normal operation {e.g., where texture unit 34 is not be repurposed to perform
operations generally performed by shader processor 36), mput unit 40 may be used for
addressing purposes. Input unit 40 may convert (w,v) coordinates 10to menmory
addresses. Cache 42 may store the information addressed by input unit 40. Formatting
unit 44 may perform various formatting on the bitmap as defined by the texturing
algorithm. Filter unit 46 may perform bilinear filtering/interpolation. Color format unit
48 may format the color of the bitmap. Output unit 50 receives the output from color

format unit 48 and 1s the output mterface to shader processor 36 to output the texel data.

WO 2017/142641 PCT/US2017/012734

19

16673} However, in the example technigues described in this disclosure, these various
units may be repurposed to repeatedly execution operations of a shader program. For
mstance, as described above, the structure of the looped-operations may be as follows:
imtialize

while {condition})

§

X
tex(fsets
loopBody
sample texture
¥

18674} In some examples, mput unit 40 may be configured to perform the initialize and
texOffscts operations. Filter unit 46 may be configured to perform the operation of the
condition. Color format unit 48 may be contigured to perform the operation of the
loopBody. Output unit 50 may be configured to determine whether the condition is
satisfied.

[6675] For cxample, output unit 30 may be configured to determine whether an iteration
of execution of the operations 1s needed based on whether the condition defined m the
nstruction is satisfied or not satisfied. In the example of a while-loop, output anit 50
may determine whether the condition to be satisfied is stilf true. I the condition to be
satisfied is still true, output unit 50 mav deternune that the iteration of execution of the
operations s needed (1.e., ancther pass through the loop}. In this case, to repeatedly
oxecute the operations, ocutput unit 50 is configured to output, from texture unit 34 {e.g.,
output data resulting from one iteration of the loop), feedback signal 32 to input unit 40
based on the determination that the tteration of execution of the operations 18 needed. If
the condition to be satisfied 1s false, cutput unit 50 may determine that the tteration of
execution of operations is no longer needed (i.e., the loop is complete). In this case,
output unit 50 outputs the data resulting from the repeated execution of the operations
based on the determination that the iferation of execution of the operations is not
needed. In some examples, mput unit 40 may be configured to give feedback signal 52
higher priority than any output from shader processor 36.

[6676] In some examples, during each ieration of execution of the loop, texture umt 34

may read a texel valoe. For instance, inpot untt 40 or formatting unit 44 may be

WO 2017/142641 PCT/US2017/012734

configured to read texel values from a texture buffer (e.g., located in local memory 14
or possible system memory 10) or from cache 42, and may read a texel value dunng
cach iteration. Qutput unit 30 may compare this read texel value {(or a processed version
of the read texel value} with a variable defined i the instruction to determing whether
another round of iteration is needed. In these examples, the read texel value controls
whether more ierations of execution are needed based on the comparison to the vanable
defined m the instruction.

18677} For instance, a read unit (¢ g., input unit 40 and/or formatting unit 44, or
possibly some other unit of texture unit 34} may read a texel value during a first
iteration of execution of the operations. Output unit 50 may determine whether the
condition is satisfied based on a comparison of a value based on the texel value (e g, the
texel value itself or a value determined from processing the texel value) with a variable
defined in the instruction. Output unit 30 may determine whether a second #teration of
execution of the operations i3 needed based on the determination of whether the
condition defined in the instruction is satisficd.

{6678} In onc example, to repeatedly execute the operations, output unit 30 may output
a feedback signal to input unit 40 based on the determunation that the second tteration of
execution of the operations 1s needed. In another example, output voit 50 may cutpat
the data resulting from the repeated execution of the operations based on the
determination that the second iteration of execution of the operations is not needed.
[8879] As an illustration, for the POM algorithm above, the condition of the while loop
was while {currentLayerHeight > height) and the loopBody was height =

read imageftheightMap tex + texOffset). In this example, a read unit (c.g., input unit
40 or tormatting unit 44, as two non-limiting examples) may read a texel value {e.g., the
value stored at heightMap tex + texOffset) during a first execution of the operations.
[8688] Afier one iteration of execution of the operations of the while loop, output unit
50 may deternune whether currentlayerHeight is still greater than height. For example,
output unit 50 may determine whether the condition 18 satisfied based on a comparison
of a value based on the texel value (texel value #tself in this case, which the value of
height) with a vanable defined in the instruction {¢.g., currentLayerHeight). Output unit

50 may determine whether a second iteration of the execution of the operations is

WO 2017/142641 PCT/US2017/012734

needed based on the determination of whether the condition defined in the instruction is
satisfied.

{8681} For example, if true {e.g., currentLayverHeight is still greater than height), output
anit 50 may output the value of height as previously caleulated back to input unit 40 as
feedback signal 52 so that the units of texture unit 34 exccute an iteration of the
operations. Accordingly, to repeatedly execute the operations, output unit S0 may be
configured to output feedback signal 52 to input unit 40 based on the determination that
the second iteration of execution of the operations is needed. This process repeats until
the condition is no longer {rue.

6082} If falee (e.g., currentLaverHeight is no longer greater than height), output unit 50
may output the final value of height to shader processor 36 as determined via the
repeated exccution of the operations. Accordingly, output unit 50 may output the data
resulting from the repeated execution of the operations based on the determimation that
the second iteration of execution of the operations 1s not needed.

18683} In thus example, the first iteration and second iteration are used as a way to assist
with understanding. There may be multiple iterations, and for each iteration, output unit
50 may output feedback signal 52 to mput unit 40 based on a comparison between a
value based on the read texel value (e.g., the texel value itself or processed texel value)
and a variable defined in the nstruction. If anocther iteration s necded, cutput unit 50
may output feedback signal 52 to input unit 40, and 1t another tteration 1s not needed,
output unit 30 may output to GPU 12,

18684} The above provided an example using POM. The following provides some
additional example uses including another example of using POM. Furthermore, the
above example of POM provided one example of which units of texture unit 34 perform
which operations. However, the technigues described in this disclosure are not so
bmited, and vnits of texture unit 34 may perform different operations than the example
of POM provided above. In some examples, the operations include operations to
modify texture coordinates (e.g., toxOffsety. Also, the technigues desenbed in this
disclosure should not considered limited to texturing, and may be used for other
purposes such as ray tracing and other examples. o some examples, output unit 50 may
periodically output data to shader processor 36 rather than only after completion of all

iterations of execution of the operations.

WO 2017/142641 PCT/US2017/012734

)
]

18683] As another example of POM, in the loop structure, the initialize operation is
currHeight = 1, the condition 1s (currHeight > height AND currHeight > 0}, the
texOffsets operation is texCoord += dTex, and the loopBody 18 currHeight -=
layerHeight. In this example, input unit 40 may set currHeight = 1 and perform the
operation of texCoord += dTex. Formatting vnit 44 may assign a true or false value
based on whether the condition of currHeight > height s satishied. Filter unit 46 may
perform the operation of currHeight -= layerHeight.

16686} Cutput unit 50 may determine whether an iteration of execution of the
operations is needed based on whether the condition defined n the instruction is
satisfied (¢.g., based on the true or false determination made by formatting unit 44). In
this example, to repeatedly cxecute the operations, output unit 30 outputs from texture
unit 34 {c.g., data from one iteration of the operations) feedback signal 52 to input unit
40 based on the determination that the iteration of execution of the operations is needed.
Otherwise, to output data, cutput voit 50 outputs the data resulting from the repeated
execution of the operations based on the determination that the iteration of execution of
operations is not needed. fo cach case, whether another iteration of the loop is needed
may be based on a comparison of the texel value {or a value determined from the texel
value) and a vanable defined in the mstruction.

{8887} As an example of screen space ray tracing {SSRT), there may be no mtialize
operation. The condition 1s (Px¥stepDir <= endP AND stepCount > maxSteps). The
texOffsets operation 18 (B, Q.z, k) += {dP, dQ .z, dK}. The loopBody operation is
ravZmax = {(dQ.2*0 5 + QAdK*0.5 + k). Similar to above, in this example, input unit
40 may perform the operation of (P, Q.z. k) += (dP, dQ =z, dK). Formatting unit 44 may
assign a true or false value based on whether the condition of Px*stepDir <= endP AND
stepCount > maxSteps 1s satisfied. Filter unit 46 may perform the operation of rayZmax
= (dQ.z*0.5 + Qz(dK*0.5 +k).

[8088] Output unit 50 may determine whether an iteration of execution of operations is
needed based on whether the condition defined mn the mstructions 1s satisfied. I true,
output unit 50 outputs feedback signal 52 to waput unit 40 for another execution
teration. It false, output unit 50 outputs the final data resulting from repeated exccution

by texture unit 34 to shader processor 36.

WO 2017/142641 PCT/US2017/012734

™D
W

18689} The example technigues described in this disclosure may alsc be applicable to
tree traversal algorithios. For example, in bounding volume hierarchy (BVH) tree
traversal for ray tracing, texture unit 34 may be configured for the ray-box intersection
test and to traverse the tree using many execution terations of operations in a loop. For
quad tree traversal (e.g., screen-space ray tracing, depth of ficld, volume rendenng,
view synthesis, etc.}, a developer may bwild quad trees on top of depth buffers. To
traverse the trees, textire unit 34 may be configured to execute loop operations in
addition to ray-box intersection test and ray-plane mtersection test. The ray-plane
mtersection test is a simplified ray-box mtersection test.

[6696] FIG. 4 15 a flowchart iflustrating an example method of processing data in
accordance with one or more example techniques described in this disclosure. Texture
untt 34 receives an mstruction from shader processor 36 of GPU 12 instructing texture
unit 34 to repeatedly execute operations based on a condition defined in the mstruction
being satisfied (34). The operations may be operations of a shader program and
operations to modify texture coordinates. Examples of the operations include POM,
SSET, DoF processing, volume rendering, or water or terrain rendering with dynamic
height fields.

16691} Texture unit 34 repeatedly executes the operations based on the condition
defined in the instruction being satisfied or not satisfied (56). For example, texture unit
34 repeatedly executes operations untd the condition 1s satisfied (e.g., repeatedly
executes if the condition 18 not satisfied} or as long as the condition is satisfied (e g,
repeatedly executes if the condition is satisfied). Also, texture unit 34 execuics
operations based on the condition defined in the instruction being satistied or satisfied
without recetving any addition mstructions to execute the operations.

16692} Texture umit 34 outputs data resulting from the repeated execution of the
operations to shader processor 36 (58). In one example, texture unit 34 cutputs the data
to shader processor 36 only after all iterations of the repeated execution of the
operations are complete.

18693} In some examples, output unit 30 of texture unit 34 may be configured to
determine whether an iteration of execution of the operations 18 needed based on
whether the condition defined 1n the mstruction is satisfied or not satisfied. Output unit

50 may be configured to output from texture unit 34 feedback signal 52 to inpat unit 40

WO 2017/142641 PCT/US2017/012734

based on the determination that the iteration of execution of the operations is needed.
Otherwise, output unit 30 may be configured to output the data resulting from the
repeated execution of the operations based on the determination that the iteration of
execution of the operations 1s not needed. In some examples, in determining whether to
execute another iteration, output unit 30 may compare the read texel value or a value
based on the texel value to a vaniable defined in the mstruction.

[8894] The techniques described in this disclosure may be implemented, at least in part,
in hardware, software, firmware or any combimation thereof. For example, various
aspects of the described technigues may be implemented within one or more processors,
meluding one or more microprocessors, digital signal processors (DSPs), application
specific integrated circuits {ASICs), field programmable gate arrays (FPGAs), or any
other equivalent integrated or discrete logic circuitry, as well as any combinations of
such components. The term “processor” or “processing circuitry” may generally refer
to any of the foregoing logic circuitry, alone or in combination with other logic circaitry,
or any other equivalent circuitry such as discrete hardware that performs processing.
16695] Such hardware, software, and firmware may be implemented within the same
device or within separate devices to support the varnous operations and tfunctions
described in this disclosure. In addition, any of the described units, modules or
components may be implemented together or separately as discrete but nteroperable
logic devices. Depiction of different features as modules or units is intended to
highlight different functional aspects and does not necessarily imply that such modules
or units must be realized by separate hardware or software components, Rather,
functionality associated with one or more modules or units may be performed by
separate hardware, firmware, and/or software components, or integrated within common
or separate hardware or software components.

18896} The techaniques described in this disclosure may also be stored, embodied or
cneoded in a computer-readable medium, such as a computer-readable storage mediom
that stores instructions. Instructions embedded or encoded in a computer-readable
medium may cause one or more processors to perform the techniques described herein,
¢.g., when the instructions are executed by the one or more processors. Conputer
readable storage media may mclude random access memory (RAM), read only memory

{ROM}, programmable read only memory (PROM), erasable programmable read only

WO 2017/142641 PCT/US2017/012734

memory {EPROM), electronically erasable programmable read only memory
(EEPROM), flash memory, a hard disk, a CD-ROM, a floppy disk, a cassetic, magnetic
media, optical media, or other computer readable storage media that is tangible.

{8697} Various aspects and examples have been described. However, modifications can
be made to the structure or techniques of this disclosure without departing from the

scope of the following claims.

WO 2017/142641 PCT/US2017/012734

]
o)

WHAT IS CLAIMED IS:

1. A method of processing data, the method comprising:

recetving, with a texture voif, an instruction insteucting the texture unit to
repeatedly execute operations based on a condition defined in the instruction being
satisfied;

repeatedly executing, with the texture unit, the operations based on the condition
defined in the instruction being satisfied or not being satisfied; and

outputting, with the texture unit and to a graphics processing unit (GPU), data

resulting from the repeated execution of the operations.

2. The method of claim 1, wherein receiving the instruction comprises roceiving
the mstruction from a shader processor of the GPU, and wherem outputiing comprises

outputting the data to the shader processor of the GPU.

3. The method of claim 1, further comprising:

reading, with the texture unit, a texel value during a first teration of the repeated
execution of the operations;

determining, with the texture anit, whether the condition s satisfied or not
satisfied by comparing a value based on the fexel value with a variable defined in the
mnstrction;

determining, with the texture unit, whether a second iteration of execution of the
operations 15 needed based on the determination of whether the condition defined in the
instruction is satistied or not satisfied,

wherein repeatedly executing the operations comprises outputting, with the
texture unit, an cutput of the texture unit as a feedback signal to an mput of the texture
unit based on the determunation that the second iteration of execution of the operations
is needed, and

wherein outputting data comprises outputting the data resulting from the
repeated execution of the operations based on the determination that the second teration

of execution of the operations 15 not needed.

WO 2017/142641 PCT/US2017/012734

4, The method of claim 1, wherein repeatedly executing the operations comprises
repeatedly executing the operations based on the condition defined 1 the instruction
being satisfied or not being satisfied without receiving any additional instractions to

execute the operations.

5. The method of claim 1, wherein the operations comprise operations of a shader
program.
6. The method of claim 1, whercin the operations comprise operations to modify

texture coordinates.

7. The method of claim 1, wherein the operations comprises operations for one or
more of parallax occlusion mapping (POM), screen space rav tracing (S5RT), depth of

ficld (DoF) processing, volume rendering, or water or terrain rendering with dynamic

e

height fields.

8. The method of claim 1, wherein repeatedly executing the operations comprises
repeatedly executing the operations until the condition 13 satisfied or as along as the

condition s satisfied.

9. The method of claim 1, wherein outputting the data resulting from the repeated
execution of the operations comprises cutputting the data to a shader processor only

after all iterations of the repeated execution of the operations are compleie,

WO 2017/142641 PCT/US2017/012734

10, A device for processing data, the device comprising:

a graphics processing unit {GPU) comprising a shader processor; and
a texture unit configured to:

recetve, from the shader processor of the GPU, an mstruction instructing
the texture untt to repeatedly execute operations based on a condition defined n
the mstruction being satisfied;

repeatedly execute the operations based on the condition defined in the
instruction being satisfied or not being satisfied; and

output, to the GPU, data resulting from the repeated execution of the

operations.
11 The device of claim 10, wherein the texture unit 1s configured to output the data

resulting from the repeated execution of the operations to the shader processor of the

GPU.

12. The device of claim 10, wherein the texture unit comprises:
an input unit;
arcad unit configured to read a texel value during a first iteration of the repeated
execution of the operations; and
an output unit configured to:
determine whether the condition is satisfied or not satisfied by comparing
a value based on the texel value with a vanable defined in the instruction;
determine whether a second iteration of execution of the operations is
needed based on the deternunation of whether the condition defined in the
matruction is satisfied or not satisfied,
wherein to repeatedly execute the operations, the output unit is configured to
output a feedback signal to the input wat of the texture unit based on the determination
that the second iteration of execution of the operations is needed, and
wherein to output data, the output unit is configured o output the data resulting
from the repeated execution of the operations based on the determination that the second

iteration of execution of the operations is not needed.

WO 2017/142641 PCT/US2017/012734

13 The device of claim 10, whergin the texture unit is configured to repeatedly
execute the operations based on the condition defined in the instruction being satisfied
or not being satisfied without recetving any additional instructions to execute the

operations.

14 ¢ device of claim 10, wherein the operations comprise operations of a shader

program.

15, The device of claim 10, wherem the operations comprise operations to modify

texture coordinates.

16. The device of claim 10, wherein the operations comprises operations for one or
more of parallax occlusion mapping (POM), screen space ray tracing (S5RT), depth of
ficld (DoF) processing, volume rendering, or water or terrain rendering with dynamic

e

height fields.

17. The device of claim 10, wheren the texture unit 1s configured to repeatedly
execute the operations until the condition is satistied or as along as the condition is

satisfied.

18 The device of claim 10, whergin the texture unit is configured to output the data
resulting from the repeated execution of the operations to the shader processor of the

GPU only after all iterations of the repeated execution of the operations are complete.

19. The device of claim 10, wherein the device comprises ong of’
an integrated circuit;
a MICTOPTIOCESSOT; OF

a wireless communication device.

20. The device of claim 10, wherein the GPU comprises the texture unit,

WO 2017/142641 PCT/US2017/012734

30

2. A device for processing data, the device comprising:

means for receiving an mstruction mstructing a texture unit to repeatedly execute
operations based on a condition defined 1n the instruction being satisfied;

means for repeatedly executing the operations based on the condition defined 1n
the instruction being satisfied or not being satisfied; and

means for outputiing, to a graphics processing unit {GPU), data resulting from

the repeated execution of the operations.

22. The device of claim 21, further comprising:

means for reading a texel value during a first iteration of the repeated execution
of the operations,

means for determining whether the condition 1s satisfied or not satisfied by
comparing a value based on the texel value with a variable defined in the instruction;

means for determuining whether a second iteration of exccution of the operations
is needed based on the deternmunation of whether the condition defined in the instruction
is satisfied or not satisfied,

wherein the means for repeatedly executimg the operations comprises means for
outputting an output of the texture unit as a feedback signal to an mput of the texture
umit based on the determination that the second iteration of execution of the operations
1s needed, and

wheretn the means for outputting data comprises means for cutputting the data
resulting from the repeated exccution of the operations based on the determination that

the second iteration of execution of the operations is not needed.

23. The device of claim 21, wherein the means for repeatedly executing the
operations comprises means for repeatedly executing the operations based on the
condition defined in the instraction being satisficd or not being satisfied without

receiving any additional instructions to execute the operations.

WO 2017/142641 PCT/US2017/012734

31

24, The device of claim 21, wherein the means for sutputiing the data resulting from
the repeated execution of the operations comprises means for outputting the datafo a
shader processor only after all #terations of the repeated execution of the operations are

complete.

25, A non-transitory computer-readable storage medium storing istructions that
when executed cause one or more processors of a device for processing data to:

receive an instruction instructing a texture unit to repeatedly execute operations
based on a condition defined in the mstruction being satisfied;

repeatedly execute the operations based on the condition defined m the
instruction being satisfied or not being satistied; and

output, to a graphics processing unit {GPU}, data resulting from the repeated

execution of the operations.

26. The non-transitory computer-readabic storage medium of claim 25, further
comprising insiructions that cause the one or more processars o

read a texel value during a first iteration of the repeated execution of the
operations;

determine whether the condition is satisfied or not satistied by comparing a
value based on the texel value with a vanable defined in the mmstruction;

determine whether a second iteration of exccution of the operations is needed
based on the determination of whether the condition defined in the mstruction is
satisticd or not satisfied,

wherein the instructions that cause the one or more processors to repeatedly
execute the operations comprise instructions that cause the one or more processors (o
output an output of the texture unit as a feedback signal to an mput of the texture unit
bascd on the determination that the second teration of execution of the operations is
needed, and

wherein the instructions that cause the one or more processors to output data
comprise mstructions that cause the one or more processors to output the data resulting
from the repeated execution of the operations based on the determination that the second

iteration of exccution of the operations is not needed.

WO 2017/142641 PCT/US2017/012734

27. The non-transitory computer-readable storage medium of claim 25, wherein the
instructions that cause the one or more processors to repeatedly execute the operations
comprise instructions that cause the one or more processors to repeatedly execute the

operations based on the condition defined in the instruction being satisfied or not being

satisfied without receiving any additional instructions to execuie the operations.24.

2%. The non-transttory computer-readable storage medium of claim 25, whereimn the
instructions that cause the one or more processors to gutput the data resulting from the
repeated execution of the operations comprise mstructions that cause the one or nore
processors to output the data to a shader processor only after all terations of the

repeated execution of the operations are complete.

WO 2017/142641

PCT/US2017/012734
1/4

COMPUTING DEVICE

USER INPUT
INTERFACE
4

2
CPU MEMORY SYSTEM
6 CONTROLLER |[«—»{ MEMORY
6 8 10
ihi ik
GPU
BUS 20 > 12
N ¢
DISPLAY LOCAL
DISPLAY «—>»| INTERFACE MEMORY
18 16 14

FIG. 1

WO 2017/142641
2/4

GRAPHICS API
26

I

GPU DRIVER
28

'

OPERATING SYSTEM
30

fi

PCT/US2017/012734

GPU
12

CONTROLLER
32

TEXTURE UNIT
34

SHADER PROCESSOR
36

FIXED FUNCTION
UNITS
38

LOCAL MEMORY
14

fi

N\

MEMORY
10

FIG. 2

PCT/US2017/012734

WO 2017/142641

3/4

€ 'Old

ve
LINN FENLXAL

~ _
o id ._._w_,__uD 05 >
LINNHILTE Ll) yinnos 40109 1INN 1Nd1NO v1vda 13xal
>
Z5
— <
1IN ~ 4 o7
ONLLLYINOA H IHOVD LINA LNdNI NOLLONILSHI

9¢
~J0SS300ud
J3AVHS

WO 2017/142641

PCT/US2017/012734

4/4

RECEIVE INSTRUCTION INSTRUCTING
TEXTURE UNIT TO REPEATEDLY EXECUTE
OPERATIONS BASED ON CONDITION DEFINED
IN INSTRUCTION BEING SATISFIED

|~ 54

Y

REPEATEDLY EXECUTE OPERATIONS BASED
ON CONDITION DEFINED IN INSTRUCTION
BEING SATISFIED OR NOT SATISFIED

|~ 56

Y

OUTPUT DATA RESULTING FROM REPEATED
EXECUTION OF OPERATIONS

|~ 58

FIG. 4

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/012734

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6T15/00
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6T

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

paragraph [0065]

AL) 5 May 2009 (2009-05-05)
abstract

abstract

X US 2015/379676 Al (GIRADO JAVIER IGNACIO 1-28
[US] ET AL) 31 December 2015 (2015-12-31)

A US 7 528 843 Bl (KILGARD MARK J [US] ET 1-28

A US 6 980 209 B1 (DONHAM CHRISTOPHER D S 1-28
[US] ET AL) 27 December 2005 (2005-12-27)

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

10 March 2017

Date of mailing of the international search report

20/03/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

dos Santos, Luis

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2017/012734
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2015379676 Al 31-12-2015 US 2015379676 Al 31-12-2015
WO 2015200685 Al 30-12-2015
US 7528843 Bl 05-05-2009 NONE
US 6980209 Bl 27-12-2005 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - wo-search-report
	Page 39 - wo-search-report

