

M. H. SHOENBERG.
ELECTRICALLY HEATED SYRINGE.
APPLICATION FILED MAR. 6, 1912.

1,026,611.

Patented May 14, 1912.

Witnesses

J. M. Fowler Jr.
R. S. Trognier.

334

M. H. Shoenberg

Eugene C. Brown
Attorney

UNITED STATES PATENT OFFICE.

MILTON H. SHOENBERG, OF SAN FRANCISCO, CALIFORNIA, ASSIGNOR TO THE PRESTO ELECTRICAL MANUFACTURING COMPANY, OF SAN FRANCISCO, CALIFORNIA, A CORPORATION OF CALIFORNIA.

ELECTRICALLY-HEATED SYRINGE.

1,026,611.

Specification of Letters Patent. Patented May 14, 1912.

Application filed March 6, 1912. Serial No. 682,008.

To all whom it may concern:

Be it known that I, MILTON H. SHOENBERG, a citizen of the United States, residing at San Francisco, in the county of San Francisco and State of California, have invented 5 new and useful Improvements in Electrically-Heated Syringes, of which the following is a specification.

My invention relates to hot-air syringes 10 in which the air flowing through the discharge nozzle passes over an electrically heated coil, and is especially adapted for use by dentists and surgeons. In instruments of this type, it is desirable that the 15 heated air should be of a uniform temperature and also that the heating element should be under the direct control of the operator. It is also desirable that the heat should be concentrated near the nozzle in 20 order that the heating effect may be felt immediately and that the other portions of the instrument which are liable to contact with the face or body of the patient may not become hot.

25 It is the purpose of my invention to embody the advantageous features above mentioned, and to provide a syringe which will remain in a predetermined position in the hand of the operator when the bulb is 30 manipulated, and will not be liable to shift from one side to the other. I also provide means for avoiding any sparks at the electrical contacts, so that the instrument may be connected to the ordinary lighting 35 circuits.

Other objects will be manifest from the following description, in connection with the accompanying drawings, in which—

40 Figure 1 is a side elevation of an instrument embodying my invention; Fig. 2 is a longitudinal section thereof; Fig. 3, is an enlarged detail view of the spring contact arm; and Fig. 4 is an enlarged detail view of the electric heater.

45 The nozzle tube 2, carrying the nozzle 3, and the brass or other metal current-carrying stem 5 are secured rigidly together by a hard-rubber or other insulating bushing 6, the tube 2 being preferably connected by 50 means of a nut 7. A hard-rubber or other

insulating bushing 9, is fastened to the outer end of the stem 5, by means of an inner threaded metal ring 10, to which one of the electric conductors 12 is secured. The other conductor 14, passes through an aperture in the end of the bushing and is fastened under the head of a screw 15, to which one end of the insulated conductor 16, leading to the heater 18, is secured, the return heater conductor 19 being soldered or otherwise connected at 20 to the metal stem 5, thus forming a complete circuit through the heater when the plug 22 is inserted in a socket of the electric lighting system or other source of electricity. 55

The electric heater is placed in the end of the nozzle tube, adjacent the nozzle 3, so that the effect of the heated coil will be felt at once upon the air discharged through the nozzle. I construct the heater of a continuous fine resistance wire coil which is doubled upon itself, the two sections being separated by means of a mica or other insulating septum 23, which may be secured by means of a binding cord 24. The mica 75 separating member not only serves to insulate the two parts of the heater coil, but also serves as a heat-insulating support to maintain the heater at an intermediate point between the walls of the nozzle-tube and prevent the possibility of contact therewith, 80 which is quite important.

I preferably make the heater coil of comparatively low resistance, and connect an incandescent lamp in series therewith when 85 operating upon a lighting circuit. There is, therefore, no danger of the heating coil being burned out. If the circuit is broken in a circuit having as high a voltage as is found upon a lighting circuit, destructive 90 sparking occurs which will rapidly destroy the switch contacts. For the purpose of avoiding this, I prefer to arrange the switch in the instrument to short-circuit the heater coil through a shunt path instead of actually 95 breaking the circuit. For this purpose, I have shown the spring-arm 25 of the switch soldered or otherwise fastened to the inner wall of the tube 5 at 26, and carrying a hard-rubber or other press-button 28 at its 100

free end, the shank of the button passing through an aperture in the bushing. Fas-
tened to the spring-arm 25, by means of a binding-cord 29, or otherwise, but insulated
therefrom by a mica or other strip 30, is a
metal strip 32, which is connected at one
end by means of a flexible wire 34 to the
conductor 16, and at the other end is adapt-
ed to be normally held in contact with the
end of the tube 5 at 35. It will thus be ob-
served that normally the metal strip 32
forms a short-circuit between conductor 16
and the current-carrying stem 5, thus shunt-
ing the current away from the heater-coil
18. By depressing the press-button 28 with
the finger, the contact at 35 will be broken,
and the current will flow through the
heater by way of the conductors 16, 19, and
the stem 5. Inasmuch as the current is not
interrupted when the contact strip 32 is
depressed by the button 28, but is merely
shifted through another path in the instru-
ment, there can be no sparking at the con-
tact 35. It will be observed that the path
of the current through the switch is entirely
by way of the contact strip 32, and not
through the spring 25. When the instru-
ment is connected to a low voltage battery,
so that the sparking upon the breaking of
the circuit is of no consequence, I prefer to
arrange the switch in series with the circuit,
instead of in shunt as just described.

As I have previously pointed out, it is
important that the nozzle should remain
steadily in one position in the hand of the
operator when it is being manipulated, so
that he may accurately direct the discharge
of the air current. When the rubber bulb
is attached to the end of the stem, as is
usual, the nozzle stem is shifted laterally
with every movement of the bulb in defla-
tion or inflation. For the purpose of ob-
viating this defect, I pass the stem 5
entirely through the rubber bulb 40, one
end bearing against the end of the interme-
diate bushing 6, and the other end being
pressed firmly by the outer bushing 9 which
is screwed against it. Each end of the
bulb is thus positively supported and held
50 by the stem 5 which serves as the central
axis and prevents the bulb from shifting
to one side when it is being deflated and
maintains the instrument in the same posi-
tion in the hand of the operator. The bulb
55 may be provided with an inlet valve 42, and
the air is forced through the opening 43
into the hollow stem from whence it passes
into the nozzle tube. By means of the fin-
ger button 28, the operator may instantly
60 control the air passing through the instru-
ment, making it either warm or cool at will.

I have described in detail the construc-
tion illustrated in the accompanying draw-
ings for the purpose of disclosing an em-

bodiment of my invention, but I am aware 65
that changes may be made therein, without
departing from the spirit of my invention,
and I aim to cover such modifications in the
 appended claims.

I claim:—

1. An electrically heated syringe, com- 70
prising a nozzle tube, an elastic bulb con-
nected therewith, and an electric heating
element in said tube comprising a spiral
resistance wire doubled upon itself and an 75
insulating septum interposed between the
portions of said spiral wire and separating
the heater from the opposite walls of the
tube.

2. An electrically heated syringe, com- 80
prising a nozzle tube, a hollow stem, an
insulating bushing intermediate said tube
and stem, an elastic bulb surrounding said
stem, a bushing threaded to the other end
85 of said stem and provided with electrical
contacts, an electric heating coil in said
tube, and conductors connecting said coil
and said contacts.

3. An electrically heated syringe, com- 90
prising a nozzle tube, a hollow stem, an 95
insulating bushing intermediate said tube
and stem, an elastic bulb surrounding said
stem, a bushing threaded to the other end
of said stem and provided with electrical
contacts, an electric heating coil in said
tube, conductors connecting said coil and
said contacts, and a switch member within
said stem having a push-button projecting
through an aperture in said intermediate
bushing, said switch member being arranged
100 to interrupt the flow of current from said
conductors to said heating coil.

4. An electrically heated syringe, com- 105
prising a nozzle tube, a hollow metal stem
provided with a lateral aperture, an in-
sulating bushing connecting said tube and
said stem, an elastic bulb surrounding said
stem, a bushing threaded to the outer end
110 of said stem, an electric heating coil in
said tube, conductors passing through said
end bushing, means connecting one of said
conductors to said stem, a wire connecting
the other conductor with one terminal of
said coil, and a wire connecting the other
end of said coil with said stem.

5. An electrically heated syringe, com- 115
prising a nozzle tube, a hollow metal stem
provided with a lateral aperture, an in-
sulating bushing connecting said tube and
said stem, an elastic bulb surrounding said
stem, a bushing threaded to the outer end of
120 said stem, an electric heating coil in said
tube, conductors passing through said end
bushing, means connecting one of said con-
ductors to said stem, a wire connecting the
other conductor with one terminal of said
coil, a wire connecting the other end of said
coil with said stem, and a spring-pressed

switch member within said stem having a push-button projecting through an aperture in said intermediate bushing, said switch member being arranged to normally interrupt the flow of current from said conductors to said heating coil.

In testimony whereof I have hereunto set

my hand in presence of two subscribing witnesses.

MILTON H. SHOENBERG.

Witnesses:

LEWIS ADELSDORFER,
M. MEAGHER.